EP1274826B1 - Verfahren zur herstellung von nichtionischen tensidgranulaten - Google Patents

Verfahren zur herstellung von nichtionischen tensidgranulaten Download PDF

Info

Publication number
EP1274826B1
EP1274826B1 EP01931574A EP01931574A EP1274826B1 EP 1274826 B1 EP1274826 B1 EP 1274826B1 EP 01931574 A EP01931574 A EP 01931574A EP 01931574 A EP01931574 A EP 01931574A EP 1274826 B1 EP1274826 B1 EP 1274826B1
Authority
EP
European Patent Office
Prior art keywords
acid
alcohol
surfactant
alkyl
fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01931574A
Other languages
English (en)
French (fr)
Other versions
EP1274826A1 (de
Inventor
Karl Heinz Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP1274826A1 publication Critical patent/EP1274826A1/de
Application granted granted Critical
Publication of EP1274826B1 publication Critical patent/EP1274826B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers

Definitions

  • the invention relates to surfactant granules which are obtained by granulating and simultaneously drying aqueous pastes of nonionic surfactants in the presence of organic polymeric carriers, a process for their preparation and their use in surface-active preparations.
  • Nonionic surfactants such as, for example, alkyl oligoglucosides
  • these classes of nonionic surfactants are becoming increasingly important. So far, they are usually used in liquid formulations, such as dishwashing or hair shampoos, so there is also a great market need for solid, anhydrous forms of sale, which can be incorporated, for example, in solid detergents and cosmetics.
  • Detergents include not only the powder detergents, but especially the particulate detergents, such as To understand detergent tablets.
  • the particulate detergents such as To understand detergent tablets.
  • the advantage of using solid nonionic surfactant granules is that these anhydrous products are inert even when stored without preservatives against fungi, yeasts and bacteria and that this microbiological stability is also achieved when the solid anhydrous surfactant has a neutral pH Value. This accommodates the consumer, who has a need for cosmetic products that are free of preservatives.
  • the solid, non-ionic anhydrous surfactants can only be used if these products are used in the manufacture of detergents. and cosmetic products are easy to work with. It is therefore essential that the solid, anhydrous nonionic surfactants have a good flowability, so that they can be traded in silo cars or "big bags". Furthermore, the solid, water-free nonionic surfactants must also be dust-free, so that when they are processed no risk of dust explosion and the processor no risk of adverse health effects, eg by inhalation of surfactant dusts exists.
  • the drying of liquid surfactant preparations is generally carried out by conventional spray drying, in which the aqueous surfactant paste is sprayed at the head of a spray tower in the form of fine droplets, which hot drying gases are counteracted.
  • German Patent Application DE 4102745 A1 (Henkel) discloses a process in which fatty alcohol sulfate pastes are added to a small amount of from 1 to 5% by weight of alkyl glucosides and subjected to conventional spray drying.
  • the process can only be carried out in the presence of a large amount of inorganic salts.
  • German patent application DE 4139551 A1 proposes to spray pastes of alkyl sulfates and alkyl glucosides, which, however, may contain not more than 50% by weight of the sugar surfactant, in the presence of mixtures of soda and zeolites. Here, however, only compounds are obtained which have a low surfactant concentration and an insufficient bulk density.
  • International Patent Application WO 95/14519 reports subjecting surfactant pastes to superheated steam drying. However, this method is technically very complicated.
  • EP-A-859048 describes nonionic surfactant granules and a process for their preparation.
  • alkylpolyglycoside surfactants and inorganic and / or organic support materials are atomized simultaneously, the organic support material being exclusively polycarboxylates, preferably acrylic acid / maleic acid copolymers.
  • German patent application DE-A-19824742 describes a process for the production of APG-containing granules containing granulation components by spraying an aqueous mixture of these components onto a solid mixture consisting of customary builders.
  • the granulation component contains acrylic acid-maleic acid copolymer in addition to numerous inorganic compounds.
  • WO-A-9319155 discloses a process for producing free-flowing detergent granules .
  • aqueous alkyl and / or alkenyl oligoglycoside pastes are granulated in addition to other anionic and / or nonionic surfactants and / or conventional detergent ingredients containing starch and other inorganic compounds as solids.
  • DE-C-19710153 discloses the use of surfactant granules containing nonionic surfactants in cosmetics.
  • the complex object of the invention was thus to provide a simple process for the preparation of nonionic surfactant granules, in which the presence of inorganic compounds, such as soda, zeolites and inorganic salts, can be dispensed with.
  • granules should be available by this method, which are characterized by high surfactant contents, high bulk densities and good color quality and are dust-free, free-flowing and storage stable.
  • these nonionic surfactant granules should dissolve rapidly in water even at low temperatures, for example at 20 ° C.
  • the invention relates to surfactant granules, obtainable by granulating aqueous pastes of nonionic surfactants in the presence of organic polymeric support materials (also referred to as organic polymer hereinafter) and dried at the same time.
  • organic polymeric support materials also referred to as organic polymer hereinafter
  • Another object of the invention relates to a process for the preparation of surfactant granules, in which granulating aqueous pastes of nonionic surfactants in the presence of organic polymeric support materials and dried at the same time.
  • nonionic surfactant granules are obtained using organic polymeric support materials without the addition of inorganic compounds, such as, for example, zeolites or soda.
  • organic polymeric support materials without the addition of inorganic compounds, such as, for example, zeolites or soda.
  • inorganic compounds such as, for example, zeolites or soda.
  • the organic polymer is not only a carrier material but also a structural improver.
  • the surfactant granules according to the invention are distinguished by an unexpectedly high apparent density in the range from 600 to 1000 g / l.
  • the granules are externally dry even in the case of a residual water content of up to 20 wt .-%, so that a subsequent drying is not required. They are dust-free, free-flowing, storage-stable, show no tendency to clumping and are also soluble in cold water easily and practically without residue. In addition, they have an excellent color quality.
  • Suitable nonionic surfactants are alkyl and alkenyl oligoglycosides, fatty acid N-alkylpolyhydroxyalkylamides, alcohol ethoxylates, alkoxylated carboxylic acid esters, preferably alkyl and alkenyl oligoglycosides.
  • Alkyl and / or alkenyl oligoglycosides are known nonionic surfactants which follow formula (I), R 1 Q- [G] p (I) in which R 1 is an alkyl and / or alkenyl radical having 4 to 22 carbon atoms, G is a sugar radical having 5 or 6 carbon atoms and p is a number from 1 to 10. They can be obtained by the relevant methods of preparative organic chemistry. Representing the extensive Let's look at the review article by Biermann et al. in Starchl Strength 45, 281 (1993) , B. Salka in Cosm.Toil. 108, 89 (1993) and J.Kahre et al. in S ⁇ FW Journal Heft 8, 598 (1995) .
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses having 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • the index number p in the general formula (I) indicates the degree of oligomerization (DP), ie the distribution of monoglycerides and oligoglycosides, and stands for a number between 1 and 10.
  • the value p for a given alkyloligoglycoside is an analytically determined arithmetic quantity, which usually represents a fractional number. Preference is given to using alkyl and / or alkenyl oligoglycosides having an average degree of oligomerization p of from 1.1 to 3.0. From an application point of view, those alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.6 are preferred.
  • the alkyl or alkenyl radical R 1 can be derived from primary alcohols having 4 to 11, preferably 8 to 10 carbon atoms. Typical examples are butanol, caproic alcohol, caprylic alcohol, capric alcohol and undecyl alcohol, and technical mixtures thereof, as obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • Particularly preferred are the technical Oxoalkohole the company Shell, which are marketed under the name Dobanol® or Neodol®.
  • the alkyl or alkenyl radical R 1 can also be derived from primary alcohols having 12 to 22, preferably 12 to 18 carbon atoms. Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol, and technical mixtures thereof which can be obtained as described above. Alkyl oligoglucosides based on hydrogenated C12 / 14 coconut or palm kernel alcohol or C 16/18 fatty alcohol from coconut palm kernel oil or palm oil with a DP 1 to 3
  • Fatty acid N-alkylpolyhydroxyalkylamides are nonionic surfactants which follow formula (1), in which R 2 CO is an aliphatic acyl radical having 6 to 22 carbon atoms, R 3 is an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms and [Z] is a linear or branched polyhydroxyalkyl radical having 3 to 12 carbon atoms and 3 to 10 hydroxyl groups.
  • the fatty acid N-alkyl polyhydroxyalkylamides are known substances which can usually be obtained by reductive amination of a reducing sugar with an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the fatty acid N-alkylpolyhydroxyalkylamides are derived from reducing sugars having 5 or 6 carbon atoms, especially glucose.
  • the preferred fatty acid N-alkylpolyhydroxyalkylamides are therefore fatty acid N-alkylglucamides as represented by the formula (II) :
  • fatty acid N-alkylpolyhydroxyalkylamides are glucamides of the formula (II) in which R 3 is an alkyl group and R 2 CO is the acyl radical of caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, Oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, arachidic acid, gadoleic acid, behenic acid or erucic acid or their technical mixtures.
  • R 3 is an alkyl group and R 2 CO is the acyl radical of caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, Oleic acid, elaidic acid, petroselinic acid, linoleic
  • fatty acid N-alkylglucamides of the formula (II) which are obtained by reductive amination of glucose with methylamine and subsequent acylation with lauric acid or C 12/14 coconut fatty acid or a corresponding derivative.
  • the polyhydroxyalkylamides can also be derived from maltose and palatinose.
  • European patent application EP 0285768 A1 discloses its use as a thickener.
  • French patent application FR 1580491 A (Henkel) describes aqueous detergent mixtures based on sulfates and / or sulfonates, nonionic surfactants and optionally soaps containing fatty acid N-alkylglucamides as foam regulators.
  • Mixtures of short- and longer-chain glucamides are described in German Patent DE 4400632 C1 (Henkel).
  • German Offenlegungsschriften DE 4326959 A1 and DE 4309567 A1 (Henkel) is also reported on the use of glucamides with longer alkyl radicals than pseudoceramides in skin care products as well as on combinations of glucamides with protein hydrolysates and cationic surfactants in hair care products.
  • Alcohol ethoxylates are referred to as fatty alcohol or oxo alcohol ethoxylates and preferably follow the formula (III), R 4 O (CH 2 CH 2 O) n H (III) in which R 4 is a linear or branched alkyl and / or alkenyl radical having 6 to 22 carbon atoms and n is a number from 1 to 50.
  • Typical examples are the adducts of an average of 1 to 50, preferably 5 to 40 and especially 10 to 25 moles of caproic alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, Petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures, for example, in the high pressure hydrogenation of technical methyl esters based on fats and oils or aldehydes from the Roelen oxo synthesis and as a monomer fraction in the dimerization of unsaturated fatty alcohols.
  • Preferred are adducts of 10 to 40 moles of ethylene oxide with technical fatty alcohols having 12 to 18 carbon
  • Alkoxylated carboxylic acid esters are known in the art.
  • such alkoxylated carboxylic acid esters are obtainable by esterification of alkoxylated carboxylic acids with alcohols.
  • the compounds are prepared by reacting carboxylic acid esters with alkylene oxides using catalysts, in particular using calcined hydrotalcite according to the German Offenlegungsschrift DE 3914131 A, which provide compounds with a limited Homolgenver Krebs. Both carbonic acid esters of monohydric alcohols and of polyhydric alcohols can be alkoxylated by this process.
  • alkoxylated carboxylic acid esters of monohydric alcohols which follow the general formula (IV) , R 5 CO (OAlk) n OR 6 (IV) wherein R 5 is CO for an aliphatic acyl radical derived from a carboxylic acid, AlkO for alkylene oxide and R 6 is an aliphatic alkyl radical derived from a monohydric aliphatic alcohol.
  • alkoxylated carboxylic acid esters of the formula (IV) in which R 5 CO is an aliphatic acyl radical having 6 to 30, preferably 6 to 22 and in particular 10 to 18 carbon atoms, AlkO is a CH 2 CH 2 O-, CHCH 3 CH 2 O- and / or CH 2 -CHCH 3 O radical, n average for numbers from 1 to 30, preferably 5 to 20 and in particular 10 to 15 and R 6 for an aliphatic alkyl radical having 1 to 4 and preferably 1 and / or 2 Carbon atoms.
  • Preferred acyl radicals are derived from carboxylic acids having 6 to 22 carbon atoms of natural or synthetic origin, especially linear, saturated and / or unsaturated fatty acids including technical mixtures thereof, as obtainable by lipolysis from animal and / or vegetable fats and oils, for example from coconut oil, palm kernel oil, palm oil, soybean oil, sunflower oil, rapeseed oil, cottonseed oil, fish oil, beef tallow and lard.
  • carboxylic acids examples include caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachic acid, gadoleic acid, behenic acid and / or erucic acid ,
  • Preferred alkyl radicals are derived from primary, aliphatic monofunctional alcohols having 1 to 4 carbon atoms, which may be saturated and / or unsaturated.
  • suitable monoalcohols are methanol, ethanol, propanol, and butanol, especially methanol.
  • Alk0 represents the alkylene oxides which are reacted with the carboxylic acid esters and include ethylene oxide, propylene oxide and / or butylene oxide, preferably ethylene oxide and / or propylene oxide, especially ethylene oxide alone.
  • alkO is a CH 2 CH 2 O radical
  • n is an average of from 10 to 15
  • R 2 is a methyl radical.
  • examples of such compounds are methyl lauric acid alkoxylated on average with 5, 7, 9 or 11 moles of ethylene oxide, methyl coconut oil fatty acid ester and tallow fatty acid methyl ester.
  • the nonionic surfactants can be used in amounts of 20 to 95, preferably 50 to 80 and in particular 60 to 70 - based on the final concentration.
  • Suitable organic polymeric carrier materials are cationic, anionic, zwitterionic, amphoteric and / or nonionic organic polymers.
  • organic polymers polypeptides, celluloses, polyvinyl alcohols, polyvinylpyrrolidone, polycondensates, polyhydroxycarboxylic acids, polyethylene glycol, polyesters, polyurethanes and / or derivatives thereof.
  • Suitable organic cationic polymers are, for example, cationic cellulose derivatives, such as, for example, a quaternized hydroxyethylcellulose which is obtainable under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone-vinylimidazole polymers, such as, for example, Luviquat® (BASF), Condensation products of polyglycols and amines, quaternized collagen polypeptides such as lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethylenimine, cationic silicone polymers such as amodimethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz), copolymers of acrylic acid
  • Suitable organic anionic, zwitterionic, amphoteric and nonionic polymeric carriers are vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and their esters, acrylamidopropyltrimethylammonium chloride / acrylate copolymers, octylacrylamide / Methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers, polyvinylpyrrolidone, Vinylpyrrolidoninyl acetate copolymers, vinylpyrrolidone / dimethylaminoethyl methacrylate / vinylcaprolactam terpolymers and optionally derivatized cellulose ethers in
  • organic polymeric carrier Po polypeptides, cellulose, polyvinyl alcohols, polyvinylpyrrolidone polycondensates, polyhydroxycarboxylic acids and / or their derivatives in question.
  • proteins are polypeptides based on animal protein (for example collagen) or on vegetable protein with a molecular weight of from 1,000 to 300,000, preferably 5,000 to 200,000 and in particular 10,000 to 150,000.
  • water-soluble proteins are used, e.g. based on wheat protein. In this case, a molecular weight of 5,000 to 50,000 is particularly preferable. Corresponding proteins based on whey, soy, rice and silk can also be used.
  • protein hydrolysates having an average molecular weight of 500 to 30,000 for example Gluadin® WP, from Cognis GmbH.
  • anionically or cationically modified protein hydrolysates for example Gluadin WQ, Cognis GmbH.
  • Polypeptides may also be prepared by known means from amino acids and their derivatives, i. from carboxylic acids having one or more amino groups in the molecule.
  • the proteins or polypeptides can be prepared by linking the individual amino acids and any desired combination thereof. Glycine, alanine, serine, cysteine, phenylalanine, tyrosine, tryptophan, threonine, methionine, valine, proline, leucine, isoleucine, lysine, arginine, histidine, L-aspartic acid, asparagine, glutamic acid, glutamine and derivatives thereof are used as amino acids, for example.
  • polyethylene glutamate in question, which contain at least one COOH and at least one amino group after derivatization.
  • Polyasparaginate for example with MG 20,000 (Donlar) or with MG 2,000 - 3,000 (Bayer) are preferably suitable.
  • the polysaccharides are cellulose and derivatives thereof, in particular xanthan gum, guar guar (eg guar hydroxypropyltrimethylammonium chloride, Cosmedia Guar C 261, Cognis GmbH, Guarmehl, Cosmedia Guar U, Cognis GmbH), agar-agar, alginates and Tylose , Carboxymethylcellulose and hydroxyethylcellulose, dextrin, cyclodextrin, carboxymethyl dextran and their derivatives.
  • xanthan gum eg guar hydroxypropyltrimethylammonium chloride, Cosmedia Guar C 261, Cognis GmbH, Guarmehl, Cosmedia Guar U, Cognis GmbH
  • agar-agar alginates and Tylose
  • Carboxymethylcellulose and hydroxyethylcellulose dextrin
  • cyclodextrin carboxymethyl dextran and their derivatives.
  • Chitin is to be understood as meaning amino sugar-containing polysaccharides of the general formula (C 8 H 13 NO 5 ) x , which usually have molecular weights in the order of an average of 30,000 to 5,000,000 daltons.
  • Chitins consist of chains of ⁇ -1,4-glycosidically linked N-acetyl-D-glucosamine residues. Particularly preferred is the use of chitin having a molecular weight of 50,000 to 2,000,000 daltons.
  • Chitosans are, inter alia, biopolymers and are counted among the group of hydrocolloids. Chemically, they are partially deacetylated chitins, ie amino sugar-containing polysaccharides of different molecular weight, containing the following - idealized - monomer unit:
  • chitosans are cationic biopolymers under these conditions.
  • the positively charged chitosans can interact with oppositely charged surfaces and are therefore used in cosmetic hair and body care products as well as pharmaceuticals Preparations used (see Ullmann's Encyclopedia of Industrial Chemistry, 5th ed., Vol. A6, Weinheim, Verlag Chemie, 1986, pp. 231-232) .
  • Surveys on this topic are also for example by B. Gesslein et al. in HAPPI 27, 57 (1990), O. Skaugrud in Drug Cosm. 148 , 24 (1991) and E. Onsoyen et al.
  • chitosans is based on chitin, preferably the shell remains of crustaceans, which are available as cheap raw materials in large quantities.
  • the chitin is thereby used in a process first described by Hackmann et al. has been described, usually initially deproteinized by the addition of bases, demineralized by the addition of mineral acids and finally deacetylated by the addition of strong bases, wherein the molecular weights may be distributed over a broad spectrum.
  • Appropriate Ver drive are for example made of macromol. Chem. 177, 3589 (1976) or French patent application FR 2701266 A.
  • such types are used as disclosed in German patent applications DE 4442987 A1 and DE 19537001 A1 (Henkel) and having an average molecular weight of 10,000 to 5,000,000 daltons, in particular 10,000 to 500,000 or 800,000 to 1,200,000 daltons, and or a Brookfield viscosity (1% by weight in glycolic acid) below 5,000 mPas, a degree of deacetylation in the range of 80 to 88% and an ash content of less than 0.3% by weight.
  • chitosans having an average molecular weight of 10,000 to 5,000,000 daltons are used, in a preferred embodiment, chitosans having an average molecular weight of 30,000 to 100,000 daltons are used, further preferred are chitosans having a molecular weight of 100,000 to 1,000,000 daltons, particularly preferred are chitosans with a molecular weight of 800,000 to 1,000,000 daltons.
  • anionic or nonionically derivatized chitosans such as, for example, carboxylation, succinylation or alkoxylation products are also suitable for the purposes of the invention, as described, for example, in German Patent DE 3713099 C2 (L'Oreal) and German Pat Patent Application DE 19604180 A1 (Henkel).
  • polymers have the general structure -CH 2 CHOH-CH 2 -CH 2 OH-, which in small proportions (about 2%) may also contain structural units of the type -CH 2 CHOH-CHOH-CH 2 OH.
  • Polyvinyl alcohols are therefore prepared mainly from polyvinyl acetates via polymer-analogous reactions such as hydrolysis, but in particular technically by alkaline catalyzed transesterification with alcohols (preferably methanol) in solution.
  • alcohols preferably methanol
  • polyvinyl alcohols which are offered as white-yellowish powder or granules with degrees of polymerization in the range of preferably 500 to 2500 (molecular weights of about 20 000-100 000 g / mol) have degrees of hydrolysis of 98 to 99 or 87 to 89 mol%, so still contain a residual content of acetyl groups.
  • Suitable products preferably have a molecular weight of 5,000 to 50,000 and especially 10,000 to 30,000.
  • Polyvinylpyrrolidones [poly (1-vinyl-2-pyrrolidinones) are prepared by free-radical polymerization of 1-vinylpyrrolidone by methods of bulk, solution or suspension polymerization using free-radical initiators (peroxides, azo compounds) as initiators and usually in the presence of aliphatic Amines that prevent decomposition of the monomer in acidic medium.
  • free-radical initiators peroxides, azo compounds
  • the ionic polymerization of the monomer provides only low molecular weight products.
  • polyvinylpyrrolidones having molecular weights in the range of 2,500 to 75,000, more preferably 5,000 to 60,000 and in particular in the range of 20,000 to 50,000 g / mol in question.
  • Suitable polypeptides are copolymers of polypeptides with dicarboxylic acids (for example poly- ⁇ -alanine / glutaric acid copolymer), vinylpyrrolidone and vinyl acetates, polyols and poly (meth) acrylates.
  • Copolymers of vinyl alcohol and (meth) acrylic acids can also be used as polyhydroxycarboxylic acids.
  • a particular embodiment is polyhydroxycarboxylic acids, which are prepared by polycondensation of polyhydroxy acids such as tartaric acid, citric acid, malic acid and mixtures thereof.
  • the organic polymeric support materials can be used in amounts of 0.1 to 50, preferably 1 to 30 and in particular 5 to 20 - based on the final concentration.
  • a fluidized-bed or SKET granulation means granulation with simultaneous drying, which is preferably carried out batchwise or continuously in the fluidized bed.
  • the nonionic surfactants may preferably be introduced into the fluidized bed simultaneously or successively via one or more nozzles in the form of aqueous pastes.
  • Preferably used fluidized bed plants have bottom plates with dimensions of 0.4 to 5 m.
  • the SKET granulation is carried out at fluidized air velocities in the range of 1 to 8 m / s.
  • the discharge of the granules from the fluidized bed is preferably carried out via a size classification of the granules.
  • the classification can be carried out, for example, by means of a sieve device or by a countercurrent air stream (classifier air), which is regulated in such a way that only particles above a certain particle size are removed from the fluidized bed and smaller particles are retained in the fluidized bed.
  • the incoming air is composed of the heated or unheated classifier air and the heated bottom air.
  • the soil air temperature is between 60 and 400, preferably 60 and 350 ° C.
  • an organic polymeric carrier material or a SKET granulate from an earlier experimental batch is initially introduced as the starting mass of the SKET granulation.
  • the water evaporates from the surfactant paste, which in addition the surfactant also contains the polymer to give dried to dried seeds, which are coated with other amounts of surfactant / polymer mixture, granulated and dried again at the same time.
  • the result is a surfactant / polymer grain with a surfactant gradient over the com, which is particularly soluble in water.
  • the granulation with simultaneous drying can be carried out without the addition of inorganic salts, such as zeolite and soda.
  • these surfactant granules have a particle size distribution between 0.02 and 2.0 and in particular between 0.2 and 1.6 mm. In a further preferred embodiment of the invention, at least 70, particularly preferably 75 and in particular 85% by weight of the granules consist of round grains.
  • the inventive method can be carried out in two embodiments - both in the mixer and in the fluidized bed.
  • the granulation is carried out in the fluidized bed or in a fluidized bed spray tower.
  • an organic polymer or mixtures of various polymers - in the case that they are water-soluble - are also dissolved in the nonionic aqueous surfactant pastes or - in the case that these are water-insoluble - are mixed into a kind of "slurry" and then sprayed together or preferably granulated and simultaneously dried by counterflow of hot air.
  • anionic surfactants are soaps, alkylbenzenesulfonates, alkanesulfonates, olefinsulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, fatty acid ether sulfates, hydroxy mixed ether sulfates, monoglyceride (ether) sulfates, fatty acid amide (ether) sulfates, mono- and dialkyl sulfosuccinates , Mono-
  • anionic surfactants contain polyglycol ether chains, they may have a conventional, but preferably a narrow homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed or glucuronic acid derivatives, fatty acid N-alkylglucamides, protein hydrolysates (especially wheat-based vegetable products), polyol fatty acid esters, sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, these may have a conventional, but preferably a narrow homolog distribution.
  • cationic surfactants are quaternary ammonium compounds such as dimethyl distearyl ammonium chloride or alkyl trimethyl ammonium chloride, and ester quats, especially quaternized fatty acid trialkanolamine ester salts.
  • amphoteric or zwitterionic surfactants are alkylbetaines, alkylamidobetaines (such as cocoamidopropylbetaine), aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines. The surfactants mentioned are exclusively known compounds.
  • J.Falbe ed.
  • Surfactants in Consumer Products Springer Verlag, Berlin, 1987, p. 54,124
  • J.Falbe ed.
  • Catalysts, surfactants and Mineral oil additives
  • Typical examples of particularly suitable mild, ie particularly skin-friendly surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid glutamates, ⁇ -olefinsulfonates, ethercarboxylic acids, alkyloligoglucosides, fatty acid glucamides, alkylamidobetaines, amphoacetals and / or protein fatty acid condensates, the latter preferably based on wheat proteins.
  • the mixing ratio between the nonionic surfactants and the other surfactants is largely uncritical and may vary in the range of 10:90 to 90:10.
  • the above-described granulation of the aqueous nonionic surfactant / polymer paste in the presence of another surfactant paste from fatty alcohol sulfates, betaines, coconut monoglyceride sulfates, acyl glutamates, esterquats or mixtures thereof, with simultaneous drying is performed.
  • the granulation of the aqueous nonionic surfactant / polymer paste with simultaneous drying to the surfactant granules are recycled back into the fluidized bed as seed material and in the presence of another surfactant paste of fatty alcohol sulfate, betaine, Kokosmonoglyceridsutfat, Acylglutamate and / or mixtures thereof a second time granulated and dried simultaneously.
  • the agents according to the invention can be used in surface-active preparations, such as, for example, cosmetic and / or pharmaceutical preparations, i.a. Hair shampoos, hair lotions, bubble baths, shower baths, mouthwashes and dentifrices, creams, gels, lotions, alcoholic and aqueous / alcoholic solutions, emulsions, wax / fat masses, stick preparations, powders or ointments, cleaning preparations, preferably washing, rinsing, cleaning - And softeners and preparations for the treatment of textiles, preferably ironing aids and the like are used.
  • cosmetic and / or pharmaceutical preparations i.a. Hair shampoos, hair lotions, bubble baths, shower baths, mouthwashes and dentifrices, creams, gels, lotions, alcoholic and aqueous / alcoholic solutions, emulsions, wax / fat masses, stick preparations, powders or ointments, cleaning preparations, preferably washing, rins
  • the surfactant granules according to the invention are free-flowing, do not agglomerate and dissolve easily in cold water. They are therefore suitable, for example, for the preparation of powder detergents and in particular for the preparation of particulate detergents such as detergent tablets, wherein the granules are preferably admixed to the tower powder and, for example. in the case of the detergent tablets, this powder mixture then pressed to the tablets.
  • An object of the invention therefore relates to the use of the surfactant granules according to the invention in surface-active preparations, preferably cosmetic and / or pharmaceutical preparations and detergents and cleaners and in particular solid powdery or particulate detergents and cleaners, preferably in tablet form.
  • the surface-active preparations may also be used as further additives mild surfactants, oil components, emulsifiers, superfatting agents, pearlescent, consistency, thickening agents, polymers, silicone compounds, fats, waxes, stabilizers, biogenic agents, Deowirk für, anti-dandruff agents, film formers, swelling agents, other UV protection factors, antioxidants , Hydrotropes, preservatives, insect repellents, self-tanning agents, solubilizers, perfume oils, dyes, anti-sprouting agents, and the like.
  • Suitable mild, ie particularly skin-compatible, surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid glutamates, ⁇ -olefinsulfonates, ethercarboxylic acids, alkyl oligoglucosides, fatty acid glucamides, cocoamidopropylbetaine, alkylamidobetaines, cocoamidosulfebetaines and / or protein fatty acid condensates, the latter preferably based on wheat proteins.
  • Guerbet alcohols based on fatty alcohols having 6 to 18, preferably 8 to 10 carbon atoms, esters of branched C 6 -C 13 carboxylic acids with linear C 6 -C 22 fatty alcohols, esters of linear C 6 -C 22- fatty acids with branched alcohols, especially 2-ethylhexanol, esters of hydroxycarboxylic acids with linear or branched C 6 -C 22 fatty alcohols, in particular dioctyl malates, esters of linear and / or branched fatty acids with polyhydric alcohols (such as propylene glycol, dimerdiol or trimer triol ) and / or Guerbet alcohols, liquid mono- / di- / triglyce (mixtures based on C 6 -C 18 fatty acids, esters of C 6 -C 22 fatty alcohols) and / or Guerbet alcohols with aromatic carboxylic acids, in particular
  • substances such as lanolin and lecithin as well as polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used, the latter also serving as foam stabilizers.
  • Suitable pearlescing waxes are, for example: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polybasic, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which in total have at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring-opening products of olefin epoxides having 12 to 22 carbon atoms with fatty alcohols having 12 to 22 carbon atoms and / or polyols having 2 to 15 carbon atoms
  • fatty alcohols or hydroxy fatty alcohols having 12 to 22 and preferably 16 to 18 carbon atoms and in addition partial glycerides, fatty acids or hydroxy fatty acids into consideration. Preference is given to a combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates.
  • Suitable thickening agents are, for example, Aerosil types (hydrophilic silicas), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, furthermore higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates, (eg Carbopols ® 'from Goodrich or Synthalenee from Sigma), polyacrylamides, Polyvinyl alcohol and polyvinylpyrrolidone, surfactants such as ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with narrow homolog distribution or Alkyloligoglucoside and electrolytes such as sodium chloride and ammonium chloride.
  • Aerosil types hydrophilic silicas
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds which may be both liquid and resin-form at room temperature.
  • simethicones which are mixtures of dimethicones having an average chain length of from 200 to 300 dimethylsiloxane units and hydrogenated silicates.
  • Typical examples of fats are glycerides, waxes include beeswax, carnauba wax, candelilla wax, montan wax, paraffin wax, hydrogenated castor oils, solid fatty acid esters or microwaxes, optionally in combination with hydrophilic waxes, eg cetylstearyl alcohol or partial glycerides.
  • metal salts of fatty acids e.g. Magnesium, aluminum and / or zinc stearate or ricinoleate can be used.
  • Biogenic active ingredients are, for example, tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, deoxyribonucleic acid, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamin complexes.
  • an aluminum chlorohydrate which conforms to the formula [Al 2 (OH) 5 Cl] * 2.5 H 2 O and whose use is particularly preferred is commercially available under the name of Locron® from Hoechst AG, Frankfurt / Main, [cf. J.Pharm.Pharmacol. 26, 531 (1975) ].
  • Locron® from Hoechst AG, Frankfurt / Main, [cf. J.Pharm.Pharmacol. 26, 531 (1975) ].
  • Deowirkstoffe esterase inhibitors can be added.
  • trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Dusseldorf / FRG).
  • the substances inhibit the enzyme activity and thereby reduce the formation of odors.
  • the cleavage of the citric acid ester is likely to release the free acid, which lowers the pH level on the skin, thereby inhibiting the enzymes.
  • esterase inhibitors include sterol sulfates or phosphates, such as, for example, lanosterol, cholesterol, campesterol, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, for example glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, adipic acid , Adipinkladoethylester, diethyl adipate, malonic acid and diethyl malonate, hydroxycarboxylic acids and their esters such as citric acid, malic acid, tartaric acid or diethyl tartrate.
  • sterol sulfates or phosphates such as, for example, lanosterol, cholesterol, campesterol, stigmasterol and sitosterol sulfate or phosphate
  • dicarboxylic acids and their esters for example glutaric acid, glutaric acid monoethyl ester, glutaric acid
  • Antibacterial agents that affect the bacterial flora and kill sweat-degrading bacteria or inhibit their growth may also be included in the stick formulations. Examples of these are chitosan, phenoxyethanol and chlorhexidine gluconate. 5-chloro-2- (2,4-dichlorophenoxy) phenol, which is marketed under the trade name Irgasan® by Ciba-Geigy, Basel / CH, has also proved to be particularly effective.
  • Typical film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or salts thereof and similar compounds.
  • Suitable aqueous phase swelling agents include montmoriflonites, clay minerals, pemulen and alkyl-modified carbopol types (Goodrich). Further suitable polymers or swelling agents can be reviewed by R. Lochhead in Cosm.Toil. 108 , 95 (1993) .
  • secondary light stabilizers of the antioxidant type which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates into the skin.
  • Typical examples are amino acids (eg glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (eg urocaninic acid) and their derivatives, peptides such as D, L-carnosine, D-carnosine, L-carnosine and their derivatives (eg anserine) , Carotenoids, carotenes (eg ⁇ -carotene, ⁇ -carotene, lycopene) and their derivatives, chlorogenic acid and its derivatives, lipoic acid and its derivatives (eg dihydrolipoic acid), aurothioglucose, propylthiouracil and other thiols (eg thioredoxin, glutathione, cysteine, cystine, Cy
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid and the other classes of substances listed in Appendix 6, Part A and B of the Cosmetics Regulation.
  • Suitable insect repellents are N, N-diethyl-m-toluamide, 1,2-pentanediol or insect repellent 3535, suitable as a self-tanner is dihydroxyacetone.
  • Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (aniseed, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (macis, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, pines), resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are ester type products, ethers, aldehydes, ketones, alcohols and hydrocarbons. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, Benzyl formate, ethyl methyl phenyl glycinate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones such as the ionone, ⁇ -isomethylionone and Methylcedrylketon to the alcohols Anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils are suitable as perfume oils, eg sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon oil, lime blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • bergamot oil dihydromyrcenol, lilial, lyral, citronellol, phenylethyl alcohol, a-hexylcinnamaldehyde, geraniol, benzylacetone, cyclamen aldehyde, linaloof, Boisambrene Forte, Ambroxan, indole, hedione, Sandelice, citron oil, Mandarinendl, orange oil, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Sage oil, ⁇ -damascone, geranium oil Bourbon, cyclohexyl salicylate, Vertofix Coeur, iso-E-Super, fixolide NP, Evernyl, iraldeine gamma, phenylacetic acid, geranyl acetate, benzyl acetate, rose oxide, romilllat, lrotyl and
  • dyes the substances suitable and suitable for cosmetic purposes can be used, as compiled, for example, in the publication "Cosmetic Colorants” of the Dye Commission of the Irish Klastician, Verlag Chemie, Weinheim, 1984, pp . 81-106 . These dyes are usually used in concentrations of 0.001 to 0.1 wt .-%, based on the total mixture.
  • antimicrobial agents are preservatives having specific activity against gram-positive bacteria such as 2,4,4'-trichloro-2'-hydroxydiphenyl ether, chlorhexidine (1,6-di- (4-chlorophenyl-biguanido) -hexane) or TCC (3,4,4'-trichlorocarbanilide).
  • numerous fragrances and essential oils have antimicrobial properties.
  • Typical examples are the active ingredients eugenol, menthol and thymol in clove, mint and thyme oil.
  • terpene alcohol Famesol (3,7,11-trimethyl-2,6,10-dodecatrien-1-ol), which is present in lime blossom oil and has a lily of the valley odor.
  • Glycerol monolaurate has also proven itself as a bacteriostat.
  • the proportion of additional germ-inhibiting agents is usually about 0.1 to 2% by weight, based on the solids content of the preparations.
  • the detergents and cleaners may contain, in addition to the above-mentioned further typical ingredients such as builders, bleaches, bleach activators, detergency boosters, enzymes, enzyme stabilizers, grayness inhibitors, optical brighteners, soil repellants, foam inhibitors, inorganic salts and fragrances and dyes.
  • zeolite NaA As a solid builder in particular fine-crystalline, synthetic and bound water-containing zeolite such as zeolite NaA is used in detergent quality. Also suitable, however, are zeolite NaX and mixtures of NaA and NaX.
  • the zeolite can be used as a spray-dried powder or else as undried, still moist, stabilized suspension of its preparation. In the event that the zeolite is used as a suspension, it may contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3 wt .-%, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols having 2 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 microns (volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22, in particular 20 to 22 wt .-% of bound water.
  • Suitable substitutes or partial substitutes for zeolites are crystalline, layered sodium silicates of the general formula NaMSi x O 2x + 1 .yH 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 is and preferred values for x are 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European Patent Application EP 0164514 A.
  • Preferred crystalline layered silicates are those in which M in the general formula stands for sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred, and ⁇ -sodium disilicate can be obtained, for example, by the method described in international patent application WO 91/08171 .
  • the powder detergents according to the invention preferably contain from 10 to 60% by weight of zeolite and / or crystalline layered silicates as solid builders, with mixtures of zeolite and crystalline layered silicates in any ratio being particularly advantageous.
  • the agents contain from 20 to 50% by weight of zeolite and / or crystalline layered silicates.
  • Particularly preferred agents contain up to 40% by weight of zeolite and in particular to 35% by weight of zeolite, in each case based on anhydrous active substance.
  • Other suitable ingredients of the compositions are water-soluble amorphous silicates; Preferably, they are used in combination with zeolite and / or crystalline layer silicates.
  • the content of the amorphous sodium silicate compositions is preferably up to 15% by weight and preferably between 2 and 8% by weight.
  • Phosphates such as tripolyphosphates, pyrophosphates and orthophosphates may also be present in small amounts in the compositions.
  • the content of the phosphates in the compositions is preferably up to 15% by weight, but in particular 0 to 10% by weight.
  • the compositions may additionally contain phyllosilicates of natural and synthetic origin.
  • layered silicates are known, for example, from the patent applications DE 2334899 B, EP 0026529 A and DE 3526405 A. Their usability is not on a specific composition or structural formula limited. However, smectites, in particular bentonites, are preferred here.
  • small amounts of iron may be incorporated in the crystal lattice of the layered silicates according to the above formulas.
  • the layered silicates may contain hydrogen, alkali, alkaline earth, in particular Na + and Ca 2+ .
  • the amount of water of hydration is usually in the range of 8 to 20 wt .-% and is dependent on the swelling state or on the type of processing.
  • Useful layered silicates are known, for example, from US Pat. No. 3,966,629, US Pat. No. 4,062,647, EP 0026529 A and EP 0028432 A.
  • phyllosilicates are used, which are largely free of calcium ions and strong coloring iron ions due to an alkali treatment.
  • Useful organic builders are, for example, the polycarboxylic acids preferably used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures thereof
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or of polymethacrylic acid, for example those having a molecular weight of 800 to 150,000 (based on acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their molecular weight relative to free acids is generally from 5,000 to 200,000, preferably from 10,000 to 120,000 and in particular from 50,000 to 100,000. The use of polymeric polycarboxylates is not mandatory.
  • polymeric polycarboxylates agents are preferred which biodegradable polymers, for example terpolymers containing as monomers acrylic acid and maleic acid or salts thereof and vinyl alcohol or vinyl alcohol derivatives or as monomers acrylic acid and 2-alkylallylsulfonic acid or salts thereof and sugar derivatives.
  • terpolymers are preferred which are obtained according to the teaching of German patent applications DE 4221381 A and DE 4300772 A.
  • Further suitable builder substances are polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP 0280223 A.
  • Preferred polyacetals are selected from dialdehydes such as glyoxal, glutaraldehyde, Terephthalaldehyde and mixtures thereof and from Polyolcarbon Acid such as gluconic acid and / or glucoheptonic acid.
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Further bleaching agents are, for example, peroxycarbonate, citrate perhydrates and salts of peracids, such as perbenzoates, peroxyphthalates or diperoxydodecanedioic acid. They are usually used in amounts of 8 to 25 wt .-%. Preference is given to the use of sodium perborate monohydrate in amounts of from 10 to 20% by weight and in particular from 10 to 15% by weight. Its ability to bind free water to form tetrahydrate contributes to increasing the stability of the agent.
  • bleach activators can be incorporated into the preparations.
  • N-acyl or O-acyl compounds which form organic peracids with hydrogen peroxide preferably N, N'-tetraacylated diamines, furthermore carboxylic acid anhydrides and esters of polyols, such as glucose pentaacetate.
  • the content of the bleach-containing agents in bleach activators is in the usual range, preferably between 1 and 10 wt .-% and in particular between 3 and 8 wt .-%.
  • Particularly preferred bleach activators are N, N, N ', N'-tetraacetylethylenediamine and 1,5-diacetyl-2,4-dioxo-hexahydro-1,3,5-triazine.
  • Suitable enzymes are those from the class of proteases, lipases, amylases, cellulases or mixtures thereof. Particularly suitable are bacterial strains or fungi, such as Bacillus subtilis, Bacillus licheniformis and Streptomyces griseus derived enzymatic agents. Preferably, subtilisin-type proteases and in particular proteases derived from Bacillus lentus are used. Their proportion can be about 0.2 to about 2 wt .-%.
  • the enzymes may be adsorbed to carriers and / or embedded in encapsulants to protect against premature degradation. In addition to the mono- and polyfunctional alcohols and the phosphonates, the agents may contain other enzyme stabilizers.
  • 0.5 to 1 wt .-% sodium formate can be used. It is also possible to use proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • boron compounds for example boric acid, boron oxide, borax and other alkali metal borates, such as the salts of orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ) and pyroboric acid (tetraboric acid H 2 B 4 O 7 ).
  • Graying inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus prevent graying.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, Gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acid sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose. It is also possible to use soluble starch preparations and starch products other than those mentioned above, for example degraded starch, aldehyde starches, etc. Polyvinylpyrrolidone is also useful.
  • cellulose ethers such as carboxymethylcellulose, methylcellulose, hydroxyalkylcellulose and mixed ethers, such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof and polyvinylpyrrolidone, for example in amounts of from 0.1 to 5% by weight, based on the compositions.
  • the agents may contain as optical brighteners derivatives of Diaminostilbendisulfonklare or their alkali metal salts.
  • optical brighteners derivatives of Diaminostilbendisulfonklare or their alkali metal salts for example, salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulphonic acid or compounds of similar construction which, instead of the morpholino group, are a Diethanolamino group, a methylamino group, an anilino group or a 2-Methoxyethylamino distr carry.
  • brighteners of the substituted diphenylstyrene type may be present, for example the alkali metal salts of 4,4'-bis (2-sulfostyryl) -diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) -diphenyl, or (4-chlorostyryl) -4 '- (2-sulfostyryl). Mixtures of the aforementioned brightener can be used.
  • Uniformly white granules are obtained when the means except the usual brighteners in conventional amounts, for example between 0.1 and 0.5 wt .-%, preferably between 0.1 and 0.3 wt .-%, even small amounts, for example 10 -6 to 10 -3 wt .-%, preferably by 10 -5 wt .-%, of a blue dye.
  • a particularly preferred dye is Tinolux® (commercial product of Ciba-Geigy).
  • Suitable soil repellents are those which preferably contain ethylene terephthalate and / or polyethylene glycol terephthalate groups, the molar ratio of ethylene terephthalate to polyethylene glycol terephthalate being in the range from 50:50 to 90:10.
  • the molecular weight of the linking polyethylene glycol units is in particular in the range from 750 to 5,000, ie the degree of ethoxylation of the polymers containing polyethylene glycol groups may be about 15 to 100.
  • the polymers are characterized by an average molecular weight of about 5,000 to 200,000 and may have a block, but preferably a random structure.
  • Preferred polymers are those having molar ratios of ethylene terephthalate / polyethylene glycol terephthalate of from about 65:35 to about 90:10, preferably from about 70:30 to 80:20. Further preferred are those polymers comprising linking polyethylene glycol units having a molecular weight of 750 to 5,000, preferably from 1000 to about 3000 and a molecular weight of the polymer of about 10,000 to about 50,000. Examples of commercially available polymers are the products Milease® T (ICI) or Repelotex® SRP 3 (Rhöne-Poulenc).
  • foam inhibitors When used in automatic washing processes, it may be advantageous to add conventional foam inhibitors to the compositions.
  • soaps of natural or synthetic origin which have a high proportion of C 18 -C 24 fatty acids.
  • Suitable non-surfactant foam inhibitors are, for example, organopolysiloxanes and mixtures thereof with microfine, optionally silanized silica and paraffins, waxes, microcrystalline waxes and mixtures thereof with silanated silica or bistearylethylenediamide. It is also advantageous to use mixtures of different foam inhibitors, for example those of silicones, paraffins or waxes.
  • the foam inhibitors, in particular silicone- or paraffin-containing foam inhibitors are preferably bound to a granular, water-soluble or dispersible carrier substance. In particular, mixtures of paraffins and bistearylethylenediamides are preferred.
  • the total amount of auxiliaries and additives may be 1 to 50, preferably 5 to 40 wt .-% - based on the means - amount.
  • the preparation of the agent can be carried out by conventional cold or hot processes; It is preferable to work according to the phase inversion temperature method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Glanulating (AREA)

Description

    Gebiet der Erfindung
  • Die Erfindung betrifft Tensidgranulate, die man dadurch erhält, dass man wäßrige Pasten aus nichtionischen Tensiden in Gegenwart von organischen polymeren Trägem granuliert und gleichzeitig trocknet, ein Verfahren zu deren Herstellung sowie deren Verwendung in oberflächenaktiven Zubereitungen.
  • Stand der Technik
  • Nichtionische Tenside, wie beispielsweise Alkyloligoglucoside, zeichnen sich durch ausgezeichnete Detergenseigenschaften und hohe ökotoxokologische Verträglichkeit aus. Aus diesem Grund gewinnen diese Klassen nichtionischer Tenside in zunehmendem Maße an Bedeutung. Werden sie bislang in der Regel in flüssigen Formulierungen, wie beispielsweise Geschirrspülmittel oder Haarshampoos eingesetzt, so besteht ebenfalls ein großes Marktbedürfnis nach festen, wasserfreien Anbietungsformen, die sich beispielsweise auch in festen Waschmitteln und Kosmetika einarbeiten lassen.
  • Unter Waschmittel sind hierbei nicht nur die Pulverwaschmittel, sondern vor allem auch die stückigen Waschmittel wie z.B. Waschmittel-Tabletten zu verstehen. Insbesondere bei letzteren hat sich gezeigt, dass durch die Verwendung von festen nichtionischen Tensidgranulaten eine Migration und Penetration des nichtionischen Tensids in andere Bestandteile der Waschmittel-Tablette, z.B. in den sog. "Sprengmittel"-Bestandteil, vermieden werden kann, während es bei konventioneller Herstellung, bei der das nichtionische Tensid durch Aufdüsen über das gesamte Waschmittelpulver verteilt wird, bevor es zu Tabletten verpreßt wird, zu einer Penetration des nichtionischen Tensids in das "Sprengmittel" kommt, wobei dieses dann seine Wirksamkeit verliert, so dass dann der schnelle Zerfall der Tablette zu Beginn des Waschprozeßes verzögert bzw. gänzlich verhindert wird.
  • Bei den kosmetischen Produkten besteht der Vorteil der Verwendung von festen nichtionischen Tensidgranulaten dagegen darin, dass diese wasserfreien Produkte auch ohne Konservierungsmittel gegen Pilze, Hefen und Bakterien bei Lagerung inert sind und dass diese mikrobiologische Stabilität auch erreicht wird, wenn das feste wasserfreie Tensid einen neutralen pH-Wert aufweist.
    Dies kommt dem Verbraucher entgegen, der ein Bedürfnis nach kosmetischen Produkten hat, welche frei sind von Konservierungsmittel.
  • Bei den Herstellern von Waschmittel- und Kosmetikprodukten können die festen, wasserfreien nichtionischen Tenside nur dann Verwendung finden, wenn diese Produkte bei der Herstellung von Waschmittel- und Kosmetikprodukten einfach zu verarbeiten sind. Es ist daher unerläßlich, dass die festen, wasserfreien nichtionischen Tenside eine gute Rieselfähigkeit aufweisen, so dass sie in Silowagen bzw. "Big Bags" gehandelt werden können. Desweiteren müssen die festen, wasserfreien nichtionischen Tenside auch staubfrei sein, so dass von ihnen bei ihrer Verarbeitung keine Gefahr einer Staubexplosion ausgeht und beim Verarbeiter keine Gefahr einer gesundheitlichen Beeinträchtigung, z.B. durch Einatmen von Tensidstäuben, besteht.
  • Die Trocknung flüssiger Tensidzubereitungen erfolgt großtechnisch in der Regel durch konventionelle Sprühtrocknung, bei der man die wäßrige Tensidpaste am Kopf eines Sprühturmes in Form feiner Tröpfchen versprüht, denen heiße Trocknungsgase entgegen geführt werden. Aus der deutschen Patentanmeldung DE 4102745 A1 (Henkel) ist z.B. ein Verfahren bekannt, bei dem man Fettalkoholsulfatpasten eine geringe Menge von 1 bis 5 Gew.-% Alkylglucosiden zusetzt und einer konventionellen Sprühtrocknung unterwirft. Allerdings läßt sich der Prozeß nur in Gegenwart einer großen Menge anorganischer Salze durchführen. In der deutschen Patentanmeldung DE 4139551 A1 (Henkel) wird vorgeschlagen, Pasten von Alkylsulfaten und Alkylglucosiden, die jedoch maximal 50 Gew.-% des Zuckertensids enthalten können, in Gegenwart von Mischungen aus Soda und Zeolithen zu versprühen. Hier werden jedoch nur Compounds erhalten, die eine geringe Tensidkonzentration und ein unzureichendes Schüttgewicht aufweisen. Schließlich wird in der internationalen Patentanmeldung WO 95/14519 (Henkel) darüber berichtet, Tensidpasten einer Trocknung mit überhitztem Wasserdampf zu unterwerfen. Dieses Verfahren ist jedoch technisch sehr aufwendig.
  • Die EP-A-859048 beschreibt nichtionische Tensidgranulate und ein Verfahren zu deren Herstellung. Dabei werden Alkylpolyglycosid-Tenside und anorganische und/oder organische Trägermaterialien gleichzeitig verdüst, wobei es sich bei dem organischen Trägermaterial ausschließlich um Polycarboxylate, bevorzugt um Acrylsäure/Maleinsäure-Copolymere handelt. In der deutschen Patentanmeldung DE-A-19824742 wird ein Verfahren zur Herstellung von APG-haltigen Granulaten beschrieben, enthaltend Granulationskomponenten durch Aufsprühen eines wässrigen Gemisches dieser Komponenten auf eine Feststoffmischung, die aus üblichen Gerüststoffen besteht. Die Granulations-komponente enthält Acrylsäure-Maleinsäure-Copolymer neben zahlreichen anorganischen Verbindungen.
    In der WO-A-9319155 wird ein Verfahren zur Herstellung rieselfähiger Wasch- und Reinigungsmittelgranulate offenbart. Hierbei werden wässrige Alkyl- und/oder Alkenyl-oligoglycosidpasten neben weiteren anionischen und/oder nichtionischen Tensiden und/oder üblichen Waschmittel-inhaltsstoffen, enthaltend Stärke und weitere anorganische Verbindungen als Feststoffe granuliert. Die DE-C-19710153 offenbart die Verwendung von Tensidgranulaten enthaltend nichtionische Tenside in kosmetischen Mitteln.
  • Die komplexe Aufgabe der Erfindung hat somit darin bestanden, ein einfaches Verfahren zur Herstellung von nichtionischen Tensidgranulaten zur Verfügung zu stellen, bei dem auf die Anwesenheit von anorganischen Verbindungen, wie beispielsweise Soda, Zeolithe und anorganische Salze, verzichtet werden kann. Darüber hinaus sollen durch dieses Verfahren Granulate erhältlich sein, die sich durch hohe Tensidgehalte, hohe Schüttgewichte sowie eine gute Farbqualität auszeichnen und gleichzeitig staubfrei, rieselfähig und lagerstabil sind. Desweiteren sollen sich diese nichtionischen Tensidgranulate in Wasser bereits bei niedrigen Temperaturen, z.B. bei 20°C, rasch auflösen.
  • Beschreibung der Erfindung
  • Gegenstand der Erfindung sind Tensidgranulate, dadurch erhältlich, dass man wäßrige Pasten aus nichtionischen Tensiden in Gegenwart von organischen polymeren Trägermaterialien (im weiteren auch organisches Polymer genannt) granuliert und gleichzeitig trocknet.
  • Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur Herstellung von Tensidgranulaten, bei dem man wäßrige Pasten aus nichtionischen Tensiden in Gegenwart von organischen polymeren Trägermaterialien granuliert und gleichzeitig trocknet.
  • Überraschenderweise wurde gefunden, dass man unter Verwendung von organischen polymeren Trägermaterialien ohne Zusatz von anorganischen Verbindungen, wie beispielsweise Zeolithen oder Soda, nichtionische Tensidgranulate erhält. Besonders überraschend ist der Befund, dass es sich als noch vorteilhafter erwiesen hat, die wäßrigen nichtionischen Tensidpasten nicht zusammen mit den festen organischen Polymeren in einer Wirbelschicht zu granulieren und gleichzeitig zu trocknen, sondern die organischen Polymeren in der wäßrigen Tensidpaste zunächst zu lösen und dann die wäßrige Mischung aus Tensid und Polymer gemeinsam in einer Wirbelschicht zu granulieren und zu trocknen. In diesem Fall ist das organische Polymer nicht nur Trägermaterial, sondern auch ein Strukturverbesserer. Die erfindungsgemäßen Tensidgranulate zeichnen sich durch ein unerwartet hohes Schüttgewicht im Bereich von 600 bis 1000 g/l. Die Granulate sind selbst im Fall eines Restwassergehaltes von bis zu 20 Gew.-% äußerlich trocken, so dass eine nachträgliche Abtrocknung nicht erforderlich ist. Sie sind staubfrei, rieselfähig, lagerstabil, zeigen keine Tendenz zur Verklumpung und sind auch in kaltem Wasser leicht und praktisch ohne Rückstand löslich. Zudem weisen sie eine ausgezeichnete Farbqualität auf.
  • Nichtionische Tenside
  • Als nichtionische Tenside kommen Alkyl- und Alkenyloligoglykoside, Fettsäure-N-alkylpolyhydroxyalkylamide, Alkoholethoxylate, alkoxylierte Carbonsäureester, vorzugsweise Alkyl- und Alkenyloligoglykoside, in Frage.
  • Alkyl- und/oder Alkenyloligoglykoside
  • Alkyl- und/oder Alkenyloligoglykoside stellen bekannte nichtionische Tenside dar, die der Formel (I) folgen,

            R 1 Q-[G] p      (I)

    in der R1 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Übersichtsarbeit von Biermann et al. in StarchlStärke 45, 281 (1993), B.Salka in Cosm.Toil. 108, 89 (1993) sowie J.Kahre et al. in SÖFW-Journal Heft 8, 598 (1995) verwiesen.
  • Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (I) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,6 liegt. Der Alkyl- bzw. Alkenylrest R1 kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestem oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-, C12/13-, C12/15- und C14/15-Oxoalkohole (DP = 1 bis 3). Besonders bevorzugt sind die technischen Oxoalkohole der Firma Shell, welche unter dem Namen Dobanol® bzw. Neodol® vermarktet werden. Der Alkyl- bzw. Alkenylrest R1 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokos- oder Palmkernalkohol bzw. C16/18-Fettalkohol aus Kokos- Palmkem- oder Palmöl mit einem DP von 1 bis 3.
  • Fettsäure-N-alkylpolvhvdroxyalkylamide
  • Fettsäure-N-alkylpolyhydroxyalkylamide stellen nichtionische Tenside dar, die der Formel (1) folgen,
    Figure imgb0001
    Figure imgb0002
    in der R2CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R3 für einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 12 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Fettsäure-N-alkylpolyhydroxyalkylamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können. Hinsichtlich der Verfahren zu ihrer Herstellung sei auf die US-Patentschriften US 1,985,424, US 2,016,962 und US 2,703,798 sowie die internationale Patentanmeldung WO 92/06984 verwiesen. Eine Übersicht zu diesem Thema von H. Kelkenberg findet sich in Tens.Surf.Deterg. 25, 8 (1988).
  • Vorzugsweise leiten sich die Fettsäure-N-alkylpolyhydroxyalkylamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Die bevorzugten Fettsäure-N-alkylpolyhydroxyalkylamide stellen daher Fettsäure-N-alkylglucamide dar, wie sie durch die Formel (II) wiedergegeben werden:
    Figure imgb0003
  • Vorzugsweise werden als Fettsäure-N-alkylpolyhydroxyalkylamide Glucamide der Formel (II) eingesetzt, in der R3 für eine Alkylgruppe steht und R2CO für den Acylrest der Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure bzw. derer technischer Mischungen steht. Besonders bevorzugt sind Fettsäure-N-alkylglucamide der Formel (II), die durch reduktive Aminierung von Glucose mit Methylamin und anschließende Acylierung mit Laurinsäure oder C12/14-Kokosfettsäure bzw. einem entsprechenden Derivat erhalten werden. Weiterhin können sich die Polyhydroxyalkylamide auch von Maltose und Palatinose ableiten.
    Auch die Verwendung der Fettsäure-N-alkylpolyhydroxyalkylamide ist Gegenstand einer Vielzahl von Veröffentlichungen. Aus der europäischen Patentanmeldung EP 0285768 A1 (Hüls) ist beispielsweise ihr Einsatz als Verdickungsmittel bekannt. In der Französischen Offenlegungsschrift FR 1580491 A (Henkel) werden wäßrige Detergensgemische auf Basis von Sulfaten und/oder Sulfonaten, Niotensiden und gegebenenfalls Seifen beschrieben, die Fettsäure-N-alkylglucamide als Schaumregulatoren enthalten. Mischungen von kurz- und längerkettigen Glucamiden werden in der Deutschen Patentschrift DE 4400632 C1 (Henkel) beschrieben. In den Deutschen Offenlegungsschriften DE 4326959 A1 und DE 4309567 A1 (Henkel) wird ferner über den Einsatz von Glucamiden mit längeren Alkylresten als Pseudoceramide in Hautpflegemitteln sowie über Kombinationen von Glucamiden mit Proteinhydrolysaten und kationischen Tensiden in Haarpflegeprodukten berichtet. Gegenstand der internationalen Patentanmeldungen WO 92/06153, WO 92/06156, WO 92/06157, WO 92/06158, WO 92/06159 und WO 92/06160 (Procter & Gamble) sind Mischungen von Fettsäure-N-alkylglucamiden mit anionischen Tensiden, Tensiden mit Sulfat- und/oder Sulfonatstruktur, Ethercarbonsäuren, Ethersulfaten, Methylestersulfonaten und nichtionischen Tensiden. Die Verwendung dieser Stoffe in den unterschiedlichsten Wasch-, Spül- und Reinigungsmitteln wird in den internationalen Patentanmeldungen WO 92/06152, WO 92/06154 WO 92/06155, WO 92/06161, WO 92/06162, WO 92/06164, WO 92/06170, WO 92/06171 und WO 92/06172 (Procter & Gamble) beschrieben.
  • Alkoholethoxylate
  • Alkoholethoxylate werden herstellungsbedingt als Fettalkohol- oder Oxoalkoholethoxylate bezeichnet und folgen vorzugsweise der Formel (III),

            R 4 O(CH 2 CH 2 O)nH     (III)

    in der R4 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen und n für Zahlen von 1 bis 50 steht. Typische Beispiele sind die Addukte von durchschnittlich 1 bis 50, vorzugsweise 5 bis 40 und insbesondere 10 bis 25 Mol an Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Bevorzugt sind Addukte von 10 bis 40 Mol Ethylenoxid an technische Fettalkohole mit 12 bis 18 Kohlenstoffatomen, wie beispielsweise Kokos-, Palm-, Palmkern- oder Talgfettalkohol.
  • Alkoxylierte Carbonsäureester
  • Alkoxylierte Carbonsäureester, sind aus dem Stand der Technik bekannt. So sind beispielsweise derartige alkoxylierte Carbonsäureester durch Veresterung von alkoxylierten Carbonsäuren mit Alkoholen zugänglich. Bevorzugt im Sinne der vorliegenden Erfindung werden die Verbindungen jedoch durch Umsetzung von Carbonsäureestern mit Alkylenoxiden unter Verwendung von Katalysatoren hergestellt, insbesondere unter Verwendung von calciniertem Hydrotalcit gemäß der Deutschen Offenlegungsschrift DE 3914131 A, die Verbindungen mit einer eingeschränkten Homolgenverteilung liefern. Nach diesem Verfahren können sowohl Carbonsäureester von einwertigen Alkoholen als auch von mehrwertigen Alkoholen alkoxyliert werden. Bevorzugt gemäß der vorliegenden Erfindung werden alkoxylierte Carbonsäureester von einwertigen Alkoholen, die der allgemeinen Formel (IV) folgen,

            R 5 CO(OAlk) n OR 6      (IV)

    in der R5CO für einen aliphatischen Acylrest, abgeleitet von einer Carbonsäure, AlkO für Alkylenoxid und R6 für einen aliphatischen Alkylrest, abgeleitet von einem einwertigen aliphatischen Alkohol, steht. Insbesondere geeignet sind alkoxylierte Carbonsäureester der Formel (IV), in der R5CO für einen aliphatischen Acylrest mit 6 bis 30, vorzugsweise 6 bis 22 und insbesondere 10 bis 18 Kohlenstoffatomen, AlkO für einen CH2CH2O-, CHCH3CH2O- und/oder CH2-CHCH3O-Rest, n durchschnittlich für Zahlen von 1 bis 30, vorzugsweise 5 bis 20 und insbesondere 10 bis 15 und R6 für einen aliphatischen Alkylrest mit 1 bis 4 und vorzugsweise 1 und/oder 2 Kohlenstoffatomen steht.
  • Bevorzugte Acylreste leiten sich von Carbonsäuren mit 6 bis 22 Kohlenstoffatomen natürlicher oder synthetischer Herkunft ab, insbesondere von linearen, gesättigten und/oder ungesättigten Fettsäuren einschließlich technischer Gemische derselben, wie sie durch Fettspaltung aus tierischen und/oder pflanzlichen Fetten und Ölen zugänglich sind, zum Beispiel aus Kokosöl, Palmkemöl, Palmöl, Sojaöl, Sonnenblumenöl, Rüböl, Baumwollsaatöl, Fischöl, Rindertalg und Schweineschmalz. Beispiele für derartige Carbonsäuren sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und/oder Erucasäure.
  • Bevorzugte Alkylreste leiten sich von primären, aliphatischen monofunktionellen Alkoholen mit 1 bis 4 Kohlenstoffatomen ab, die gesättigt und/oder ungesättigt sein können. Beispiele für geeignete Monoalkohole sind Methanol, Ethanol, Propanol, sowie Butanol, insbesondere Methanol.
  • Alk0 steht für die Alkylenoxide, die mit den Carbonsäureestern umgesetzt werden und umfassen Ethylenoxid, Propylenoxid und/oder Butylenoxid, vorzugsweise Ethylenoxid undloder Propylenoxid, insbesondere Ethylenoxid alleine.
  • Insbesondere geeignet sind alkoxylierte Carbonsäureester der Formel (IV), in der AlkO für einen CH2CH2O-Rest, n durchschnittlich für Zahlen von 10 bis 15 und R2 für einen Methylrest steht. Beispiele für derartige Verbindungen sind mit im Durchschnitt 5, 7, 9 oder 11 Mol Ethylenoxid alkoxylierte Laurinsäuremethylester, Kokosfettsäuremethylester und Talgfettsäuremethylester.
  • Die nichtionischen Tenside können in Mengen von 20 bis 95, vorzugsweise 50 bis 80 und insbesondere 60 bis 70 - bezogen auf die Endkonzentration - eingesetzt werden.
  • Organische polymere Trägermaterialien
  • Als organische polymere Trägermaterialien kommen kationische, anionische, zwitterionische, amphotere und/oder nichtionische organische Polymere in Frage. In einer bevorzugten Ausführungsform der Erfindung können als organische Polymere Polypeptide, Cellulosen, Polyvinylalkoholen, Polyvinylpyrrolidon, Polykondensate, Polyhydroxycarbonsäuren, Polyethylenglykol, Polyester, Polyurethane und/oder deren Derivate eingesetzt werden.
  • Geeignete organische kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte VinylpyrrolidonNinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium Hydroxypropyl Hydrolyzed Collagen (Lamequat®L/Grünau), quatemierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amodimethicone, Copolymere der Adipinsäure und Dimethylaminohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyldiallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z.B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quatemiertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-1,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quatemierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 der Firma Miranol.
  • Als organische anionische, zwitterionische, amphotere und nichtionische polymere Träger kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/ Isobomylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmethacrylat/tert.Butylaminoethylmethacrylat/2-Hydroxyproylmethacrylat-Copolymere, Polyvinylpyrrolidon, VinylpyrrolidonNinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether in Frage. Weitere geeignete Polymere und Verdickungsmittel sind in Cosmetics & Toiletries Vol. 108, Mai 1993, Seite 95ff aufgeführt.
  • In einer bevorzugten Ausführungsform der Erfindung kommen als organische polymere Träger Po.-Polypeptide, Cellulose, Polyvinylalkohole, Polyvinylpyrrolidone Polykondensate, Polyhydroxycarbonsäuren und/oder deren Derivate in Frage.
  • (1) Proteine
  • Als Proteine kommen im Sinne der Erfindung Polypeptide auf Basis von tierischem Protein (z.B. Kollagen) oder auf Basis von pflanzlichem Protein mit einem Molekulargewicht von 1.000 bis 300.000, vorzugsweise 5.000 bis 200.000 und insbesondere 10.000 bis 150.000 in Frage.
  • In einer besonderen Ausführungsform werden wasserlösliche Proteine eingesetzt, z.B. auf Basis von Weizenprotein. In diesem Fall ist ein Molekulargewicht von 5.000 bis 50.000 besonders bevorzugt. Entsprechende Proteine auf Basis Molke, Soja, Reis und Seide können ebenfalls Verwendung finden.
  • Besonders bevorzugt werden Proteinhydrolysate mit einem mittleren Molekulargewicht von 500 bis 30.000 (z.B. Gluadin® WP, von Cognis GmbH) eingesetzt. In einer bevorzugten Ausführungsform der Erfindung können ebenfalls anionisch oder kationisch modifizierte Proteinhydrolysate (z.B. Gluadin WQ; Cognis GmbH) eingesetzt werden.
  • Polypeptide können auch auf bekanntem Wege aus Aminosäuren sowie deren Derivate, d.h. aus Carbonsäuren mit einer oder mehreren Amino-Gruppen im Molekül, gebildet werden. Im Sinne der Erfindung können die Proteine bzw. Polypeptide durch Verknüpfung der einzelnen Aminosäuren sowie deren beliebige Kombination untereinander hergestellt werden. hierbei kommen beispielsweise als Aminosäuren Glycin, Alanin, Serin, Cystein, Phenylalanin, Tyrosin, Tryptophan, Threonin, Methionin, Valin, Prolin, Leucin, Isoleucin, Lysin, Arginin, Histidin, L-Asparaginsäure, Asparagin, Glutaminsäure, Glutamin sowie deren Derivate (beispielsweise Polyethylenglutamat) in Frage, die nach der Derivatisierung mindestens eine COOH- und mindestens eine Amino-Gruppe enthalten. Vorzugsweise kommen Polyasparaginat (beispielsweise mit MG 20.000 (Firma Donlar) bzw. mit MG 2.000 - 3.000 (Firma Bayer) in Frage.
  • (2) Polysaccaride und/oder deren Derivaten
  • Als Polysaccharide werden Cellulose sowie deren Derivate und insbesondere Xanthan-Gum, Guar-Guar (z. B. Guarhydroxypropyl-trimethylammoniumchlorid; Cosmedia Guar C 261; Cognis GmbH; Guarmehl; Cosmedia Guar U, Cognis GmbH), Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, Dextrin, Cyclodextrin, Carboxymethyl Dextran sowie deren Derivate eingesetzt.
  • Unter Chitin sind aminozuckerhaltige Polysaccharide der allgemeinen Formel (C8H13NO5)x zu verstehen, die üblicherweise Molekulargewichte in der Größenordnung von durchschnittlich 30.000 bis 5.000.000 Dalton aufweisen. Chitine bestehen aus Ketten von ß-1,4-glykosidisch verknüpften N-Acetyl-D-glucosamin-Resten. Besonders bevorzugt ist der Einsatz von Chitin mit einem Molekulargewicht von 50.000 bis 2.000.000 Dalton.
  • Chitosane stellen unter anderem Biopolymere dar und werden zur Gruppe der Hydrokolloide gezählt. Chemisch betrachtet handelt es sich um partiell deacetylierte Chitine, d.h. aminozuckerhaltige Polysaccharide unterschiedlichen Molekulargewichtes, die den folgenden - idealisierten - Monomerbaustein enthalten:
    Figure imgb0004
  • im Gegensatz zu den meisten Hydrokolloiden, die im Bereich biologischer pH-Werte negativ geladen sind, stellen Chitosane unter diesen Bedingungen kationische Biopolymere dar. Die positiv geladenen Chitosane können mit entgegengesetzt geladenen Oberflächen in Wechselwirkung treten und werden daher in kosmetischen Haar- und Körperpflegemitteln sowie pharmazeutischen Zubereitungen eingesetzt (vgl. Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., Vol. A6, Weinheim, Verlag Chemie, 1986, S. 231-232). Übersichten zu diesem Thema sind auch beispielsweise von B. Gesslein et al. in HAPPI 27, 57 (1990), O. Skaugrud in Drug Cosm.Ind. 148, 24 (1991) und E. Onsoyen et al. in Seifen-Öle-Fette-Wachse 117, 633 (1991) erschienen. Zur Herstellung der Chitosane geht man von Chitin, vorzugsweise den Schalenresten von Krustentieren aus, die als billige Rohstoffe in großen Mengen zur Verfügung stehen. Das Chitin wird dabei in einem Verfahren, das erstmals von Hackmann et al. beschrieben worden ist, üblicherweise zunächst durch Zusatz von Basen deproteiniert, durch Zugabe von Mineralsäuren demineralisiert und schließlich durch Zugabe von starken Basen deacetyliert, wobei die Molekulargewichte über ein breites Spektrum verteilt sein können. Entsprechende Ver fahren sind beispielsweise aus Makromol. Chem. 177, 3589 (1976) oder der französischen Patentanmeldung FR 2701266 A bekannt. Vorzugsweise werden solche Typen eingesetzt, wie sie in den deutschen Patentanmeldungen DE 4442987 A1 und DE 19537001 A1 (Henkel) offenbart werden und die ein durchschnittliches Molekulargewicht von 10.000 bis 5.000 000 Dalton, insbesondere 10.000 bis 500.000 bzw. 800.000 bis 1.200.000 Dalton aufweisen und/oder eine Viskosität nach Brookfield (1 Gew.-%ig in Glycolsäure) unterhalb von 5.000 mPas, einen Deacetylierungsgrad im Bereich von 80 bis 88 % und einem Aschegehalt von weniger als 0,3 Gew.-% besitzen. Üblicherweise werden Chitosane mit einem mittleren Molekulargewicht von 10.000 bis 5.000.000 Dalton eingesetzt, in einer bevorzugten Ausführung werden Chitosane mit einem durchschnittlichen Molekulargewicht von 30.000 bis 100.000 Dalton eingesetzt, weiterhin bevorzugt sind Chitosane mit einem Molekulargewicht von 100.000 bis 1.000.000 Dalton, besonders bevorzugt sind Chitosane mit einem Molekulargewicht von 800.000 bis 1.000.000 Dalton.
  • Neben den Chitosanen als typischen kationischen Biopolymeren kommen im Sinne der Erfindung auch anionisch bzw. nichtionisch derivatisierte Chitosane, wie z.B. Carboxylierungs-, Succinylierungs- oder Alkoxylierungsprodukte in Frage, wie sie beispielsweise in der deutschen Patentschrift DE 3713099 C2 (L'Oreal) sowie der deutschen Patentanmeldung DE 19604180 A1 (Henkel) beschrieben werden.
  • (3) Polyvinylalkohole
  • Polymere haben im Sinne der Erfindung die allgemeine Struktur -CH2CHOH-CH2-CH2OH-, die in geringen Anteilen (ca. 2%) auch Struktureinheiten des Typs -CH2CHOH-CHOH-CH2OH- enthalten können. Polyvinylakohole können nicht direkt durch Polymerisation von Vinylalkohol (H2C=CH-OH) erhalten werden, da dessen Konzentration im Tautomeren-Gleichgewicht (Keto-Enol-Tautomerie) mit Acetaldehyd (H3C-CHO) zu gering ist. Polyvinylakohole werden daher v. a. aus Polyvinylacetaten über polymeranaloge Reaktionen wie Hydrolyse, technisch insbesesondere aber durch alkalisch katalysierte Umesterung mit Alkoholen (vorzugsweise Methanol) in Lösung hergestellt. Im Rahmen der Erfindung werden vorzugsweise Polyvinylakohole, die als weiß-gelbliche Pulver oder Granulate mit Polymerisationsgraden im Bereich von vorzugsweise 500 bis 2500 (Molmassen von ca. 20 000-100 000 g/mol) angeboten werden, haben Hydrolysegrade von 98 bis 99 bzw. 87 bis 89 Mol%, enthalten also noch einen Restgehalt an Acetyl-Gruppen. Geeignete Produkte haben vorzugsweise ein Molkulargewicht von 5.000 bis 50.000 und insbesondere 10.000 bis 30.000.
  • (4) Polyvinylpyrrolidone
  • Polyvinylpyrrolidone [Poly(1-vinyl-2-pyrrolidinone) werden hergestellt durch radikalische Polymerisation von 1-Vinylpyrrolidon nach Verfahren der Substanz-, Lösungs- od. Suspensionspolymerisation unter Einsatz von Radikalbildnern (Peroxide, Azo-Verbindungen) als Initiatoren und meist in Gegenwart aliphatischer Amine, die die im sauren Medium erfolgende Zersetzung des Monomers unterbinden. Die ionische Polymerisation des Monomeren liefert nur Produkte mit niedrigen Molmassen.
  • Vorzugsweise werden Polyvinylpyrrolidone mit Molmassen im Bereich von 2.500 bis 75.000, besonders bevorzugt 5.000 bis 60.000 und insbesondere im Bereich von 20.000 bis 50.000 g/mol in Frage.
  • (5) Polykondensaten
  • Als Polypeptide kommen Copolymere aus Polypeptiden mit Dicarbonsäuren (beispielsweise Poly-β-Alanin/Glutarsäure-Copolymer), Vinylpyrrolidon und Vinylacetaten, Polyolen und Poly(meth)acrylaten in Frage.
  • (6) Polyhydroxycarbonsäuren
  • Als Polyhydroxycarbonsäuren können auch Copolymere aus Vinylalkohol und (Meth)acrylsäuren verwendet werden. Eine besondere Ausführungsform sind Polyhydroxycarbonsäuren, welche durch Polykondensation von Polyhydroxysäuren wie Weinsäure, Citronensäure, Äpfelsäure sowie aus deren Mischungen hergestellt werden.
  • Die organischen polymeren Trägermaterialien können in Mengen von 0,1 bis 50, vorzugsweise 1 bis 30 und insbesondere 5 bis 20 - bezogen auf die Endkonzentration - eingesetzt werden.
  • Granulierung in der Wirbelschicht
  • Unter einer Wirbelschicht- oder SKET-Granulierung ist eine Granulierung unter gleichzeitiger Trocknung zu verstehen, die vorzugsweise batchweise oder kontinuierlich in der Wirbelschicht erfolgt. Dabei können die nichtionischen Tenside vorzugsweise in Form wäßriger Pasten gleichzeitig oder nacheinander über eine oder mehrere Düsen in die Wirbelschicht eingebracht werden. Bevorzugt eingesetzte Wirbelschichtanlagen besitzen Bodenplatten mit Abmessungen von 0,4 bis 5 m. Vorzugsweise wird die SKET-Granulierung bei Wirbelluftgeschwindigkeiten im Bereich von 1 bis 8 m/s durchgeführt. Der Austrag der Granulate aus der Wirbelschicht erfolgt vorzugsweise über eine Größenklassierung der Granulate. Die Klassierung kann beispielsweise mittels einer Siebvorrichtung oder durch einen entgegengeführten Luftstrom (Sichterluft) erfolgen, der so reguliert wird, dass erst Teilchen ab einer bestimmten Teilchengröße aus der Wirbelschicht entfernt und kleinere Teilchen in der Wirbelschicht zurückgehalten werden. Üblicherweise setzt sich die einströmende Luft aus der beheizten oder unbeheizten Sichterluft und der beheizten Bodenluft zusammen. Die Bodenlufttemperatur liegt dabei zwischen 60 und 400, vorzugsweise 60 und 350°C. Vorteilhafterweise wird zu Beginn der SKET-Granulierung als Startmassse ein organisches polymeres Trägermaterial oder ein SKET-Granulat aus einem früheren Versuchsansatz, vorgelegt. In der Wirbelschicht verdampft das Wasser aus der Tensidpaste, welche neben dem Tensid auch das Polymer enthält, wobei angetrocknete bis getrocknete Keime entstehen, die mit weiteren Mengen Tensid-/Polymergemisch umhüllt, granuliert und wiederum gleichzeitig getrocknet werden. Das Ergebnis ist ein Tensid-/Polymerkorn mit einem Tensidgradienten über das Kom, welches besonders gut wasserlöslich ist. Die Granulierung unter gleichzeitiger Trocknung kann ohne Zusatz von anorganischen Salzen, wie beispielsweise Zeolith und Soda erfolgen.
  • In einer bevorzugten Ausführungsform der Erfindung weisen diese Tensidgranulate eine Komgrößenverteilung zwischen 0,02 und 2,0 und insbesondere zwischen 0,2 und 1,6 mm auf. In einer weiteren bevorzugten Ausführungsform der Erfindung bestehen mindestens 70, besonders bevorzugt 75 und insbesondere 85 Gew.-% der Granulate aus runden Körnern.
  • Bevorzugte Ausführungsformen der Granulierung
  • Das erfindungsgemäße Verfahren kann in zwei Ausführungsformen - sowohl im Mischer als auch in der Wirbelschicht - durchgeführt werden. Vorzugsweise erfolgt die Granulierung in der Wirbelschicht oder in einem Wirbelschichtsprühturm. Zum einen ist es möglich, die organischen polymeren Träger als Kristallisationskeim vorzulegen und eine möglichst hochkonzentrierte, beispielsweise 30 bis 65 Gew.-%ige Paste eines nichtionischen Tensids aufzusprühen. Zum anderen kann ein organisches Polymer oder Gemische verschiedener Polymere - im Fall, dass diese wasserlöslich sind - auch in den nichtionischen wäßrigen Tensidpasten gelöst werden oder aber - im Fall, dass diese wasserunlöslich sind - zu einem Art "Slurry" vermischt werden und dann gemeinsam versprüht bzw. vorzugsweise granuliert und gleichzeitig durch Gegenstrom von heißer Luft getrocknet werden.
  • Tenside
  • Obschon die Aufgabe der Erfindung auf die Herstellung von nichtionischen Tensidgranulaten gerichtet ist, können zusammen mit diesen Tensiden auch weitere anionische, nichtionische, amphotere bzw. zwitterionische und kationische Tenside mit verwendet werden.
    Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfiate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, bzw. Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise Dimethyldistearylammoniumchlorid oder Alkyltrimethylammoniumchlorid, und Esterquats, insbesondere quatemierte Fettsäuretrialkanolaminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine (wie Cocoamidopropylbetain), Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54.124 oder J.Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen. Typische Beispiele für besonders geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, α-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine, Amphoacetale und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
  • Das Mischungsverhältnis zwischen den nichtionischen Tensiden und den weiteren Tensiden ist weitgehend unkritisch und kann im Bereich von 10 : 90 bis 90 : 10 variieren. Bevorzugt sind Abmischungen von dem erfindungsgemäßen Gemisch aus nichtionischen Tensiden und organischem Polymer mit Fettalkoholsulfaten, Oxoalkoholsulfaten, Monoglyceridsulfaten, Fettsäureisethionaten, Seifen, Olefinsulfonaten, Acylglutamaten, Sarkosinaten Ethercarbonsäuren, sowie Fettalkoholpolyglycolethem im Gewichtsverhältnis 70 : 30 bis 30 : 70 und insbesondere 60 : 40 bis 40 : 60.
  • In einer besonderen Ausführungsform der Erfindung wird die zuvor beschriebene Granulierung der wäßrigen nichtionischen Tensid-/Polymer-Paste in Gegenwart einer weiteren Tensidpaste aus Fettalkoholsulfaten, Betainen, Kokosmonoglyceridsulfaten, Acylglutamaten, Esterquats oder deren Mischungen, unter gleichzeitiger Trocknung durchgeführt.
  • In einer weiteren Ausführungsform der Erfindung erfolgt zunächst wie zuvor beschrieben die Granulierung der wäßrigen nichtionischen Tensid-/Polymer-Paste unter gleichzeitiger Trocknung zu den Tensidgranulaten; anschließend werden diese Tensidgranulate wieder in die Wirbelschicht als Keimmaterial zurückgeführt und in Gegenwart einer weiteren Tensidpaste aus Fettalkoholsulfat, Betain, Kokosmonoglyceridsutfat, Acylglutamat und/oder deren Mischungen ein zweites Mal granuliert und gleichzeitigem getrocknet.
  • Gewerbliche Anwendbarkeit
  • Die erfindungsgemäßen Mittel können in oberflächenaktiven Zubereitungen, wie beispielsweise kosmetischen und/oder pharmazeutischen Zubereitungen, u.a. Haarshampoos, Haarlotionen, Schaumbäder, Duschbäder, Mund- und Zahnpflegemittel, Cremes, Gele, Lotionen, alkoholische und wäßrig/alkoholische Lösungen, Emulsionen, Wachs/Fett-Massen, Stiftpräparaten, Pudern oder Salben, Reinigungsmitteln, vorzugsweise Wasch-, Spül-, Reinigungs- und Avivagemitteln sowie Zubereitungen zur Behandlung von Textilien, vorzugsweise Bügelhilfen und dergleichen eingesetzt werden.
  • Die erfindungsgemäßen Tensidgranulate, vorzugsweise Zuckertensidgranulate, sind rieselfähig, verklumpen nicht und lösen sich leicht in kaltem Wasser. Sie eignen sich daher beispielsweise für die Herstellung von Pulverwaschmitteln und insbesondere für die Herstellung von stückigen Waschmitteln wie Waschmittel-Tabletten, wobei man die Granulate vorzugsweise den Turmpulvem zumischt und, z.B. im Fall der Waschmittel-Tabletten, dieses Pulvergemisch anschließend zu den Tabletten verpreßt.
  • Ein Gegenstand der Erfindung betrifft daher die Verwendung der erfindungsgemäßen Tensidgranulate in oberflächenaktiven Zubereitungen, vorzugsweise kosmetischen und/oder pharmazeutischen Zubereitungen und Wasch- und Reinigungsmitteln und insbesondere festen pulverförmiger oder stückigen Wasch- und Reinigungsmitteln, vorzugsweise in Tablettenform.
  • Die oberflächenaktiven Zubereitungen können ferner als weitere Zusatzstoffe milde Tenside, Ölkomponenten, Emulgatoren, Überfettungsmittel, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Polymere, Siliconverbindungen, Fette, Wachse, Stabilisatoren, biogene Wirkstoffe, Deowirkstoffe, Antischuppenmittel, Filmbildner, Quellmittel, weitere UV-Lichtschutzfaktoren, Antioxidantien, Hydrotrope, Konservierungsmittel, Insektenrepellentien, Selbstbräuner, Solubilisatoren, Parfümöle, Farbstoffe, keimhemmende Mittel und dergleichen enthalten.
  • Typische Beispiele für geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, α-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Cocoamidopropylbetain, Alkylamidobetaine, Cocoamidosulfebetaine und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
  • Als Ölkomponenten der erforderlichen Polarität kommen insbesondere Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von verzweigten C6-C13-Carbonsäuren mit linearen C6-C22-Fettalkoholen, Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Hydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, flüssige Mono-/Di-/Triglyce(idmischungen auf Basis von C6-C18-Feftsäuren, Ester von C6-C22-Fetta!koho)en und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-C12-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Feftalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen in Betracht.
  • Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
  • Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenglycoldistearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
    Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polygiycerinpoly-12-hydroxystearaten.
  • Geeignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole®' von Goodrich oder Synthalenee von Sigma), Polyacrylamide, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
  • Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. 91, 27 (1976).
  • Typische Beispiele für Fette sind Glyceride, als Wachse kommen u.a. Bienenwachs, Carnaubawachs, Candelillawachs, Montanwachs, Paraffinwachs, hydriertes Ricinusöle, bei Raumtemperatur feste Fettsäureester oder Mikrowachse gegebenenfalls in Kombination mit hydrophilen Wachsen, z.B. Cetylstearylalkohol oder Partialglyceriden in Frage.
  • Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
  • Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.
  • Als Deowirkstoffe kommen z.B. Antiperspirantien wie etwa Aluminiumchlorhydate in Frage. Hierbei handelt es sich um farblose, hygroskopische Kristalle, die an der Luft leicht zerfließen und beim Eindampfen wäßriger Aluminiumchloridlösungen anfallen. Aluminiumchlorhydrat wird zur Herstellung von schweißhemmenden und desodorierenden Zubereitungen eingesetzt und wirkt wahrscheinlich über den partiellen Verschluß der Schweißdrüsen durch Eiweiß- und/oder Polysaccharidfällung [vgl. J.Soc. Cosm.Chem. 24, 281 (1973)]. Unter der Marke Locron® der Hoechst AG, FrankfurtlfRG, befindet beispielsweise sich ein Aluminiumchlorhydrat im Handel, das der Formel [Al2(OH)5Cl]*2,5 H2O entspricht und dessen Einsatz besonders bevorzugt ist [vgl. J.Pharm.Pharmacol. 26, 531 (1975)]. Neben den Chlorhydraten können auch Aluminiumhydroxylactate sowie saure Aluminium/Zirkoniumsalze eingesetzt werden. Als weitere Deowirkstoffe können Esteraseinhibitoren zugesetzt werden. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, Henkel KGaA, Düsseldorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Wahrscheinlich wird dabei durch die Spaltung des Citronensäureesters die freie Säure freigesetzt, die den pH-Wert auf der Haut soweit absenkt, dass dadurch die Enzyme inhibiert werden. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat bzw. -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbnonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester. Antibakterielle Wirkstoffe, die die Keimflora beeinflussen und schweißzersetzende Bakterien abtöten bzw. in ihrem Wachstum hemmen, können ebenfalls in den Stiftzubereitungen enthalten sein. Beispiele hierfür sind Chitosan, Phenoxyethanol und Chlorhexidingluconat. Besonders wirkungsvoll hat sich auch 5-Chlor-2-(2,4-dichlorphen-oxy)-phenol erwiesen, das unter der Marke Irgasan® von der Ciba-Geigy, Basel/CH vertrieben wird.
  • Als Antischuppenmittel können Climbazol, Octopirox und Zinkpyrethion eingesetzt werden. Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen.
  • Als Quellmittel für wäßrige Phasen können Montmoriflonite, Clay Mineralstoffe, Pemulen sowie alkylmodifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R.Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden.
  • Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UV-B-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:
    • 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4-(Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoesäureamylester;
    • Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylbenzylester, Salicylsäurehomomenthylester;
    • Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
    • Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester;
    • Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin und Octyl Triazon, wie in der EP 0818450 A1 beschrieben;
    • Propan-1,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1,3-dion;
    • Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP 0694521 B1 beschrieben.
  • Als wasserlösliche Substanzen kommen in Frage:
    • 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze;
    • Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und ihre Salze;
    • Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornylidenmethyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
  • Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α-Carotin, β-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis µmol/kg), ferner (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnSO4) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
  • Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, lsopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktionelle Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
    • Glycerin;
    • Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
    • technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
    • Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
    • Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
    • Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
    • Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
    • Aminozucker, wie beispielsweise Glucamin;
    • Dialkoholamine, wie Diethanolamin oder 2-Amino-1,3-propandiol.
  • Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen. Als insekten-Repellentien kommen N,N-Diethyl-m-toluamid, 1,2-Pentandiol oder Insekten-Repellent 3535 in Frage, als Selbstbräuner eignet sich Dihydroxyaceton.
  • Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethem zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, a-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linaloof, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinendl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, lso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, lrotyl und Floramat allein oder in Mischungen, eingesetzt.
  • Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
  • Typische Beispiele für keimhemmende Mittel sind Konservierungsmittel mit spezifischer Wirkung gegen gram-positive Bakterien wie etwa 2,4,4'-Trichlor-2'-hydroxydiphenylether, Chlorhexidin (1,6-Di-(4-chlorphenyl-biguanido)-hexan) oder TCC (3,4,4'-Trichlorcarbanilid). Auch zahlreiche Riechstoffe und etherische Öle weisen antimikrobielle Eigenschaften auf. Typische Beispiele sind die Wirkstoffe Eugenol, Menthol und Thymol in Nelken-, Minz- und Thymianöl. Ein interessantes natürliches Deomittel ist der Terpenalkohol Famesol (3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol), der im Lindenblütenöl vorhanden ist und einen Maiglöckchengeruch hat. Auch Glycerinmonolaurat hat sich als Bakteriostatikum bewährt. Üblicherweise liegt der Anteil der zusätzlichen keimhemmenden Mittel bei etwa 0,1 bis 2 Gew.-% - bezogen auf den auf den Feststoffanteil der Zubereitungen.
  • Pulverwaschmittel
  • Die Wasch- und Reinigungsmittel können neben den genannten noch weitere typische Inhaltsstoffe, wie beispielsweise Builder, Bleichmittel, Bleichaktivatoren, Waschkraftverstärker, Enzyme, Enzymstabilisatoren, Vergrauungsinhibitoren, optische Aufheller, Soil repellants, Schauminhibitoren, anorganische Salze sowie Duft- und Farbstoffe enthalten.
  • Als feste Builder wird insbesondere feinkristalliner, synthetisches und gebundenes Wasser enthaltender Zeolith wie Zeolith NaA in Waschmittelqualität eingesetzt. Geeignet sind jedoch auch Zeolith NaX sowie Mischungen aus NaA und NaX. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, dass der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen oder ethoxylierte Isotridecanole. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser. Geeignete Substitute bzw. Teilsubstitute für Zeolithe sind kristalline, schichtförmige Natriumsilicate der allgemeinen Formel NaMSixO2x+1·yH2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP 0164514 A beschrieben. Bevorzugte kristalline Schichtsilicate sind solche, in denen M in der allgemeinen Formel für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β-als auch γ-Natriumdisilicate Na2Si2O5·yH2O bevorzugt, wobei β-Natriumdisilicat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrieben ist. Die erfindungsgemäßen Pulverwaschmittel enthalten als feste Builder vorzugsweise 10 bis 60 Gew.-% Zeolith und/oder kristalline Schichtsilicate, wobei Mischungen von Zeolith und kristallinen Schichtsilicaten in einem beliebigen Verhältnis besonders vorteilhaft sein können. Insbesondere ist es bevorzugt, dass die Mittel 20 bis 50 Gew.-% Zeolith und/oder kristalline Schichtsilicate enthalten. Besonders bevorzugte Mittel enthalten bis 40 Gew.-% Zeolith und insbesondere bis 35 Gew.-% Zeolith, jeweils bezogen auf wasserfreie Aktivsubstanz. Weitere geeignete Inhaltsstoffe der Mittel sind wasserlösliche amorphe Silicate; vorzugsweise werden sie in Kombination mit Zeolith und/oder kristallinen Schichtsilicaten eingesetzt. Insbesondere bevorzugt sind dabei Mittel, welche vor allem Natriumsilicat mit einem molaren Verhältnis (Modul) Na2O : SiO2 von 1:1 bis 1:4,5, vorzugsweise von 1:2 bis 1:3,5, enthalten. Der Gehalt der Mittel an amorphen Natriumsilicaten beträgt dabei vorzugsweise bis 15 Gew.-% und vorzugsweise zwischen 2 und 8 Gew.-%. Auch Phosphate wie Tripolyphosphate, Pyrophosphate und Orthophosphate können in geringen Mengen in den Mitteln enthalten sein. Vorzugsweise beträgt der Gehalt der Phosphate in den Mitteln bis 15 Gew.-%, jedoch insbesondere 0 bis 10 Gew.-%. Außerdem können die Mittel auch zusätzlich Schichtsilicate natürlichen und synthetischen Ursprungs enthalten. Derartige Schichtsilicate sind beispielsweise aus den Patentanmeldungen DE 2334899 B, EP 0026529 A und DE 3526405 A bekannt. Ihre Verwendbarkeit ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbesondere Bentonite. Geeignete Schichtsilicate, die zur Gruppe der mit Wasser quellfähigen Smectite zählen, sind z.B. solche der allgemeinen Formeln

            (OH)4Si8-yAly(MgxAl4-x)O20    Montmorrilonit

            (OH)4Si8-yAly(Mg6-zLiz)O20    Hectorit

            (OH)4Si8-yAly(Mg6-z Alz)O20    Saponit

    mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsilicate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilicate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkalüonen, insbesondere Na+ und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Brauchbare Schichtsilicate sind beispielsweise aus US 3,966,629, US 4,062,647, EP 0026529 A und EP 0028432 A bekannt. Vorzugsweise werden Schichtsilicate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Calciumionen und stark färbenden Eisenionen sind. Brauchbare organische Gerüstsubstanzen sind beispielsweise die bevorzugt in Form ihrer Natriumsalze eingesetzten Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150.000 (auf Säure bezogen). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5.000 bis 200.000, vorzugsweise 10.000 bis 120.000 und insbesondere 50.000 bis 100.000. Der Einsatz polymerer Polycarboxylate ist nicht zwingend erforderlich. Falls jedoch polymere Polycarboxylate eingesetzt werden, so sind Mittel bevorzugt, welche biologisch abbaubare Polymere, beispielsweise Terpolymere, die als Monomere Acrylsäure und Maleinsäure bzw. deren Salze sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Acrylsäure und 2-Alkylallylsulfonsäure bzw. deren Salze sowie Zuckerderivate enthalten. Insbesondere sind Terpolymere bevorzugt, die nach der Lehre der deutschen Patentanmeldungen DE 4221381 A und DE 4300772 A erhalten werden. Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 Kohlenstoffatome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP 0280223 A beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
  • Unter den als Bleichmittel dienenden, in Wasser Wasserstoffperoxid liefernden Verbindungen haben das Natriumperborat-Tetrahydrat und das Natriumperborat-Monohydrat eine besondere Bedeutung. Weitere Bleichmittel sind beispielsweise Peroxycarbonat, Citratperhydrate sowie Salze der Persäuren, wie Perbenzoate, Peroxyphthalate oder Diperoxydodecandisäure. Sie werden üblicherweise in Mengen von 8 bis 25 Gew.-% eingesetzt. Bevorzugt ist der Einsatz von Natriumperborat-Monohydrat in Mengen von 10 bis 20 Gew.-% und insbesondere von 10 bis 15 Gew.-%. Durch seine Fähigkeit, unter Ausbildung des Tetrahydrats freies Wasser binden zu können, trägt es zur Erhöhung der Stabilität des Mittels bei.
  • Um beim Waschen bei Temperaturen von 60°C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Präparate eingearbeitet werden. Beispiele hierfür sind mit Wasserstoffperoxid organische Persäuren bildende N-Acyl- bzw. O-Acyl-Verbindungen, vorzugsweise N,N'-tetraacylierte Diamine, ferner Carbonsäureanhydride und Ester von Polyolen wie Glucosepentaacetat. Der Gehalt der bleichmittelhaltigen Mittel an Bleichaktivatoren liegt in dem üblichen Bereich, vorzugsweise zwischen 1 und 10 Gew.-% und insbesondere zwischen 3 und 8 Gew.-%. Besonders bevorzugte Bleichaktivatoren sind N,N,N',N'-Tetraacetylethylendiamin und 1,5-Diacetyl-2,4-dioxo-hexahydro-1,3,5-triazin.
  • Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Ihr Anteil kann etwa 0,2 bis etwa 2 Gew.-% betragen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Zusätzlich zu den mono- und polyfunktionellen Alkoholen und den Phosphonaten können die Mittel weitere Enzymstabilisatoren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Natriumformiat eingesetzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vorzugsweise etwa 1,2-Gew.-%, bezogen auf das Enzym, stabilisiert sind. Besonders vorteilhaft ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (H3BO3), der Metaborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7).
  • Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Vergrauen zu verhindem. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestem der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw.. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose, Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische sowie Polyvinylpyrrolidon, beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel.
  • Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der MorpholinoGruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Einheitlich weiße Granulate werden erhalten, wenn die Mittel außer den üblichen Aufhellern in üblichen Mengen, beispielsweise zwischen 0,1 und 0,5 Gew.-%, vorzugsweise zwischen 0,1 und 0,3 Gew.-%, auch geringe Mengen, beispielsweise 10-6 bis 10-3 Gew.-%, vorzugsweise um 10-5 Gew.-%, eines blauen Farbstoffs enthalten. Ein besonders bevorzugter Farbstoff ist Tinolux® (Handelsprodukt der Ciba-Geigy).
  • Als schmutzabweisende Polymere ("soil repellants") kommen solche Stoffe in Frage, die vorzugsweise Ethylenterephthalat- und/oder Polyethylenglycolterephthalatgruppen enthalten, wobei das Molverhältnis Ethylenterephthalat zu Polyethylenglycolterephthalat im Bereich von 50 : 50 bis 90:10 liegen kann. Das Molekulargewicht der verknüpfenden Polyethylenglycoleinheiten liegt insbesondere im Bereich von 750 bis 5.000, d.h., der Ethoxylierungsgrad der polyethylenglycolgruppenhaltigen Polymere kann ca. 15 bis 100 betragen. Die Polymeren zeichnen sich durch ein durchschnittliches Molekulargewicht von etwa , 5.000 bis 200.000 aus und können eine Block-, vorzugsweise aber eine Random-Struktur aufweisen. Bevorzugte Polymere sind solche mit Molverhältnissen Ethylenterephthalat/Polyethylenglycolterephthalat von etwa 65 : 35 bis etwa 90 : 10, vorzugsweise von etwa 70 : 30 bis 80 : 20. Weiter hin bevorzugt sind solche Polymeren, die verknüpfende Polyethylenglycoleinheiten mit einem Molekulargewicht von 750 bis 5.000, vorzugsweise von 1000 bis etwa 3000 und ein Molekulargewicht des Polymeren von etwa 10.000 bis etwa 50.000 aufweisen. Beispiele für handelsübliche Polymere sind die Produkte Milease® T (ICI) oder Repelotex® SRP 3 (Rhöne-Poulenc).
  • Beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Hierfür eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z.B. solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere silikon- oder paraffinhaltige Schauminhibitoren, an eine granulare, in Wasser lösliche bzw. dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamiden bevorzugt.
  • Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt - oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode.
  • Beispiele Beispiel 1 (nicht erfindungsgemäß)
  • Herstellung eines leicht löslichen APG-SKET-Granulats. Zu 170 kg einer 50 %-igen Kokosalkyloligoglucosid-Paste (Glucopon® 600 CS UP) wurden bei 50°C 37,5 kg einer 40 %-igen wäßrigen Lösung von Polyacrylatlmethyacrylat (Sokalan CP 5) zugemischt, das Gemisch mit Citronensäure auf einen pH-Wert von 7 eingestellt und über eine Düse in einer Wirbelschicht-Anlage zur Granuliertrocknung der Firma Glatt granuliert und gleichzeitig getrocknet. Es wurden ca. 100 kg eines staubfreien und nicht-klebenden Granulats mit einem Restwassergehalt von 2 Gew.-% erhalten in einer Komgrößenverteilung von 0,2 - 1,6 mm. Das Produkt war auch unter Druckbelastung nach Tagen noch rieselfähig. 10 g dieses Granulats lösten sich innerhalb von 5 Minuten in 250 ml Wasser bei einer Temperatur von 20 °C.
  • Vergleichsbeispiel 1
  • 200 kg einer 50 %-igen Kokosalkyloligoglucosid-Paste (Glucopon 600 CS UP) wurden bei 50 °C mit Citronensäure auf einen pH-Wert von 7 eingestellt und ohne den Zusatz einer 40 %-igen wäßrigen Lösung von Polyacrylatlmethyacrylat (Sokalan CP 5) über eine Düse in einer Wirbelschicht-Anlage zur Granuliertrocknung der Firma Glatt granuliert und gleichzeitig getrocknet. Man erhielt ein klebriges Granulat mit einer Komgrößenverteilung von 0,5-10 mm und einem Restwassergehalt von 3 Gew.%, das bereits bei leichtem Druck wieder zusammenbackte. 10 g dieses Granulats benötigten mehr als 30 Minuten in 250 ml Wasser bei einer Temperatur von 20°C bis sie sich vollständig lösten.
  • Beispiel 2 (nicht erfindungsgemäß)
  • Herstellung eines leichtlöslichen APG-SKET-Granulats. Zu 70 kg einer 50 %-igen Kokosalkyloligoglucosid-Paste (Glucopon 600 CS UP) und 50 kg einer Mischung, bestehend aus 35 kg Kokosalkyloligoglucosid und 15 kg C 12/14-Fettalkohol, wurden bei 50 °C 37,5 kg einer 40 %-igen wäßrigen Lösung von Polyacrylatlmethyacrylat (Sokalan CP 5) zugemischt und über eine Düse in einer Anlage zur Granuliertrocknung der Firma Glatt granuliert und gleichzeitig getrocknet. Es wurden ca. 100 kg eines staubfreien und nicht-klebenden Granulats mit einem Restwassergehalt von 2,5 Gew.-% erhalten in einer Korngrößenverteilung von 0,2 - 1,6 mm. Das Produkt war auch unter Druckbelastung nach Tagen noch rieselfähig. 10 g dieses Granulats lösten sich innerhalb von 5 Minuten in 250 ml Wasser bei einer Temperatur von 20 °C.
  • Beispiele 3 bis 18
  • Zur Herstellung eines leichtlöslichen APG-SKET-Granulats wurden an Stelle des Polyacrylat/methyacrytats folgende Polymere eingesetzt:
    • (3) Proteinhydroylsat-Pulver (Gluadin WP),
    • (4) wasserlösliches Weizengluten,
    • (5) Guarhydroxypropyl-trimethylammoniumchlorid (Cosmedia Guar C 261; Fa. Cognis)
    • (6) Polyasparaginat (MG 20.000, Fa. Donlar)
    • (7) Cyclodextrin
    • (8) Dextrin
    • (9) Carboxymethyl Dextran
    • (10) kationisch modifizierte Cellulose (Polymer JR 400)
    • (11) Polyglykol-Polyamin-Kondensationsharz (Polyquart H 81; Fa. Cognis)
    • (12) Polyhydroxycarbonsäure, Natrium-Salz-Pulver (Hydagen F; Fa. Cognis)
    • (13) VinylpyrrolidonNinylacetat-Copolymer-Pulver (Nasuna B; Fa. Cognis)
    • (14) Guarmehl-Pulver (Cosmedia Guar U; Fa. Cognis)
    • (15) Chitosan-Pulver (Hydagen HCMF; Fa. Cognis)
    • (16) kationisch modifiziertes Proteinhydroylsat (Gluadin WQ; Fa. Cognis),
    • (17) Polybeta-Alanine/Glutaric Acid Crosspolymer-Pulvers
    • (18) Polyethylglutamat-Pulver
      Figure imgb0005
      Figure imgb0006
      Figure imgb0007
      Figure imgb0008
      Figure imgb0009
      Figure imgb0010

Claims (8)

  1. Tensidgranulate, dadurch erhältlich, dass man
    i) in wässrige Pasten aus nichtionischen Tensiden organische polymere Trägermaterialien ausgewählt aus der Gruppe, die gebildet wird von, Polypeptiden, Chitin, Chitosan, Cellulosen, Polyvinylalkoholen, Polyvinylpyrrolidon, Polykondensaten, Polyhydroxycarbonsäuren, Polyethylenglykol, Polyestem, Polyurethanen und/oder deren Derivate löst oder vermischt ohne Zusatz von anorganischen Verbindungen und
    ii) die wässrige Mischung aus Tensiden und organischen polymeren Trägermaterialien gemeinsam granuliert und gleichzeitig trocknet.
  2. Verfahren zur Herstellung von Tensidgranulaten, dadurch gekennzeichnet, dass man
    i) in wässrige Pasten aus nichtionischen Tensiden organische polymere Trägermaterialien ausgewählt aus der Gruppe, die gebildet wird von, Polypeptiden, Chitin, Chitosan, Cellulosen, Polyvinylalkoholen, Polyvinylpyrrolidon, Polykondensaten, Polyhydroxycarbonsäuren, Polyethylenglykol, Polyestern, Polyurethanen und/oder deren Derivate löst oder vermischt ohne Zusatz von anorganischen Verbindungen und
    ii) die wässrige Mischung aus Tensiden und organischen polymeren Trägermaterialien gemeinsam granuliert und gleichzeitig trocknet.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man nichtionische Tenside einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von Alkyl- und Alkenyloligoglykosiden, Fettsäure-N-alkylpolyhydroxyalkylamiden, Alkoholethoxylaten, alkoxylierten Carbonsäureestern sowie deren Mischungen.
  4. Verfahren nach mindestens einem der Ansprüche 2 bis 3, dadurch gekennzeichnet, dass man Alkyl- und Alkenyloligoglykoside der Formel (I) einsetzt,

            R 1 O-[G]P     (I)

    in der R1 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht.
  5. Verfahren nach mindestens einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Tensidgranulate eine Korngrößenverteilung zwischen 0,02 und 2,0 mm aufweisen.
  6. Verwendung von Tensidgranulaten nach Anspruch 1 in oberflächenaktiven Zubereitungen.
  7. Verwendung von Tensidgranulaten nach Anspruch 1 in kosmetischen und/oder pharmazeutischen Zubereitungen.
  8. Verwendung von Tensidgranulaten nach Anspruch 1 in Wasch- und Reinigungsmitteln.
EP01931574A 2000-04-15 2001-04-06 Verfahren zur herstellung von nichtionischen tensidgranulaten Expired - Lifetime EP1274826B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10018812A DE10018812A1 (de) 2000-04-15 2000-04-15 Verfahren zur Herstellung von nichtionischen Tensidgranulaten
DE10018812 2000-04-15
PCT/EP2001/003957 WO2001079414A1 (de) 2000-04-15 2001-04-06 Verfahren zur herstellung von nichtionischen tensidgranulaten

Publications (2)

Publication Number Publication Date
EP1274826A1 EP1274826A1 (de) 2003-01-15
EP1274826B1 true EP1274826B1 (de) 2006-06-21

Family

ID=7638927

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01931574A Expired - Lifetime EP1274826B1 (de) 2000-04-15 2001-04-06 Verfahren zur herstellung von nichtionischen tensidgranulaten

Country Status (6)

Country Link
US (1) US6846796B2 (de)
EP (1) EP1274826B1 (de)
AT (1) ATE331021T1 (de)
DE (2) DE10018812A1 (de)
ES (1) ES2266196T3 (de)
WO (1) WO2001079414A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI460010B (zh) * 2013-06-17 2014-11-11 Univ Nat Sun Yat Sen 用以吸附及分解有機污染物之緩釋型複合基質

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10163281A1 (de) * 2001-12-21 2003-07-03 Cognis Deutschland Gmbh Wasch- und reinigungsaktive Zubereitungen, enthaltend feste granuläre nichtion ische Tenside
DE10257390A1 (de) * 2002-12-06 2004-06-24 Ecolab Gmbh & Co. Ohg Saure Solids
US20040265346A1 (en) * 2003-04-28 2004-12-30 Aurore Verloo Water-in-oil emulsions for use in cosmetics
GB0313139D0 (en) * 2003-06-06 2003-07-09 Unilever Plc Detergent component and process for preparation
US20050009707A1 (en) * 2003-07-02 2005-01-13 Pompeo Michael P. APG granulates containing agrochemical active ingredients
GB2408267A (en) * 2003-11-21 2005-05-25 Reckitt Benckiser Inc Treatment block composition for toilets
US20060013792A1 (en) * 2004-07-16 2006-01-19 Jacqueline Fontaine Solid water-in-oil cosmetic emulsion
US7485613B2 (en) * 2004-12-01 2009-02-03 Venus Laboratories, Inc. Low foaming carpet-cleaning detergent concentrate comprised of ethylene oxide adduct and without phosphates
US7459420B2 (en) * 2004-12-01 2008-12-02 Vlahakis E Van Automatic dishwashing detergent comprised of ethylene oxide adduct and without phosphates
DE102005018925A1 (de) * 2005-04-22 2006-10-26 Henkel Kgaa Wasch- oder Reinigungsmittel
DE102006029007A1 (de) * 2006-06-24 2008-01-03 Cognis Ip Management Gmbh Feste Tenside in granularer Form
ES2292352B1 (es) * 2006-07-21 2009-02-16 Comercial Frucosol, S.L. Desengrasante en polvo y metodo de obtencion.
GB0714613D0 (en) * 2007-07-27 2007-09-05 Unilever Plc Improvements relating to perfumes
US8470756B2 (en) * 2009-03-17 2013-06-25 S.C. Johnson & Son, Inc. Eco-friendly laundry pretreatment compositions
US8216989B2 (en) * 2009-08-26 2012-07-10 Ecolab Usa Inc. Cleaning composition for removing/preventing redeposition of protein soils
US9055745B2 (en) 2011-04-13 2015-06-16 Natureza, Inc. Compositions for internal and external insecticides, ovicides, repellents and wound healing
US20150024991A1 (en) * 2011-11-16 2015-01-22 Oms Investments, Inc. Peroxy salt compositions and uses thereof
CN109219442A (zh) 2016-04-04 2019-01-15 Omeza有限公司 鱼油局部组合物
US11377628B2 (en) 2018-01-26 2022-07-05 Ecolab Usa Inc. Solidifying liquid anionic surfactants
MX2020007859A (es) 2018-01-26 2020-09-18 Ecolab Usa Inc Solidificacion de tensioactivos de oxido de amina, betaina y/o sultaina liquidos con un aglutinante y un portador opcional.
CN111655828A (zh) 2018-01-26 2020-09-11 埃科莱布美国股份有限公司 用载体固化液体氧化胺、甜菜碱和/或磺基甜菜碱表面活性剂
EP3810743B1 (de) 2018-06-15 2024-03-13 Ecolab USA Inc. Verbesserte persauerstoffstabilität unter verwendung von fettsäure in einem persauerstofffeststoff enthaltenden bleichaktivator
CA3140905A1 (en) * 2019-06-21 2020-12-24 Ecolab Usa Inc. Solid nonionic surfactants compositions
CN114920565B (zh) * 2022-03-29 2023-05-02 南通三责精密陶瓷有限公司 一种粘结剂喷射打印碳化硅陶瓷复合材料的制造方法

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2016962A (en) 1932-09-27 1935-10-08 Du Pont Process for producing glucamines and related products
US1985424A (en) 1933-03-23 1934-12-25 Ici Ltd Alkylene-oxide derivatives of polyhydroxyalkyl-alkylamides
US2703798A (en) 1950-05-25 1955-03-08 Commercial Solvents Corp Detergents from nu-monoalkyl-glucamines
DK130418A (de) 1967-07-19
ZA734721B (en) 1972-07-14 1974-03-27 Procter & Gamble Detergent compositions
GB1455873A (en) 1973-08-24 1976-11-17 Procter & Gamble Textile-softening detergent compositions
US4172887A (en) 1973-11-30 1979-10-30 L'oreal Hair conditioning compositions containing crosslinked polyaminopolyamides
LU68901A1 (de) 1973-11-30 1975-08-20
EP0026529B2 (de) 1979-09-29 1992-08-19 THE PROCTER & GAMBLE COMPANY Reinigungsmittelzusammensetzungen
DE3066202D1 (en) 1979-11-03 1984-02-23 Procter & Gamble Granular laundry compositions
DE3413571A1 (de) 1984-04-11 1985-10-24 Hoechst Ag, 6230 Frankfurt Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung
DE3526405A1 (de) 1985-07-24 1987-02-05 Henkel Kgaa Schichtsilikate mit beschraenktem quellvermoegen, verfahren zu ihrer herstellung und ihre verwendung in wasch- und reinigungsmitteln
FR2597335B1 (fr) 1986-04-18 1990-08-24 Oreal Composition cosmetique permettant de lutter contre l'aspect gras des cheveux, et son utilisation.
DE3706036A1 (de) 1987-02-25 1988-09-08 Basf Ag Polyacetale, verfahren zu deren herstellung aus dialdehyden und polyolcarbonsaeuren und verwendung der polyacetale
DE3711776A1 (de) 1987-04-08 1988-10-27 Huels Chemische Werke Ag Verwendung von n-polyhydroxyalkylfettsaeureamiden als verdickungsmittel fuer fluessige waessrige tensidsysteme
DE3914131A1 (de) 1989-04-28 1990-10-31 Henkel Kgaa Verwendung von calcinierten hydrotalciten als katalysatoren fuer die ethoxylierung bzw. propoxylierung von fettsaeureestern
YU221490A (sh) 1989-12-02 1993-10-20 Henkel Kg. Postupak za hidrotermalnu izradu kristalnog natrijum disilikata
BR9106906A (pt) 1990-09-28 1993-07-20 Procter & Gamble Detergente contiendo tensoativos de sulfato de alquila e de amida de acido polihidroxi graxo
DE69113057T2 (de) 1990-09-28 1996-05-30 Procter & Gamble Aniontenside, polyhydroxyfettsäureamide und magnesium enthaltende waschmittelzusammensetzungen.
US5174927A (en) 1990-09-28 1992-12-29 The Procter & Gamble Company Process for preparing brightener-containing liquid detergent compositions with polyhydroxy fatty acid amines
GB9021217D0 (en) 1990-09-28 1990-11-14 Procter & Gamble Liquid detergent compositions
CZ37393A3 (en) 1990-09-28 1994-04-13 Procter & Gamble Liquid cleansing preparation with enhanced stability and cleansing efficiency of enzyme
JP3119873B2 (ja) 1990-09-28 2000-12-25 ザ、プロクター、エンド、ギャンブル、カンパニー ポリヒドロキシ脂肪酸アミドと1種以上の追加の非イオン界面活性剤とを含有する非イオン界面活性剤系
JP3046070B2 (ja) 1990-09-28 2000-05-29 ザ、プロクター、エンド、ギャンブル、カンパニー ポリヒドロキシ脂肪酸アミドと増泡剤とを含有する洗剤組成物
RU2105790C1 (ru) 1990-09-28 1998-02-27 Дзе Проктер Энд Гэмбл Компани Детергентная композиция и способ очистки посуды
EP0550692B1 (de) 1990-09-28 1995-11-22 The Procter & Gamble Company Waschmittelzusammensetzungen mit polyhydroxyfettsäureamidtensid und polymerischen dispergiermittel
AU8851491A (en) 1990-09-28 1992-04-28 Procter & Gamble Company, The Polyhydroxy fatty acid amides in polycarboxylate-built detergents
SK25193A3 (en) 1990-09-28 1993-07-07 Procter & Gamble Detergent composition containing polyhydroxy fatty acid amides and alkyl ester sulfonate surfactants
WO1992006158A1 (en) 1990-09-28 1992-04-16 The Procter & Gamble Company Detergent compositions containing polyhydroxy fatty acid amide and alkyl alkoxylated sulfate
HU213940B (en) 1990-09-28 1997-11-28 Procter & Gamble Poly(hydroxy-alkyl) fatty acid amide surfactants in bleach-containing detergent compositions
CA2027518A1 (en) 1990-10-03 1992-04-04 Richard L. Tadsen Process for preparing high density detergent compositions containing particulate ph sensitive surfactant
CA2092192C (en) 1990-10-12 1998-08-18 Jeffrey John Scheibel Process for preparing n-alkyl polyhydroxy amines and fatty acid amides therefrom in hydroxy solvents
DE4102745A1 (de) 1991-01-30 1992-08-06 Henkel Kgaa Pulverfoermige tensidmischung
DE4127323A1 (de) * 1991-08-20 1993-02-25 Henkel Kgaa Verfahren zur herstellung von tensidgranulaten
DE4139551A1 (de) 1991-11-30 1993-06-03 Henkel Kgaa Pulverfoermige tensidmischung
DE4221381C1 (de) 1992-07-02 1994-02-10 Stockhausen Chem Fab Gmbh Pfropf-Copolymerisate von ungesättigten Monomeren und Zuckern, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4209339A1 (de) 1992-03-23 1993-09-30 Henkel Kgaa Verfahren zur Herstellung rieselfähiger Wasch- und Reinigungsmittelgranulate und/oder -teilgranulate
DE4300772C2 (de) 1993-01-14 1997-03-27 Stockhausen Chem Fab Gmbh Wasserlösliche, biologisch abbaubare Copolymere auf Basis von ungesättigten Mono- und Dicarbonsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung
KR970008132B1 (ko) 1993-02-08 1997-05-21 전동원 생체 임상의학용 키틴 및 키토산 제조방법
DE4309567A1 (de) 1993-03-24 1994-09-29 Henkel Kgaa Detergensgemische
US5610131A (en) * 1993-04-30 1997-03-11 The Procter & Gamble Company Structuring liquid nonionic surfactants prior to granulation process
DE4326959C2 (de) 1993-08-12 1995-07-06 Henkel Kgaa Verwendung von Fettsäure-N-alkylpolyhydroxyalkylamiden
WO1995006152A1 (en) 1993-08-25 1995-03-02 Burlington Industries, Inc. Variable gauge fabric and method of manufacture
CN1135724A (zh) 1993-11-24 1996-11-13 汉克尔股份两合公司 制备无水流散粒的糖表面活性剂粉末的方法
DE4400632C1 (de) 1994-01-12 1995-03-23 Henkel Kgaa Tensidgemische und diese enthaltende Mittel
DE4426215A1 (de) 1994-07-23 1996-01-25 Merck Patent Gmbh Ketotricyclo [5.2.1.0] decan-Derivate
DE4442987C2 (de) 1994-12-02 1997-04-17 Henkel Kgaa Kationische Chitinabbauprodukte
DE19537001C2 (de) 1995-08-28 1997-12-11 Henkel Kgaa Haarsprays
US5866530A (en) * 1995-11-25 1999-02-02 Henkel Kommanditgesellschaft Auf Aktien Non-aqueous liquid mixtures of alkyl polyglycoside and alkyl polyalkylene glycol ether useful in various detergent applications
DE19604180C2 (de) 1996-02-06 1997-12-18 Henkel Kgaa Verfahren zur Herstellung von Biopolymeren mit verbesserter Tensidlöslichkeit
EP0818450B1 (de) 1996-07-08 2003-01-15 Ciba SC Holding AG Triazinderivate als UV-Filter in Sonnenschutzmitteln
DE19702845A1 (de) * 1997-01-27 1998-07-30 Henkel Kgaa Verfahren zur Herstellung von Tensidgranulaten
DE19824742A1 (de) * 1998-06-03 1999-12-09 Henkel Kgaa Herstellung Alkylpolyglycosid-haltiger Granulate
FR2785198B1 (fr) * 1998-10-30 2002-02-22 Rhodia Chimie Sa Granules redispersables dans l'eau comprenant une matiere active sous forme liquide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI460010B (zh) * 2013-06-17 2014-11-11 Univ Nat Sun Yat Sen 用以吸附及分解有機污染物之緩釋型複合基質

Also Published As

Publication number Publication date
US6846796B2 (en) 2005-01-25
ES2266196T3 (es) 2007-03-01
WO2001079414A1 (de) 2001-10-25
EP1274826A1 (de) 2003-01-15
US20030130155A1 (en) 2003-07-10
DE10018812A1 (de) 2001-10-25
ATE331021T1 (de) 2006-07-15
DE50110261D1 (de) 2006-08-03

Similar Documents

Publication Publication Date Title
EP1274826B1 (de) Verfahren zur herstellung von nichtionischen tensidgranulaten
DE19904513A1 (de) Detergensgemische
EP0699472B1 (de) Verfahren zur Herstellung von Tensiden aus Weizennebenprodukten und ihre Verwendungen
EP1204634B1 (de) Verzweigte weitgehend ungesättigte fettalkoholsulfate
WO2004099353A1 (de) Sulfosuccinate
EP1370516B1 (de) Quaternäre tenside
DE19852973C1 (de) Herstellung niedrigviskoser wäßriger Detergenszubereitungen
EP1642887A1 (de) Quaternisierte Fettsäureamidoamine
EP1204627B1 (de) Verfahren zur herstellung von verzweigten, weitgehend ungesättigten fettalkoholpolyglycolethern
EP1336651A1 (de) Wasch- und reinigungsaktive Zubereitungen, enthaltend feste granuläre nichtionische Tenside
DE19851452A1 (de) Verwendung von Betainestern als mikrobizide Wirkstoffe
DE19944543C2 (de) Tensidgemische
DE19944544A1 (de) Tensidgemische
DE19944547C1 (de) Tensidgemische
DE10019140A1 (de) N, O-substituierte Biopolymere
DE10253217A1 (de) Verwendung von quaternierten Proteinhydrolysaten in Wasch- und Reinigungsmitteln
WO2001097610A1 (de) Verfahren zur antimikrobiellen behandlung von durch mikrobiellen befall gefährdeten materialien
EP1212401B1 (de) Waschmitteltabletten
EP1238585B1 (de) Verwendung von Esterquats
WO2000018779A1 (de) Tensidmischungen
DE19937295C2 (de) Syndetseifen
DE19855955A1 (de) Amidesterquats
EP1204635A1 (de) Verzweigte, weitgehend ungesättigte fettalkoholethersulfate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040806

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060621

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: COGNIS IP MANAGEMENT GMBH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50110261

Country of ref document: DE

Date of ref document: 20060803

Kind code of ref document: P

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: COGNIS IP MANAGEMENT GMBH

Effective date: 20060705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061121

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2266196

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070521

Year of fee payment: 7

26N No opposition filed

Effective date: 20070322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: COGNIS DEUTSCHLAND G.M.B.H. & CO. KG

Effective date: 20070430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070516

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080406

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170427

Year of fee payment: 17

Ref country code: GB

Payment date: 20170427

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170630

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110261

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430