EP1291410A1 - Composition de blanchiment comprenant un agent de maintien de colorant - Google Patents

Composition de blanchiment comprenant un agent de maintien de colorant Download PDF

Info

Publication number
EP1291410A1
EP1291410A1 EP02017035A EP02017035A EP1291410A1 EP 1291410 A1 EP1291410 A1 EP 1291410A1 EP 02017035 A EP02017035 A EP 02017035A EP 02017035 A EP02017035 A EP 02017035A EP 1291410 A1 EP1291410 A1 EP 1291410A1
Authority
EP
European Patent Office
Prior art keywords
group
alkyl
fabrics
independently
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02017035A
Other languages
German (de)
English (en)
Other versions
EP1291410B1 (fr
Inventor
Valerio Del Duca
Milena Leone
Alberto Scarmagnan
Mark Pieter Adria Van Der Heijden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES02017035T priority Critical patent/ES2265010T3/es
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to DE60211610T priority patent/DE60211610T2/de
Priority to AT02017035T priority patent/ATE327309T1/de
Priority to EP02017035A priority patent/EP1291410B1/fr
Priority to MXPA04002166A priority patent/MXPA04002166A/es
Priority to BR0212324-0A priority patent/BR0212324A/pt
Priority to PCT/US2002/028310 priority patent/WO2003022976A1/fr
Priority to AU2002323619A priority patent/AU2002323619A1/en
Priority to JP2003527041A priority patent/JP2005502767A/ja
Priority to ARP020103369A priority patent/AR036438A1/es
Publication of EP1291410A1 publication Critical patent/EP1291410A1/fr
Application granted granted Critical
Publication of EP1291410B1 publication Critical patent/EP1291410B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0021Dye-stain or dye-transfer inhibiting compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3947Liquid compositions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • D06L4/10Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen
    • D06L4/12Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen combined with specific additives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile

Definitions

  • the present invention relates to liquid bleaching compositions and in particular to a process of treating fabrics with a liquid bleaching composition comprising a dye maintenance agent.
  • Peroxygen bleach-containing compositions have been extensively described in the art, especially in laundry applications as laundry additives and/or laundry pretreaters.
  • peroxygen bleach-containing compositions in laundry applications to boost the removal of dried on (encrusted) stains/soils and "problem" stains, such as grease, coffee, tea, grass, mud/clay-containing soils, which are otherwise particularly difficult to remove.
  • peroxygen bleaches are considered as being safer to fabrics/carpets, specifically to coloured fabrics/carpets, compared to other bleaches, as for example hypohalite bleaches.
  • bleaching compositions have the inconvenience of having a tendency of damaging fabrics treated therewith. Indeed, said compositions may cause color damage ("discoloration") of dyed fabrics treated with said compositions, in particular dark colored fabrics dyed with sulphated dyes are prone to discoloration.
  • bleaching compositions comprising ingredients providing "color-safety benefits" to said bleaching compositions.
  • Such ingredients providing color-safety benefits (“color safety ingredients”) are included into bleaching compositions due to the tendency of peroxygen bleach to form aggressive bleach-species during the decomposition of the peroxygen bleach, upon storage or during use or thereafter.
  • color safety ingredients prevent or at least reduce the formation of aggressive bleach-species and hence prevent an attack of the aggressive bleach-species on fabric dyes.
  • WO96/26999 describes a laundry pretreatment composition comprising a chelant, wherein fabric safety and/or color safety benefits are provided to said laundry pretreatment composition.
  • bleaching compositions comprising color safety ingredients show a good color safety performance.
  • the prevention of discoloration of dyed fabrics when treated with liquid bleaching compositions may still be further improved.
  • active color protection it is meant herein the active protection of dyed fabrics against discoloration caused by interaction of a wash solution and the fabric dyes.
  • color protection in a bleaching composition may be provided independently of a color safety benefit or even in combination of a color safety benefit coming from color safety ingredients.
  • the bleaching compositions as described herein also provide excellent bleaching performance.
  • compositions of the present invention provide excellent bleaching performance when used as a laundry additive and/or a laundry pretreater.
  • a further advantage of the bleaching compositions according to the present invention is that they are able to perform in a variety of conditions, i.e., in hard and soft water as well as when used neat or diluted.
  • the present invention encompasses a process of treating fabrics with a liquid bleaching composition comprising at least 3% of a peroxygen bleach and a dye maintenance agent, wherein said process comprises the steps of contacting said fabrics with said liquid composition in its neat or diluted form and washing said fabrics with an aqueous bath comprising water and a conventional laundry detergent, preferably comprising at least one surface active agent, before and/or during and/or after the step of contacting said fabrics with said liquid composition.
  • the bleaching composition is a mixture of:
  • the bleaching composition according to the present invention is formulated as a liquid composition.
  • liquid it is meant to include conventional liquids, gels and pastes.
  • the bleaching compositions herein are preferably, but not necessarily formulated as aqueous compositions.
  • Liquid bleaching compositions are preferred herein for convenience of use.
  • Preferred liquid bleaching compositions of the present invention are aqueous and therefore, preferably may comprise water, more preferably may comprise water in an amount of from 60% to 98%, even more preferably of from 80% to 97% and most preferably 85% to 97% by weight of the total composition.
  • the pH of the liquid bleaching compositions herein, as is measured at 25°C, preferably is at least, with increasing preference in the order given, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 or 5.
  • the pH of the liquid bleaching compositions herein, as is measured at 25°C preferably is no more than, with increasing preference in the order given, 9, 8.5, 8, 7.5, 7, 6.5, 6 or 5.5.
  • liquid compositions according to the present invention are formulated in the neutral to the acidic pH range. It is within this neutral to acidic pH range that the optimum chemical stability and bleaching and/or cleaning performance of the peroxygen bleach as well as optimum fabric- and/or color-safety are obtained.
  • compositions herein may further comprise an acid or a base to adjust the pH as appropriate.
  • Preferred acids herein are organic or inorganic acids or mixtures thereof.
  • Preferred organic acids are acetic acid, citric acid or a mixture thereof.
  • Preferred inorganic acids are sulfuric acid, phosphoric acid or a mixture thereof.
  • a particularly preferred acid to be used herein is an inorganic acid and most preferred is sulfuric acid.
  • Typical levels of such acids when present, are of from 0.01% to 3.0%, preferably from 0.05% to 2.0% and more preferably from 0.1% to 1.0% by weight of the total composition.
  • bases to be used herein can be organic or inorganic bases.
  • Suitable bases for use herein are the caustic alkalis, such as sodium hydroxide, potassium hydroxide and/or lithium hydroxide, and/or the alkali metal oxides such, as sodium and/or potassium oxide or mixtures thereof.
  • a preferred base is a caustic alkali, more preferably sodium hydroxide and/or potassium hydroxide.
  • Suitable bases include ammonia, ammonium carbonate and hydrogen carbonate.
  • Typical levels of such bases when present, are of from 0.01% to 1.0%, preferably from 0.05% to 0.8% and more preferably from 0.1% to 0.5% by weight of the total composition.
  • the bleaching compositions according to the present invention comprise a peroxygen bleach.
  • Suitable peroxygen bleaches to be used herein are selected from the group consisting of: hydrogen peroxide; water soluble sources of hydrogen peroxide; organic or inorganic peracids; hydroperoxides; diacyl peroxides; and mixtures thereof.
  • a hydrogen peroxide source refers to any compound that produces perhydroxyl ions on contact with water.
  • Suitable water-soluble sources of hydrogen peroxide for use herein include percarbonates, perborates and persilicates and mixtures thereof.
  • Suitable diacyl peroxides for use herein include aliphatic, aromatic and aliphatic-aromatic diacyl peroxides, and mixtures thereof.
  • Suitable aliphatic diacyl peroxides for use herein are dilauroyl peroxide, didecanoyl peroxide, dimyristoyl peroxide, or mixtures thereof.
  • a suitable aromatic diacyl peroxide for use herein is for example benzoyl peroxide.
  • a suitable aliphatic-aromatic diacyl peroxide for use herein is for example lauroyl benzoyl peroxide.
  • Suitable organic or inorganic peracids for use herein include : persulphates such as monopersulfate; peroxyacids such as diperoxydodecandioic acid (DPDA); magnesium perphthalic acid; perlauric acid; phthaloyl amidoperoxy caproic acid (PAP); perbenzoic and alkylperbenzoic acids; and mixtures thereof.
  • persulphates such as monopersulfate
  • peroxyacids such as diperoxydodecandioic acid (DPDA); magnesium perphthalic acid; perlauric acid; phthaloyl amidoperoxy caproic acid (PAP); perbenzoic and alkylperbenzoic acids; and mixtures thereof.
  • DPDA diperoxydodecandioic acid
  • PAP phthaloyl amidoperoxy caproic acid
  • perbenzoic and alkylperbenzoic acids and mixtures thereof.
  • Suitable hydroperoxides for use herein are tert-butyl hydroperoxide, cumyl hydroperoxide, 2,4,4-trimethylpentyl-2-hydroperoxide, di-isopropylbenzene-monohydroperoxide, tert-amyl hydroperoxide and 2,5-dimethyl-hexane-2,5-dihydroperoxide and mixtures thereof.
  • Such hydroperoxides have the advantage of being particularly safe to fabrics and color while delivering excellent bleaching performance when used in any laundry application.
  • such hydroperoxides have the advantage of being particularly safe to carpets and carpet dyes whilst delivering excellent bleaching performance when used in carpet treatment applications.
  • a preferred peroxygen bleach herein is selected from the group consisting of: hydrogen peroxide; water-soluble sources of hydrogen peroxide; organic or inorganic peracids; hydroperoxides; and diacyl peroxides; and mixtures thereof.
  • a more preferred peroxygen bleach herein is selected from the group consisting of hydrogen peroxide, water-soluble sources of hydrogen peroxide and diacyl peroxides and mixtures thereof.
  • An even more preferred peroxygen bleach herein is selected from the group consisting of hydrogen peroxide, water soluble sources of hydrogen peroxide, aliphatic diacyl peroxides, aromatic diacyl peroxides and aliphatic-aromatic diacyl peroxides and mixtures thereof.
  • the most preferred peroxygen bleach herein is hydrogen peroxide, water-soluble sources of hydrogen peroxide or mixtures thereof.
  • the liquid compositions according to the present invention comprise at least 3% by weight of the total composition of said peroxygen bleach.
  • the bleaching composition herein may comprise from 3% to 30%, preferably from 4% to 20%, more preferably from 4.5% to 15%, even more preferably from 5% to 10%, and most preferably from 5.5% to 10% by weight of the total composition of said peroxygen bleach.
  • peroxygen bleaches are chosen herein as oxidising agents over other oxidising agents, as for example hypohalite bleaches, as they are considered as being safer to fabrics, specifically to coloured fabrics.
  • bleachable stains any soils or stains containing ingredients sensitive to bleach that can be found on any carpet, e.g., coffee or tea.
  • compositions according to the present invention comprise a dye maintenance agent.
  • Suitable dye maintenance agent are described as cyclic amine based polymers, oligomers or copolymers in WO 99/14301 and dye maintenance polymers or oligomers in WO 00/56849, both documents being incorporated herein by reference.
  • the bleaching compositions according to the present invention may comprise from 0.001% to 30%, preferably from 0.01 % to 15% and more preferably from 0.05% to 5% by weight of the total composition of a dye maintenance agent.
  • the dye maintenance agent is a cyclic amine based polymer, oligomer or copolymer.
  • said cyclic amine based polymers, oligomers or copolymers are of the general formula :
  • said cyclic amine based polymers, oligomers or copolymers are of the above formula, wherein each R 1 is H and at least one W is selected from the group consisting of:
  • said cyclic amine based polymers, oligomers or copolymers are of the above formula, wherein R 1 is H and at least one W is selected from the group consisting of:
  • said cyclic amine based polymers, oligomers or copolymers are of the above formula, wherein each R 1 is H and at least one W is selected from the group consisting of:
  • said cyclic amine based polymers, oligomers or copolymers are oxidized adducts selected from the group consisting of piperazine, piperidine, epichlorohydrin, epichlorohydrin benzyl quat, epichlorohydrin methyl quat, morpholine and mixtures thereof.
  • the dye maintenance agent herein is imidazole : epi-chlorohydrin copolymer (condensation oligomer of imidazole and epi-chlorohydrin at a ratio of 1:4:1).
  • a suitable imidazole : epi-chlorohydrin copolymer dye maintenance agent is commercially available under the trade name Sokalan PG-IME® from BASF.
  • peroxygen bleach-containing bleaching compositions have the inconvenience of having a tendency of causing color damage ("discoloration") of dyed fabrics treated with said compositions, in particular dark colored fabrics dyed with sulphated dyes are prone to discoloration. Indeed, it lies in the nature of peroxygen bleach to discolor dyed fabrics, which is an unwanted side effect of the bleaching activity of the peroxygen bleach.
  • active color protection it is meant herein the active protection of dyed fabrics against discoloration caused by interaction of a wash solution and the fabric dyes ("color protection benefit”).
  • color protection in a bleaching composition may be provided independently of a color safety benefit or even in combination of a color safety benefit coming from color safety ingredients.
  • dye maintenance agents specifically adhere to dye molecules deposited on fabrics, preferably sulphate groups of dye molecules, and thereby reduce the solubility of said dye molecules. Thereby, protecting said dyes from solubilising them off the fabric and thereby discoloring said fabric caused by the interaction of the bleaching composition and/or the wash solution formed by a conventional laundry detergent used in addition to the bleaching composition and the dye.
  • the color protection can be assessed by visual grading.
  • the following test protocol may be applied to asses the color protection benefit as provided herein of a giving bleaching composition : 100 ml of said given bleaching composition are added into a standard washing machine in combination with 135 g of a conventional laundry detergent (e.g., DASH Essential® or DASH liquid®).
  • a colored fabric e.g., a fabric dyed with direct violet C111 is treated in said washing machine according to the standard procedure of the washing machine. This treatment can be repeated for 5 or 10 times.
  • the visual grading may be performed by a group of expert panelists using panel score units (PSU).
  • PSU panel score units
  • the bleaching composition of the present invention is used by contacting fabrics with a liquid bleaching composition.
  • the bleaching composition is used in a liquid form.
  • in a liquid form it is meant herein, the liquid compositions according to the present invention per se in neat or diluted form.
  • compositions according to the present invention are typically used in diluted form in a laundry operation.
  • in diluted form it is meant herein that the compositions for the bleaching of fabrics according to the present invention may be diluted by the user, preferably with water. Such dilution may occur for instance in soaking applications as well as by other means such as in a washing machine.
  • Said compositions may be used at a dilution level of up to 1500:1 (solvent:composition), preferably from 5:1 to 1000:1 and more preferably from 10:1 to 700:1 (solvent:composition).
  • liquid bleaching compositions are applied directly onto the fabrics to be treated without undergoing any dilution, i.e., the liquid compositions herein are applied onto the fabrics as described herein.
  • Fabrics to be treated herein include, but are not limited to, clothes, curtains, drapes, bed linens, bath linens, tablecloths, sleeping bags and/or tents.
  • treating a fabric it is meant herein cleaning said and/or bleaching/disinfecting said fabric.
  • a bleaching composition according to the present invention is contacted with the fabrics to be treated.
  • pretreatment mode where a liquid bleaching composition, as defined herein, is applied neat onto said fabrics before the fabrics are washed
  • soaking mode where a liquid bleaching composition, as defined herein, is first diluted in an aqueous bath and the fabrics are immersed and soaked in the bath, before they are washed
  • through-the-wash mode where a liquid bleaching composition, as defined herein, is added in addition to a wash liquor formed by dissolution or dispersion of a conventional laundry detergent, preferably in a washing machine.
  • the pretreatment process of bleaching fabrics according to the present invention preferably comprises the steps of first contacting said fabrics with a bleaching composition according to the present invention, then allowing said fabrics to remain in contact with said composition, for a period of time sufficient to bleach said fabrics, then rinsing said fabrics with water before being washed.
  • the bleaching composition may be used in dilute or neat form. Where it is used diluted, the bleaching composition should remain in contact with the fabric for typically 1 to 60 minutes, preferably 5 to 30 minutes. Whereas, when the bleaching composition is used in its neat form, it should remain in contact with the fabric for a much shorter time, typically 5 seconds to 30 minutes, preferably 1 minute to 10 minutes.
  • said fabrics are to be washed, i.e., treated with a conventional laundry detergent, preferably comprising at least one surface active agent
  • the washing of said fabrics with a conventional laundry detergent may be conducted before the step of contacting said fabrics with said bleaching composition and/or during the step of contacting fabrics are contacted with said bleaching composition and/or after the step where said fabrics are contacted with the bleaching composition.
  • the washing of said fabrics with a conventional laundry detergent is conducted before the step of contacting said fabrics with said bleaching composition and/or during the step of contacting fabrics are contacted with said bleaching composition. More preferably, he washing of said fabrics with a conventional laundry detergent is conducted before the step of contacting said fabrics with said bleaching composition.
  • the conventional laundry detergent as described herein are dissolved or dispersed, preferably substantially dissolved or dispersed, in the aqueous bath formed in the process according to the present invention.
  • substantially dissolved or dispersed it is meant herein, that at least 50%, preferably at least 80%, more preferably at least 90%, even more preferably at least 95%, still more preferably at least 98%, and most preferably at least 99%, of said conventional laundry detergent are dissolved or dispersed in the aqueous bath formed in the process according to the present invention.
  • the washing step according to the present invention is performed in a washing machine.
  • the conventional detergent composition may be delivered into the washing machine either by charging the dispenser drawer of the washing machine with the detergent or by directly charging the drum of the washing machine with the detergent.
  • conventional laundry detergent it is meant herein, a laundry detergent composition currently available on the market.
  • said conventional laundry detergent comprises at least one surface active agent ("surfactant" as described herein below).
  • Said laundry detergent compositions may be formulated as powders, liquids or tablets. Suitable laundry detergent compositions are for example DASH futur®, DASH essential®, DASH liquid®, ARIEL tablets® and other products sold under the trade names ARIEL® or TIDE®.
  • a further advantage of process herein is the cleaning performance.
  • the cleaning performance benefits of the combination of both the liquid bleaching composition and the conventional laundry detergent is greater than the performance provided by either composition alone.
  • the present invention encompasses an article of manufacture comprising : a container; a set of instructions; and the liquid bleaching composition of the present invention comprising at least 3% of a peroxygen bleach and a dye maintenance agent; wherein said set of instructions comprises instructions of treating fabrics in a process comprising the steps of contacting said fabrics with said liquid bleaching composition in its neat or diluted form and washing said fabrics with an aqueous bath comprising water and a conventional laundry detergent, preferably comprising at least one surface active agent, before and/or during and/or after the step of contacting said fabrics with said liquid composition.
  • said set of instructions comprises instructions of treating fabrics in the process as described herein above.
  • the container herein preferably contains the liquid bleaching compositions herein.
  • the liquid bleaching composition herein may be packaged in a variety of suitable detergent containers known to those skilled in the art.
  • Suitable containers herein are selected from the group consisting of plastic bottles, glass bottles and the like.
  • Suitable plastic bottles are made of synthetic organic polymeric plastic materials.
  • the container herein is a plastic bottle.
  • the set of instructions herein may be printed directly onto the container herein and/or onto an additional package for the container herein (such as a carton or plastic box) when present.
  • said usage instructions may be associated to said container and/or to said optional additional package by means of a label comprising the instructions in a printed manner applied to the container and/or said optional additional package.
  • Said label may be glued or by any other means known to those skilled in the art affixed or attached to the container and/or said additional package when present.
  • said usage instructions may be presented with the article of manufacture in a separate manner, including but not limited to, a brochure, print advertisement, electronic advertisement, and/or verbal communication.
  • the bleaching compositions herein may further comprise a variety of optional ingredients such as surfactants, thickeners, builders, chelating agents, stabilisers, bleach activators, soil suspenders, soil suspending polyamine polymers, polymeric soil release agents, foam reducing systems or agents, catalysts, dye transfer agents, brighteners, perfumes, hydrotropes, solvents, pigments and dyes.
  • optional ingredients such as surfactants, thickeners, builders, chelating agents, stabilisers, bleach activators, soil suspenders, soil suspending polyamine polymers, polymeric soil release agents, foam reducing systems or agents, catalysts, dye transfer agents, brighteners, perfumes, hydrotropes, solvents, pigments and dyes.
  • compositions according to the present invention may comprise as a highly preferred but optional ingredient a surfactant.
  • compositions according to the present invention may comprise from 0.01% to 30%, preferably from 0.1% to 25 % and more preferably from 0.5% to 20% by weight of the total composition of a surfactant.
  • Suitable nonionic surfactants include alkoxylated nonionic surfactants.
  • Preferred alkoxylated nonionic surfactants herein are ethoxylated nonionic surfactants according to the formula RO-(C 2 H 4 O) n H, wherein R is a C 6 to C 22 alkyl chain or a C 6 to C 28 alkyl benzene chain, and wherein n is from 0 to 20, preferably from 1 to 15 and, more preferably from 2 to 15 and most preferably from 2 to 12.
  • the preferred R chains for use herein are the C 8 to C 22 alkyl chains.
  • Propoxylated nonionic surfactants and ethoxy/propoxylated ones may also be used herein instead of the ethoxylated nonionic surfactants as defined herein above or together with said surfactants
  • Preferred ethoxylated nonionic surfactants are substantially linear ethoxylated nonionic surfactants according to the above formula.
  • linear it is meant herein that the fatty alcohols used as a basis of the nonionic surfactant (raw material) at least 90%, preferably at least 95%, more preferably at least 97%, and most preferably 100% by weight of the total amount of fatty alcohols of linear (i.e., straight chain) fatty alcohols.
  • Suitable substantially linear ethoxylated nonionic surfactants for use herein are Marlipal® 24-7 (R is a mixture of linear C 12 and C 14 alkyl chains, n is 7), Marlipal® 24-4 (R is a mixture of linear C 12 and C 14 alkyl chains, n is 4), Marlipal® 24-3 (R is a mixture of linear C 12 and C 14 alkyl chains, n is 3), Marlipal® 24-2 (R is a mixture of linear C 12 and C 14 alkyl chains, n is 2), or mixtures thereof.
  • These Marlipal® surfactants are commercially available from Condea.
  • Preferred ethoxylated nonionic surfactants are according to the formula above and have an HLB (hydrophilic-lipophilic balance) below 16, preferably below 15, and more preferably below 14. Those ethoxylated nonionic surfactants have been found to provide good grease cutting properties.
  • Dobanol® 91-2.5 or Lutensol® TO3, or Lutensol® AO3, or Tergitol® 25L3, or Dobanol® 23-3, or Dobanol® 23-2, or Dobanol® 45-7, Dobanol® 91-8, or Dobanol® 91-10, or Dobanol® 91-12, or mixtures thereof.
  • Dobanol® surfactants are commercially available from SHELL.
  • Lutensol® surfactants are commercially available from BASF and these Tergitol® surfactants are commercially available from UNION CARBIDE.
  • Suitable chemical processes for preparing the alkoxylated nonionic surfactants for use herein include condensation of corresponding alcohols with alkylene oxide, in the desired proportions. Such processes are well known to the man skilled in the art and have been extensively described in the art.
  • Suitable nonionic surfactants to be used herein include polyhydroxy fatty acid amide surfactants, or mixtures thereof, according to the formula: R 2 -C(O)-N(R 1 )-Z, wherein R 1 is H, or C 1- C 4 alkyl, C 1- C 4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R 2 is C 5- C 31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof.
  • R 1 is C 1- C 4 alkyl, more preferably C 1 or C 2 alkyl and most preferably methyl
  • R 2 is a straight chain C 7- C 19 alkyl or alkenyl, preferably a straight chain C 9- C 18 alkyl or alkenyl, more preferably a straight chain C 11- C 18 alkyl or alkenyl, and most preferably a straight chain C 11- C 14 alkyl or alkenyl, or mixtures thereof.
  • Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose and xylose.
  • high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials.
  • Z preferably will be selected from the group consisting of -CH 2 -(CHOH) n -CH 2 OH, -CH(CH 2 OH)-(CHOH) n-1 -CH 2 OH, -CH 2 -(CHOH) 2 -(CHOR')(CHOH)-CH 2 OH, where n is an integer from 3 to 5, inclusive, and R' is H or a cyclic or aliphatic monosaccharide, and alkoxylated derivatives thereof. Most preferred are glycityls wherein n is 4, particularly CH 2 -(CHOH) 4 -CH 2 OH.
  • R 1 can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl.
  • R 2 - C(O) - N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide and the like.
  • Z can be 1-deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1-deoxylactityl, 1-deoxygalactityl, 1-deoxymannityl, 1-deoxymaltotriotityl and the like.
  • Suitable polyhydroxy fatty acid amide surfactants to be used herein may be commercially available under the trade name HOE® from Hoechst.
  • polyhydroxy fatty acid amide surfactants are known in the art. In general, they can be made by reacting an alkyl amine with a reducing sugar in a reductive amination reaction to form a corresponding N-alkyl polyhydroxyamine, and then reacting the N-alkyl polyhydroxyamine with a fatty aliphatic ester or triglyceride in a condensation/amidation step to form the N-alkyl, N-polyhydroxy fatty acid amide product.
  • compositions containing polyhydroxy fatty acid amides are disclosed for example in GB patent specification 809,060, published February 18, 1959, by Thomas Hedley & Co., Ltd., US patent 2,965,576, issued December 20, 1960 to E.R. Wilson, US patent 2,703,798, Anthony M. Schwartz, issued March 8, 1955, US patent 1,985,424, issued December 25, 1934 to Piggott and WO92/06070, each of which is incorporated herein by reference.
  • Suitable zwitterionic betaine surfactants for use herein contain both a cationic hydrophilic group, i.e., a quaternary ammonium group, and anionic hydrophilic group on the same molecule at a relatively wide range of pH's.
  • the typical anionic hydrophilic groups are carboxylates and sulphonates, although other groups like sulfates, phosphonates, and the like can be used.
  • a generic formula for the zwitterionic betaine surfactant to be used herein is : R 1 -N + (R 2 )(R 3 )R 4 X - wherein R 1 is a hydrophobic group; R 2 is hydrogen, C 1 -C 6 alkyl, hydroxy alkyl or other substituted C 1 -C 6 alkyl group; R 3 is C 1 -C 6 alkyl, hydroxy alkyl or other substituted C 1 -C 6 alkyl group which can also be joined to R 2 to form ring structures with the N, or a C 1 -C 6 sulphonate group; R 4 is a moiety joining the cationic nitrogen atom to the hydrophilic group and is typically an alkylene, hydroxy alkylene, or polyalkoxy group containing from 1 to 10 carbon atoms; and X is the hydrophilic group, which is a carboxylate or sulphonate group.
  • R 1 are aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chains that can contain linking groups such as amido groups, ester groups. More preferred R 1 is an alkyl group containing from 1 to 24 carbon atoms, preferably from 8 to 18, and more preferably from 10 to 16. These simple alkyl groups are preferred for cost and stability reasons.
  • the hydrophobic group R 1 can also be an amido radical of the formula R a -C(O)-NH-(C(R b ) 2 ) m , wherein R a is an aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chain, preferably an alkyl group containing from 8 up to 20 carbon atoms, preferably up to 18, more preferably up to 16, R b is selected from the group consisting of hydrogen and hydroxy groups, and m is from 1 to 4, preferably from 2 to 3, more preferably 3, with no more than one hydroxy group in any (C(R b ) 2 ) moiety.
  • Preferred R 2 is hydrogen, or a C 1 -C 3 alkyl and more preferably methyl.
  • Preferred R 3 is C 1 -C 4 sulphonate group, or a C 1 -C 3 alkyl and more preferably methyl.
  • Preferred R 4 is (CH 2 ) n wherein n is an integer from 1 to 10, preferably from 1 to 6, more preferably is from 1 to 3.
  • betaine/sulphobetaine Some common examples of betaine/sulphobetaine are described in U.S. Pat. Nos. 2,082,275, 2,702,279 and 2,255,082, incorporated herein by reference.
  • alkyldimethyl betaines examples include coconut-dimethyl betaine, lauryl dimethyl betaine, decyl dimethyl betaine, 2-(N-decyl-N, N-dimethyl-ammonia) acetate, 2-(N-coco N, N-dimethylammonio) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, cetyl dimethyl betaine, stearyl dimethyl betaine.
  • coconut dimethyl betaine is commercially available from Seppic under the trade name of Amonyl 265®.
  • Lauryl betaine is commercially available from Albright & Wilson under the trade name Empigen BB/L®.
  • amidobetaines include cocoamidoethylbetaine, cocoamidopropyl betaine or C 10 -C 14 fatty acylamidopropylene (hydropropylene)sulfobetaine.
  • C 10 -C 14 fatty acylamidopropylene (hydropropylene) sulfobetaine is commercially available from Sherex Company under the trade name "Varion CAS® sulfobetaine".
  • betaine Lauryl-immino-dipropionate commercially available from Rhone-Poulenc under the trade name Mirataine H 2 C-HA®.
  • Suitable anionic surfactants to be used in the compositions herein include water-soluble salts or acids of the formula ROSO 3 M wherein R preferably is a C 10 -C 24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C 10 -C 20 alkyl component, more preferably a C 12 -C 18 alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).
  • R
  • Suitable anionic surfactants for use herein are water-soluble salts or acids of the formula RO(A) m SO 3 M wherein R is an unsubstituted C 10 -C 24 alkyl or hydroxyalkyl group having a C 10 -C 24 alkyl component, preferably a C 12 -C 20 alkyl or hydroxyalkyl, more preferably C 12 -C 18 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between 0.5 and 6, more preferably between 0.5 and 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation.
  • R is an unsubstituted C 10 -C 24 alkyl or hydroxyalkyl group having a C 10 -C 24 alkyl component, preferably a C 12 -C 20 alkyl
  • Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein.
  • Specific examples of substituted ammonium cations include methyl-, dimethyl-, trimethyl-ammonium and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperdinium and cations derived from alkanolamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like.
  • Exemplary surfactants are C 12 -C 18 alkyl polyethoxylate (1.0) sulfate (C 12 -C 18 E(1.0)SM), C 12 -C 18 alkyl polyethoxylate (2.25) sulfate (C 12 -C 18 E(2.25)SM), C 12 -C 18 alkyl polyethoxylate (3.0) sulfate (C 12 -C 18 E(3.0)SM), and C 12 -C 18 alkyl polyethoxylate (4.0) sulfate (C 12 -C 18 E(4.0)SM), wherein M is conveniently selected from sodium and potassium.
  • Suitable anionic surfactants for use herein are sulphonated anionic surfactants.
  • Suitable sulphonated anionic surfactants for use herein include alkyl sulphonates, alkyl aryl sulphonates, naphthalene sulphonates, alkyl alkoxylated sulphonates, C 6 -C 20 alkyl alkoxylated linear or branched diphenyl oxide disulphonates, or mixtures thereof.
  • Suitable alkyl sulphonates for use herein include water-soluble salts or acids of the formula RSO 3 M wherein R is a C 6 -C 20 linear or branched, saturated or unsaturated alkyl group, preferably a C 8 -C 18 alkyl group and more preferably a C 14 -C 17 alkyl group, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).
  • R is a C 6 -C 20 linear
  • Suitable alkyl aryl sulphonates for use herein include water-soluble salts or acids of the formula RSO 3 M wherein R is an aryl, preferably a benzyl, substituted by a C 6 -C 20 linear or branched saturated or unsaturated alkyl group, preferably a C 8 -C 18 alkyl group and more preferably a C 10 -C 16 alkyl group, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium, calcium, magnesium and the like) or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, trieth
  • Particularly suitable linear alkyl sulphonates include C 14 -C 17 paraffin sulphonate like Hostapur ® SAS commercially available from Hoechst.
  • An example of commercially available alkyl aryl sulphonate is Lauryl aryl sulphonate from Su.Ma.
  • Particularly preferred alkyl aryl sulphonates are alkyl benzene sulphonates commercially available under trade name Nansa® available from Albright&Wilson.
  • linear alkyl sulphonate it is meant herein a non-substituted alkyl sulphonate wherein the alkyl chain comprises from 6 to 20 carbon atoms, preferably from 8 to 18 carbon atoms, and more preferably from 14 to 17 carbon atoms, and wherein this alkyl chain is sulphonated at one terminus.
  • Suitable alkoxylated sulphonate surfactants for use herein are according to the formula R(A) m SO 3 M wherein R is an unsubstituted C 6 -C 20 alkyl, hydroxyalkyl or alkyl aryl group, having a linear or branched C 6 -C 20 alkyl component, preferably a C 12 -C 20 alkyl or hydroxyalkyl, more preferably C 12 -C 18 alkyl or hydroxyalkyl, A is an ethoxy or propoxy or butoxy unit, m is greater than zero, typically between 0.5 and 6, more preferably between 0.5 and 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation.
  • R is an unsubstituted C 6 -C 20 alkyl, hydroxyalkyl or alkyl aryl group, having
  • Alkyl ethoxylated sulphonates, alkyl butoxylated sulphonates as well as alkyl propoxylated sulphonates are contemplated herein.
  • Specific examples of substituted ammonium cations include methyl-, dimethyl-, trimethyl-ammonium and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperdinium and cations derived from alkanolamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like.
  • Exemplary surfactants are C 12 -C 18 alkyl polyethoxylate (1.0) sulphonate (C 12 -C 18 E(1.0) SO 3 M), C 12 -C 18 alkyl polyethoxylate (2.25) sulphonate (C 12 -C 18 E(2.25) SO 3 M), C 12 -C 18 alkyl polyethoxylate (3.0) sulphonate (C 12 -C 18 E(3.0) SO 3 M), and C 12 -C 18 alkyl polyethoxylate (4.0) sulphonate (C 12 -C 18 E(4.0) SO 3 M), wherein M is conveniently selected from sodium and potassium.
  • Particularly suitable alkoxylated sulphonates include alkyl aryl polyether sulphonate like Triton X-200® commercially available from Union Carbide.
  • Suitable C 6 -C 20 alkyl alkoxylated linear or branched diphenyl oxide disulphonate surfactants for use herein are according to the following formula: wherein R is a C 6 -C 20 linear or branched, saturated or unsaturated alkyl group, preferably a C 12 -C 18 alkyl group and more preferably a C 14 -C 16 alkyl group, and X+ is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium, calcium, magnesium and the like).
  • R is a C 6 -C 20 linear or branched, saturated or unsaturated alkyl group, preferably a C 12 -C 18 alkyl group and more preferably a C 14 -C 16 alkyl group
  • X+ is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium, calcium, magnesium and the like).
  • Particularly suitable C 6 -C 20 alkyl alkoxylated linear or branched diphenyl oxide disulphonate surfactants to be used herein are the C 12 branched di phenyl oxide disulphonic acid and C 16 linear di phenyl oxide disulphonate sodium salt respectively commercially available by DOW under the trade name Dowfax 2A1® and Dowfax 8390®.
  • anionic surfactants suitable herein include sulfosuccinate surfactants, alkyl carboxylate surfactants, sulfosuccinamate surfactants and sulfosuccinamide surfactants.
  • Suitable alkyl carboxylate surfactants for use herein are according to the formula RCO 2 M wherein : R represents a hydrocarbon group selected from the group consisting of straight or branched alkyl radicals containing from 6 to 20, preferably 8 to 18, more preferably 10 to 16, carbon atoms and alkyl phenyl radicals containing from 6 to 18 carbon atoms in the alkyl group.
  • M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium, calcium, magnesium and the like) or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).
  • alkali metal cation e.g., sodium, potassium, lithium, calcium, magnesium and the like
  • ammonium or substituted ammonium e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and
  • anionic surfactants useful for detersive purposes can also be used herein. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, sulphonated polycarboxylic acids prepared by sulphonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
  • alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl ester sulphonates such as C 14-16 methyl ester sulphonates; acyl glycerol sulphonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described below), branched primary alkyl sulfates, alkyl polyethoxy carboxylates such as those of the formula RO(CH 2 CH 2 O) k CH 2 COO-M + wherein R is a C 8 -C 22 alkyl, k
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975, to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference).
  • Suitable anionic surfactants to be used herein also include acyl sarcosinate, in its acid and/or salt form. Being derivatives of natural fatty acids, said acyl sarcosinates are rapidly and completely biodegradable and have good skin compatibility.
  • suitable long chain acyl sarcosinates to be used herein include C 12 acyl sarcosinate (i.e., an acyl sarcosinate according to the above formula wherein M is hydrogen and R is an alkyl group of 11 carbon atoms) and C 14 acyl sarcosinate (i.e., an acyl sarcosinate according to the above formula wherein M is hydrogen and R is an alkyl group of 13 carbon atoms).
  • C 12 acyl sarcosinate is commercially available, for example, as Hamposyl L-30® supplied by Hampshire.
  • C 14 acyl sarcosinate is commercially available, for example, as Hamposyl M-30® supplied by Hampshire.
  • Suitable amphoteric surfactants to be used herein include amine oxides having the following formula R 1 R 2 R 3 NO wherein each of R 1 , R 2 and R 3 is independently a saturated substituted or unsubstituted, linear or branched hydrocarbon chains of from 1 to 30 carbon atoms.
  • Preferred amine oxide surfactants to be used according to the present invention are amine oxides having the following formula R 1 R 2 R 3 NO wherein R 1 is an hydrocarbon chain comprising from 1 to 30 carbon atoms, preferably from 6 to 20, more preferably from 8 to 16, most preferably from 8 to 12, and wherein R 2 and R 3 are independently substituted or unsubstituted, linear or branched hydrocarbon chains comprising from 1 to 4 carbon atoms, preferably from 1 to 3 carbon atoms, and more preferably are methyl groups.
  • R1 may be a saturated substituted or unsubstituted linear or branched hydrocarbon chain.
  • Suitable amine oxides for use herein are for instance natural blend C 8 -C 10 amine oxides as well as C 12 -C 16 amine oxides commercially available from Hoechst.
  • compositions according to the present invention may comprise as a highly preferred, but optional ingredient an anti-resoiling polymer.
  • Suitable anti-resoiling polymers include soil suspending polyamine polymers. Any soil suspending polyamine polymer known to those skilled in the art may also be used herein. Particularly suitable polyamine polymers for use herein are alkoxylated polyamines. Such materials can conveniently be represented as molecules of the empirical structures with repeating units : and wherein R is a hydrocarbyl group, usually of 2-6 carbon atoms; R 1 may be a C 1 -C 20 hydrocarbon; the alkoxy groups are ethoxy, propoxy, and the like, and y is from 2 to 30, most preferably from 7 to 20; n is an integer of at least 2, preferably from 2 to 40, most preferably from 2 to 5; and X- is an anion such as halide or methylsulfate, resulting from the quaternization reaction.
  • ethoxylated polyethylene amines i.e., the polymerized reaction product of ethylene oxide with ethyleneimine, having the general formula : wherein y is from 2 to 50, preferably from 5 to 30, and n is from 1 to 40, preferably from 2 to 40.
  • polyamines for use herein are the so-called ethoxylated polyethylene quaternized amines having the general formula : wherein y is from 2 to 50, preferably from 5 to 30, and n is from 1 to 40, preferably from 2 to 40 and R1 and R2 are independently a C 1 -C 20 hydrocarbon.
  • EHDQ 24-Ethoxylated Hexamethylene Diamine Quaternized methyl chloride
  • compositions according to the present invention may comprise as a highly preferred, but optional ingredient a thickener.
  • compositions of the present invention may have a viscosity of 1 cps or greater, more preferably of from 5 to 5000 cps, and still more preferably of from 10 to 2500 cps when measured with a CSL 2 100® Rheometer at 20°C with a 4 cm spindle (linear increment from 10 to 100 dyne/cm 2 in 2 minutes).
  • the bleaching compositions according to the present invention may comprise from 0.001% to 10%, preferably from 0.05% to 5% and more preferably from 0.1% to 1.0 % by weight of the total composition of a thickener.
  • compositions according to the present invention may comprise as a highly preferred, but optional ingredient a an alkoxylated benzoic acid or a salt thereof.
  • the alkoxylated benzoic acid or the salt thereof has the general formula : wherein : the substituents of the benzene ring X and Y are independently selected from -H, or -OR'; R' is independently selected from C 1 to C 20 linear or branched alkyl chains, preferably R' is independently selected from C 1 to C 5 linear or branched alkyl chains, more preferably R' is -CH 3 , and; M is hydrogen, a cation or a cationic moiety.
  • M is selected from the group consisting of hydrogen, alkali metal ions and alkaline earth metal ions. More preferably, M is selected from the group consisting of hydrogen, sodium and potassium. Even more preferably, M is hydrogen.
  • said alkoxylated benzoic acid or a salt thereof is selected from the group consisting of: a monoalkoxy benzoic acid, or a salt thereof, a dialkoxy benzoic acid, or a salt thereof; a trialkoxy benzoic acid, or a salt thereof; and a mixture thereof. More preferably, said alkoxylated benzoic acid or a salt thereof, is selected from the group consisting of : a dialkoxy benzoic acid, or a salt thereof; a trialkoxy benzoic acid, or a salt thereof; and a mixture thereof. Even more preferably, said alkoxylated benzoic acid or a salt thereof, is a trimethoxy benzoic acid or a salt thereof.
  • said alkoxylated benzoic acid or the salt thereof is a trimethoxy benzoic acid or a salt thereof (TMBA), wherein in the above general formula : the substituents of the benzene ring Y and X are -OR'; R' is -CH 3 and; M is hydrogen, a cation or a cationic moiety.
  • TMBA trimethoxy benzoic acid or a salt thereof
  • said alkoxylated benzoic acid or the salt thereof is selected from the group consisting of 3,4,5,- trimethoxy benzoic acid, a salt thereof, 2,3,4-trimethoxy benzoic acid, a salt thereof, 2,4,5- trimethoxy benzoic acid, a salt thereof and a mixture thereof. More preferably, said alkoxylated benzoic acid or the salt thereof is 3,4,5,- trimethoxy benzoic acid or a salt thereof. Even more preferably, said alkoxylated benzoic acid or the salt thereof is 3,4,5,- trimethoxy benzoic acid.
  • Suitable monoalkoxy benzoic acids or salts thereof are commercially available from Aldrich, in particular m-methoxy benzoic acid is commercially available from Aldrich. Suitable trimethoxy benzoic acids or salts thereof are commercially available from Aldrich and Merck.
  • the bleaching composition according to the present invention may comprise from 0.001% to 5%, preferably from 0.005% to 2.5% and more preferably from 0.01% to 1.0% by weight of the total composition of said alkoxylated benzoic acid or a salt thereof.
  • the bleaching compositions of the present invention may further comprise one or more builders and/or a modified polycarboxylate co-builder.
  • Suitable builders are selected from the group consisting of: organic acids and salts thereof; polycarboxylates; and mixtures thereof.
  • said builders have a calcium chelating constant (pKCa) of at least 3.
  • pKCa calcium chelating constant
  • the value of a builder or a mixture thereof is measured using a 0.1M NH 4 Cl-NH 4 OH buffer (pH 10 at 25°C) and a 0.1% solution of said builder or mixture thereof with a standard calcium ion electrode.
  • builders are organic acids like citric acid, lactic acid, tartaric acid, oxalic acid, malic acid, monosuccinic acid, disuccinic acid, oxydisuccinic acid, carboxymethyl oxysuccinic acid, diglycolic acid, carboxymethyl tartronate, ditartronate and other organic acid or mixtures thereof.
  • Suitable salts of organic acids include alkaline, preferably sodium or potassium, alkaline earth metal, ammonium or alkanolamine salts.
  • Such organic acids and the salts thereof are commercially available from Jungbunzlaur, Haarman & Reimen, Sigma-Aldrich or Fluka.
  • polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt or "overbased". When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • Useful polycarboxylates include homopolymers of acrylic acid and copolymers of acrylic acid and maleic acid.
  • polycarboxylate builders include the ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1,3,5-trihydroxy benzene-2,4,6-trisulfonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
  • polyacetic acids such as nitrilotriacetic acid
  • polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid
  • Suitable polycarboxylates are commercially available from Rohm & Haas under the trade name Norasol® or Acusol®.
  • Preferred builders herein are selected from the group consisting of: citric acid; tartaric acid; tartrate monosuccinate; tartrate disuccinate; lactic acid; oxalic acid; and malic acid; and mixtures thereof. Even more preferred builders herein are selected from the group consisting of : citric acid; tartaric acid; tartrate monosuccinate; tartrate disuccinate; and malic acid; and mixtures thereof. The most preferred builders herein are selected from the group consisting of: citric acid; tartaric acid; tartrate monosuccinate; and tartrate disuccinate; and mixtures thereof.
  • the bleaching compositions herein may comprise up to 40%, preferably from 0.01% to 25%, more preferably from 0.1% to 15%, and most preferably from 0.5% to 10% by weight of the total composition of said builder.
  • compositions of the present invention may further comprise a modified polycarboxylate co-builder.
  • polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • modified polycarboxylate it is meant herein that at least at one end of the polycarboxylate compound, i.e., the polycarboxylate chain, said compound is modified by a functional group, e.g., a phosphono group.
  • Preferred modified polycarboxylate co-builders are polycarboxylates with phosphono end groups.
  • phosphono end group it is meant herein a phosphono functional group according to the formula : wherein each M is independently H or a cation, preferably both M are H.
  • Suitable polycarboxylates with phosphono end groups are copolymers of acrylic acid and maleic acid having a phosphono end group and homopolymers of acrylic acid having a phosphono end group.
  • a preferred modified polycarboxylate is a copolymer of acrylic acid and maleic acid with a phosphonic/phosphono end group according to the general formula : having an average molecular weight of from 1000 to 100000, preferably an average molecular weight of from 1000 to 20000, more preferably an average molecular weight of from 1000 to 10000, and most preferably an average molecular weight of from 1500 to 5000; wherein n is from 10 mol% to 90 mol%, preferably 80 mol% and m is from 10 mol% to 90 mol%, preferably 20 mol%.
  • an example of a suitable modified polycarboxylate is a copolymer of acrylic acid and maleic acid (80/20) with a phosphonic/phosphono end group according to the formula : wherein n is 80 mol% and m is 20 mol%; having an average molecular weight of 2000.
  • Such modified polycarboxylate are available from Rohm & Haas under the trade name Acusol 425®, Acusol 420® or Acusol 470®.
  • the bleaching compositions herein may comprise up to 40%, preferably from 0.01% to 25%, more preferably from 0.1% to 15%, and most preferably from 0.5% to 5% by weight of the total composition of said modified polycarboxylate co-builder.
  • the bleaching compositions of the present invention may comprise a chelating agent as a preferred optional ingredient.
  • Suitable chelating agents may be any of those known to those skilled in the art, such as the ones selected from the group comprising phosphonate chelating agents, amino carboxylate chelating agents, other carboxylate chelating agents, polyfunctionally-substituted aromatic chelating agents, ethylenediamine N,N'- disuccinic acids, or mixtures thereof.
  • a chelating agent may be desired in the compositions of the present invention as it allows to increase the ionic strength of the compositions herein and thus their stain removal and bleaching performance on various surfaces.
  • the presence of chelating agents may also contribute to reduce the tensile strength loss of fabrics and/or color damage, especially in a laundry through the wash application. Indeed, the chelating agents inactivate the metal ions present on the surface of the fabrics and/or in the cleaning compositions (neat or diluted) that otherwise would contribute to the radical decomposition of the peroxygen bleach.
  • Suitable phosphonate chelating agents to be used herein may include alkali metal ethane 1-hydroxy diphosphonates (HEDP), alkylene poly (alkylene phosphonate), as well as amino phosphonate compounds, including amino aminotri(methylene phosphonic acid) (ATMP), nitrilo trimethylene phosphonates (NTP), ethylene diamine tetra methylene phosphonates, and diethylene triamine penta methylene phosphonates (DTPMP).
  • the phosphonate compounds may be present either in their acid form or as salts of different cations on some or all of their acid functionalities.
  • Preferred phosphonate chelating agents to be used herein are diethylene triamine penta methylene phosphonate (DTPMP) and ethane 1-hydroxy diphosphonate (HEDP). Such phosphonate chelating agents are commercially available from Monsanto under the trade name DEQUEST®.
  • Polyfunctionally-substituted aromatic chelating agents may also be useful in the compositions herein. See U.S. patent 3,812,044, issued May 21, 1974, to Connor et al.
  • Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy -3,5-disulfobenzene.
  • a preferred biodegradable chelating agent for use herein is ethylene diamine N,N'- disuccinic acid, or alkali metal, or alkaline earth, ammonium or substitutes ammonium salts thereof or mixtures thereof.
  • Ethylenediamine N,N'- disuccinic acids especially the (S,S) isomer, have been extensively described in US patent 4, 704, 233, November 3, 1987, to Hartman and Perkins.
  • Ethylenediamine N,N'- disuccinic acid is, for instance, commercially available under the tradename ssEDDS® from Palmer Research Laboratories.
  • Suitable amino carboxylates to be used herein include ethylene diamine tetra acetates, diethylene triamine pentaacetates, diethylene triamine pentaacetate (DTPA),N- hydroxyethylethylenediamine triacetates, nitrilotri-acetates, ethylenediamine tetrapropionates, triethylenetetraaminehexa-acetates, ethanoldiglycines, propylene diamine tetracetic acid (PDTA) and methyl glycine di-acetic acid (MGDA), both in their acid form, or in their alkali metal, ammonium, and substituted ammonium salt forms.
  • PDTA propylene diamine tetracetic acid
  • MGDA methyl glycine di-acetic acid
  • Particularly suitable amino carboxylates to be used herein are diethylene triamine penta acetic acid, propylene diamine tetracetic acid (PDTA) which is, for instance, commercially available from BASF under the trade name Trilon FS® and methyl glycine di-acetic acid (MGDA).
  • PDTA propylene diamine tetracetic acid
  • MGDA methyl glycine di-acetic acid
  • carboxylate chelating agents to be used herein include salicylic acid, aspartic acid, glutamic acid, glycine, malonic acid or mixtures thereof.
  • R 1 , R 2 , R 3 , and R 4 are independently selected from the group consisting of -H, alkyl, alkoxy, aryl, aryloxy, -Cl, -Br, -NO 2 , -C(O)R', and -SO 2 R"; wherein R' is selected from the group consisting of -H, -OH, alkyl, alkoxy, aryl, and aryloxy; R" is selected from the group consisting of alkyl, alkoxy, aryl, and aryloxy; and R 5 , R 6 , R 7 , and R 8 are independently selected from the group consisting of -H and alkyl.
  • Particularly preferred chelating agents to be used herein are amino aminotri(methylene phosphonic acid), di-ethylene-triamino-pentaacetic acid, diethylene triamine penta methylene phosphonate, 1-hydroxy ethane diphosphonate, ethylenediamine N, N'-disuccinic acid, and mixtures thereof.
  • the bleaching compositions according to the present invention may comprise up to 5%, preferably from 0.01% to 1.5% by weight and more preferably from 0.01% to 0.5% by weight of the total composition of a chelating agent.
  • the bleaching compositions according to the present invention may further comprise a solvent.
  • Preferred solvents herein include hydrophobic solvents, hydrophilic solvents and mixtures hereof.
  • hydrophilic index molecular weight of the hydrophilic part of the solvent total molecular weight of the solvent * 100
  • hydrophilic part of a given solvent it is meant herein all the groups O, CO, OH, of a given solvent.
  • molecular weight of the hydrophilic part of a solvent it is meant herein the total molecular weight of all the hydrophilic parts of a given solvent.
  • hydrophilic solvents to be used herein have a hydrophilic index of more than 18, preferably more than 25, and more preferably more than 30, and the hydrophobic solvents to the used herein have a hydrophilic index of less than 18, preferably less than 17 and more preferably 16 or less.
  • Suitable hydrophobic solvents to be used herein include paraffins, terpenes or terpene derivatives, as well as alkoxylated aliphatic or aromatic alcohols, aliphatic or aromatic alcohols, glycols or alkoxylated glycols, and mixtures thereof, all these solvents have a hydrophilic index of less than 18.
  • Suitable terpenes are mono-and bicyclic monoterpenes, especially those of the hydrocarbon class, which include the terpinenes, terpinolenes, limonenes and pinenes and mixtures thereof. Highly preferred materials of this type are d-limonene, dipentene, alpha-pinene and/or beta-pinene.
  • pinene is commercially available form SCM Glidco (Jacksonville) under the name Alpha Pinene P&F®.
  • Terpene derivatives such as alcohols, aldehydes, esters, and ketones, which have a hydrophilic index of less than 18, can also be used herein.
  • Such materials are commercially available as, for example, the ⁇ and ⁇ isomers of terpineol and linalool.
  • paraffins hydrophilic index of 0
  • paraffins hydrophilic index of 0
  • octane octane
  • Octane is commercially available for example from BASF.
  • Suitable hydrophobic alkoxylated aliphatic or aromatic alcohols to be used herein are according to the formula R-(A) n -OH wherein R is a linear or branched saturated or unsaturated alkyl group, or alkyl substituted or non-alkyl substituted aryl group of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms, wherein A is an alkoxy group preferably an butoxy, propoxy and/or ethoxy group, and n is an integer of from 1 to 5, preferably 1 to 2.
  • Suitable hydrophobic aliphatic or aromatic alcohols to be used herein are according to the formula R-OH wherein R is a linear or branched saturated or unsaturated alkyl group, or alkyl substituted or non-alkyl substituted aryl group of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms.
  • Suitable hydrophobic glycols to be used herein are according to the formula HO-CR 1 R 2 -OH wherein R 1 and R 2 are independently H or a C 2 -C 10 saturated or unsaturated aliphatic hydrocarbon chain and/or cyclic hydrocarbon chain.
  • Suitable hydrophobic alkoxylated glycols to be used herein are according to the formula R-(A) n -R 1 -OH wherein R is H, OH, a linear saturated or unsaturated alkyl of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms, wherein R 1 is H or a linear saturated or unsaturated alkyl of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms, and A is an alkoxy group preferably an ethoxy, methoxy, and/or propoxy group and n is from 1 to 5, preferably 1 to 2.
  • hydrophobic solvents to be used herein include d-limonene, dipentene, alpha-pinene, beta-pinene, octane, benzyl alcohol, or mixtures thereof.
  • Suitable hydrophilic solvents to be used herein include alkoxylated aliphatic or aromatic alcohols, aliphatic or aromatic alcohols, glycols or alkoxylated glycols, and mixtures thereof, all these solvents having a hydrophilic index of more than 18.
  • Suitable hydrophilic alkoxylated aliphatic or aromatic alcohols to be used herein are according to the formula R-(A) n -OH wherein R is a linear or branched saturated or unsaturated alkyl group, or alkyl substituted or non-alkyl substituted aryl group of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms, wherein A is an alkoxy group preferably a butoxy, propoxy and/or ethoxy group, and n is an integer of from 1 to 5, preferably 1 to 2.
  • Suitable hydrophilic aliphatic or aromatic alcohols to be used herein are according to the formula R-OH wherein R is a linear or branched saturated or unsaturated alkyl group, or alkyl substituted or non-alkyl substituted aryl group of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms.
  • Suitable hydrophilic glycols to be used herein are according to the formula HO-CR 1 R 2 -OH wherein R 1 and R 2 are independently H or a C 2 -C 10 saturated or unsaturated aliphatic hydrocarbon chain and/or cyclic hydrocarbon chain.
  • Suitable hydrophilic alkoxylated glycols to be used herein are according to the formula R-(A) n -R 1 -OH wherein R is H, OH, a linear saturated or unsaturated alkyl group of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms, wherein R 1 is H or a linear saturated or unsaturated alkyl group of from 1 to 20, preferably from 2 to 15 and more preferably from 2 to 10 carbon atoms, and A is an alkoxy group preferably an ethoxy, methoxy, and/or propoxy group and n is from 1 to 5, preferably 1 to 2.
  • the bleaching compositions according to the present invention may comprise up to 30%, preferably from 0.01% to 15%, more preferably from 0.1% to 10%, and most preferably from 0.5% to 5% by weight of the total composition of a solvent.
  • compositions herein comprise a mixture of a hydrophobic solvent and a hydrophilic solvent the weight ratio of said hydrophobic solvent to said hydrophilic is from 1:20 to 1:1, more preferably from 1: 14 to 1:2.
  • Solvents when present, contribute to the excellent stain removal performance of the bleaching compositions as described herein.
  • the bleaching compositions according to the present invention may further comprise a foam reducing agent or a foam reducing system.
  • foam reducing agents known to those skilled in the art are suitable for use herein.
  • a foam reducing system comprising a fatty acid together with a capped alkoxylated nonionic surfactant as defined herein after and/or silicone is used.
  • the bleaching compositions herein may comprise from 1.10 -4 % to 10%, preferably from 1.10 -3 % to 5% and more preferably from 1.10 -2 % to 5% by weight of the total composition of a fatty acid.
  • the bleaching compositions herein may comprise from 1 ⁇ 10 -3 % to 20%, preferably from 1.10 -2 % to 10% and more preferably from 5 ⁇ 10 -2 % to 5% by weight of the total composition of a capped alkoxylated nonionic surfactant as defined herein.
  • the bleaching compositions herein may comprise from 1.10 -5 % to 5%, preferably from 1.10 -5 % to 1% and more preferably from 1.10 -4 % to 0.5% by weight of the total composition of a silicone.
  • Suitable fatty acids for use herein are the alkali salts of a C 8 -C 24 fatty acid.
  • Such alkali salts include the metal fully saturated salts like sodium, potassium and/or lithium salts as well as the ammonium and/or alkylammonium salts of fatty acids, preferably the sodium salt.
  • Preferred fatty acids for use herein contain from 8 to 22, preferably from 8 to 20 and more preferably from 8 to 18 carbon atoms.
  • Suitable fatty acids may be selected from caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and mixtures of fatty acids suitably hardened, derived from natural sources such as plant or animal esters (e.g., palm oil, coconut oil, soybean oil, castor oil, tallow, ground oil, whale and fish oils and/or babassu oil.
  • plant or animal esters e.g., palm oil, coconut oil, soybean oil, castor oil, tallow, ground oil, whale and fish oils and/or babassu oil.
  • coconut Fatty Acid is commercially available from UNICHEMA under the name PRIFAC 5900®.
  • Suitable capped alkoxylated nonionic surfactants for use herein are according to the formula: R 1 (O-CH 2 -CH 2 ) n -(OR 2 ) m -O-R 3 wherein R 1 is a C 8 -C 24 linear or branched alkyl or alkenyl group, aryl group, alkaryl group, preferably R 1 is a C 8 -C 18 alkyl or alkenyl group, more preferably a C 10 -C 15 alkyl or alkenyl group, even more preferably a C 10 -C 15 alkyl group; wherein R 2 is a C 1 -C 10 linear or branched alkyl group, preferably a C 2 -C 10 linear or branched alkyl group, preferably a C 3 group; wherein R 3 is a C 1 -C 10 alkyl or alkenyl group, preferably a C 1 -C 5 alkyl group, more preferably methyl; and wherein n
  • surfactants are commercially available from BASF under the trade name Plurafac®, from HOECHST under the trade name Genapol® or from ICI under the trade name Symperonic®.
  • Preferred capped nonionic alkoxylated surfactants of the above formula are those commercially available under the tradename Genapol® L 2.5 NR from Hoechst, and Plurafac® from BASF.
  • Suitable silicones for use herein include any silicone and silica-silicone mixtures. Silicones can be generally represented by alkylated polysiloxane materials while silica is normally used in finely divided forms exemplified by silica aerogels and xerogels and hydrophobic silicas of various types. These materials can be incorporated as particulates in which the silicone is advantageously releasably incorporated in a water-soluble or water-dispersible, substantially non-surface-active detergent impermeable carrier. Alternatively, the silicone can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.
  • silicone has become a generic term, which encompasses a variety of relatively high-molecular-weight polymers containing siloxane units and hydrocarbyl groups of various types.
  • silicone compounds have been extensively described in the art, see for instance US 4 076 648, US 4 021 365, US 4 749 740, US 4 983 316, EP 150 872, EP 217 501 and EP 499 364.
  • the silicone compounds disclosed therein are suitable in the context of the present invention.
  • the silicone compounds can be described as siloxanes having the general structure : wherein n is from 20 to 2000, and where each R independently can be an alkyl or an aryl radical.
  • Preferred polydiorganosiloxanes are polydimethylsiloxanes having trimethylsilyl end blocking units and having a viscosity at 25°C of from 5 x 10 -5 m 2 /s to 0.1 m 2 /s, i.e., a value of n in the range 40 to 1500. These are preferred because of their ready availability and their relatively low cost.
  • a preferred type of silicone compounds useful in the compositions herein comprises a mixture of an alkylated siloxane of the type herein above disclosed and solid silica.
  • the solid silica can be a fumed silica, a precipitated silica or a silica made by the gel formation technique.
  • the silica particles can be rendered hydrophobic by treating them with diakylsilyl groups and/or trialkylsilane groups either bonded directly onto the silica or by means of silicone resin.
  • a preferred silicone compound comprises a hydrophobic silanated, most preferably trimethylsilanated silica having a particle size in the range from 10 mm to 20 mm and a specific surface area above 50 m 2 /g.
  • Silicone compounds employed in the compositions according to the present invention suitably have an amount of silica in the range of 1 to 30% (more preferably 2.0 to 15%) by weight of the total weight of the silicone compounds resulting in silicone compounds having an average viscosity in the range of from 2 x 10 -4 m 2 /s to 1m 2 /s.
  • Preferred silicone compounds may have a viscosity in the range of from 5 x 10 -3 m 2 /s to 0.1m 2 /s.
  • Particularly suitable are silicone compounds with a viscosity of 2 x 10- 2 m 2 /s or 4.5 x 10 -2 m 2 /s.
  • Suitable silicone compounds for use herein are commercially available from various companies including Rhone Poulenc, Fueller and Dow Corning.
  • Examples of silicone compounds for use herein are Silicone DB® 100 and Silicone Emulsion 2-3597® both commercially available from Dow Corning.
  • silicone compound is disclosed in Bartollota et al. U.S. Patent 3 933 672.
  • Other particularly useful silicone compounds are the self-emulsifying silicone compounds, described in German Patent Application DTOS 2 646 126 published April 28, 1977.
  • An example of such a compound is DC-544®, commercially available from Dow Corning, which is a siloxane-glycol copolymer.
  • compositions can comprise a silicone/silica mixture in combination with fumed nonporous silica such as Aerosil®.
  • the bleaching compositions according to the present invention may further comprise an antioxidant.
  • the bleaching compositions herein may comprise up to 10%, preferably from 0.002% to 5%, more preferably from 0.005% to 2%, and most preferably from 0.01% to 1% by weight of the total composition of an antioxidant.
  • Suitable antioxidants to be used herein include organic acids like citric acid, ascorbic acid, tartaric acid, adipic acid and sorbic acid, or amines like lecithin, or aminoacids like glutamine, methionine and cysteine, or esters like ascorbil palmitate, ascorbil stearate and triethylcitrate, or mixtures thereof.
  • Preferred antioxidants for use herein are citric acid, ascorbic acid, ascorbil palmitate, lecithin or mixtures thereof.
  • the compositions of the present invention may comprise a bleach activator.
  • bleach activator it is meant herein a compound, which reacts with hydrogen peroxide to form a peracid. The peracid thus formed constitutes the activated bleach.
  • Suitable bleach activators to be used herein include those belonging to the class of esters, amides, imides, or anhydrides. Examples of suitable compounds of this type are disclosed in British Patent GB 1 586 769 and GB 2 143 231 and a method for their formation into a prilled form is described in European Published Patent Application EP-A-62 523.
  • Suitable examples of such compounds to be used herein are tetracetyl ethylene diamine (TAED), sodium 3,5,5 trimethyl hexanoyloxybenzene sulphonate, diperoxy dodecanoic acid as described for instance in US 4 818 425 and nonylamide of peroxyadipic acid as described for instance in US 4 259 201 and n-nonanoyloxybenzenesulphonate (NOBS).
  • TAED tetracetyl ethylene diamine
  • NOBS n-nonanoyloxybenzenesulphonate
  • N-acyl caprolactams selected from the group consisting of substituted or unsubstituted benzoyl caprolactam, octanoyl caprolactam, nonanoyl caprolactam, hexanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, formyl caprolactam, acetyl caprolactam, propanoyl caprolactam, butanoyl caprolactam pentanoyl caprolactam or mixtures thereof.
  • a particular family of bleach activators of interest was disclosed in EP 624 154, and particularly preferred in that family is acetyl triethyl citrate (ATC).
  • Acetyl triethyl citrate has the advantage that it is environmental-friendly as it eventually degrades into citric acid and alcohol. Furthermore, acetyl triethyl citrate has a good hydrolytical stability in the product upon storage and it is an efficient bleach activator. Finally, it provides good building capacity to the composition.
  • the bleaching compositions according to the present invention may comprise from 0.01% to 20%, preferably from 1% to 10%, and more preferably from 3% to 7% by weight of the total composition of said bleach activator.
  • the bleaching compositions according to the present invention may further comprise a sulphonated hydrotrope.
  • alkyl aryl sulphonates or alkyl aryl sulphonic acids are used.
  • Preferred alkyl aryl sulphonates include sodium, potassium, calcium and ammonium xylene sulphonates, sodium, potassium, calcium and ammonium toluene sulphonates, sodium, potassium, calcium and ammonium cumene sulphonates, sodium, potassium, calcium and ammonium substituted or unsubstituted naphthalene sulphonates and mixtures thereof.
  • Preferred alkyl aryl sulphonic acids include xylenesulphonic acid, toluenesulphonic acid, cumenesulphonic acid, substituted or unsubstituted naphthalenesulphonic acid and mixtures thereof. More preferably, xylenesulphonic acid or p-toluene sulphonate or mixtures thereof are used.
  • the bleaching compositions herein comprise from 0.01% to 20% by weight of the total composition of a sulphonated hydrotrope, preferably from 0.05% to 10% and more preferably from 0.1% to 5%.
  • compositions are made by combining the listed ingredients in the listed proportions (weight % unless otherwise specified).
  • the following Examples are meant to exemplify compositions used in a process according to the present invention but are not necessarily used to limit or otherwise define the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Detergent Compositions (AREA)
EP02017035A 2001-09-07 2002-07-29 Composition de blanchiment comprenant un agent de maintien de colorant Expired - Lifetime EP1291410B1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE60211610T DE60211610T2 (de) 2001-09-07 2002-07-29 Bleichmittel enthaltend ein Farbstofferhaltungsmittel
AT02017035T ATE327309T1 (de) 2001-09-07 2002-07-29 Bleichmittel enthaltend ein farbstofferhaltungsmittel
EP02017035A EP1291410B1 (fr) 2001-09-07 2002-07-29 Composition de blanchiment comprenant un agent de maintien de colorant
ES02017035T ES2265010T3 (es) 2001-09-07 2002-07-29 Composicion blanqueadora que comprende un agente de mantenimiento del tinte.
BR0212324-0A BR0212324A (pt) 2001-09-07 2002-09-05 Composição de alvejamento que contém um agente de manutenção de pigmentos
PCT/US2002/028310 WO2003022976A1 (fr) 2001-09-07 2002-09-05 Composition de blanchiment comprenant un agent de maintien des couleurs
MXPA04002166A MXPA04002166A (es) 2001-09-07 2002-09-05 Composicion blanqueadora que contienen un agente para la conservacion de colorantes.
AU2002323619A AU2002323619A1 (en) 2001-09-07 2002-09-05 Bleaching composition comprising a dye maintenance agent
JP2003527041A JP2005502767A (ja) 2001-09-07 2002-09-05 染料維持剤を含む漂白組成物
ARP020103369A AR036438A1 (es) 2001-09-07 2002-09-06 Composicion blanqueadora que comprende un agente de mantenimiento del tinte y proceso de tratar telas con dicha composicion blanqueadora

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP01870194 2001-09-07
EP01870194 2001-09-07
EP02017035A EP1291410B1 (fr) 2001-09-07 2002-07-29 Composition de blanchiment comprenant un agent de maintien de colorant

Publications (2)

Publication Number Publication Date
EP1291410A1 true EP1291410A1 (fr) 2003-03-12
EP1291410B1 EP1291410B1 (fr) 2006-05-24

Family

ID=26077532

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02017035A Expired - Lifetime EP1291410B1 (fr) 2001-09-07 2002-07-29 Composition de blanchiment comprenant un agent de maintien de colorant

Country Status (10)

Country Link
EP (1) EP1291410B1 (fr)
JP (1) JP2005502767A (fr)
AR (1) AR036438A1 (fr)
AT (1) ATE327309T1 (fr)
AU (1) AU2002323619A1 (fr)
BR (1) BR0212324A (fr)
DE (1) DE60211610T2 (fr)
ES (1) ES2265010T3 (fr)
MX (1) MXPA04002166A (fr)
WO (1) WO2003022976A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1865050A1 (fr) * 2006-06-08 2007-12-12 The Procter & Gamble Company Compositions de blanchiment
WO2012069812A1 (fr) * 2010-11-25 2012-05-31 Reckitt Benckiser N.V. Composition de détergent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202018682D0 (en) * 2020-11-27 2021-01-13 Reckitt Benckiser Vanish Bv Laundry composition
US11661363B2 (en) * 2021-05-24 2023-05-30 Heart Water, L.L.C. Rainwater processing system and processing steps for producing potable functional water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478489A (en) * 1992-07-15 1995-12-26 The Procter & Gamble Company Dye transfer inhibiting compositions comprising bleaching agents and a polyamine N-oxide polymer
EP0839903A1 (fr) * 1996-10-31 1998-05-06 The Procter & Gamble Company Compositions de blanchiment liquide aqueuses et méthode de prétraitement
WO2001059054A1 (fr) * 2000-02-10 2001-08-16 The Procter & Gamble Company Compositions de detergents a lessive possedant une combinaison d'un polymere d'amine cyclique et d'un inhibiteur de transfert de couleurs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478489A (en) * 1992-07-15 1995-12-26 The Procter & Gamble Company Dye transfer inhibiting compositions comprising bleaching agents and a polyamine N-oxide polymer
EP0839903A1 (fr) * 1996-10-31 1998-05-06 The Procter & Gamble Company Compositions de blanchiment liquide aqueuses et méthode de prétraitement
WO2001059054A1 (fr) * 2000-02-10 2001-08-16 The Procter & Gamble Company Compositions de detergents a lessive possedant une combinaison d'un polymere d'amine cyclique et d'un inhibiteur de transfert de couleurs

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1865050A1 (fr) * 2006-06-08 2007-12-12 The Procter & Gamble Company Compositions de blanchiment
WO2007141734A1 (fr) * 2006-06-08 2007-12-13 The Procter & Gamble Company Compositions de blanchiment
US7875583B2 (en) 2006-06-08 2011-01-25 The Procter & Gamble Company Bleaching compositions
WO2012069812A1 (fr) * 2010-11-25 2012-05-31 Reckitt Benckiser N.V. Composition de détergent

Also Published As

Publication number Publication date
EP1291410B1 (fr) 2006-05-24
AU2002323619A1 (en) 2003-03-24
DE60211610T2 (de) 2007-05-03
JP2005502767A (ja) 2005-01-27
MXPA04002166A (es) 2004-06-29
BR0212324A (pt) 2004-09-21
AR036438A1 (es) 2004-09-08
DE60211610D1 (de) 2006-06-29
ATE327309T1 (de) 2006-06-15
WO2003022976A8 (fr) 2003-08-28
WO2003022976A1 (fr) 2003-03-20
ES2265010T3 (es) 2007-02-01

Similar Documents

Publication Publication Date Title
US20030154556A1 (en) Bleaching composition comprising a dye maintenance agent
US6482786B1 (en) Liquid bleaching compositions comprising hydrogen peroxide, betaine, and ethoxylated nonionic surfactant
EP0839903B1 (fr) Compositions de blanchiment liquide aqueuses et méthode de prétraitement
EP0908511B1 (fr) Compositions de nettoyage à usage multiples ayant un contrôle de mousse efficace
EP0794245A1 (fr) Procédé de prétraitement pour le lavage du ligne et compositions de blanchiment
US6475970B1 (en) Bleaching composition comprising an alkoxylated benzoic acid
US6087312A (en) Laundry bleaching processes and compositions
US20030148909A1 (en) Bleaching compositions for dark colored fabric and articles comprising same
EP1001011B2 (fr) Composition de blanchiment comprenant acide benzoique alkoxylé
US6528471B1 (en) Process of treating fabrics with a laundry additive
EP0908512A2 (fr) Compositions de blanchiment aqueuses liquides
EP1291410B1 (fr) Composition de blanchiment comprenant un agent de maintien de colorant
US6620774B1 (en) Bleaching composition comprising substantially linear nonionic surfactants
EP1024188B1 (fr) Composition de blanchiment comportant des agents tensioactifs nonioniques sensiblement linéaires
EP1022327B1 (fr) Procédé pour le traitement de textiles en utilisant un additif pour la lessive
US6586382B1 (en) Process of bleaching fabrics
US20030069156A1 (en) Article of manufacture
WO2000023554A1 (fr) Procede de blanchiment de tissus
EP1001008A1 (fr) Compositions de blanchiment liquides et aqueuses contenant un tensioactif anionique sulfoné
CA2340399A1 (fr) Utilisation de peroxyde de diacyle aromatique-aliphatique dans une composition de blanchiment
MXPA01007531A (en) Bleaching composition comprising substantially linear nonionic surfactants
KR19990087531A (ko) 세탁 전처리 방법 및 표백 조성물

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030816

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20040507

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60211610

Country of ref document: DE

Date of ref document: 20060629

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20060401692

Country of ref document: GR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060824

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061024

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2265010

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060729

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20110624

Year of fee payment: 10

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20060401692

Country of ref document: GR

Effective date: 20130104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130204

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210610

Year of fee payment: 20

Ref country code: FR

Payment date: 20210611

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210629

Year of fee payment: 20

Ref country code: GB

Payment date: 20210701

Year of fee payment: 20

Ref country code: ES

Payment date: 20210804

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60211610

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220805

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220728

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220730