EP1286795B1 - Vorrichtung zum stranggiessen von metall, insbesondere von stahl - Google Patents

Vorrichtung zum stranggiessen von metall, insbesondere von stahl Download PDF

Info

Publication number
EP1286795B1
EP1286795B1 EP01943393A EP01943393A EP1286795B1 EP 1286795 B1 EP1286795 B1 EP 1286795B1 EP 01943393 A EP01943393 A EP 01943393A EP 01943393 A EP01943393 A EP 01943393A EP 1286795 B1 EP1286795 B1 EP 1286795B1
Authority
EP
European Patent Office
Prior art keywords
mould
steel
wall
mold
support grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01943393A
Other languages
English (en)
French (fr)
Other versions
EP1286795A1 (de
Inventor
Joachim Schwellenbach
Michael Vonderbank
Fritz-Peter Pleschiutschnigg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Demag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10123053A external-priority patent/DE10123053C2/de
Application filed by SMS Demag AG filed Critical SMS Demag AG
Publication of EP1286795A1 publication Critical patent/EP1286795A1/de
Application granted granted Critical
Publication of EP1286795B1 publication Critical patent/EP1286795B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Definitions

  • the invention relates to a device for the continuous casting of metal, in particular of steel, with a plate mold or a tubular mold with mold walls and with a mold cooling device.
  • a device for the continuous casting of metal in particular of steel
  • a plate mold or a tubular mold with mold walls and with a mold cooling device is used for casting different Strand formats, such as slabs, thin slabs, blooms or beam blanks.
  • the mold itself or the As in horizontal continuous casting the strand oscillates. But the mold itself is arranged in one place and can therefore also be referred to as a stand mold become.
  • Such molds as a casting mold for continuous casting plants either consist of Mold plates, namely two plates for the mold wide plates and two plates for the mold corn sides, or from mold tubes.
  • mold plates or mold tubes are made of copper and have in the Usually a thickness of 10 to 50 mm between the water cooling and the Melting steel side facing.
  • the choice of copper plate thickness depends on the heat loads or the heat flow, measured for example in MWh / m 2 or MW / m 2 .
  • the thickness of the copper plates of the mold is between 25 and 50 mm.
  • thin slabs which are operated at casting speeds of up to 10 and in the future up to 15 m / min, have a maximum heat flow of 4-5 MW / m 2 and copper plate thicknesses of 10 to 25 mm.
  • the copper wall would have to become ever thinner as the Water cooling. This is difficult, since thinner walls are always used worse the high water pressures of 5-15 bar, for a corresponding Ensure water speed of 5-15m / s, steadfast without deformation.
  • copper plates formed too thin at too high a thermal load on the cold-rolled copper Loss of strength if the recrystallization temperature is exceeded.
  • assembly of very thin cocitia copper plates on the mold frame The mold plates are usually opened the water boxes or the mold frame are mounted by means of bolts, which by means of of a thread can be screwed into the back of the copper plate. This is not possible with very thin plates; here the bolts must be on the Copper plates are welded on.
  • the invention has for its object a device of the generic type Art in such a way that the above disadvantages despite increasing the Pouring speeds no longer occur.
  • a device can be created for continuous casting with a mold, the high heat flows can be transported away and can withstand high thermal loads. Also the Assembly can be improved.
  • At least one mold wall be a Steel mold wall and a support grid for this steel mold wall includes that a magnetic field generator is available for generating a magnetic field that acts on the steel mold wall via the support grid and thus the steel mold wall pulls on the support grid, and that the Kokilienkühin worn a spray cooling includes.
  • a mold which is a thin mold wall with high and controlled heat dissipation properties even at high Has casting speeds.
  • the mold wall is exposed on the one hand a steel mold wall pointing towards the molten metal and on the other hand composed of a support grid to stabilize this steel mold wall. Due to the magnetic attraction, the steel mold wall can be simple to be assembled.
  • Such a mold also has the particular advantage that the steel mold wall exposed to wear from the molten steel unlike a more expensive copper plate, fast and if necessary can be easily replaced by the high quality machining Used is "thrown away", i.e. fed back into the steel recycling process becomes.
  • With the help of the proposed double wall consisting of thin steel wall and support grid can be a simple and less expensive Kokitlen spray cooling are used.
  • the spray cooling acts in the open chambers left by the support grid or passages, i.e. the thin steel mold wall is cooled immediately, but still experiences a relatively high support effect.
  • spray cooling the use of splash water is possible.
  • the invention Solution creates a mold that has thermal conduction would otherwise require a copper plate thickness of about 10 mm or more, which is easy to mount on a base frame and which is a mold cooling allows water side and at the same time is inexpensive.
  • the steel mold wall proposed according to the invention preferably has a thickness between 0.5 and 5 mm, its effect corresponds to one Copper plate with a thickness of 10 mm, but has constructive advantages and price advantages on.
  • the support grid preferably has a support wall with a wall inserted therein. chambers on, i.e. the individual chambers or breakthroughs of the grid are from surround the wall webs of the support wall, the magnetic field via the support walls is introduced into the mold wall.
  • the spray cooling for cooling the mold walls preferably comprises spray nozzles, the steel mold wall in the back of the support grid, i.e. cool through the freely accessible chamber areas or gaps in the grid.
  • These spray nozzles of the mold spray cooling as well as the feeds for the Cooling medium, especially water, are in the support walls of the support grid fully or partially integrated. Overall, the support grid or the support walls formed thick in relation to the steel mold wall.
  • the proposed spray cooling has the advantage that the intensity of the spray cooling Functional to the energy flow in the mold wall over the mold height is adjustable. This energy curve shows approximately in the upper third of the mold a heat maximum.
  • a further development of the device suggests that a device for control the surface temperature of the side of the liquid metal facing the Steel mold wall is in place to spray cooling if necessary to adapt a control mechanism to fluctuations in the surface temperature.
  • the mold plate can also be mechanically fixed to the support grid.
  • a fixing device is proposed for fixing the steel mold wall for example a broadside in the middle of the broadside above the Mold height.
  • the steel mold wall at the mold entrance or at The mold exit can be fixed horizontally.
  • the narrow sides if they are also stabilized with a support grid, be fixed.
  • the support walls of the Support grids at their ends facing the steel mold wall are equipped with balls that act as (ball) bearings for one serve free, thermally induced, movement of the steel mold wall.
  • the balls are filled with a fluid medium, for example Water or gas.
  • lines are introduced into the supporting walls, which extend perpendicular to the steel mold wall and which the balls or the ball cages on the end faces of the retaining walls with water or Supply gas.
  • the support grid has an outer frame encompassing the grid cover with a seal.
  • a collecting chamber provided at the lower part of the mold wall, which flows into a drain flows to bring the cooling water to a treatment plant if necessary.
  • the collecting chamber is over the support grid walls, here in particular a wall part of the support grid arranged at the bottom of a spray nozzle, returned cooling medium collected and discharged through the drain.
  • the steel mold wall 2 is preferably a layered steel mold wall 2.1, for example, from the layers of steel / copper or Copper / steel / copper or other metals instead of copper.
  • the Magnetic field generators can preferably be a permanent magnet 3.4.
  • the steel mold wall 2 of 2 mm thickness corresponds with its specific thermal conductivity a copper wall of about 14 mm.
  • a device 4.1 (shown schematically here) is provided which covers the broad side fixed with the width 17 and a height 16 in the vertical center line 4, causing thermal expansion symmetrical in both horizontal directions (here with arrows and the reference number 5) hike in half can.
  • the steel mold wall is at its upper edge 6 or lower edge 7 Chill mold also fixed to thermally uniformly in the vertical direction (here indicated with a vertical arrow and reference number 8) to be able to.
  • the embodiment shown here is rod-shaped elements that are rotatable about their longitudinal axis.
  • the outer frame of the rectangular, magnetized, support grid 3.1 is all around with a rubber seal 3.3 around the mold splash water 10 to prevent an uncontrolled exit.
  • the support walls 11 of the support grid 3 are in the head regions 11.1 with balls 11.2 equipped as normal bearings or as fluid bearings for the free serve thermally induced movement of the steel mold wall 2. Examples of Bearing points or balls 11.2 are shown in Fig. 1a. Instead of the equipment with balls, the support grid heads 11.1 can also be made of rounded Graphite heads 11.1.1 exist which promote the thermally induced sliding process should.
  • 3b shows a detailed view of the embodiment of the ball bearing. It is a section of a retaining wall 11 with retaining wall head 11.1 from the head 11.1 picked up ball 11.2 for mounting the steel mold wall 2 or 2.1 shown.
  • the ball bearing cage is connected via a line with a fluid 11.3. such as water or gas, is used to build a fluid bearing or hydro bearing serves.
  • the between the support walls 11 and the webs of the grid 3 acting spray nozzles 10.1 are also shown.
  • Fig. 2a illustrates the use of the device according to the invention for continuous casting or mold with an immersion spout 23.2 which protrudes into the mold.
  • 24 is pouring slag, with 24.1 casting powder.
  • the liquid steel 23.1 is poured into the mold via the immersion nozzle 23.2, the solidification beginning with the formation of a strand shell 23 on the mold walls.
  • the casting speed v c is marked with 25.
  • the magnetic field 3.1 generated by the magnetic field generator 3.2 or 3.4 can be designed such that it influences the steel flow in the mold in the sense of an electromagnetic brake 3.1.1.
  • the mold wall temperature is at 15 that of the liquid steel facing side of the mold.
  • a suitable measuring or control device provided.
  • 2a are also the embodiments of the storage with in the head of the support walls 3 integrated balls 11.2 or with rounded heads, preferably made of Graphite 11.1.1.
  • a type of storage is preferably used, but it is also covered by the invention that the support wall with both Storage types is provided.
  • the spray cooling or Parameters of the individual spray nozzles to the cooling requirements required in each case the mold can be adapted.
  • Fig. 2a shows Fig. 2b shows the resulting energy lobe 14 over the mold height, i.e. a maximum of heat released in the upper third of the mold.
  • the regulation is the Mold wall temperature 15 measured and the spray cooling over the mold height adjusted accordingly.
  • FIG. 3a shows an embodiment of the mold with a view of a narrow side 18
  • the broad sides of the mold are according to the invention trained, while the narrow sides are made of steel, but have no support grid.
  • both the broad and narrow sides or only the narrow sides of the mold are designed according to the invention.
  • the narrow sides 18 made of steel.
  • the narrow side 18 is obtained by a slightly concave and / or internal convexity 18.1 high stability. It is on the actual narrow side body 19, the width adjustment 20 and Conicity adjustment 21 of the mold allows assembled.
  • This type of construction leaves a water pressure of up to 20 bar in the range of conventionally trained Narrow side mold water cooling, here marked with 22. 22.1 is a water-displacing body.
  • the narrow sides of the mold can also be of the prior art Correspond to technology and consist of water-cooled copper plates.
  • the Components already explained in the other figures have corresponding ones in FIG. 3a Reference signs on.
  • Chambers 9 or openings of the support grid 3 take any shape, rectangular shapes are shown, these chambers preferably have a honeycomb shape, these chambers 9 and 12 between the Support walls 11 extend.
  • a mold for continuous casting is created that controls a high level Heat conduction allowed as well as easy assembly, in particular Assembly of the steel mold wall.
  • a control of the steel mold temperature can be done in the casting direction (vertical) as well as transversely to the casting direction (horizontal).
  • the steel mold wall can serve as a type of disposable steel plate that a high-quality and expensive maintenance processing is unnecessary in the event of wear makes.
  • a relatively simple mold spray cooling can be used which are functional to the energy club in their effect or intensity via the mold height is adjustable. Normal water spray can be used Chill mold has a simple construction at a relatively low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

Die Erfindung betrifft eine Vorrichtung zum Stranggießen von Metall, insbesondere von Stahl, mit einer Plattenkokille oder einer Rohrkokille mit kokillenwänden sowie mit einer Kokillenkühleinrichtung. Eine solche Vorrichtung dient zum Gießen von unterschiedlichen Strangformaten, wie zum Beispiel Brammen, Dünnbrammen, Vorblöcke oder Beam Blanks (Trägervorprofile). Hierbei kann die Kokille selbst oder der Strang - wie beim Horizontalstrangguß - oszillieren. Die Kokille selbst ist aber an einem Ort angeordnet und kann daher auch als Standkokille bezeichnet werden.
Solche Kokillen als Gießform für Stranggußanlagen bestehen entweder aus Kokillenplatten, und zwar zwei Platten für die Kokillenbreit- und zwei Platten für die Kokillenschmaiseiten, oder aus Kokillenrohren.
Diese Kokillenplatten oder Kokillenrohre bestehen aus Kupfer und weisen in der Regel eine Dicke von 10 bis 50 mm zwischen der Wasserkühlung und der der Stahlschmelze zugewandten Seite auf.
Die Wahl der Kupferplattendicke hängt von den Wärmebelastungen oder dem Wärmestrom, gemessen beispielsweise in MWh/m2 oder MW/m2, ab. So weisen Stranggießanlagen mit einer Kokille für Brammenformate von einer Dicke größer 150 mm und einer Breite bis 3 m, die mit einer Gießgeschwindigkeit von maximal etwa 2,5m/min gefahren werden, einen Wärmestrom von maximal 2 MW/m2 auf. Die Dicke der Kupferplatten der Kokille liegt zwischen 25 bis 50 mm. Dagegen weisen Dünnbrammen, die mit Gießgeschwindigkeiten von bis zu 10 und in Zukunft bis 15 m/min gefahren werden, einen Wärmestrom von maximal 4-5 MW/m2 auf sowie Kupferplattendicken von 10 bis 25 mm.
Um dem mit steigender Gießgeschwindigkeit steigenden Wärmestrom gerecht zu werden, müßte die Kupferwand immer dünner werden bei Intensivierung der Wasserkühlung. Dies ist schwierig, da dünner ausgebildete Kokiltenwände immer schlechter den hohen Wasserdrücken von 5-15 bar, die für eine entsprechende Wassergeschwindigkeit von 5-15m/s sorgen, ohne Deformation standhaften. Zudem ergibt sich der Nachteil, daß zu dünn ausgebildete Kupferplatten bei einer zu hohen thermischen Belastung des kaltgewalzten Kupfers durch Überschreiten der Rekristallisatianstemperatur an Festigkeit verlieren. Außerdem ergeben sich Probleme bei der Montage von sehr dünnen Kokitienkupferplatten auf dem Kokillenrahmen. Üblicherweise werden die Kokillenplatten auf die Wasserkästen bzw. den Kokillenrahmen mittels Bolzen montiert, die mittels eines Gewindes rückseitig in die Kupferplatte eingeschraubt werden. Dies ist bei sehr dünnen Platten nicht mehr möglich; hier müssen die Bolzen auf die Kupferplatten aufgeschweißt werden.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung gattungsgemäßer Art derart weiterzubilden, daß die oben genannten Nachteile trotz Erhöhung der Gießgeschwindigkeiten nicht mehr auftreten. insbesondere soll eine Vorrichtung zum Stranggießen mit einer Kokille geschaffen werden, die hohe Wärmeströme abtransportieren kann und thermisch hoch belastbar ist. Auch soll die Montage verbessert werden.
Diese Aufgabe wird durch die Vorrichtung mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterentwicklungen sind in den Unteransprüchen beschrieben.
Erfindungsgemäß wird vorgeschlagen, daß mindestens eine Kokillenwand eine Stahlkokillenwand sowie ein Stützgitter für diese Stahlkokillenwand umfaßt, daß ein Magnetfelderzeuger vorhanden ist zur Erzeugung eines Magnetfeldes, das über das Stützgitter auf die Stahlkokillenwand einwirkt und so die Stahlkokillenwand auf das Stützgitter zieht, und daß die Kokilienkühleinrichtung eine Spritzkühlung umfaßt.
Mittels dieser Merkmale wird eine Kokille geschaffen, die eine dünne Kokillenwand mit hoher und kontrollierter Wärmeabteitungseigenschaften auch bei hohen Gießgeschwindigkeiten aufweist. Die Kokillenwand setzt sich einerseits aus einer zur Metallschmelze hinweisenden Stahlkokillenwand sowie andererseits aus einem Stützgitter zur Stabilisierung dieser Stahlkokillenwand zusammen. Aufgrund der magnetischen Anziehungskräfte kann die Stahlkokillenwand einfach montiert werden. Zudem weist eine solche Kokille den besonderen Vorteil auf, daß die durch die Stahlschmelze dem Verschleiß ausgesetzte Stahlkokillenwand anders als eine kostspieligere Kupferpfatte gegebenenfalls schnell und unkompliziert ohne hochwertige Bearbeitung ersetzt werden kann, indem die Gebrauchte "weggeworfen" wird, d.h. dem Stahlrecycling-Prozeß wieder zugeführt wird. Mit Hilfe der vorgeschlagenen doublierten Wand, bestehend aus dünner Stahlwand und Abstützgitter, kann eine einfache und weniger kostspielige Kokitlenspritzkühlung zum Einsatz kommen. Um keine hohen Kokillenkühlwasserdrücke, beispielsweise von bis zu 15 oder 20 bar aufbauen zu müssen, wirkt die Spritzkühlung in den von dem Stützgitter gelassenen offenen Kammern bzw. Durchlässen, d.h. die dünne Stahlkokillenwand wird unmittelbar gekühlt, erfährt aber trotzdem eine relativ hohe Abstützwirkung. Bei der Spritzkühlung ist der Einsatz von Spritzwasser möglich. Insgesamt ergibt sich bei hohen Wirkungsgraden hinsichtlich des Abtransportes von Wärme eine einfache Kokillenkonstruktion und deshalb eine relativ preisgünstige Kokille. Die erfindungsgemäße Lösung schafft eine Kokille, die eine Wärmeleitung aufweist, die ansonsten eine Kupferplattenstärke von etwa 10 mm oder mehr erfordern würde, die leicht auf einen Grundrahmen montierbar ist und die eine Kokillenkühlung wasserseitig zuläßt und gleichzeitig kostengünstig ist.
Die erfindungsgemäß vorgeschlagene Stahlkokillenwand weist vorzugsweise eine Dicke zwischen 0,5 und 5 mm auf, sie entspricht in ihrer Wirkung einer Kupferplatte der Dicke von 10 mm, weist aber konstruktive Vorteile sowie Preisvorteile auf.
Bevorzugt weist das Stützgitter eine Stützwand mit darin eingebrachten. Kammern auf, d.h. die einzelnen Kammern oder Durchbrüche des Gitters sind von den Wandstegen der Stützwand umgeben, wobei über die Stützwände das Magnetfeld in die Kokillenwand eingeleitet wird.
Die Spritzkühlung zur Kühlung der Kokillenwände umfaßt vorzugsweise Spritzdüsen, die in den Kammern des Stützgitters rückseitig die Stahlkokillenwand, d.h. durch die frei zugänglichen Kammerbereiche oder Lücken im Gitter, kühlen. Diese Spritzdüsen der Kokillenspritzkühlung sowie die Zuführungen für das Kühlmedium, insbesondere Wasser, sind in den Stützwänden des Stützgitters ganz oder teilweise integriert. Insgesamt sind das Stützgitter bzw. die Stützwände im Verhältnis zu der Stahlkokillenwand dick ausgebildet.
Die vorgeschlagene Spritzkühlung hat den Vorteil, daß die Intensität der Spritzkühlung funktional zum Energieverlauf in der Kokillenwand über die Kokillenhöhe einstellbar ist. Dieser Energieverlauf weist etwa im oberen Drittel der Kokille eine Wärmemaximum auf. Durch eine Spritzkühlung mittels einzelner, übereinander angeordneter, Düsen kann die Intensität der Kühlung kontrolliert eingestellt werden und damit an einen Energieverlauf mit Energiemaximum bzw. eine Energiekeule angepaßt werden, indem gerade an dieser Stelle intensiver gekühlt wird.
Eine Weiterbildung der Vorrichtung schlägt vor, daß eine Einrichtung zur Kontrolle der Oberflächentemperatur der der Flüssigmetall zugewandten Seite der Stahlkokillenwand vorhanden ist, um gegebenenfalls die Spritzkühlungen über einen Regelmechanismus an Schwankungen der Oberflächentemperatur anzupassen.
Neben der erfindungsgemäß vorgeschlagenen Fixierung der Stahlkokillenplatte an das Stützgitter kann die Kokillenplatte zusätzlich mechanisch fixiert werden. Hierzu wird eine Fixierungsvorrichtung vorgeschlagen zur Fixierung der Stahlkokillenwand beispielsweise einer Breitseite in der Mitte der Breitseite über der Kokillenhöhe. Zudem kann die Stahlkokillenwand am Kokilleneingang oder am Kokillenausgang horizontal fixiert werden. Neben den Breitseiten können ggf. auch die Schmalseiten, wenn sie ebenfalls mit einem Stützgitter stabilisiert sind, fixiert sein.
Nach einer besonders bevorzugten Ausführungsform sind die Stützwände des Stützgitters an ihren zur Stahlkokillenwand weisenden Enden, d.h. kopfseitig oder an ihrem Kopf, mit Kugeln ausgestattet sind, die als (Kugel-)Lager für eine freie, thermisch bedingte, Bewegung der Stahlkokillenwand dienen. Zum Aufbau eines Fluid-Lagers werden die Kugeln mit einem Fluidmedium, beispielsweise Wasser oder Gas, versorgt. Hierzu sind Leitungen in die Stützwände eingebracht, die sich senkrecht zur Stahlkokillenwand erstrecken und die die Kugeln bzw. die Kugelkäfige an den Stirnseiten der Stützwände mit Wasser oder Gas versorgen.
Damit das Spritzwasser nach dem Aufspritzen auf die freien Rückwandbereiche der Stahlkokillenwand nicht unkontrolliert abließt, soll nach einer Weiterbildung der Erfindung das Stützgitter einen das Gitter umgreifenden äußeren Rahmen mit einer Dichtung umfassen.
Nach hinten, d.h. zu der von der Stahlschmelze wegweisenden Seite, kann das verbrauchte Kühlmedium entweder frei abließen, d.h. an offener Atmosphäre abfließen, oder gerichtet abfließen. Im zweiten Fall ist vorzugsweise eine Sammelkammer am unteren Teil der Kokillenwand vorgesehen, die in einen Abfluß mündet, um das Kühlwasser ggf. zu einer Aufbereitungsanlage zu bringen. In der Sammelkammer wird das über die Stützgitterwände, hier insbesondere über einen jeweils zu einer Spritzdüse unten angeordneten Wandteil des Stützgitters, zurückgeflossene Kühlmedium gesammelt und über den Ablauf abgeführt.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus den Unteransprüchen und aus der nachfolgenden Beschreibung, in der die in den Figuren dargestellten Ausführungsformen der Erfindung näher erläutert werden. Dabei sind neben den oben aufgeführten Kombinationen von Merkmalen auch Merkmale alleine oder in anderen Kombinationen erfindungswesentlich. Es zeigen:
Fig. 1a
eine Seitenansicht auf eine Kokillenwand einer Kokille, hier eine Breitseite einer Kokille zum Gießen von Strängen in Rechteckformat, gesehen von der Seite der Stahlschmelze;
Fig. 1 b
eine Queransicht der Kokillenwand der Fig. 1a;
Fig. 2a
eine Queransicht einer Kokillenwand mit Spritzkühlung, die an die Energiestromverteilung über die Kokillenhöhe angepaßt ist,
Fig. 2b
die Darstellung des Wärmestromverlaufs über die Kokillenhöhe;
Fig. 3a
eine Schnittansicht einer Kokille mit Schmafseitenwand sowie mit einem Schmalseitenkörper zur Breiten- sowie zur Konizitätsverstellung;
Fig. 3b
eine Detailansicht der Kugellagerlösung im kopfseitigen Ende der Stützwände zur Lagerung der Stahlkokillenwand auf dem Stützgitter.
Mit Fig. 1a ist die Breitseite 1 einer Kokille, die zwei Breit- und zwei Schmalseiten aufweist, und zum Gießen von Rechteckformaten, wie Brammen oder Dünnbrammen geeignet ist, gezeigt. Diese Kokillenbreitseite besteht beispielhaft aus einer 2 mm dicken Stahlkokillenwand 2. Die Stahlkokillenwand 2, die Teil einer Gesamtkokillenwand ist, wird mit Hilfe eines Magnetfeldes 3.1, das von einem Magnetfelderzeuger 3.2 aufgebaut wird und das über ein Stützgitter 3 mit Stützwänden 11 auf die Stahlkokillenwand 2 einwirkt, auf das Stützgitter 3 gezogen. Die Stahlkokillenwand 2 ist vorzugsweise eine geschichtete Stahlkokillenwand 2.1, die beispielsweise aus den Schichten Staht/Kupfer oder auch Kupfer/Stahl/Kupfer oder anderer Metalle anstelle des Kupfers besteht. Der Magnetfelderzeuger kann vorzugsweise ein Permanentmagnet 3.4 sein.
Die Stahlkokillenwand 2 von 2 mm Dicke entspricht mit ihrer spezifischen Wärmeleitfähigkeit einer Kupferwand von etwa 14 mm. Zur zusätzlichen Fixierung ist eine Vorrichtung 4.1 (hier schematisch dargestellt) vorgesehen, die die Breitseite mit der Breite 17 und einer Höhe 16 in der Senkrecht-Mittellinie 4 fixiert, wodurch eine Wärmeausdehnung symmetrisch in beide horizontalen Richtungen (hier mit Pfeilen und dem Bezugszeichen 5 versehen) hälftig wandern kann.
Weiterhin ist die Stahlkokillenwand an ihrer Oberkante 6 oder Unterkante 7 der Kokille ebenfalls fixiert, um sich gleichförmig thermisch in vertikaler Richtung (hier mit einem vertikalen Pfeil sowie dem Bezugszeichen 8 bezeichnet) ausdehnen zu können. Bei der hier gezeigten Ausführungsform handelt es sich um stabförmige Elemente, die um ihre Längsachse drehbar sind.
Um keinen hohen Kokillenkühlwasserdruck von bis zu 15 oder 20 bar aufbauen zu müssen, wird in den Kammern 9 des Stützgitters 3 bzw. den Lücken oder Durchbrüchen, mit Hilfe einer Kokillenspritzkühlung 10, die Spritzdüsen umfaßt, die Rückseite der Stahlkokillenwand 2 gekühlt, wie Fig. 1b zeigt. Das aufgeheizte Kühlwasser oder Rücklauf-Spritzwasser 10.2 kann frei über die Stützgitterwände 11 bzw. Stützwandstreben, abfließen. Hierzu kann das Spritzwasser in einem geschlossenen Raum oder einer Sammelkammer 12 gesammelt werden, um über einen Abfluß 12.1 abgeführt zu werden, oder an offener Atmosphäre 13 abgeführt werden (vgl. Fig. 3a).
Der äußere Rahmen des rechteckigen, magnetisierten, Stützgitters 3.1 ist ringsherum mit einer Gummidichtung 3.3 versehen, um das Kokillenspritzwasser 10 an einem unkontrollierten Austritt zu hindern.
Die Stützwände 11 des Stützgitters 3 sind in den Kopfbereichen 11.1 mit Kugeln 11.2 ausgestattet, die als Normal-Lager oder als Fluid-Lager für die freie thermisch bedingte Bewegung der Stahlkokillenwand 2 dienen. Beispiele der Lagerpunkte bzw. Kugeln 11.2 sind aus Fig. 1a ersichtlich. Anstelle der Ausstattung mit Kugeln können die Stützgitterköpfe 11.1 auch aus abgerundeten Graphitköpfen 11.1.1 bestehen, die den thermisch bedingten Gleitvorgang fördern sollen.
Eine Detailansicht der Ausführungsform der Kugellagerung zeigt Fig. 3b. Es ist ein Ausschnitt einer Stützwand 11 mit Stützwandkopf 11.1 mit von dem Kopf 11.1 aufgenommener Kugel 11.2 zur Lagerung der Stahlkokillenwand 2 bzw. 2.1 dargestellt. Der Kugellagerkäfig wird über eine Leitung mit einem Fluid 11.3, wie Wasser oder Gas, versorgt, das zum Aufbau eines Fluid-Lagers oder Hydro-Lagers dient. Die zwischen den Stützwänden 11 bzw. den Stegen des Gitters 3 wirkenden Spritzdüsen 10.1 sind ebenfalls dargestellt.
Fig. 2a verdeutlicht den Einsatz der erfindungsgemäßen Vorrichtung zum Stranggießen bzw. Kokille mit einem Tauchausguß 23.2, der in die Kokille ragt. Mit 24 ist Gießschlacke, mit 24.1 Gießpulver bezeichnet. Der flüssige Stahl 23.1 wird über den Tauchausguß 23.2 in die Kokille gegossen, wobei die Erstarrung mit Bildung einer Strangschale 23 an den Kokillenwänden beginnt. Die Gießgeschwindigkeit vc ist mit 25 gekennzeichnet. Das durch den Magnetfelderzeuger 3.2 bzw. 3.4 erzeugte Magnetfeld 3.1 kann so ausgebildet sein, daß es die Stahlströmung in der Kokille im Sinne einer elektromagnetischen Bremse 3.1.1 beeinflußt.
In Fig. 2a ist mit 15 die Kokillenwandtemperatur auf der dem flüssigen Stahl zugewandten Seite der Kokille dargestellt. Zur Messung der Temperatur ist eine entsprechende Meß- bzw. Kontrolleinrichtung vorgesehen. In Fig. 2a sind ebenfalls die Ausführungsformen der Lagerung mit in dem Kopf der Stützwände 3 integrierten Kugeln 11.2 oder mit abgerundeten Köpfen, vorzugsweise aus Graphit 11.1.1, ersichtlich. Vorzugsweise kommt eine Art der Lagerung zu Anwendung, es ist aber auch von der Erfindung erfaßt, daß die Stützwand mit beiden Lagerungsarten versehen ist. Bei der in Fig. 2a gezeigten Kokille mit Spritzkühlung wird das Rücklauf-Spritzwasser 10.2 nicht aufgefangen, sondern strömt offen nach unten, wobei es dann unterhalb der Kokille ggf. aufgefangen wird.
Es ist ein bevorzugtes Merkmal der Erfindung, daß die Spritzkühlung bzw. die Parameter der einzelnen Spritzdüsen an die jeweils notwendigen Kühlbedürfnisse der Kokille anpaßbar sind. In Gegenüberstellung zu Fig. 2a zeigt daher Fig. 2b die anfallende Energiekeule 14 über die Kokillenhöhe, d.h. ein Maximum an freiwerdender Wärme im oberen Drittel der Kokille. Zur Regelung wird die Kokillenwandtemperatur 15 gemessen und die Spritzkühlung über die Kokillenhöhe entsprechend angepaßt.
Fig. 3a stellt eine Ausführungsform der Kokille mit Blick auf eine Schmalseite 18 dar. Bei dieser Ausführungsform sind die Breitseiten der Kokille erfindungsgemäß ausgebildet, während die Schmalseiten zwar aus Stahl bestehen, aber kein Stützgitter aufweisen. Es ist aber ebenso von der Erfindung erfaßt, daß sowohl die Breit- als auch Schmalseiten oder nur die Schmalseiten der Kokille erfindungsgemäß ausgebildet sind. Bei der gezeigten Ausführungsform bestehen die Schmalseiten 18 aus Stahl. Die Schmalseite 18 erlangt durch eine leicht konkave und/oder innere Konvexität 18.1 eine hohe Stabilität. Sie ist auf den eigentlichen Schmalseitenkörper 19, der eine Breitenverstellung 20 und Konizitätsverstellung 21 der Kokille zuläßt, montiert. Diese Art der Konstruktion läßt einen Wasserdruck von bis zu 20 bar im Bereich der konventionell ausgebildeten Schmalseitenkokillenwasserkühlung, hier mit 22 gekennzeichnet, zu. Mit 22.1 ist ein wasserverdrängender Körper gekennzeichnet. Nach einer anderen Ausführungsform können die Schmalseiten der Kokille auch dem Stand der Technik entsprechen und aus wassergekühlten Kupferplatten bestehen. Die bereits in den anderen Fig. erläuterten Bauteile weisen in Fig. 3a entsprechende Bezugszeichen auf.
Zurückkommend auf die erfindungsgemäß vorgeschlagene Wandkonstruktion einer Gießkokille für den Strangguß mit entsprechender Kühlung können die Kammern 9 bzw. Durchbrüche des Stützgitters 3 jede beliebige Form annehmen, gezeigt sind rechteckige Formen, vorzugsweise weisen diese Kammern eine Wabenform auf, wobei diese Kammern 9 bzw. 12 sich zwischen den Stützwänden 11 erstrecken.
Insgesamt wird eine Kokille zum Stranggießen geschaffen, die eine hohe kontroltierte Wärmeleitung erlaubt sowie eine einfache Montage, insbesondere Montage der Stahlkokillenwand. Eine Kontrolle der Stahlkokillentemperatur kann in Gießrichtung (vertikal) als auch quer zur Gießrichtung (horizontal) erfolgen. Die Stahlkokillenwand kann als Art einer Wegwerfstahlplatte dienen, die eine hochwertige und teure Wartungsbearbeitung bei Verschleiß überflüssig macht. Eine relativ einfache Kokillenspritzkühlung kann zum Einsatz kommen, die über die Kokillenhöhe funktional zur Energiekeule in ihrer Wirkung bzw. Intensität einstellbar ist. Es kann normales Spritzwasser verwendet werden, die Kokille weist eine einfache Konstruktion auf bei im Verhältnis geringen Kosten.
Bezugszeichenliste:
1
Breitseite einer Brammenkokille
2
Stahlkokillenwand, beispielsweise die Breitseite einer Bramme
2.1
geschichtete Stahlkokillenwand beispielsweise aus Staht/Cu, Cu/Stahl/Cu oder Me/Stahl/me
3
Stützgitter, Grid
3.1
Magnetfeld
3.1.1
elektromagnetische Bremse für die Beruhigung der Strömung des Stahles in der Kokille, EMBR
3.2
Magnetfelderzeuger
3.3
Dichtung, beispielsweise eine Gummidichtung
3.4
Permanentmagnet
4
senkrechte Mittenlinie der Breitseite
4.1
Vorrichtung zur Fixierung der Stahlkokillenwand (2)
5
horizontale Richtung
6
Oberkante der Kokille, Kokilleneingang
7
Unterkante der Kokille, Kokillenausgang
8
vertikale Richtung, Gießrichtung einer Brammenanlage
9
Lücken, Kammern des Stützgitters (3)
10
Kokillenspritzkühlung
10.1
Spritzdüsen, Düsenkopf
10.2
Rücklauf-Spritzwasser
11
Stützwände des Stützgitters (3) mit Kammern (9)
11.1
Kopf der Stützwand
11.1.1
Kopf der Stützwand aus Graphit
11.2
Kugeln, die als Lager für die freie thermisch bedingte Bewegung der Stahlkokillenwand (2) dienen
11.3
Fluid wie z. B. Gas oder Wasser, das zum Aufbau eines Fluid-Lagers oder Hydro-Lagers dient
12
geschlossener Raum, Kammer der Kokillenspritzkühlung (10)
12.1
Spritzwasserablauf
13
offene Atmosphäre der Kökillenspritzkühlung (10)
14
Energiekeule
15
Kokillenwandtemperatur auf der dem flüssigen Stahl zugewandten Seite
16
Kokillenhöhe
17
Kokillenbreite
18
Schmalseite
18.1
konkave und/oder innen konvexe Form der wärmeabführenden Schmalseitenwand
19
Schmalseitenkörper
20
Breitenverstellung
21
Konizitätsverstellung
22
Konventionelle Schmalseiten-Kokillenwasserkühlung mit Wasserdrücken von max. 20 bar
22.1
wasserverdrängender Körper
23
Strangschale
23.1
flüssiger Stahl
23.2
Tauchausguß
24
Gießschlacke
24.1
Gießpulver
25
Gießgeschwindigkeit, V C
26
Wabenform der Stützgitter (3)

Claims (21)

  1. Vorrichtung zum Stranggießen von Metall, insbesondere von Stahl, mit einer Plattenkokille oder einer Rohrkokille mit Kokillenwänden (1, 18) sowie mit einer Kokillenkühleinrichtung,
    dadurch gekennzeichnet, daß mindestens eine Kokillenwand (1, 18) eine Stahlkokillenwand (2) sowie ein Stützgitter (3) für diese Stahlkokillenwand umfaßt,
    daß ein Magnetfelderzeuger (3.2) vorhanden ist zur Erzeugung eines Magnetfeldes (3.1), das über das Stützgitter (3) auf die Stahlkokillenwand (2) einwirkt und so die Stahlkokillenwand (2) auf das Stützgitter (3) zieht, und
    daß die Kokillenkühleinrichtung eine Spritzkühlung (10) umfaßt.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, daß die Stahlkokillenwand (2) eine Dicke zwischen 0,5 und 5 mm aufweist.
  3. Vorrichtung nach Anspruch 1 und 2,
    dadurch gekennzeichnet daß die Stahlkokillenwand (2.1) aus Metallschichten besteht mit mindestens einer Stahlschicht, vorzugsweise aus der Schichten Stahl/Kupfer oder Metall/Stahl/Metall, wobei das Metall beispielsweise Kupfer ist
  4. Vorrichtung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß das Stützgitter (3) eine Stützwand (11) mit darin eingebrachten Kammern (9) umfaßt, wobei über die Stützwände (11) das Magnetfeld (3.1) in die Stahlkokillenwand (2) eingeleitet wird.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß die Spritzkühlung (10) Spritzdüsen 10.1) umfaßt, die in den Kammern (9) des Stützgitters (3) rückseitig die Stahlkokillenwand (2) kühlen.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, daß die Intensität der Spritzkühlung (10) funktional zum Energieverlauf in der Kokillenwand über die Kokillenhöhe einstellbar ist.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, daß sie eine Einrichtung zur Kontrolle der Oberflächentemperatur (15) der der Flüssigmetall zugewandten Seite der Stahlkokillenwand (2) aufweist.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, daß die Kokillenwand (1), die eine Stahlkokillenwand (2) sowie ein Stützgitter (3) für diese Stahlkokillenwand (2) umfaßt, eine oder beide der Breitseiten (1) einer Kokille zum Gießen von Rechteckformaten, insbesondere Brammen- oder Dünnbrammenformaten, ist, und
    daß die jeweilige Stahlkokillenwand (2) einer Breitseite (1) in der Mitte der Breitseite über der Kokillenhöhe (16) mittels einer Fixierungsvorrichtung (4.1) fixiert ist.
  9. Vorrichtung nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, daß die Kokille einen Kokilleneingang (6) sowie einen Kokillenausgang (7) aufweist und
    daß die Stahlkokillenwand (2) am Kokilleneingang (6) oder am Kokillenausgang (7) horizontal fixiert ist.
  10. Vorrichtung nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, daß Stützwände (11) des Stützgitters (3) an ihren zur Stahlkokillenwand (2) weisenden Enden mit Kugeln (11.2) ausgestattet sind, die als Lager für eine freie, thermisch bedingte, Bewegung der Stahlkokillenwand (2) dienen.
  11. Vorrichtung nach Anspruch 10,
    dadurch gekennzeichnet, daß die Kugeln (11.2) des Kugellagers mit Hilfe eines Fluidmediums betreibbar sind.
  12. Vorrichtung nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet, daß die Stützwände (11 ) des Stützgitters (3) an ihren zur Stahlkokillenwand (2) weisenden Enden Stützgitterköpfe aus Graphit (11.1.1) aufweisen, die vorzugsweise abgerundet ausgebildet sind.
  13. Vorrichtung nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet, daß das Stützgitter (3) einen das Stützgitter umgreifenden äußeren Rahmen umfaßt und daß dieser äußere Rahmen eine Dichtung (3.3) zur Kontrolle des Rücklaufs des Kokillenspritzkühlmediums (10.2) , insbesondere Wasser, aufweist.
  14. Vorrichtung nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet, daß zum gerichteten Abführen des auf die Stahlkokillenwand (2) aufgespritzten Kühlmediums (10.2) eine Sammelkammer (12) und ein Ablauf (12.1) vorhanden sind, wobei in der Sammelkammer (12) das über die Stützgitterwände (11) zurückgeflossene Kühlmedium (10.2) gesammelt wird und über den Ablauf (12.1) abgeführt wird, oder
    daß das aufgespritzte Kühlmedium (10.2) an offener Atmosphäre (13) abgeführt wird.
  15. Vorrichtung nach einem der Ansprüche 1 bis 14,
    dadurch gekennzeichnet, daß die die Schmalseiten (18) der Kokille bildenden Kokillenwände eine Stahlwand umfassen, die eine innere Konvexität (18.1) zur mechanischen Stabilisierung aufweist.
  16. Vorrichtung nach einem der Ansprüche 1 bis 14,
    dadurch gekennzeichnet, daß die die Schmalseiten der Kokille bildenden Kokillenwände aus Kupferplatten bestehen.
  17. Vorrichtung nach Anspruch 15 oder 16,
    dadurch gekennzeichnet, daß die jeweilige Stahlschmalseite (18) auf einem Schmalseitenkörper (19) montiert ist, der eine Einstellung der Breite des Brammenformates und der Konizität der Schmalseiten zuläßt.
  18. Vorrichtung nach einem der Ansprüche 4 bis 17,
    dadurch gekennzeichnet, daß die Spritzdüsen (10.1) der Kokillenspritzkühlung (10) sowie die Zuführungen für das Kühlmedium (11.3), insbesondere Wasser, in den Stützwänden (11 ) des Stützgitters (3) ganz oder teilweise integriert sind.
  19. Vorrichtung nach einem der Ansprüche 4 bis 18,
    dadurch gekennzeichnet, daß die Kammern (9) des Stützgitters (3) eine Wabenform aufweisen.
  20. Vorrichtung nach einem der Ansprüche 1 bis 19,
    dadurch gekennzeichnet, daß der Magnetfelderzeuger (3.2) ein Permanentmagnet (3.4) ist.
  21. Vorrichtung nach einem der Ansprüche 1 bis 20,
    dadurch gekennzeichnet, daß das durch den Magnetfelderzeuger (3.2) erzeugte Magnetfeld (3.1) auch als elektromagnetische Bremse (3.1.1) auf den strömenden Metallschmelzestrahl 23.1) in der Kokille wirkt.
EP01943393A 2000-05-20 2001-05-17 Vorrichtung zum stranggiessen von metall, insbesondere von stahl Expired - Lifetime EP1286795B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10025026 2000-05-20
DE10025026 2000-05-20
DE10123053A DE10123053C2 (de) 2000-05-20 2001-05-11 Vorrichtung zum Stranggießen von Metall, insbesondere von Stahl
DE10123053 2001-05-11
PCT/EP2001/005652 WO2001089741A1 (de) 2000-05-20 2001-05-17 Vorrichtung zum stranggiessen von metall, insbesondere von stahl

Publications (2)

Publication Number Publication Date
EP1286795A1 EP1286795A1 (de) 2003-03-05
EP1286795B1 true EP1286795B1 (de) 2003-12-17

Family

ID=26005760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01943393A Expired - Lifetime EP1286795B1 (de) 2000-05-20 2001-05-17 Vorrichtung zum stranggiessen von metall, insbesondere von stahl

Country Status (8)

Country Link
US (1) US6776215B2 (de)
EP (1) EP1286795B1 (de)
JP (1) JP2003534134A (de)
CN (1) CN1430540A (de)
AT (1) ATE256514T1 (de)
AU (1) AU6598301A (de)
RU (1) RU2002134183A (de)
WO (1) WO2001089741A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006037728A1 (de) * 2006-08-11 2008-02-14 Sms Demag Ag Kokille zum Stranggießen von flüssigem Metall, insbesondere von Stahlwerkstoffen
JP4569715B1 (ja) * 2009-11-10 2010-10-27 Jfeスチール株式会社 鋼の連続鋳造方法
JP4807462B2 (ja) * 2009-11-10 2011-11-02 Jfeスチール株式会社 鋼の連続鋳造方法
US9688009B2 (en) * 2014-09-25 2017-06-27 GM Global Technology Operations LLC Cellular materials based molds with lower cycle time

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1554170A (en) * 1969-05-30 1971-12-02 Con Casta. G Apparatus for cooling a continuous steel casting
US3933193A (en) 1971-02-16 1976-01-20 Alcan Research And Development Limited Apparatus for continuous casting of metal strip between moving belts
US4030537A (en) * 1975-06-25 1977-06-21 Southwire Company Thin gauge casting wheel band
CH613884A5 (de) * 1976-04-13 1979-10-31 Escher Wyss Ag
CH624322A5 (en) * 1977-03-04 1981-07-31 Larex Ag Device for cooling and guiding a revolving mould belt in a continuous casting installation
JPH01218747A (ja) * 1988-02-29 1989-08-31 Kawasaki Steel Corp 薄鋳片の連続鋳造装置
KR100208699B1 (ko) * 1995-06-21 1999-07-15 데쯔아끼 쯔다 박주편의연속주조방법
US5967223A (en) * 1996-07-10 1999-10-19 Hazelett Strip-Casting Corporation Permanent-magnetic hydrodynamic methods and apparatus for stabilizing a casting belt in a continuous metal-casting machine

Also Published As

Publication number Publication date
ATE256514T1 (de) 2004-01-15
WO2001089741A1 (de) 2001-11-29
US20040099402A1 (en) 2004-05-27
JP2003534134A (ja) 2003-11-18
US6776215B2 (en) 2004-08-17
AU6598301A (en) 2001-12-03
CN1430540A (zh) 2003-07-16
EP1286795A1 (de) 2003-03-05
RU2002134183A (ru) 2004-06-20

Similar Documents

Publication Publication Date Title
DE2049521C3 (de) Mehrfachstranggießvorrichtung für Aluminium und Aluminiumlegierungen
DE3490684T1 (de) Maschine zum kontinuierlichen Stahlgießen
WO2005095025A1 (de) Verfahren und vorrichtung zum giessen von bauteilen aus leichtmetall nach dem kippgiessprinzip
DE19637402C2 (de) Bandgießen
EP0615802B1 (de) Walzbarren-Stranggussanlage
DE4137192A1 (de) Bandguss
AT412194B (de) Verbesserte kokille für eine stranggiessanlage sowie verfahren
EP1286795B1 (de) Vorrichtung zum stranggiessen von metall, insbesondere von stahl
DE3120221C2 (de) Herstellung von dickwandigen Abschirmtransport- und Lagerbehältern aus sphärolitischem Gußeisen
DE69803071T2 (de) Stranggiesskokille mit warmhaube zum vertikalstranggiessen von langgestreckten metallischen gegenständen
DE10123053C2 (de) Vorrichtung zum Stranggießen von Metall, insbesondere von Stahl
EP0865849A1 (de) Oszillierende Kokille zum Stranggiessen von Brammen
EP0036611B1 (de) Verfahren und Vorrichtung zum Stützen eines im Stranggiess-Verfahren hergestellten Stahlstranges
EP3083103B1 (de) Giesskokille zum vergiessen von stahlschmelze
EP0268143A2 (de) Verfahren und Kokille zum Stranggiessen von Metall-, insbesondere von Stahlsträngen
EP1313578A1 (de) Gekühlte stranggiesskokille zum giessen von metall
DE3000507A1 (de) Verfahren und vorrichtung zum elektromagnetischen giessen
DE1803473A1 (de) Verfahren und Einrichtung zum Metall-,insbesondere Stahl-Stranggiessen
DE68907029T2 (de) Stranggiesskokille mit direkter kuehlung.
DE1758982A1 (de) Laengsgeteilte Durchlaufgiessform fuer Metall,insbesondere Strahlstranggiessanlagen
AT522298A1 (de) Kokilleneinheit zum Stranggießen von Metallprodukten sowie Stranggießanlage
DE1508796B2 (de) Verfahren undVorrichtung zum Kühlen eines Stahlstranges in der SekundärkUhlzone einer Stranggießanlage
DE3216327C1 (de) Herstellung von dickwandigen Abschirmtransport- und Lagerbehältern aus sphärolitischem Gußeisen
DE1055763B (de) Vorrichtung zum Stranggiessen von Schwermetallen oder Schwermetallegierungen
DE2015033A1 (en) Molten metal feed for continuous casting of sections

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020903

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PLESCHIUTSCHNIGG, FRITZ-PETER

Inventor name: VONDERBANK, MICHAEL

Inventor name: SCHWELLENBACH, JOACHIM

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50101207

Country of ref document: DE

Date of ref document: 20040129

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040328

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040505

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040510

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040517

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20031217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: *SMS DEMAG A.G.

Effective date: 20040531

26N No opposition filed

Effective date: 20040920

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050517

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040517