EP1290081A1 - Utilisation d'hydrotalcite comme charge dans des compositions de polym res - Google Patents

Utilisation d'hydrotalcite comme charge dans des compositions de polym res

Info

Publication number
EP1290081A1
EP1290081A1 EP01938355A EP01938355A EP1290081A1 EP 1290081 A1 EP1290081 A1 EP 1290081A1 EP 01938355 A EP01938355 A EP 01938355A EP 01938355 A EP01938355 A EP 01938355A EP 1290081 A1 EP1290081 A1 EP 1290081A1
Authority
EP
European Patent Office
Prior art keywords
hydrotalcite
polymer
composition
use according
compositions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01938355A
Other languages
German (de)
English (en)
Inventor
Laurence Stelandre
Michel Foulon
Pierre-Yves Le Goff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhodia Chimie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie SAS filed Critical Rhodia Chimie SAS
Publication of EP1290081A1 publication Critical patent/EP1290081A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • the present invention relates to the use as filler, in polymer compositions, of calcined and / or intercalated hydrotalcite using at least one anionic surfactant.
  • the object of the invention is to provide another filler for the polymer compositions, providing them with a very satisfactory compromise in properties, namely preferably:
  • the subject of the present invention is the use as a filler, in particular as a reinforcing filler, in a polymer composition (s), of at least one hydrotalcite calcined and / or intercalated with at least one anionic surfactant.
  • hydrotalcite used in the context of the invention is thus at least one of the following compounds:
  • hydrotalcite intercalated by means of at least one anionic surfactant (hydrotalcite intercalated).
  • hydrotalcite intercalated a hydrotalcite intercalated by means of at least one anionic surfactant (hydrotalcite intercalated).
  • the hydrotalcite used as filler according to the invention may contain at least one monovalent cation, such as for example Li, and at least one trivalent cation, it usually rather contains at least one divalent cation and at least one trivalent cation; the divalent cation / trivalent cation molar ratio is then most often between 1 and 8, preferably between 2 and 6.
  • the divalent cation can be in particular Mg, Ni, Zn, Co.
  • the trivalent cation can be for example Al, Ga , Fe, Cr.
  • the divalent cation is Mg and the trivalent cation is
  • Al magnesium aluminum hydrotalcite
  • the Mg / AI molar ratio is then generally between 1.5 and 5, preferably between 2 and 4, in particular between 2 and 3.
  • the starting hydrotalcite (that is to say not calcined, not intercalated) can be prepared by any process known to those skilled in the art.
  • it can for example be obtained by neutralizing, by adding a carbonated soda solution, a base stock containing the two types of cations mentioned above, in this case at least one divalent (or monovalent) cation and at least one trivalent cation; the temperature of the reaction medium can be maintained between 50 and 95 ° C, in particular between 60 and 90 ° C, the pH being for example between 10 and 12.
  • the starting hydrotalcite can be obtained by adding, simultaneously, to a tank-bottom formed of water, a solution containing acid salts of the two cations (or two solutions each containing an acid salt of one of the two cations) , a solution of sodium carbonate and a solution of soda
  • the duration of the simultaneous addition can vary between 30 and 90 minutes, for example between 45 and 60 minutes; the temperature of the reaction medium can be maintained between 25 and 95 ° C; in particular, the temperature during the simultaneous addition can be maintained between 25 and 35 ° C, for example at around 30 ° C; after this simultaneous addition, the temperature can be brought to and maintained between 85 and 95 ° C, for example around 90 ° C, in particular for 1 to 3 hours, for example for 2 hours.
  • the hydrotalcite used in the context of the invention in particular calcined hydrotalcite (a), optionally inserted (b), preferably has a BET specific surface area of between 100 and 300 m 2 / g, in general between 120 and 220 m 2 / g, in particular between 130 and 200 m 2 / g; it is for example between 150 and 180 m 2 / g.
  • the BET surface is determined according to the BRUNAUER - EMMET - TELLER method described in "The Journal of the American Society", Vol. 60, page 309, February 1938 and corresponding to standard NF T 45007 (November 1987).
  • CTAB CTAB specific surface of between 100 and 300 m 2 / g, in particular between 120 and 210 m 2 / g, in particular between 130 and 190 m 2 / g; it can be between 150 and 180 m 2 / g.
  • the CTAB surface is the external surface determined according to standard NF T 45007 (November 1987 - 5.12).
  • the calcined hydrotalcite used is preferably derived from a calcination treatment of a hydrotalcite (so-called starting hydrotalcite), at a temperature of at least 250 ° C, in particular at least 300 ° C; the calcination temperature is preferably between 300 and 600 ° C and, even more preferably, between 300 and 550 ° C; it is for example between 300 and 500 ° C., in particular between 350 and 500 ° C.
  • Said calcined hydrotalcite is advantageously decarbonated.
  • decarbonation is generally obtained by the calcination treatment itself.
  • the calcined hydrotalcite used generally has a carbonate anion / trivalent cation molar ratio of less than 0.3 (decarbonated hydrotalcite), preferably less than 0.25; this ratio can for example be at most 0.15.
  • At least one anionic surfactant can be inserted into the structure of the calcined hydrotalcite.
  • the calcined hydrotalcite with a solution of at least one anionic surfactant, in particular at a temperature between 50 and 90 ° C, for example for 1 to 4 hours; then the suspension obtained can be centrifuged and the centrifugation cake dried, in particular in an oven, at a temperature which can vary in particular between 40 and 60 ° C.
  • a solution of at least one anionic surfactant in particular at a temperature between 50 and 90 ° C, for example for 1 to 4 hours; then the suspension obtained can be centrifuged and the centrifugation cake dried, in particular in an oven, at a temperature which can vary in particular between 40 and 60 ° C.
  • the use of strict conditions. especially with a nitrogen sweep, during the intercalation procedure is not necessary.
  • the calcined hydrotalcite can be stored for a long time in a dry atmosphere without recarbonating, which facilitates the intercalation step.
  • a hydrotalcite intercalated with at least one anionic surfactant can be obtained in particular by adding, simultaneously, to a tank-bottom formed of water, a solution containing acid salts of the two cations (or two solutions each containing an acid salt of one of the two cations) , an anionic surfactant solution and a sodium hydroxide solution (the latter serving in particular to regulate the pH, in particular at a value between 10 and 12, for example at 11); the duration of the simultaneous addition can vary between 30 and 90 minutes, for example between 45 and 60 minutes; the temperature of the reaction medium can be maintained between 25 and 95 ° C; in particular, the temperature during the simultaneous addition can be maintained between 25 and 35 ° C, for example at around 30 ° C; after this simultaneous addition, the temperature can be brought to and maintained between 85 and 95 ° C, for example around 90 ° C, in particular for 1 to 3 hours, for
  • the surfactant which is used to form an intercalated hydrotalcite or, preferably, which can be introduced between the mineral sheets of calcined hydrotalcite (to form an intercalated calcined hydrotalcite) has an anionic polar part (head) , in general complexing with respect to the trivalent cation (for example Al) of the hydrotalcite.
  • the anionic polar part of said surfactant is usually a phosphate, a phosphonate, a carboxylate, a sulfonate, a sulfate or a succinate of an alkali or alkaline earth metal.
  • This anionic surfactant can be chosen, for example, from:
  • the alkyl esters sulfonates of formula R-CH (SO 3 M) -COOR ' where R represents an alkyl radical in C 8 -C 2 o, in particular in C 10 -C 16 , R f an alkyl radical in C *
  • alkyl sulfates of formula ROSO 3 M where R represents a Cs-C 24 alkyl or hydroxyalkyl radical, in particular C ⁇ 0 -C 8 , M representing a hydrogen atom or a cation as defined above, as well as their ethoxylenated (OE) and / or propoxylé ⁇ és (OP) derivatives, having on average between 0.5 and 30, in particular between 0.5 and 10, OE and / or OP units;
  • sulfated alkylamides of formula RCONHR'OSO 3 M where R represents a C 2 -C 22 alkyl radical, in particular C 6 -C 20 alkyl, R 'a C 2 -C 3 alkyl radical, M a hydrogen atom or a cation as defined above, as well as their ethoxylenated (OE) and / or propoxylenated (OP) derivatives, having on average between 0.5 and 60 OE and / or OP units;
  • the salts of C 8 -C 24 saturated or unsaturated fatty acids in particular C 14 -C 2 o, C 9 -C 2 o alkylbenzenesulfonates, C 8 -C 22 primary or secondary alkyl sulfonates, alkyl glycerol sulfonates, sulfonated polycarboxylic acids, paraffin sulfonates, N-acyl N-alkyltaurates, alkylphophates, isethionates, alkylsuccinamates, alkylsulfosuccinates, monoesters or diesters of sulfosuccinates, N-acyl sarcosinates, alkyl sulfosides , polyethoxycarboxylates, the cation being an alkali metal (in particular sodium, potassium, lithium), an ammonium residue substituted or not (methyl-, dimethyl-, trimethyl-, tetramethylam
  • alkali metal oleates for example potassium oleate.
  • the elementary objects of the hydrotalcite used according to the invention are usually in the form of plates, generally substantially hexagonal; their largest dimension can be between 50 and 300 nm, preferably between 100 and 200 nm.
  • the compositions of polymer (s) in which is used, as a filler, in particular a reinforcing filler, the calcined and / or intercalated hydrotalcite, advantageously the calcined hydrotalcite (a) and, optionally, also intercalated (b ), and which constitute another object of the invention are generally based on one or more polymers or copolymers, in particular one or more elastomers, in particular thermoplastic elastomers, preferably having at least one temperature glass transition between -150 and +300 ° C, for example between -150 and +20 ° C.
  • diene polymers in particular diene elastomers.
  • Polyamides can be mentioned.
  • the polymer (copolymer) can be a bulk polymer (copolymer), a polymer latex (copolymer) or a solution of polymer (copolymer) in water or in any other suitable dispersing liquid.
  • Said polymer (s) compositions can be vulcanized with sulfur (vulcanisates are then obtained) or crosslinked in particular with peroxides.
  • Another compound such as precipitated silica, in particular highly dispersible, can optionally also be used as filler; if the quantity by weight of precipitated silica used can then be a minority compared to that of the hydrotalcite, it can also be equal to or majority compared to that used for the hydrotalcite; the hydrotalcite and the silica can then be introduced into the polymer (s) in the form of a mixture or separately.
  • the polymer (s) compositions do not contain precipitated silica as filler and / or the filler is formed entirely of calcined and / or intercalated hydrotalcite.
  • the polymer (s) compositions further comprise at least one coupling agent and / or at least one covering agent; they can also comprise, inter alia, an antioxidant agent.
  • the invention in particular in the case of the use of calcined hydrotalcite, can in particular make it possible to reduce the amount of coupling agent to be used in the polymer (s) compositions, while not penalizing their properties at 'vulcanized state.
  • the proportion by weight of hydrotalcite in the composition of polymer (s) can vary within a fairly wide range. It usually represents 4 to 80%, especially 20 to 80%, for example 30 to 70%, of the amount of the polymer (s). It preferably represents 20 to 80%, for example 30 to 70%, of the amount of the polymer (s) when the polymer (s) compositions do not contain precipitated silica as filler and / or when the charge is formed entirely of calcined and / or intercalated hydrotalcite.
  • the present invention also relates to the finished articles based on the polymer (s) compositions described above (in particular based on the vulcanizates mentioned above).
  • the calcined hydrotalcite can be used in the internal tire rubber; it can in particular improve its impermeability (in particular in air), which can make it possible to avoid using a halogenobutyl elastomer (chlorobutyl, bromobutyl for example) and / or to use, preferably mainly, rather rubber natural.
  • Mention may also be made, as finished articles, of floor coverings, shoe soles, parts of vehicle tracks, cable car rollers, seals for household appliances, seals for liquid or gas pipes. , brake system seals, sheaths, cables, transmission belts, gas barriers, flame retardant materials.
  • composition C1 the other containing calcined hydrotalcite manufactured by the company Sud Chemie (under the name EXM 701), with a BET specific surface of 160 m 2 / g and a density of 2.8 g / cm 3 (composition C1).
  • compositions are prepared by thermomechanically working the elastomers in an internal mixer (BRABENDER type) with a volume equal to 75 cm 3 , in two stages, with an average speed of the pallets of 60 revolutions / minute, up to the obtaining a temperature of 110 ° C., these steps being followed by an acceleration step carried out in an internal mixer (BRABENDER type) then by a finishing step carried out on an external mixer.
  • BRABENDER type internal mixer
  • the vulcanization of the compositions is adapted to the vulcanization kinetics of the corresponding mixtures.
  • compositions are set out below, the measurements having been carried out (on the vulcanized compositions), according to the following standards and / or methods:
  • a Monsanto 100 S rheometer is used, in particular for measuring the minimum torque (Cmin) and the maximum torque (Cmax).
  • Ts2 corresponds to the time during which mixing control is possible; the polymer mixture hardens from Ts2 (start of vulcanization).
  • T90 corresponds to the time after which 90% of the vulcanization has been carried out.
  • the modules x% correspond to the stress measured at x% of tensile deformation.
  • the value considered is determined 15 seconds after the application of the force.
  • the real (G ') and imaginary (G ") modules as well as the tangent of the loss angle (tan ⁇ ), defined as the ratio of G" to G', are measured at different strain rate and at different temperatures on a mechanical spectrometry device (Visco analysesr VA2000 from Metravib RDS). Two types of tests are carried out: sweeps in deformation, at fixed temperature and frequency, to determine the non-linearity properties of the compositions (Payne effect), and sweeps in temperature, at imposed strain and frequency.
  • the test pieces are of rectangular shape (length 6 mm, width 4 mm, thickness 2.5 mm approximately).
  • a sinusoidal deformation of increasing amplitude is applied at a constant frequency of 5 Hz.
  • G ', G "and tan ⁇ are evaluated.
  • ⁇ G' refers to the difference between the module G ' measured at a shear deformation of 0.001 and the modulus G 'measured at a shear deformation of 1, and tan ⁇ max corresponds to the maximum of the tangent of the loss angle as a function of the deformation.
  • test conditions for temperature sweeps are as follows:
  • test pieces are of rectangular shape (length 15 mm, width 6 mm, thickness 2.5 mm approximately).
  • a sinusoidal deformation of constant amplitude equal to 50 microns is applied in traction, at a constant frequency of 10 Hz, the rate of temperature rise being
  • composition C1 according to the invention exhibits an advantageous compromise of properties compared with that of the reference composition R1.
  • the composition C1 With vulcanization kinetics comparable to that of the reference composition R1, the composition C1 leads to a more marked reinforcement in terms of modules. This reinforcing effect is moreover noticeable from very small deformations. It is necessary to achieve deformations of at least 600% so that the reference composition R1 offers the same behavior in terms of reinforcement as the composition C1.
  • composition C1 In the case of composition C1, the slightly higher amplitude of the fall of the module (Payne effect) is accompanied by a drop in the maximum tangent ⁇ as a function of the deformation. This composition is therefore less a source of mechanical energy dissipation. This advantage can be used in applications requiring low dissipation.
  • Composition C1 has a higher real glass modulus (G ') than that obtained for the reference composition R1, while having a similar or slightly lower dissipation. These characteristics can be used in applications requiring rigidity in the vitreous state or rigidity in the rubbery state and low energy dissipation, while retaining the dissipation properties at around 0 ° C.
  • Three polymer compositions are prepared one containing precipitated silica identical to that used in Example 1 and a coupling agent (reference composition R2),
  • compositions C2 and C3 the two others each containing calcined hydrotalcite identical to that used in Example 1 and a coupling agent (compositions C2 and C3).
  • Composition C3 contains approximately the same volume content of filler as the reference composition R2 and that the composition C2; but its level of coupling agent is adapted to the mass and to the specific surface of the calcined hydrotalcite in such a way that the same theoretical coverage rate of the filler is obtained as with the precipitated silica mentioned.
  • compositions are prepared by thermo-mechanically working the elastomers in an internal mixer (BRABENDER type) with a volume equal to 350 cm 3 , in two stages, with an average speed of the pallets of 60 revolutions / minute, up to the obtaining a temperature of 140 ° C., these steps being followed by an acceleration step carried out in an internal mixer (BRABENDER type) then by a finishing step carried out on an external mixer.
  • BRABENDER type internal mixer
  • the vulcanization of the compositions is adapted to the vulcanization kinetics of the corresponding mixtures.
  • compositions are set out below, the measurements having been carried out (on the vulcanized compositions), according to the standards and / or methods indicated in Example 1 for the mechanical properties and as follows for the rheological properties:
  • Mooney consistency standard NF T 43005 (measurement of Mooney Large (1 + 4) at 100 ° C, using a Mooney viscometer).
  • compositions C2 and C3 according to the invention exhibit an advantageous compromise of properties compared to that of the reference composition R2.
  • composition C4 the other containing calcined hydrotalcite identical to that used in Example 1 and a coupling agent (composition C4).
  • Table 5 compositions in parts, by weight
  • compositions are prepared by thermomechanically working the elastomers in an internal mixer (BRABENDER type) with a volume equal to 75 cm 3 , in one step, with an average speed of the pallets of 52 revolutions / minute, up to the obtaining a temperature of 110 ° C., this step being followed by an acceleration step carried out in an internal mixer (BRABENDER type) then by a finishing step carried out on an external mixer.
  • BRABENDER type internal mixer
  • the vulcanization of the compositions is adapted to the vulcanization kinetics of the corresponding mixtures.
  • compositions are set out below, the measurements having been carried out (on the vulcanized compositions), according to the standards and / or methods indicated in Example 1. (the deformation and the breaking stress being measured according to standard NF T 46002): Table 6
  • composition C4 according to the invention exhibits a compromise in properties generally greater than that of the reference composition R3.
  • composition C4 While presenting vulcanization kinetics and reinforcement properties (modules 100% and 300%) comparable, or even superior, composition C4 has improved ultimate properties (stress and deformation at break).
  • composition C4 has much more interesting dynamic properties than those of composition R3, in this case a lower amplitude of the fall of the module and a significant drop in the maximum tangent ⁇ as a function of the deformation (very low dissipation of mechanical energy).
  • a polymer composition is prepared containing calcined hydrotalcite identical to that used in Example 1 and having a weight content of coupling agent of 4.4% relative to the weight of hydrotalcite (composition C5).
  • Composition C5 is prepared as in Example 3.
  • compositions are set out below, the measurements having been carried out (on the vulcanized compositions), according to the standards and / or methods indicated in Examples 1 and 3:
  • composition C5 according to the invention despite a reduced amount of coupling agent compared to that of the reference composition R3, leads to a particularly advantageous compromise of properties.
  • composition C6 one containing precipitated silica identical to that used in Example 1 and calcined hydrotalcite identical to that used in Example 1, and this in a mass ratio of 90/10, as well as an agent coupling (composition C6), - the other containing precipitated silica identical to that used in Example 1 and calcined hydrotalcite identical to that used in Example 1, and this in a mass ratio of 50 / 50, as well as a coupling agent (composition C7).
  • compositions R3, C6 and C7 contain substantially the same volume content of filler.
  • compositions C6 and C7 are prepared as in Example 3.
  • compositions are set out below, the measurements having been carried out (on the vulcanized compositions), according to the standards and / or methods indicated in Examples 1 and 3: Table 10
  • compositions C6 and C7 according to the invention exhibit a compromise in properties generally greater than that of the reference composition R3.
  • compositions C6 and C7 While having vulcanization kinetics and comparable, or even superior, reinforcement properties, the compositions C6 and C7 have improved ultimate properties (stress and rupture deformation).
  • compositions C6 and C7 have much more interesting dynamic properties than those of the composition R3, in this case a lower amplitude of the fall of the module and a significant drop in the maximum tangent ⁇ as a function of the deformation ( very low dissipation of mechanical energy), even when the proportion of calcined hydrotalcite is in the minority compared to precipitated silica (composition C6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

L'invention concerne l'utilisation comme charge, dans une composition de polymère(s), d'hydrotalcite calcinée et/ou intercalée à l'aide d'un agent tensioactif anionique. Elle est également relative aux compositions de polymères comprenant une telle charge et aux articles finis à base de telles compositions.

Description

UTILISATION P'HYDROTALCITE COMME CHARGE DANS DES COMPOSITIONS DE POLYMERES
La présente invention est relative à l'utilisation comme charge, dans des compositions de polymères, d'hydrotalcite calcinée et/ou intercalée à l'aide d'au moins un agent tensioactif anionique.
Elle est également relative aux compositions de polymères ainsi obtenues. Enfin, elle concerne en outre les articles finis à base de ces compositions, notamment les enveloppes de pneumatique.
Il est connu d'employer des charges blanches renforçantes dans les polymères, en particulier les élastomères, comme par exemple de la silice précipitée. Mais les résultats ne sont pas toujours ceux espérés.
Le but de l'invention est de proposer une autre charge pour les compositions de polymères, leur procurant un compromis de propriétés très satisfaisant, à savoir de préférence :
- de bonnes propriétés rhéologiques et une excellente aptitude à la vulcanisation, au moins comparables à celles de silices précipitées très dispersibles,
- des propriétés dynamiques particulièrement intéressantes, notamment un effet Payne d'amplitude relativement faible, d'où une résistance au roulement plutôt faible pour les pneumatiques à base de ces compositions, et/ou une tangente δ à 0 °C plutôt élevée, d'où une adhérence améliorée pour les pneumatiques à base de ces compositions,
- un bon renforcement en terme de module, - une résistance généralement élevée au vieillissement thermique et au vieillissement UV (rayonnements ultraviolets).
Dans ce but, la présente invention a pour objet l'utilisation comme charge, en particulier comme charge renforçante, dans une composition de polymère(s), d'au moins une hydrotalcite calcinée et/ou intercalée par au moins un agent tensioactif anionique.
L'hydrotalcite utilisée dans le cadre de l'invention est ainsi au moins un des composés suivants :
(a) une hydrotalcite calcinée,
(b) une hydrotalcite calcinée, puis intercalée au moyen d'au moins un agent tensioactif anionique (hydrotalcite calcinée intercalée),
(c) une hydrotalcite intercalée au moyen d'au moins un agent tensioactif anionique (hydrotalcite intercalée). De manière avantageuse, on utilise, dans le cadre de l'invention, plutôt une hydrotalcite calcinée (a), éventuellement en outre intercalée (b).
Même si l'hydrotalcite utilisée comme charge selon l'invention peut contenir au moins un cation monovalent, comme par exemple Li, et au moins un cation trivalent, elle contient habituellement plutôt au moins un cation divalent et au moins un cation trivalent ; le rapport molaire cation divalent / cation trivalent est alors le plus souvent compris entre 1 et 8, de préférence entre 2 et 6. Le cation divalent peut être notamment Mg, Ni, Zn, Co. Le cation trivalent peut être par exemple Al, Ga, Fe, Cr. De manière avantageuse, le cation divalent est Mg et le cation trivalent est
Al (hydrotalcite de magnésium et d'aluminium) ; le rapport molaire Mg/AI est alors généralement compris entre 1 ,5 et 5, de préférence entre 2 et 4, notamment entre 2 et 3.
L'hydrotalcite de départ (c'est-à-dire non calcinée, non intercalée) peut être préparée par tout procédé connu de l'homme du métier. Ainsi, elle peut par exemple être obtenue en neutralisant, par ajout d'une solution de soude carbonatée, un pied de cuve contenant les deux types de cations susmentionnés, en l'occurrence au moins un cation divalent (ou monovalent) et au moins un cation trivalent ; la température du milieu réactionnel peut être maintenue entre 50 et 95 °C, notamment entre 60 et 90 °C, le pH étant par exemple compris entre 10 et 12.
L'hydrotalcite de départ peut être obtenue en ajoutant, de manière simultanée, à un pied de cuve formé d'eau, une solution contenant des sels acides des deux cations (ou deux solutions contenant chacune un sel acide d'un des deux cations), une solution de carbonate de sodium et une solution de soude
(celle-ci servant en particulier à réguler le pH, notamment à une valeur comprise entre 10 et 12, par exemple à 11) ; la durée de l'addition simultanée peut varier entre 30 et 90 minutes, par exemple entre 45 et 60 minutes ; la température du milieu réactionnel peut être maintenue entre 25 et 95 °C ; en particulier, la température lors de l'addition simultanée peut être maintenue entre 25 et 35 °C, par exemple à 30 °C environ ; à l'issue de cette addition simultanée, la température peut être amenée et maintenue entre 85 et 95 °C, par exemple à environ 90 °C, notamment pendant 1 à 3 heures, par exemple pendant 2 heures.
L'hydrotalcite de départ peut être un carbonate basique de magnésium et d'aluminium, par exemple de formule MgCO3.5Mg(OH)2.2AI(OH)3.yH2O (dans laquelle y >0, par exemple y = 4).
L'hydrotalcite utilisée dans le cadre de l'invention, en particulier l'hydrotalcite calcinée (a), éventuellement intercalée (b), possède de préférence une surface spécifique BET comprise entre 100 et 300 m2/g, en général entre 120 et 220 m2/g, en particulier entre 130 et 200 m2/g ; elle est par exemple comprise entre 150 et 180 m2/g. La surface BET est déterminée selon la méthode de BRUNAUER - EMMET - TELLER décrite dans "The Journal of the American Society", Vol. 60, page 309, février 1938 et correspondant à la norme NF T 45007 (novembre 1987).
Elle possède généralement une surface spécifique CTAB comprise entre 100 et 300 m2/g, en particulier entre 120 et 210 m2/g, notamment entre 130 et 190 m2/g ; elle peut être comprise entre 150 et 180 m2/g. La surface CTAB est la surface externe déterminée selon la norme NF T 45007 (novembre 1987 - 5.12).
L'hydrotalcite calcinée employée est préférentiel lement issue d'un traitement de calcination d'une hydrotalcite (dite hydrotalcite de départ), à une température d'au moins 250 °C, en particulier d'au moins 300 °C ; la température de calcination est préférentiellement comprise entre 300 et 600 °C et, de manière encore plus préférée, entre 300 et 550 °C ; elle est par exemple comprise entre 300 et 500 °C, notamment entre 350 et 500 °C.
Ladite hydrotalcite calcinée est avantageusement décarbonatée. En fait, la décarbonatation est généralement obtenue par le traitement de calcination lui- même. L'hydrotalcite calcinée utilisée présente en général un rapport molaire anion carbonate / cation trivalent inférieur à 0,3 (hydrotalcite décarbonatée), de préférence inférieur à 0,25 ; ce rapport peut par exemple être d'au plus 0,15.
Il est à noter que l'on peut intercaler dans la structure de l'hydrotalcite calcinée, avant son utilisation, au moins un tensioactif anionique (hydrotalcite calcinée intercalée).
Pour se faire, on peut ainsi mélanger l'hydrotalcite calcinée avec une solution d'au moins un agent tensioactif anionique, notamment à une température comprise entre 50 et 90 °C, pendant par exemple 1 à 4 heures ; puis la suspension obtenue peut être centrifugée et le gâteau de centrifugation séché, notamment en étuve, à une température pouvant varier en particulier entre 40 et 60 °C. De manière avantageuse, le recours à des conditions strictes,. notamment à un balayage à l'azote, au cours de la procédure d'intercalation n'est pas nécessaire.
L'hydrotalcite calcinée peut se conserver longtemps dans une atmosphère sèche sans se recarbonater, ce qui facilite l'étape d'intercalation.
Même si cela ne constitue pas une variante préférée, on peut éventuellement utiliser dans le cadre de l'invention une hydrotalcite intercalée par au moins un agent tensioactif anionique. Une telle hydrotalcite intercalée peut être obtenue notamment en ajoutant, de manière simultanée, à un pied de cuve formé d'eau, une solution contenant des sels acides des deux cations (ou deux solutions contenant chacune un sel acide d'un des deux cations), une solution d'agent tensioactif anionique et une solution de soude (celle-ci servant en particulier à réguler le pH, notamment à une valeur comprise entre 10 et 12, par exemple à 11) ; la durée de l'addition simultanée peut varier entre 30 et 90 minutes, par exemple entre 45 et 60 minutes ; la température du milieu réactionnel peut être maintenue entre 25 et 95 °C ; en particulier, la température lors de l'addition simultanée peut être maintenue entre 25 et 35 °C, par exemple à 30 °C environ ; à l'issue de cette addition simultanée, la température peut être amenée et maintenue entre 85 et 95 °C, par exemple à environ 90 °C, notamment pendant 1 à 3 heures, par exemple pendant 2 heures.
L'agent tensioactif que l'on utilise pour former une hydrotalcite intercalée ou, de préférence, que l'on peut introduire entre les feuillets minéraux de l'hydrotalcite calcinée (pour former une hydrotalcite calcinée intercalée) présente une partie (tête) polaire anionique, en général complexante vis-à-vis du cation trivalent (par exemple Al) de l'hydrotalcite.
La partie polaire anionique dudit agent tensioactif est habituellement un phosphate, un phosphonate, un carboxylate, un sulfonate, un sulfate ou un succinate de métal alcalin ou alcalino-terreux.
Cet agent tensioactif anionique peut être choisi par exemple parmi :
. les alkylesters sulfonates de formule R-CH(SO3M)-COOR', où R représente en radical alkyle en C8-C2o, en particulier en C10-C16, Rf un radical alkyle en C*|-C6l en particulier en C C3 et M un cation alcalin (notamment sodium, potassium, lithium), ammonium substitué ou non (méthyl-, diméthyl-, triméthyl-, tétraméthylammonium, diméthylpipéridinium ...) ou dérivé d'une alcanolamine (monoéthanolamine, diéthanolamine, triéthanolamine ...), lesdits alkylesters sulfonates étant de préférence des méthyl ester sulfonates dont les radicaux R sont en C14-C16 ;
. les alkylsulfates de formule ROSO3M, où R représente un radical alkyle ou hydroxyalkyle en Cs-C24, en particulier en Cι0-C 8, M représentant un atome d'hydrogène ou un cation tel que défini ci-dessus, ainsi que leurs dérivés éthoxylénés (OE) et/ou propoxyléήés (OP), possédant en moyenne entre 0,5 et 30, en particulier entre 0,5 et 10, motifs OE et/ou OP ;
. les alkylamides sulfatés de formule RCONHR'OSO3M où R représente un radical alkyle en C2-C22, en particulier en C6-C20, R' un radical alkyle en C2-C3, M un atome d'hydrogène ou un cation tel que défini ci-dessus, ainsi que leurs dérivés éthoxylénés (OE) et/ou propoxylénés (OP), possédant en moyenne entre 0,5 et 60 motifs OE et/ou OP ;
. les sels d'acides gras saturés ou insaturés en C8-C24, en particulier en C14- C2o, les alkylbenzènesulfonates en C9-C2o, les alkylsulfonates primaires ou secondaires en C8-C22, les alkylglycérol sulfonates, des acides polycarboxyliques sulfonés, les sulfonates de paraffine, les N-acyl N-alkyltaurates, les alkylphophates, les iséthionates, les alkylsuccinamates, les alkylsulfosuccinates, les monoesters ou diesters de sulfosuccinates, les N-acyl sarcosinates, les sulfates d'alkylglycosides, les polyéthoxycarboxylates, le cation étant un métal alcalin (notamment sodium, potassium, lithium), un reste ammonium substitué ou non (méthyl-, diméthyl-, triméthyl-, tétraméthylammonium, diméthylpipéridinium) ou dérivé d'une alcanolamine (monoéthanolamine, diéthanolamine, triéthanolamine ...).
On peut notamment citer les oléates de métaux alcalins, par exemple l'oléate de potassium.
Les objets élémentaires de l'hydrotalcite employée selon l'invention se présentent habituellement sous forme de plaquettes, en général sensiblement hexagonales ; leur plus grande dimension peut être comprise entre 50 et 300 nm, de préférence entre 100 et 200 nm. Les compositions de polymère(s) dans lesquelles est utilisée, à titre de charge, notamment de charge renforçante, l'hydrotalcite calcinée et/ou intercalée, de manière avantageuse l'hydrotalcite calcinée (a) et, éventuellement, en outre intercalée (b), et qui constituent un autre objet de l'invention, sont en général à base d'un ou plusieurs polymères ou copolymères, en particulier d'un ou plusieurs elastomeres, notamment les elastomeres thermoplastiques, présentant, de préférence, au moins une température de transition vitreuse comprise entre -150 et +300 °C, par exemple entre -150 et +20 °C.
A titre de polymères possibles, on peut citer les polymères diéniques, en particulier les elastomeres diéniques. Par exemple, on peut citer le caoutchouc naturel, les polymères ou copolymères dérivant de monomères aliphatiques ou aromatiques, comprenant au moins une insaturation (tels que, notamment, l'éthylène, le propylène, le butadiène, l'isoprène, le styrène), le polyacrylate de butyle, ou leurs mélanges ; on peut également citer les' elastomeres silicones, les elastomeres fonctionnalisés (par exemple par des fonctions suceptibles de réagir avec la surface de l'hydrotalcite) et les polymères halogènes. On peut mentionner les polyamides. Le polymère (copolymère) peut être un polymère (copolymère) en masse, un latex de polymère (copolymère) ou bien une solution de polymère (copolymère) dans l'eau ou dans tout autre liquide dispersant approprié.
Lesdites compositions de polymère(s) peuvent être vulcanisées au soufre (on obtient alors des vulcanisats) ou réticulées notamment aux peroxydes.
Un autre composé tel que de la silice précipitée, notamment très dispersible, peut éventuellement être employé également à titre de charge ; si la quantité en poids de silice précipitée employée peut alors être minoritaire par rapport à celle de l'hydrotalcite, elle peut également être égale à ou majoritaire par rapport à celle mise en œuvre pour l'hydrotalcite ; l'hydrotalcite et la silice peuvent alors être introduites dans le(s) polymère(s) sous forme d'un mélange ou séparément. Cependant, souvent, les compositions de polymère(s) ne contiennent pas de silice précipitée à titre de charge et/ou la charge est formée en totalité d'hydrotalcite calcinée et/ou intercalée. En général, les compositions de polymère(s) comprennent en outre au moins un agent de couplage et/ou au moins un agent de recouvrement ; elles peuvent également comprendre, entre autres, un agent anti-oxydant.
L'invention, en particulier dans le cas de l'utilisation d'hydrotalcite calcinée, peut permettre notamment de diminuer la quantité d'agent de couplage à employer dans les compositions de polymère(s), tout en ne pénalisant pas leurs propriétés à l'état vulcanisé.
La proportion en poids d'hydrotalcite dans la composition de polymère(s) peut varier dans une gamme assez large. Elle représente habituellement 4 à 80 %, notamment 20 à 80 %, par exemple 30 à 70 %, de la quantité du (des) polymère(s). Elle représente de préférence 20 à 80 %, par exemple 30 à 70 %, de la quantité du (des) polymère(s) lorsque les compositions de polymère(s) ne contiennent pas de silice précipitée à titre de charge et/ou lorsque la charge est formée en totalité d'hydrotalcite calcinée et/ou intercalée.
La présente invention est également relative aux articles finis à base des compositions de polymère(s) décrites précédemment (notamment à base des vulcanisats mentionnés ci-dessus).
On peut ainsi mentionner les enveloppes de pneumatique, en particulier les flancs et la bande de roulement pneumatique. L'hydrotalcite calcinée est utilisable dans la gomme interne de pneumatique ; elle peut notamment en améliorer l'imperméabilité (notamment à l'air), ce qui peut permettre d'éviter d'utiliser un élastomère halogénobutyl (chlorobutyl, bromobutyl par exemple) et/ou d'employer, de préférence majoritairement, plutôt du caoutchouc naturel. On peut également citer, à titre d'articles finis, les revêtements de sols, les semelles de chaussures, les pièces de chenilles de véhicules, les galets de téléphériques, les joints d'appareils électroménagers, les joints de conduites de liquides ou de gaz, les joints de système de freinage, les gaines, les cables, les courroies de transmissions, les barrières aux gaz, les matériaux ignifugeants.
Les exemples suivants illustrent l'invention sans toutefois en limiter la portée.
EXEMPLE 1
On prépare deux compositions de polymère, exemptes d'agent de couplage :
- l'une contenant de la silice précipitée haute dispersibilité Z1165MP commercialisée par la société Rhodia, de surface spécifique BET de 150 m2/g et de densité de 2,1 g/cm3 (composition de référence R1),
- l'autre contenant de l'hydrotalcite calcinée fabriquée par la société Sud Chemie (sous la dénomination EXM 701), de surface spécifique BET de 160 m2/g et de densité de 2,8 g/cm3 (composition C1 ).
Tableau 1 (compositions en parties, en poids)
(1 ) Copolymère styrène butadiène synthétisé en solution (type Buna VSL 5525-1 ) contenant 27,3 % d'huile
(2) N-(1 ,3-diméthyl-butyl)-N'-phényl-p-phénylènediamine
(3) N-cyclohexyl-2-benzothiazyl sulfénamide Les compositions sont préparées en travaillant thermo-mécaniquement les elastomeres dans un malaxeur interne (type BRABENDER) d'un volume égal à 75 cm3, en deux étapes, avec une vitesse moyenne des palettes de 60 tours/minute, jusqu'à l'obtention d'une température de 110 °C, ces étapes étant suivies d'une étape d'accélération réalisée dans un malaxeur interne (type BRABENDER) puis d'une étape de finition réalisée sur un mélangeur externe.
La vulcanisation des compositions est adaptée aux cinétiques de vulcanisation des mélanges correspondants.
Les propriétés des compositions sont exposées ci-après, les mesures ayant été effectuées (sur les compositions vulcanisées), selon les normes et/ou méthodes suivantes :
Propriétés de vulcanisation
Norme NF T 43015
On utilise, notamment pour la mesure du couple mini (Cmin) et du couple maxi (Cmax) un rhéomètre Monsanto 100 S.
Ts2 correspond au temps pendant lequel le contrôle du mélange est possible ; le mélange de polymère durcit à partir de Ts2 (début de la vulcanisation).
T90 correspond au temps au bout duquel 90 % de la vulcanisation ont été réalisés.
Propriétés mécaniques
- Traction (modules) : norme NF T 46002
Les modules x % correspondent à la contrainte mesurée à x % de déformation en traction.
- Dureté Shore A : norme ASTM D2240
La valeur considérée est déterminée 15 secondes après l'application de la force.
Propriétés dynamiques
Les modules réels (G') et imaginaire (G") ainsi que la tangente de l'angle de perte (tan δ), définie comme le rapport de G" sur G', sont mesurés à différents taux de déformation et à différentes températures sur un appareil de spectrométrie mécanique (Viscoanalyseur VA2000 de Metravib RDS). Deux types d'essais sont effectués : des balayages en déformation, à température et fréquence fixées, pour déterminer les propriétés de non linéarité des compositions (Effet Payne), et des balayages en température, à déformation et fréquence imposées.
Les conditions de l'essai pour les balayages en déformation sont les suivantes :
Les éprouvettes sont de forme parallélépipèdiques (longueur 6 mm, largeur 4 mm, épaisseur 2,5 mm environ). Une déformation sinusoïdale d'amplitude croissante est appliquée à une fréquence constante de 5 Hz. A chaque taux de déformation, G', G" et tan δ sont évalués. Ci-dessous, ΔG' fait référence à la différence entre le module G' mesuré à une déformation en cisaillement de 0,001 et le module G' mesuré à une déformation en cisaillement de 1, et tan δ max correspond au maximum de la tangente de l'angle de perte en fonction de la déformation.
Les conditions de l'essai pour les balayages en température sont les suivantes :
Les éprouvettes sont de forme parallélépipèdiques (longueur 15 mm, largeur 6 mm, épaisseur 2,5 mm environ). Une déformation sinusoïdale d'amplitude constante et égale à 50 microns est appliquée en traction, à une fréquence constante de 10 Hz , la vitesse de montée en température étant de
1 °C / min. A chaque température, G', G" et tan δ sont évalués
On constate que la composition C1 selon l'invention présente un compromis de propriétés intéressant par rapport à celui de la composition de référence R1.
Avec une cinétique de vulcanisation comparable à celle de la composition de référence R1, la composition C1 conduit à un renforcement en terme de modules plus marqué. Cet effet de renfort est d'ailleurs perceptible dès les très faibles déformations. Il faut atteindre des déformations d'au moins 600 % pour que la composition de référence R1 offre le même comportement en terme de renfort que la composition C1.
Dans le cas de la composition C1 , l'amplitude un peu plus élevée de la chute du module (effet Payne) s'accompagne par une baisse du maximum de tangente δ en fonction de la déformation. Cette composition est donc moins source de dissipation d'énergie mécanique. Cet avantage pourra être utilisé dans des applications nécessitant une faible dissipation. La composition C1 présente un module réel vitreux (G') plus élevé que celui obtenu pour la composition de référence R1, tout en ayant une dissipation similaire ou un peu plus faible. Ces caractéristiques pourront être utilisées dans des applications nécessitant rigidité à l'état vitreux ou rigidité à l'état caoutchoutique et faible dissipation d'énergie, tout en conservant les propriétés de dissipation vers 0 °C.
Tableau 2
EXEMPLE 2
On prépare trois compositions de polymère - l'une contenant de la silice précipitée identique à celle utilisée dans l'exemple 1 et un agent de couplage (composition de référence R2),
- les deux autres contenant chacune de l'hydrotalcite calcinée identique à celle utilisée dans l'exemple 1 et un agent de couplage (compositions C2 et C3).
Tableau 3 (compositions en parties, en poids)
(1 ) Copolymère styrène butadiene synthétisé en solution (type Buna VSL 5525-1) contenant 27,3 % d'huile
(2) Agent de couplage charge/polymère (commercialisé par la société Dégussa)
(3) N-(1 ,3-diméthyl-butyl)-N'-phényl-p-phénylènediamine
(4) N-cyclohexyl-2-benzothiazyl sulfénamide
La composition C3 contient environ le même taux volumique de charge que la composition de référence R2 et que la composition C2 ; mais son taux d'agent de couplage est adapté à la masse et à la surface spécifique de l'hydrotalcite calcinée de telle manière que l'on obtient le même taux de couverture théorique de la charge qu'avec la silice précipitée mentionnée.
Les compositions sont préparées en travaillant thermo-mécaniquement les elastomeres dans un malaxeur interne (type BRABENDER) d'un volume égal à 350 cm3, en deux étapes, avec une vitesse moyenne des palettes de 60 tours/minute, jusqu'à l'obtention d'une température de 140 °C, ces étapes étant suivies d'une étape d'accélération réalisée dans un malaxeur interne (type BRABENDER) puis d'une étape de finition réalisée sur un mélangeur externe. La vulcanisation des compositions est adaptée aux cinétiques de vulcanisation des mélanges correspondants.
Les propriétés des compositions sont exposées ci-après, les mesures ayant été effectuées (sur les compositions vulcanisées), selon les normes et/ou méthodes indiquées à l'exemple 1 pour les propriétés mécaniques et comme suit pour les propriétés rhéologiques :
Propriétés rhéoloqiques
Consistance Mooney : norme NF T 43005 (mesure de Mooney Large (1 + 4) à 100 °C, à l'aide d'un viscosimètre Mooney).
Tableau 4
On constate que les compositions C2 et C3 selon l'invention présentent un compromis de propriétés intéressant par rapport à celui de la composition de référence R2.
EXEMPLE 3
On prépare deux compositions de polymère :
- l'une contenant de la silice précipitée identique à celle utilisée dans l'exemple 1 et un agent de couplage (composition de référence R3),
- l'autre contenant de l'hydrotalcite calcinée identique à celle utilisée dans l'exemple 1 et un agent de couplage (composition C4). Tableau 5 (compositions en parties, en poids)
(1) Copolymère styrène butadiene synthétisé en solution (type Buna VSL 5525-1) contenant 27,3 % d'huile
(2) Agent de couplage charge/polymère (commercialisé par la société Dégussa)
(3) N-(1 ,3-diméthyl-butyl)-N'-phényl-p-phénylènediamine
(4) N-cyclohexyl-2-benzothiazyl sulfénamide
Les compositions sont préparées en travaillant thermo-mécaniquement les elastomeres dans un malaxeur interne (type BRABENDER) d'un volume égal à 75 cm3, en une étape, avec une vitesse moyenne des palettes de 52 tours/minute, jusqu'à l'obtention d'une température de 110 °C, cette étape étant suivie d'une étape d'accélération réalisée dans un malaxeur interne (type BRABENDER) puis d'une étape de finition réalisée sur un mélangeur externe.
La vulcanisation des compositions est adaptée aux cinétiques de vulcanisation des mélanges correspondants.
Les propriétés des compositions sont exposées ci-après, les mesures ayant été effectuées (sur les compositions vulcanisées), selon les normes et/ou méthodes indiquées à l'exemple 1. (la déformation et la contrainte rupture étant mesurées selon la norme NF T 46002) : Tableau 6
On constate que la composition C4 selon l'invention présente un compromis de propriétés globalement supérieur à celui de la composition de référence R3.
Tout en présentant une cinétique de vulcanisation et des propriétés de renforcement (modules 100 % et 300 %) comparables, voire même supérieures, la composition C4 possèdent des propriétés ultimes ( contrainte et déformation rupture) améliorées.
De plus, la composition C4 a des propriétés dynamiques beaucoup plus intéressantes que celles de la composition R3, en l'occurrence une plus faible amplitude de la chute du module et une baisse sensible du maximum de tangente δ en fonction de la déformation (très faible dissipation de l'énergie mécanique).
EXEMPLE 4
On prépare une composition de polymère contenant de l'hydrotalcite calcinée identique à celle utilisée dans l'exemple 1 et présentant une teneur pondérale en agent de couplage de 4,4 % par rapport au poids d'hydrotalcite (composition C5).
On compare ses propriétés à celles de la composition de référence R3 préparée dans l'exemple 3, qui contient de la silice précipitée identique à celle utilisée dans l'exemple 1 et qui présente une teneur en agent de couplage de 8 % par rapport au poids de silice. Tableau 7 (compositions en parties, en poids)
(1) Copolymère styrène butadiene synthétisé en solution (type Buna VSL 5525-1) contenant 27,3 % d'huile
(2) Agent de couplage charge/polymère (commercialisé par la société Dégussa)
(3) N-(1 ,3-diméthyl-butyl)-N'-phényl-p-phénylènediamine
(4) N-cyclohexyl-2-benzothiazyl sulfénamide
La composition C5 est préparée comme dans l'exemple 3.
Les propriétés des compositions sont exposées ci-après, les mesures ayant été effectuées (sur les compositions vulcanisées), selon les normes et/ou méthodes indiquées aux exemles 1 et 3 :
Tableau 8
On constate que la composition C5 selon l'invention, en dépit d'une quantité d'agent de couplage réduite par rapport à celle de la composition de référence R3, conduit à un compromis de propriétés particulièrement intéressant.
EXEMPLE 5
On prépare deux compositions de polymère :
- l'une contenant de la silice précipitée identique à celle utilisée dans l'exemple 1 et de l'hydrotalcite calcinée identique à celle utilisée dans l'exemple 1 , et ce dans un rapport massique de 90/10, ainsi qu'un agent de couplage (composition C6), - l'autre contenant de la silice précipitée identique à celle utilisée dans l'exemple 1 et de l'hydrotalcite calcinée identique à celle utilisée dans l'exemple 1 , et ce dans un rapport massique de 50/50, ainsi qu'un agent de couplage (composition C7).
On compare leurs propriétés à celles de la composition de référence R3 préparée dans l'exemple 3, qui contient de la silice précipitée identique à celle utilisée dans l'exemple 1 et un agent de couplage. Tableau 9 (compositions en parties, en poids)
(1 ) Copolymère styrène butadiene synthétisé en solution (type Buna VSL 5525-1 ) contenant 27,3 % d'huile
(2) Agent de couplage charge/polymère (commercialisé par la société Dégussa)
(3) N-(1 ,3-diméthyl-butyl)-N'-phényl-p-phénylènediamine
(4) N-cyclohexyl-2-benzothiazyl sulfénamide
Les compositions R3, C6 et C7 contiennent sensiblement le même taux volumique de charge.
Les compositions C6 et C7 sont préparées comme dans l'exemple 3.
Les propriétés des compositions sont exposées ci-après, les mesures ayant été effectuées (sur les compositions vulcanisées), selon les normes et/ou méthodes indiquées aux exemles 1 et 3 : Tableau 10
On constate que les compositions C6 et C7 selon l'invention présentent un compromis de propriétés globalement supérieur à celui de la composition de référence R3.
Tout en présentant une cinétique de vulcanisation et des propriétés de renforcement comparables, voire même supérieures, les compositions C6 et C7 possèdent des propriétés ultimes ( contrainte et déformation rupture) améliorées.
De plus, les compositions C6 et C7 ont des propriétés dynamiques beaucoup plus intéressantes que celles de la composition R3, en l'occurrence une plus faible amplitude de la chute du module et une baisse sensible du maximum de tangente δ en fonction de la déformation (très faible dissipation de l'énergie mécanique), et ce même lorsque la proportion d'hydrotalcite calcinée est minoritaire par rapport à la silice précipitée (composition C6).

Claims

REVENDICATIONS
- Utilisation comme charge, dans une composition de polymère(s), d'au moins une hydrotalcite calcinée et/ou intercalée au moyen d'au moins un agent tensioactif anionique.
- Utilisation selon la revendication 1 d'au moins une hydrotalcite calcinée.
- Utilisation selon la revendication 2, caractérisée en ce que ladite hydrotalcite calcinée est décarbonatée.
- Utilisation selon l'une des revendications 2 et 3, caractérisée en ce que le rapport molaire anion carbonate / cation trivalent de ladite hydrotalcite est inférieur à 0,3, en particulier inférieur à 0,25.
- Utilisation selon l'une des revendications 2 à 4, caractérisée en ce que l'on a intercalé dans la structure de ladite hydrotalcite calcinée au moins un agent tensioactif anionique.
- Utilisation selon l'une des revendications 1 à 5, caractérisée en ce que ladite hydrotalcite contient au moins un cation divalent et au moins un cation trivalent.
- Utilisation selon la revendication 6, caractérisée en ce que le rapport molaire cation divalent / cation trivalent est compris entre 1 et 8, de préférence entre 2 et 6.
- Utilisation selon l'une des revendications 6 et 7, caractérisée en ce que le cation divalent est choisi parmi Mg, Ni, Zn, Co.
- Utilisation selon l'une des revendications 6 à 8, caractérisée en ce que le cation trivalent est choisi parmi Al, Ga, Fe, Cr.
-Utilisation selon l'une des revendications 6 à 9, caractérisée en ce que le cation divalent est Mg et le cation trivalent est Al. -Utilisation selon la revendication 10, caractérisée en ce que le rapport molaire Mg/AI est compris entre 1 ,5 et 5, de préférence entre 2 et 4.
-Utilisation selon l'une des revendications 1 à 5, caractérisée en ce que ladite hydrotalcite contient au moins un cation monovalent et au moins un cation trivalent.
-Utilisation selon l'une des revendications 1 à 12 d'hydrotalcite comme charge renforçante dans une composition de polymère(s).
-Utilisation selon l'une des revendications 1 à 13, caractérisée en ce que ladite composition de polymère(s) est à base d'au moins un polymère ou copolymère présentant au moins une température de transition vitreuse comprise ente -150 et +300 °C.
-Utilisation selon l'une des revendications 1 à 14, caractérisée en ce que ladite composition de polymère(s) est à base d'au moins un élastomère thermoplastique.
-Utilisation selon Tune des revendications 1 à 15, caractérisée en ce que ladite composition de polymère(s) comprend en outre au moins un agent de couplage et/ou au moins un agent de recouvrement.
-Composition de polymère(s) à base d'au moins un polymère ou copolymère, comprenant une charge, caractérisée en ce que ladite charge est telle que définie dans l'une des revendications 1 à 12.
-Composition de polymère(s) selon la revendication 17, caractérisée en ce que ledit polymère ou copolymère présente au moins une température de transition vitreuse comprise entre -150 et +300 °C.
-Composition de polymère(s) selon l'une des revendications 17 et 18, caractérisée en ce qu'elle comprend en outre au moins un agent de couplage et/ou au moins un agent de recouvrement.
-Article fini à base d'au moins une composition telle que définie dans l'une des revendications 17 à 19. -Article fini selon la revendication 20, consistant en une enveloppe de pneumatique.
-Pneumatique caractérisé en ce que sa gomme interne est à base d'au moins une composition de polymère(s) selon l'une des revendications 17 à 19, cette composition étant de préférence formée majoritairement de caoutchouc naturel.
EP01938355A 2000-05-26 2001-05-28 Utilisation d'hydrotalcite comme charge dans des compositions de polym res Withdrawn EP1290081A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0007803A FR2809407B1 (fr) 2000-05-26 2000-05-26 Utilisation d'hydrotalcite comme charge dans des compositions de polymeres
FR0007803 2000-05-26
PCT/FR2001/001640 WO2001090235A1 (fr) 2000-05-26 2001-05-28 Utilisation d'hydrotalcite comme charge dans des compositions de polymères

Publications (1)

Publication Number Publication Date
EP1290081A1 true EP1290081A1 (fr) 2003-03-12

Family

ID=8851408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01938355A Withdrawn EP1290081A1 (fr) 2000-05-26 2001-05-28 Utilisation d'hydrotalcite comme charge dans des compositions de polym res

Country Status (11)

Country Link
US (1) US6790895B2 (fr)
EP (1) EP1290081A1 (fr)
JP (1) JP3964208B2 (fr)
KR (1) KR100531699B1 (fr)
CN (1) CN1214067C (fr)
AU (1) AU2001264036A1 (fr)
BR (1) BR0111139B1 (fr)
CA (1) CA2410163C (fr)
FR (1) FR2809407B1 (fr)
MX (1) MXPA02011650A (fr)
WO (1) WO2001090235A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9720061D0 (en) 1997-09-19 1997-11-19 Crosfield Joseph & Sons Metal compounds as phosphate binders
FR2843227B1 (fr) * 2002-07-31 2006-07-28 Saint Gobain Profile a propriete d'amortissement acoustique.
FR2862308B1 (fr) * 2003-11-14 2008-02-15 Solvay Procede de fabrication d'une resine synthetique et resine synthetique obtenue au moyen de ce procede
US20080076832A1 (en) * 2004-12-01 2008-03-27 Akzo Nobel N. V. Clay Comprising Charge-Balancing Organic Ions And Nanocomposite Materials Comprising The Same
WO2006110330A2 (fr) * 2005-03-29 2006-10-19 University Of North Texas Nouveaux derives d'hydroxide metallique contenant des especes d'organophosphore ou de polyphosphate a liaison chimique comme ignifugeants
US20070083036A1 (en) * 2005-10-12 2007-04-12 Sharivker Viktor S Decreasing allergenicity of natural latex rubber prior to vulcanization
JP2009518487A (ja) * 2005-12-06 2009-05-07 アクゾ ノーベル ナムローゼ フェンノートシャップ ゴム及び変性された層状の複水酸化物を含むナノコンポジット物質、その製造方法及びその使用
MY157620A (en) * 2006-01-31 2016-06-30 Cytochroma Dev Inc A granular material of a solid water-soluble mixed metal compound capable of binding phosphate
CN100383197C (zh) * 2006-06-09 2008-04-23 北京化工大学 超分子插层结构磺基水杨酸及其制备方法和用途
JP4564975B2 (ja) * 2007-03-20 2010-10-20 昭和電線ケーブルシステム株式会社 耐水性に優れた電線・ケーブル
JP4601009B2 (ja) * 2007-03-30 2010-12-22 富士フイルム株式会社 インクジェット記録用インクセット及びインクジェット記録方法
GB0714670D0 (en) * 2007-07-27 2007-09-05 Ineos Healthcare Ltd Use
WO2009043861A1 (fr) * 2007-10-03 2009-04-09 Akzo Nobel N.V. Matériau composite, procédé de préparation du matériau composite et son utilisation
GB0720220D0 (en) * 2007-10-16 2007-11-28 Ineos Healthcare Ltd Compound
KR101068728B1 (ko) * 2008-11-03 2011-09-28 권오령 하이드로탈사이트의 제조방법
JP5394726B2 (ja) * 2008-12-25 2014-01-22 住友ゴム工業株式会社 ランフラットタイヤ用ゴム組成物及びランフラットタイヤ
GB0913525D0 (en) 2009-08-03 2009-09-16 Ineos Healthcare Ltd Method
GB201001779D0 (en) 2010-02-04 2010-03-24 Ineos Healthcare Ltd Composition
CN105175974A (zh) * 2015-09-01 2015-12-23 绿园宝业(北京)贸易有限公司 一种复合金属氧化物抗菌母粒及其制备方法
CN108239306B (zh) * 2017-12-11 2020-08-11 山东玲珑轮胎股份有限公司 轮胎胎侧胶复合材料及其制备方法
CN112920458B (zh) * 2021-01-27 2022-05-10 北京化工大学 一种高分子材料用缓释型助剂及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58222128A (ja) * 1982-06-18 1983-12-23 Kyowa Chem Ind Co Ltd ハロゲン含有ゴムの耐水性改良法
US4822547A (en) * 1987-04-06 1989-04-18 Shell Oil Company Process for the extrusion of compositions comprising polypropylene, polyvinyl alcohol and a polypropylene-polyvinyl alcohol adhesive
JPH01182366A (ja) * 1988-01-12 1989-07-20 Mitsui Petrochem Ind Ltd 難燃性樹脂組成物
JPH04359064A (ja) * 1991-06-04 1992-12-11 Sekisui Chem Co Ltd イオン溶出の少ない熱可塑性樹脂組成物
JP2864061B2 (ja) * 1991-09-25 1999-03-03 協和化学工業株式会社 ハロゲン含有ゴム組成物
US5374484A (en) * 1992-05-11 1994-12-20 Asahi Kasei Kogyo Kabushiki Kaisha Fluorine-containing elastomer composition and molded articles made therefrom
US5362457A (en) * 1992-08-13 1994-11-08 Aluminum Company Of America Direct synthesis of anion substituted hydrotalcite
DE69510254T2 (de) * 1994-03-25 1999-10-14 Kabushiki Kaisha Kaisui Kagaku Kenkyujo Antimikrobielles Mittel
US5674972A (en) * 1995-07-27 1997-10-07 Albemarle Corporation Polyamide-based formulations
US5941037A (en) * 1997-11-21 1999-08-24 W. R. Grace & Co.-Conn Oxygen scavenging hydrotalcite and compositions containing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0190235A1 *

Also Published As

Publication number Publication date
CA2410163A1 (fr) 2001-11-29
BR0111139B1 (pt) 2010-08-24
BR0111139A (pt) 2003-04-08
CA2410163C (fr) 2009-02-17
AU2001264036A1 (en) 2001-12-03
KR20030005403A (ko) 2003-01-17
MXPA02011650A (es) 2003-03-27
JP2003534425A (ja) 2003-11-18
JP3964208B2 (ja) 2007-08-22
US6790895B2 (en) 2004-09-14
FR2809407A1 (fr) 2001-11-30
KR100531699B1 (ko) 2005-11-29
CN1437633A (zh) 2003-08-20
US20030158319A1 (en) 2003-08-21
CN1214067C (zh) 2005-08-10
FR2809407B1 (fr) 2002-08-30
WO2001090235A1 (fr) 2001-11-29

Similar Documents

Publication Publication Date Title
EP1290081A1 (fr) Utilisation d'hydrotalcite comme charge dans des compositions de polym res
CA2189363C (fr) Composition de caoutchouc a base de silice et de polymere dienique fonctionnalise ayant une fonction silanol terminale
EP2552713A2 (fr) Utilisation d'une silice precipitee contenant de l'aluminium et de 3-acryloxy-propyltriethoxysilane dans une composition d'elastomere(s) isoprenique(s)
FR2765882A1 (fr) Composition de caoutchouc a base de noir de carbone ayant de la silice fixee a sa surface et de polymere dienique fonctionnalise alcoxysilane
EP2231420A1 (fr) Composition de caoutchouc notamment pour la fabrication de pneumatique
KR101426104B1 (ko) 가황 활성 성분 처리 탄산칼슘
EP3164453A1 (fr) Composition de caoutchouc comprenant un élastomère contenant des unités méthacrylates
WO2014125071A1 (fr) Utilisation d'un acide polycarboxylique lors de la preparation d'une composition d'élastomère(s)
JP2005048102A (ja) 改質炭酸カルシウム含有ゴム組成物
WO2012010667A1 (fr) Composition de caoutchouc comprenant des ecailles de verre notamment pour la fabrication de pneumatiques
EP1697259B1 (fr) Hydrotalcite intercalee silice et utilisation comme charge dans des compositions de polymeres
WO2018104662A1 (fr) Composition de caoutchouc comprenant un élastomère dienique, un dérivé de polyacrylate et d'un élastomère thermoplastique spécifique
WO2001098397A2 (fr) Utilisation d'attapulgite comme charge dans des compositions de polymeres
WO2012059230A1 (fr) Utilisation d'une silice precipitee contenant de l'aluminium, d'une silice precipitee et de 3-acryloxy-propyltriethoxysilane dans une composition d'elastomere(s) isoprenique(s)
CA2346511C (fr) Utilisation d'hydroxycarbonate, d'hydroxyoxycarbonate ou d'oxycarbonate d'aluminium comme charge dans une composition de caoutchouc
WO2012059234A1 (fr) Utilisation d'une silice a distribution granulometrique et/ou repartition poreuse particulieres et de 3-acryloxy-propyltriethoxysilane dans une composition d'elastomere(s) isoprenique(s)
KR20040089349A (ko) 타이어 트레드 고무조성물
FR2966829A1 (fr) Utilisation d'une silice precipitee contenant de l'aluminium et ayant une distribution poreuse particuliere et de 3-acryloxy-propyltriethoxysilane dans une compostion d'elastomere(s) isoprenique(s)
FR2958294A1 (fr) Utilisation d'une silice precipitee contenant de l'aluminium et de 3-acryloxy-propyltriethoxysilane dans une composition d'elastomere(s) isoprenique(s)
WO2012059220A1 (fr) Utilisation d'une silice precipitee a surface specifique elevee et de 3-acryloxy-propyltriethoxysilane dans une composition d'elastomere(s) isoprenique(s)
WO2012059219A1 (fr) Utilisation d'une silice precipitee sous forme de granules, ayant une distribution poreuse particuliere, et de 3-acryloxy-propyltriethoxysilane dans une composition d'elastomere(s) isoprenique(s)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20090129

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151201