EP1273608B1 - Flame-retardant epoxy resin composition, molded object thereof, and electronic part - Google Patents
Flame-retardant epoxy resin composition, molded object thereof, and electronic part Download PDFInfo
- Publication number
- EP1273608B1 EP1273608B1 EP01912477A EP01912477A EP1273608B1 EP 1273608 B1 EP1273608 B1 EP 1273608B1 EP 01912477 A EP01912477 A EP 01912477A EP 01912477 A EP01912477 A EP 01912477A EP 1273608 B1 EP1273608 B1 EP 1273608B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- compound
- epoxy resin
- carbon atoms
- phosphazene compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 182
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 131
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 131
- 239000003063 flame retardant Substances 0.000 title claims abstract description 67
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 title claims abstract description 63
- -1 phosphazene compound Chemical class 0.000 claims abstract description 329
- 150000001875 compounds Chemical class 0.000 claims abstract description 121
- 239000004593 Epoxy Substances 0.000 claims abstract description 56
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 38
- 229920000642 polymer Polymers 0.000 claims abstract description 35
- 239000004848 polyfunctional curative Substances 0.000 claims abstract description 27
- 239000011256 inorganic filler Substances 0.000 claims abstract description 17
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 17
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 12
- 150000008065 acid anhydrides Chemical class 0.000 claims abstract description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 59
- 125000001997 phenyl group Chemical class [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 51
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 28
- 125000004103 aminoalkyl group Chemical group 0.000 claims description 15
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 14
- 238000000465 moulding Methods 0.000 claims description 13
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 11
- 125000003118 aryl group Chemical group 0.000 claims description 9
- 125000005024 alkenyl aryl group Chemical group 0.000 claims description 6
- 125000003342 alkenyl group Chemical group 0.000 claims description 6
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 description 86
- GKTNLYAAZKKMTQ-UHFFFAOYSA-N n-[bis(dimethylamino)phosphinimyl]-n-methylmethanamine Chemical class CN(C)P(=N)(N(C)C)N(C)C GKTNLYAAZKKMTQ-UHFFFAOYSA-N 0.000 description 72
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 72
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 64
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 54
- 239000000243 solution Substances 0.000 description 49
- 239000000463 material Substances 0.000 description 46
- DZKXDEWNLDOXQH-UHFFFAOYSA-N 1,3,5,2,4,6-triazatriphosphinine Chemical class N1=PN=PN=P1 DZKXDEWNLDOXQH-UHFFFAOYSA-N 0.000 description 42
- 230000015572 biosynthetic process Effects 0.000 description 34
- 229920001577 copolymer Polymers 0.000 description 34
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 33
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 33
- 238000003786 synthesis reaction Methods 0.000 description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 30
- 238000012360 testing method Methods 0.000 description 29
- 238000000034 method Methods 0.000 description 27
- 229920005989 resin Polymers 0.000 description 27
- 239000011347 resin Substances 0.000 description 27
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 27
- 238000010992 reflux Methods 0.000 description 25
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 19
- 229910052783 alkali metal Inorganic materials 0.000 description 18
- 239000000047 product Substances 0.000 description 18
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 17
- 239000000835 fiber Substances 0.000 description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 15
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 15
- UXJHQBVRZUANLK-UHFFFAOYSA-N azanylidyne(dichloro)-$l^{5}-phosphane Chemical compound ClP(Cl)#N UXJHQBVRZUANLK-UHFFFAOYSA-N 0.000 description 15
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 15
- 229920003986 novolac Polymers 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 14
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 14
- 238000013329 compounding Methods 0.000 description 13
- 239000007787 solid Substances 0.000 description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- 238000010521 absorption reaction Methods 0.000 description 11
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 11
- 125000001309 chloro group Chemical group Cl* 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- 239000011521 glass Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 229920003002 synthetic resin Polymers 0.000 description 10
- 239000000057 synthetic resin Substances 0.000 description 10
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 239000000654 additive Substances 0.000 description 9
- 125000003277 amino group Chemical group 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 9
- UBIJTWDKTYCPMQ-UHFFFAOYSA-N hexachlorophosphazene Chemical compound ClP1(Cl)=NP(Cl)(Cl)=NP(Cl)(Cl)=N1 UBIJTWDKTYCPMQ-UHFFFAOYSA-N 0.000 description 9
- 239000003960 organic solvent Substances 0.000 description 9
- 239000002966 varnish Substances 0.000 description 9
- LTNCYKRVIPCLLU-UHFFFAOYSA-N 1,2,3,4,5,6-hexahydro-1,3,5,7,2,4,6,8-tetrazatetraphosphocine Chemical compound N1=PNPNPNP1 LTNCYKRVIPCLLU-UHFFFAOYSA-N 0.000 description 8
- 238000004679 31P NMR spectroscopy Methods 0.000 description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 8
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 8
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 8
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 8
- 239000004744 fabric Substances 0.000 description 8
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 8
- 239000011342 resin composition Substances 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- 229910052708 sodium Inorganic materials 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 7
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 7
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 7
- 229940106691 bisphenol a Drugs 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 7
- 229910052801 chlorine Inorganic materials 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 239000011889 copper foil Substances 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- 239000012044 organic layer Substances 0.000 description 7
- 239000005011 phenolic resin Substances 0.000 description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 229910000679 solder Inorganic materials 0.000 description 7
- HWJPIBYIISKQRL-UHFFFAOYSA-N 1,3,5,7,9,11-hexaza-2,4,6,8,10,12-hexaphosphacyclododec-11-ene Chemical compound N1=PNPNPNPNPNP1 HWJPIBYIISKQRL-UHFFFAOYSA-N 0.000 description 6
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical class OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 6
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 6
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- VYQNWZOUAUKGHI-UHFFFAOYSA-N monobenzone Chemical compound C1=CC(O)=CC=C1OCC1=CC=CC=C1 VYQNWZOUAUKGHI-UHFFFAOYSA-N 0.000 description 6
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical class CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 6
- 150000002989 phenols Chemical class 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 238000005476 soldering Methods 0.000 description 6
- 239000004634 thermosetting polymer Substances 0.000 description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 6
- XKTHNXOWFFIVIF-UHFFFAOYSA-N 1,2,3,4,5,6,7,8-octahydro-1,3,5,7,9,2,4,6,8,10-pentazapentaphosphecine Chemical compound n1p[nH][pH][nH][pH][nH][pH][nH][pH]1 XKTHNXOWFFIVIF-UHFFFAOYSA-N 0.000 description 5
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 5
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 5
- 229920007019 PC/ABS Polymers 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000002547 anomalous effect Effects 0.000 description 5
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 229930003836 cresol Natural products 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical compound COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229920005992 thermoplastic resin Polymers 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 239000008096 xylene Substances 0.000 description 5
- HVMHLMJYHBAOPL-UHFFFAOYSA-N 4-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)propan-2-yl]-7-oxabicyclo[4.1.0]heptane Chemical compound C1CC2OC2CC1C(C)(C)C1CC2OC2CC1 HVMHLMJYHBAOPL-UHFFFAOYSA-N 0.000 description 4
- FUGYGGDSWSUORM-UHFFFAOYSA-N 4-hydroxystyrene Chemical compound OC1=CC=C(C=C)C=C1 FUGYGGDSWSUORM-UHFFFAOYSA-N 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- OBGWERKIEKHDDJ-UHFFFAOYSA-N C(C1OC1)C(C(CC1OC1)(CC1OC1)C1(CC2OC2)CC2OC2)C=CC1(CC1OC1)OP1N=PN=P[N]1 Chemical compound C(C1OC1)C(C(CC1OC1)(CC1OC1)C1(CC2OC2)CC2OC2)C=CC1(CC1OC1)OP1N=PN=P[N]1 OBGWERKIEKHDDJ-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- DNRFVQHECUZLOL-UHFFFAOYSA-N NC(C(C1(N)N)(N)N)C=CC1(N)OP1N=PN=P[N]1 Chemical compound NC(C(C1(N)N)(N)N)C=CC1(N)OP1N=PN=P[N]1 DNRFVQHECUZLOL-UHFFFAOYSA-N 0.000 description 4
- SCQBGLQXWMWIOL-UHFFFAOYSA-N OC(C(C1(O)O)(O)O)C=CC1(O)OP1N=PN=P[N]1 Chemical compound OC(C(C1(O)O)(O)O)C=CC1(O)OP1N=PN=P[N]1 SCQBGLQXWMWIOL-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 4
- 239000004305 biphenyl Substances 0.000 description 4
- 235000010290 biphenyl Nutrition 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 4
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 229920001955 polyphenylene ether Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 4
- NESLWCLHZZISNB-UHFFFAOYSA-M sodium phenolate Chemical compound [Na+].[O-]C1=CC=CC=C1 NESLWCLHZZISNB-UHFFFAOYSA-M 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- PEJQKHLWXHKKGS-UHFFFAOYSA-N 2,2,4,4,6,6,8,8-octachloro-1,3,5,7-tetraza-2$l^{5},4$l^{5},6$l^{5},8$l^{5}-tetraphosphacycloocta-1,3,5,7-tetraene Chemical compound ClP1(Cl)=NP(Cl)(Cl)=NP(Cl)(Cl)=NP(Cl)(Cl)=N1 PEJQKHLWXHKKGS-UHFFFAOYSA-N 0.000 description 3
- YCCILVSKPBXVIP-UHFFFAOYSA-N 2-(4-hydroxyphenyl)ethanol Chemical compound OCCC1=CC=C(O)C=C1 YCCILVSKPBXVIP-UHFFFAOYSA-N 0.000 description 3
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229910015900 BF3 Inorganic materials 0.000 description 3
- VLIGQOBTWGPPQZ-UHFFFAOYSA-N C(C1OC1)OC(C(C1(OCC2OC2)OCC2OC2)(OCC2OC2)OCC2OC2)C=CC1(OCC1OC1)OP1N=PN=P[N]1 Chemical class C(C1OC1)OC(C(C1(OCC2OC2)OCC2OC2)(OCC2OC2)OCC2OC2)C=CC1(OCC1OC1)OP1N=PN=P[N]1 VLIGQOBTWGPPQZ-UHFFFAOYSA-N 0.000 description 3
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 3
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 125000005336 allyloxy group Chemical group 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 239000003610 charcoal Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 239000007822 coupling agent Substances 0.000 description 3
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 3
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 3
- 239000012433 hydrogen halide Substances 0.000 description 3
- 229910000039 hydrogen halide Inorganic materials 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000002648 laminated material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 125000005186 naphthyloxy group Chemical group C1(=CC=CC2=CC=CC=C12)O* 0.000 description 3
- 125000005447 octyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 3
- 229960001553 phloroglucinol Drugs 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 125000006239 protecting group Chemical group 0.000 description 3
- AOJFQRQNPXYVLM-UHFFFAOYSA-N pyridin-1-ium;chloride Chemical compound [Cl-].C1=CC=[NH+]C=C1 AOJFQRQNPXYVLM-UHFFFAOYSA-N 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000002459 sustained effect Effects 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 125000003652 trifluoroethoxy group Chemical group FC(CO*)(F)F 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 2
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 2
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 2
- PMRFBLQVGJNGLU-UHFFFAOYSA-N -form-1-(4-Hydroxyphenyl)ethanol Natural products CC(O)C1=CC=C(O)C=C1 PMRFBLQVGJNGLU-UHFFFAOYSA-N 0.000 description 2
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 2
- LJBWJFWNFUKAGS-UHFFFAOYSA-N 2-[bis(2-hydroxyphenyl)methyl]phenol Chemical compound OC1=CC=CC=C1C(C=1C(=CC=CC=1)O)C1=CC=CC=C1O LJBWJFWNFUKAGS-UHFFFAOYSA-N 0.000 description 2
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 2
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 2
- ASHGTJPOSUFTGB-UHFFFAOYSA-N 3-methoxyphenol Chemical compound COC1=CC=CC(O)=C1 ASHGTJPOSUFTGB-UHFFFAOYSA-N 0.000 description 2
- BKCUGMAGOAPJRG-UHFFFAOYSA-N 4-(nitromethyl)phenol Chemical compound OC1=CC=C(C[N+]([O-])=O)C=C1 BKCUGMAGOAPJRG-UHFFFAOYSA-N 0.000 description 2
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- HXDOZKJGKXYMEW-UHFFFAOYSA-N 4-ethylphenol Chemical class CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 2
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 2
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical class CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 239000004640 Melamine resin Substances 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical class CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000007259 addition reaction Methods 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical class OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- 239000004842 bisphenol F epoxy resin Substances 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Chemical class CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- RGIBXDHONMXTLI-UHFFFAOYSA-N chavicol Chemical class OC1=CC=C(CC=C)C=C1 RGIBXDHONMXTLI-UHFFFAOYSA-N 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- 229920006015 heat resistant resin Polymers 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229940018564 m-phenylenediamine Drugs 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229920012128 methyl methacrylate acrylonitrile butadiene styrene Polymers 0.000 description 2
- VYKXQOYUCMREIS-UHFFFAOYSA-N methylhexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21C VYKXQOYUCMREIS-UHFFFAOYSA-N 0.000 description 2
- NXPPAOGUKPJVDI-UHFFFAOYSA-N naphthalene-1,2-diol Chemical compound C1=CC=CC2=C(O)C(O)=CC=C21 NXPPAOGUKPJVDI-UHFFFAOYSA-N 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- BVJSUAQZOZWCKN-UHFFFAOYSA-N p-hydroxybenzyl alcohol Chemical compound OCC1=CC=C(O)C=C1 BVJSUAQZOZWCKN-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical class CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007363 ring formation reaction Methods 0.000 description 2
- 238000007142 ring opening reaction Methods 0.000 description 2
- CQRYARSYNCAZFO-UHFFFAOYSA-N salicyl alcohol Chemical compound OCC1=CC=CC=C1O CQRYARSYNCAZFO-UHFFFAOYSA-N 0.000 description 2
- SMQUZDBALVYZAC-UHFFFAOYSA-N salicylaldehyde Chemical compound OC1=CC=CC=C1C=O SMQUZDBALVYZAC-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 2
- 235000010215 titanium dioxide Nutrition 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- CSRZQMIRAZTJOY-UHFFFAOYSA-N trimethylsilyl iodide Chemical compound C[Si](C)(C)I CSRZQMIRAZTJOY-UHFFFAOYSA-N 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 150000003739 xylenols Chemical class 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- LTVUCOSIZFEASK-MPXCPUAZSA-N (3ar,4s,7r,7as)-3a-methyl-3a,4,7,7a-tetrahydro-4,7-methano-2-benzofuran-1,3-dione Chemical compound C([C@H]1C=C2)[C@H]2[C@H]2[C@]1(C)C(=O)OC2=O LTVUCOSIZFEASK-MPXCPUAZSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 1
- DDHYZBVBQZYMTO-UHFFFAOYSA-N 1-(dimethylamino)pentan-1-ol Chemical compound CCCCC(O)N(C)C DDHYZBVBQZYMTO-UHFFFAOYSA-N 0.000 description 1
- MCMFEZDRQOJKMN-UHFFFAOYSA-N 1-butylimidazole Chemical compound CCCCN1C=CN=C1 MCMFEZDRQOJKMN-UHFFFAOYSA-N 0.000 description 1
- AXFVIWBTKYFOCY-UHFFFAOYSA-N 1-n,1-n,3-n,3-n-tetramethylbutane-1,3-diamine Chemical compound CN(C)C(C)CCN(C)C AXFVIWBTKYFOCY-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- JUGSKHLZINSXPQ-UHFFFAOYSA-N 2,2,3,3,4,4,5,5-octafluoropentan-1-ol Chemical class OCC(F)(F)C(F)(F)C(F)(F)C(F)F JUGSKHLZINSXPQ-UHFFFAOYSA-N 0.000 description 1
- BLBVJHVRECUXKP-UHFFFAOYSA-N 2,3-dimethoxy-1,4-dimethylbenzene Chemical group COC1=C(C)C=CC(C)=C1OC BLBVJHVRECUXKP-UHFFFAOYSA-N 0.000 description 1
- BPHYZRNTQNPLFI-UHFFFAOYSA-N 2,4,6-trihydroxytoluene Chemical compound CC1=C(O)C=C(O)C=C1O BPHYZRNTQNPLFI-UHFFFAOYSA-N 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- NRUWTQDMLCYGOX-UHFFFAOYSA-N 2,4,6-tris[2-(oxiran-2-ylmethoxy)phenoxy]-2,4,6-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)OCC2CO2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)OCC2CO2)OC2=CC=CC=C2)C=CC=C1 NRUWTQDMLCYGOX-UHFFFAOYSA-N 0.000 description 1
- FATZREOGXSDRPE-UHFFFAOYSA-N 2,4,6-tris[2-(oxiran-2-ylmethoxymethyl)phenoxy]-2,4,6-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)COCC2CO2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)COCC2CO2)OC2=CC=CC=C2)C=CC=C1 FATZREOGXSDRPE-UHFFFAOYSA-N 0.000 description 1
- LEGKARAGQLMJJG-UHFFFAOYSA-N 2,4,6-tris[2-[2-(oxiran-2-ylmethoxy)ethyl]phenoxy]-2,4,6-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OCCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CCOCC2CO2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CCOCC2CO2)OC2=CC=CC=C2)C=CC=C1 LEGKARAGQLMJJG-UHFFFAOYSA-N 0.000 description 1
- BIAYXDDFRLZIDW-UHFFFAOYSA-N 2,4,6-tris[2-[4-(oxiran-2-ylmethoxy)butyl]phenoxy]-2,4,6-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OCCCCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CCCCOCC2CO2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CCCCOCC2CO2)OC2=CC=CC=C2)C=CC=C1 BIAYXDDFRLZIDW-UHFFFAOYSA-N 0.000 description 1
- ZZIQWEHALWSCQL-UHFFFAOYSA-N 2-(4-hydroxybutyl)phenol Chemical compound OCCCCC1=CC=CC=C1O ZZIQWEHALWSCQL-UHFFFAOYSA-N 0.000 description 1
- HFYXKCDAQVYCSS-UHFFFAOYSA-N 2-(4-nitrobutyl)phenol Chemical compound OC1=CC=CC=C1CCCC[N+]([O-])=O HFYXKCDAQVYCSS-UHFFFAOYSA-N 0.000 description 1
- VVHFXJOCUKBZFS-UHFFFAOYSA-N 2-(chloromethyl)-2-methyloxirane Chemical compound ClCC1(C)CO1 VVHFXJOCUKBZFS-UHFFFAOYSA-N 0.000 description 1
- AGIBHMPYXXPGAX-UHFFFAOYSA-N 2-(iodomethyl)oxirane Chemical compound ICC1CO1 AGIBHMPYXXPGAX-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- OXYPCEKHCDSZFY-UHFFFAOYSA-N 2-[(2,4,4,6,6-pentaphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]aniline Chemical compound NC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=CC=CC=C2)(OC2=CC=CC=C2)OC2=CC=CC=C2)OC2=CC=CC=C2)C=CC=C1 OXYPCEKHCDSZFY-UHFFFAOYSA-N 0.000 description 1
- CFGDKZCGYPYVLO-UHFFFAOYSA-N 2-[(2,4,4,6,6-pentaphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenol Chemical compound OC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=CC=CC=C2)(OC2=CC=CC=C2)OC2=CC=CC=C2)OC2=CC=CC=C2)C=CC=C1 CFGDKZCGYPYVLO-UHFFFAOYSA-N 0.000 description 1
- IZXFDQXHHPWKTC-UHFFFAOYSA-N 2-[1,1,2,4,4,4-hexakis(oxiran-2-ylmethoxy)butyl]-2-phenoxy-1,3,5-triaza-2lambda5,4,6-triphosphacyclohexa-1,3,5-triene Chemical class C(C1CO1)OC(C(OCC1CO1)(OCC1CO1)P1(=NP=NP=N1)OC1=CC=CC=C1)CC(OCC1CO1)(OCC1CO1)OCC1CO1 IZXFDQXHHPWKTC-UHFFFAOYSA-N 0.000 description 1
- HDPLHDGYGLENEI-UHFFFAOYSA-N 2-[1-(oxiran-2-ylmethoxy)propan-2-yloxymethyl]oxirane Chemical compound C1OC1COC(C)COCC1CO1 HDPLHDGYGLENEI-UHFFFAOYSA-N 0.000 description 1
- FVCHRIQAIOHAIC-UHFFFAOYSA-N 2-[1-[1-[1-(oxiran-2-ylmethoxy)propan-2-yloxy]propan-2-yloxy]propan-2-yloxymethyl]oxirane Chemical compound C1OC1COC(C)COC(C)COC(C)COCC1CO1 FVCHRIQAIOHAIC-UHFFFAOYSA-N 0.000 description 1
- RLVAGWUGUBPKJI-UHFFFAOYSA-N 2-[2,3,4-tris(2-aminophenoxy)-5-[(2-phenoxy-1,3,5-triaza-2lambda5,4,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]aniline Chemical compound NC1=C(OC=2C(=C(C(=C(OP3(=NP=NP=N3)OC3=CC=CC=C3)C=2)OC2=C(C=CC=C2)N)OC2=C(C=CC=C2)N)OC2=C(C=CC=C2)N)C=CC=C1 RLVAGWUGUBPKJI-UHFFFAOYSA-N 0.000 description 1
- PVPSZNZBRYVQCE-UHFFFAOYSA-N 2-[2,3,4-tris(2-hydroxyphenoxy)-5-[(2-phenoxy-1,3,5-triaza-2lambda5,4,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]phenol Chemical compound OC1=C(OC=2C(=C(C(=C(OP3(=NP=NP=N3)OC3=CC=CC=C3)C=2)OC2=C(C=CC=C2)O)OC2=C(C=CC=C2)O)OC2=C(C=CC=C2)O)C=CC=C1 PVPSZNZBRYVQCE-UHFFFAOYSA-N 0.000 description 1
- CVXKOAJADYYMEI-UHFFFAOYSA-N 2-[2,3-bis[2-(oxiran-2-ylmethoxy)phenoxy]phenoxy]-2,4,4-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OC1=C(OC=2C(=C(OP3(=NP=NP(=N3)(OC3=CC=CC=C3)OC3=CC=CC=C3)OC3=CC=CC=C3)C=CC=2)OC2=C(C=CC=C2)OCC2CO2)C=CC=C1 CVXKOAJADYYMEI-UHFFFAOYSA-N 0.000 description 1
- PDNQELOJCQDREL-UHFFFAOYSA-N 2-[2,3-bis[2-(oxiran-2-ylmethoxymethyl)phenoxy]phenoxy]-2,4,4-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OCC1=C(OC=2C(=C(OP3(=NP=NP(=N3)(OC3=CC=CC=C3)OC3=CC=CC=C3)OC3=CC=CC=C3)C=CC=2)OC2=C(C=CC=C2)COCC2CO2)C=CC=C1 PDNQELOJCQDREL-UHFFFAOYSA-N 0.000 description 1
- FMLISNJUONQLKU-UHFFFAOYSA-N 2-[2,3-bis[2-[2-(oxiran-2-ylmethoxy)ethyl]phenoxy]phenoxy]-2,4,4-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OCCC1=C(OC=2C(=C(OP3(=NP=NP(=N3)(OC3=CC=CC=C3)OC3=CC=CC=C3)OC3=CC=CC=C3)C=CC=2)OC2=C(C=CC=C2)CCOCC2CO2)C=CC=C1 FMLISNJUONQLKU-UHFFFAOYSA-N 0.000 description 1
- WJKURIWYUQXUEZ-UHFFFAOYSA-N 2-[2,3-bis[2-[4-(oxiran-2-ylmethoxy)butyl]phenoxy]phenoxy]-2,4,4-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OCCCCC1=C(OC=2C(=C(OP3(=NP=NP(=N3)(OC3=CC=CC=C3)OC3=CC=CC=C3)OC3=CC=CC=C3)C=CC=2)OC2=C(C=CC=C2)CCCCOCC2CO2)C=CC=C1 WJKURIWYUQXUEZ-UHFFFAOYSA-N 0.000 description 1
- QIZZIYHVFSXWDB-UHFFFAOYSA-N 2-[2-(2-aminophenoxy)-3-[(2,4,4-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]aniline Chemical compound NC1=C(OC=2C(=C(OP3(=NP=NP(=N3)(OC3=CC=CC=C3)OC3=CC=CC=C3)OC3=CC=CC=C3)C=CC=2)OC2=C(C=CC=C2)N)C=CC=C1 QIZZIYHVFSXWDB-UHFFFAOYSA-N 0.000 description 1
- VORYSCLNIAIDEY-UHFFFAOYSA-N 2-[2-(2-hydroxyphenoxy)-3-[(2,4,4-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]phenol Chemical compound OC1=C(OC=2C(=C(OP3(=NP=NP(=N3)(OC3=CC=CC=C3)OC3=CC=CC=C3)OC3=CC=CC=C3)C=CC=2)OC2=C(C=CC=C2)O)C=CC=C1 VORYSCLNIAIDEY-UHFFFAOYSA-N 0.000 description 1
- VZXOOYPRMIUGEL-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)phenoxy]-2,4,4,6,6-pentaphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=CC=CC=C2)(OC2=CC=CC=C2)OC2=CC=CC=C2)OC2=CC=CC=C2)C=CC=C1 VZXOOYPRMIUGEL-UHFFFAOYSA-N 0.000 description 1
- QPNSLAPGJDIOIM-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxymethyl)phenoxy]-2,4,4,6,6-pentaphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=CC=CC=C2)(OC2=CC=CC=C2)OC2=CC=CC=C2)OC2=CC=CC=C2)C=CC=C1 QPNSLAPGJDIOIM-UHFFFAOYSA-N 0.000 description 1
- RRSBMJKFSRKIMH-UHFFFAOYSA-N 2-[2-[(2,4,4,6,6-pentaphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenyl]ethanamine Chemical compound NCCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=CC=CC=C2)(OC2=CC=CC=C2)OC2=CC=CC=C2)OC2=CC=CC=C2)C=CC=C1 RRSBMJKFSRKIMH-UHFFFAOYSA-N 0.000 description 1
- RHEMTURLTRCGHE-UHFFFAOYSA-N 2-[2-[(2,4,4,6,6-pentaphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenyl]ethanol Chemical compound OCCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=CC=CC=C2)(OC2=CC=CC=C2)OC2=CC=CC=C2)OC2=CC=CC=C2)C=CC=C1 RHEMTURLTRCGHE-UHFFFAOYSA-N 0.000 description 1
- INDGGJZXLQWFLE-UHFFFAOYSA-N 2-[2-[2,3,4-tris[2-(2-aminoethyl)phenoxy]-5-[(2-phenoxy-1,3,5-triaza-2lambda5,4,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]phenyl]ethanamine Chemical compound NCCC1=C(OC=2C(=C(C(=C(OP3(=NP=NP=N3)OC3=CC=CC=C3)C=2)OC2=C(C=CC=C2)CCN)OC2=C(C=CC=C2)CCN)OC2=C(C=CC=C2)CCN)C=CC=C1 INDGGJZXLQWFLE-UHFFFAOYSA-N 0.000 description 1
- CBPOUVIKIIEPNS-UHFFFAOYSA-N 2-[2-[2,3,4-tris[2-(2-hydroxyethyl)phenoxy]-5-[(2-phenoxy-1,3,5-triaza-2lambda5,4,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]phenyl]ethanol Chemical compound OCCC1=C(OC=2C(=C(C(=C(OP3(=NP=NP=N3)OC3=CC=CC=C3)C=2)OC2=C(C=CC=C2)CCO)OC2=C(C=CC=C2)CCO)OC2=C(C=CC=C2)CCO)C=CC=C1 CBPOUVIKIIEPNS-UHFFFAOYSA-N 0.000 description 1
- YOECWZTZKJCSPA-UHFFFAOYSA-N 2-[2-[2-(oxiran-2-ylmethoxy)ethyl]phenoxy]-2,4,4,6,6-pentaphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OCCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=CC=CC=C2)(OC2=CC=CC=C2)OC2=CC=CC=C2)OC2=CC=CC=C2)C=CC=C1 YOECWZTZKJCSPA-UHFFFAOYSA-N 0.000 description 1
- JYVAVQJVEUEPLM-UHFFFAOYSA-N 2-[2-[2-[2-(2-aminoethyl)phenoxy]-3-[(2,4,4-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]phenyl]ethanamine Chemical compound NCCC1=C(OC=2C(=C(OP3(=NP=NP(=N3)(OC3=CC=CC=C3)OC3=CC=CC=C3)OC3=CC=CC=C3)C=CC=2)OC2=C(C=CC=C2)CCN)C=CC=C1 JYVAVQJVEUEPLM-UHFFFAOYSA-N 0.000 description 1
- CHRXRSRSSCMQIJ-UHFFFAOYSA-N 2-[2-[2-[2-(2-hydroxyethyl)phenoxy]-3-[(2,4,4-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]phenyl]ethanol Chemical compound OCCC1=C(OC=2C(=C(OP3(=NP=NP(=N3)(OC3=CC=CC=C3)OC3=CC=CC=C3)OC3=CC=CC=C3)C=CC=2)OC2=C(C=CC=C2)CCO)C=CC=C1 CHRXRSRSSCMQIJ-UHFFFAOYSA-N 0.000 description 1
- ZIYTULFLZRYWBQ-UHFFFAOYSA-N 2-[2-[4-(oxiran-2-ylmethoxy)butyl]phenoxy]-2,4,4,6,6-pentaphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OCCCCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=CC=CC=C2)(OC2=CC=CC=C2)OC2=CC=CC=C2)OC2=CC=CC=C2)C=CC=C1 ZIYTULFLZRYWBQ-UHFFFAOYSA-N 0.000 description 1
- YQZXHPRNYZMDBA-UHFFFAOYSA-N 2-[2-[[4,6-bis[2-(2-aminoethyl)phenoxy]-2,4,6-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl]oxy]phenyl]ethanamine Chemical compound NCCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CCN)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CCN)OC2=CC=CC=C2)C=CC=C1 YQZXHPRNYZMDBA-UHFFFAOYSA-N 0.000 description 1
- XKYOSRRFACFDSP-UHFFFAOYSA-N 2-[2-[[4,6-bis[2-(2-hydroxyethyl)phenoxy]-2,4,6-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl]oxy]phenyl]ethanol Chemical compound OCCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CCO)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CCO)OC2=CC=CC=C2)C=CC=C1 XKYOSRRFACFDSP-UHFFFAOYSA-N 0.000 description 1
- NZHNJOJQMPJLFA-UHFFFAOYSA-N 2-[3,5-bis(oxiran-2-yl)phenyl]oxirane Chemical compound C1OC1C1=CC(C2OC2)=CC(C2OC2)=C1 NZHNJOJQMPJLFA-UHFFFAOYSA-N 0.000 description 1
- WTYYGFLRBWMFRY-UHFFFAOYSA-N 2-[6-(oxiran-2-ylmethoxy)hexoxymethyl]oxirane Chemical compound C1OC1COCCCCCCOCC1CO1 WTYYGFLRBWMFRY-UHFFFAOYSA-N 0.000 description 1
- QTWXXRIZIVSSPZ-UHFFFAOYSA-N 2-[[4,6-bis(2-aminophenoxy)-2,4,6-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl]oxy]aniline Chemical compound NC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)N)(OC2=CC=CC=C2)OC2=C(C=CC=C2)N)OC2=CC=CC=C2)C=CC=C1 QTWXXRIZIVSSPZ-UHFFFAOYSA-N 0.000 description 1
- SVWPMJFFUSKSQK-UHFFFAOYSA-N 2-[[4,6-bis(2-hydroxyphenoxy)-2,4,6-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl]oxy]phenol Chemical compound OC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)O)(OC2=CC=CC=C2)OC2=C(C=CC=C2)O)OC2=CC=CC=C2)C=CC=C1 SVWPMJFFUSKSQK-UHFFFAOYSA-N 0.000 description 1
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- GVQDVIAKPKRTFJ-UHFFFAOYSA-N 2-ethyl-1,4-dimethylimidazole Chemical compound CCC1=NC(C)=CN1C GVQDVIAKPKRTFJ-UHFFFAOYSA-N 0.000 description 1
- PQAMFDRRWURCFQ-UHFFFAOYSA-N 2-ethyl-1h-imidazole Chemical compound CCC1=NC=CN1 PQAMFDRRWURCFQ-UHFFFAOYSA-N 0.000 description 1
- YTWBFUCJVWKCCK-UHFFFAOYSA-N 2-heptadecyl-1h-imidazole Chemical compound CCCCCCCCCCCCCCCCCC1=NC=CN1 YTWBFUCJVWKCCK-UHFFFAOYSA-N 0.000 description 1
- SIQHSJOKAUDDLN-UHFFFAOYSA-N 2-methyl-1-propylimidazole Chemical compound CCCN1C=CN=C1C SIQHSJOKAUDDLN-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- IEGICUQRUFSAEC-UHFFFAOYSA-N 2-phenoxy-2-[2,3,4,5-tetrakis[2-(oxiran-2-ylmethoxy)phenoxy]phenoxy]-1,3,5-triaza-2lambda5,4,6-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OC1=C(OC=2C(=C(C(=C(OP3(=NP=NP=N3)OC3=CC=CC=C3)C=2)OC2=C(C=CC=C2)OCC2CO2)OC2=C(C=CC=C2)OCC2CO2)OC2=C(C=CC=C2)OCC2CO2)C=CC=C1 IEGICUQRUFSAEC-UHFFFAOYSA-N 0.000 description 1
- MYQWGXVYFLMANZ-UHFFFAOYSA-N 2-phenoxy-2-[2,3,4,5-tetrakis[2-(oxiran-2-ylmethoxymethyl)phenoxy]phenoxy]-1,3,5-triaza-2lambda5,4,6-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OCC1=C(OC=2C(=C(C(=C(OP3(=NP=NP=N3)OC3=CC=CC=C3)C=2)OC2=C(C=CC=C2)COCC2CO2)OC2=C(C=CC=C2)COCC2CO2)OC2=C(C=CC=C2)COCC2CO2)C=CC=C1 MYQWGXVYFLMANZ-UHFFFAOYSA-N 0.000 description 1
- FCOSIAKXUJFLNA-UHFFFAOYSA-N 2-phenoxy-2-[2,3,4,5-tetrakis[2-[2-(oxiran-2-ylmethoxy)ethyl]phenoxy]phenoxy]-1,3,5-triaza-2lambda5,4,6-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OCCC1=C(OC=2C(=C(C(=C(OP3(=NP=NP=N3)OC3=CC=CC=C3)C=2)OC2=C(C=CC=C2)CCOCC2CO2)OC2=C(C=CC=C2)CCOCC2CO2)OC2=C(C=CC=C2)CCOCC2CO2)C=CC=C1 FCOSIAKXUJFLNA-UHFFFAOYSA-N 0.000 description 1
- BBYVNHVOYGDIQV-UHFFFAOYSA-N 2-phenoxy-2-[2,3,4,5-tetrakis[2-[4-(oxiran-2-ylmethoxy)butyl]phenoxy]phenoxy]-1,3,5-triaza-2lambda5,4,6-triphosphacyclohexa-1,3,5-triene Chemical compound C(C1CO1)OCCCCC1=C(OC=2C(=C(C(=C(OP3(=NP=NP=N3)OC3=CC=CC=C3)C=2)OC2=C(C=CC=C2)CCCCOCC2CO2)OC2=C(C=CC=C2)CCCCOCC2CO2)OC2=C(C=CC=C2)CCCCOCC2CO2)C=CC=C1 BBYVNHVOYGDIQV-UHFFFAOYSA-N 0.000 description 1
- ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 2-phenyl-1h-imidazole Chemical compound C1=CNC(C=2C=CC=CC=2)=N1 ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 0.000 description 1
- LLEASVZEQBICSN-UHFFFAOYSA-N 2-undecyl-1h-imidazole Chemical compound CCCCCCCCCCCC1=NC=CN1 LLEASVZEQBICSN-UHFFFAOYSA-N 0.000 description 1
- WMNWJTDAUWBXFJ-UHFFFAOYSA-N 3,3,4-trimethylheptane-2,2-diamine Chemical compound CCCC(C)C(C)(C)C(C)(N)N WMNWJTDAUWBXFJ-UHFFFAOYSA-N 0.000 description 1
- YJCSUBLMBRTUOX-UHFFFAOYSA-N 3,3,4-trimethylhexane-2,2-diamine Chemical compound CCC(C)C(C)(C)C(C)(N)N YJCSUBLMBRTUOX-UHFFFAOYSA-N 0.000 description 1
- SESYNEDUKZDRJL-UHFFFAOYSA-N 3-(2-methylimidazol-1-yl)propanenitrile Chemical compound CC1=NC=CN1CCC#N SESYNEDUKZDRJL-UHFFFAOYSA-N 0.000 description 1
- BVYPJEBKDLFIDL-UHFFFAOYSA-N 3-(2-phenylimidazol-1-yl)propanenitrile Chemical compound N#CCCN1C=CN=C1C1=CC=CC=C1 BVYPJEBKDLFIDL-UHFFFAOYSA-N 0.000 description 1
- SZUPZARBRLCVCB-UHFFFAOYSA-N 3-(2-undecylimidazol-1-yl)propanenitrile Chemical compound CCCCCCCCCCCC1=NC=CN1CCC#N SZUPZARBRLCVCB-UHFFFAOYSA-N 0.000 description 1
- YAXXOCZAXKLLCV-UHFFFAOYSA-N 3-dodecyloxolane-2,5-dione Chemical compound CCCCCCCCCCCCC1CC(=O)OC1=O YAXXOCZAXKLLCV-UHFFFAOYSA-N 0.000 description 1
- OKVJCVWFVRATSG-UHFFFAOYSA-N 3-hydroxybenzyl alcohol Chemical compound OCC1=CC=CC(O)=C1 OKVJCVWFVRATSG-UHFFFAOYSA-N 0.000 description 1
- RTZZCYNQPHTPPL-UHFFFAOYSA-N 3-nitrophenol Chemical compound OC1=CC=CC([N+]([O-])=O)=C1 RTZZCYNQPHTPPL-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- VUBNQBXWQVHBLU-UHFFFAOYSA-N 4-(2-nitroethyl)phenol Chemical compound OC1=CC=C(CC[N+]([O-])=O)C=C1 VUBNQBXWQVHBLU-UHFFFAOYSA-N 0.000 description 1
- LRAFIZISDITYKS-UHFFFAOYSA-N 4-(2-phenoxy-1,3,5-triaza-2lambda5,4,6-triphosphacyclohexa-1,3,5-trien-2-yl)butane-1,1,1,3,4,4-hexamine Chemical compound NC(C(N)(N)P1(=NP=NP=N1)OC1=CC=CC=C1)CC(N)(N)N LRAFIZISDITYKS-UHFFFAOYSA-N 0.000 description 1
- MIHZYDBOSBZBBR-UHFFFAOYSA-N 4-(2-phenoxy-1,3,5-triaza-2lambda5,4,6-triphosphacyclohexa-1,3,5-trien-2-yl)butane-1,1,1,3,4,4-hexol Chemical class OC(C(O)(O)P1(=NP=NP=N1)OC1=CC=CC=C1)CC(O)(O)O MIHZYDBOSBZBBR-UHFFFAOYSA-N 0.000 description 1
- BAYGVMXZJBFEMB-UHFFFAOYSA-N 4-(trifluoromethyl)phenol Chemical class OC1=CC=C(C(F)(F)F)C=C1 BAYGVMXZJBFEMB-UHFFFAOYSA-N 0.000 description 1
- IGSBHTZEJMPDSZ-UHFFFAOYSA-N 4-[(4-amino-3-methylcyclohexyl)methyl]-2-methylcyclohexan-1-amine Chemical compound C1CC(N)C(C)CC1CC1CC(C)C(N)CC1 IGSBHTZEJMPDSZ-UHFFFAOYSA-N 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- XMWPBCDEGPQYHK-UHFFFAOYSA-N 4-[2-[(2,4,4,6,6-pentaphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenyl]butan-1-amine Chemical compound NCCCCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=CC=CC=C2)(OC2=CC=CC=C2)OC2=CC=CC=C2)OC2=CC=CC=C2)C=CC=C1 XMWPBCDEGPQYHK-UHFFFAOYSA-N 0.000 description 1
- NHTQBGUMMSGWDZ-UHFFFAOYSA-N 4-[2-[(2,4,4,6,6-pentaphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenyl]butan-1-ol Chemical compound OCCCCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=CC=CC=C2)(OC2=CC=CC=C2)OC2=CC=CC=C2)OC2=CC=CC=C2)C=CC=C1 NHTQBGUMMSGWDZ-UHFFFAOYSA-N 0.000 description 1
- YXEVOXOWSPMNTJ-UHFFFAOYSA-N 4-[2-[2,3,4-tris[2-(4-aminobutyl)phenoxy]-5-[(2-phenoxy-1,3,5-triaza-2lambda5,4,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]phenyl]butan-1-amine Chemical compound NCCCCC1=C(OC=2C(=C(C(=C(OP3(=NP=NP=N3)OC3=CC=CC=C3)C=2)OC2=C(C=CC=C2)CCCCN)OC2=C(C=CC=C2)CCCCN)OC2=C(C=CC=C2)CCCCN)C=CC=C1 YXEVOXOWSPMNTJ-UHFFFAOYSA-N 0.000 description 1
- SQEJBPGXHWGSSF-UHFFFAOYSA-N 4-[2-[2,3,4-tris[2-(4-hydroxybutyl)phenoxy]-5-[(2-phenoxy-1,3,5-triaza-2lambda5,4,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]phenyl]butan-1-ol Chemical compound OCCCCC1=C(OC=2C(=C(C(=C(OP3(=NP=NP=N3)OC3=CC=CC=C3)C=2)OC2=C(C=CC=C2)CCCCO)OC2=C(C=CC=C2)CCCCO)OC2=C(C=CC=C2)CCCCO)C=CC=C1 SQEJBPGXHWGSSF-UHFFFAOYSA-N 0.000 description 1
- BROMTHDKHJRJHA-UHFFFAOYSA-N 4-[2-[2-[2-(4-aminobutyl)phenoxy]-3-[(2,4,4-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]phenyl]butan-1-amine Chemical compound NCCCCC1=C(OC=2C(=C(OP3(=NP=NP(=N3)(OC3=CC=CC=C3)OC3=CC=CC=C3)OC3=CC=CC=C3)C=CC=2)OC2=C(C=CC=C2)CCCCN)C=CC=C1 BROMTHDKHJRJHA-UHFFFAOYSA-N 0.000 description 1
- WXQOCBANPZEFJE-UHFFFAOYSA-N 4-[2-[2-[2-(4-hydroxybutyl)phenoxy]-3-[(2,4,4-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]phenyl]butan-1-ol Chemical compound OCCCCC1=C(OC=2C(=C(OP3(=NP=NP(=N3)(OC3=CC=CC=C3)OC3=CC=CC=C3)OC3=CC=CC=C3)C=CC=2)OC2=C(C=CC=C2)CCCCO)C=CC=C1 WXQOCBANPZEFJE-UHFFFAOYSA-N 0.000 description 1
- YHQBXOGJAKDQCP-UHFFFAOYSA-N 4-[2-[[4,6-bis[2-(4-aminobutyl)phenoxy]-2,4,6-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl]oxy]phenyl]butan-1-amine Chemical compound NCCCCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CCCCN)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CCCCN)OC2=CC=CC=C2)C=CC=C1 YHQBXOGJAKDQCP-UHFFFAOYSA-N 0.000 description 1
- IXSDLWWKXRAOEB-UHFFFAOYSA-N 4-[2-[[4,6-bis[2-(4-hydroxybutyl)phenoxy]-2,4,6-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl]oxy]phenyl]butan-1-ol Chemical compound OCCCCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CCCCO)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CCCCO)OC2=CC=CC=C2)C=CC=C1 IXSDLWWKXRAOEB-UHFFFAOYSA-N 0.000 description 1
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical class OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- SAVQKMWTUAWFSN-UHFFFAOYSA-N 4-methoxyphenol;sodium Chemical compound [Na].COC1=CC=C(O)C=C1 SAVQKMWTUAWFSN-UHFFFAOYSA-N 0.000 description 1
- FVCSARBUZVPSQF-UHFFFAOYSA-N 5-(2,4-dioxooxolan-3-yl)-7-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C(C(OC2=O)=O)C2C(C)=CC1C1C(=O)COC1=O FVCSARBUZVPSQF-UHFFFAOYSA-N 0.000 description 1
- RIAHASMJDOMQER-UHFFFAOYSA-N 5-ethyl-2-methyl-1h-imidazole Chemical compound CCC1=CN=C(C)N1 RIAHASMJDOMQER-UHFFFAOYSA-N 0.000 description 1
- TYOXIFXYEIILLY-UHFFFAOYSA-N 5-methyl-2-phenyl-1h-imidazole Chemical compound N1C(C)=CN=C1C1=CC=CC=C1 TYOXIFXYEIILLY-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- ALEBYBVYXQTORU-UHFFFAOYSA-N 6-hydrazinyl-6-oxohexanoic acid Chemical compound NNC(=O)CCCCC(O)=O ALEBYBVYXQTORU-UHFFFAOYSA-N 0.000 description 1
- YXALYBMHAYZKAP-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-ylmethyl 7-oxabicyclo[4.1.0]heptane-4-carboxylate Chemical compound C1CC2OC2CC1C(=O)OCC1CC2OC2CC1 YXALYBMHAYZKAP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- ADAHGVUHKDNLEB-UHFFFAOYSA-N Bis(2,3-epoxycyclopentyl)ether Chemical compound C1CC2OC2C1OC1CCC2OC21 ADAHGVUHKDNLEB-UHFFFAOYSA-N 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- RVMDTRGWBDVMAF-UHFFFAOYSA-N C(C1OC1)OC(C=CC=C1)=C1OC(C(OC(C=CC=C1)=C1OCC1OC1)=C(C(OP1N=PN=P[N]1)=C1OC(C=CC=C2)=C2OCC2OC2)OC(C=CC=C2)=C2OCC2OC2)=C1OC(C=CC=C1)=C1OCC1OC1 Chemical compound C(C1OC1)OC(C=CC=C1)=C1OC(C(OC(C=CC=C1)=C1OCC1OC1)=C(C(OP1N=PN=P[N]1)=C1OC(C=CC=C2)=C2OCC2OC2)OC(C=CC=C2)=C2OCC2OC2)=C1OC(C=CC=C1)=C1OCC1OC1 RVMDTRGWBDVMAF-UHFFFAOYSA-N 0.000 description 1
- FTOSIMQUUUKWME-UHFFFAOYSA-N C(C1OC1)OCC(C=CC=C1)=C1OC(C(OC1=C(COCC2OC2)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(COCC3OC3)C=CC=C2)OC2=C(COCC3OC3)C=CC=C2)=C1OC1=C(COCC2OC2)C=CC=C1 Chemical compound C(C1OC1)OCC(C=CC=C1)=C1OC(C(OC1=C(COCC2OC2)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(COCC3OC3)C=CC=C2)OC2=C(COCC3OC3)C=CC=C2)=C1OC1=C(COCC2OC2)C=CC=C1 FTOSIMQUUUKWME-UHFFFAOYSA-N 0.000 description 1
- GVKMVHBYJNOFBJ-UHFFFAOYSA-N C(CCOCC1OC1)CC(C=CC=C1)=C1OC(C(OC1=C(CCCCOCC2OC2)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CCCCOCC3OC3)C=CC=C2)OC2=C(CCCCOCC3OC3)C=CC=C2)=C1OC1=C(CCCCOCC2OC2)C=CC=C1 Chemical compound C(CCOCC1OC1)CC(C=CC=C1)=C1OC(C(OC1=C(CCCCOCC2OC2)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CCCCOCC3OC3)C=CC=C2)OC2=C(CCCCOCC3OC3)C=CC=C2)=C1OC1=C(CCCCOCC2OC2)C=CC=C1 GVKMVHBYJNOFBJ-UHFFFAOYSA-N 0.000 description 1
- JCTDGQHNZXXCJB-UHFFFAOYSA-N C(COCC1OC1)C(C=CC=C1)=C1OC(C(OC1=C(CCOCC2OC2)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CCOCC3OC3)C=CC=C2)OC2=C(CCOCC3OC3)C=CC=C2)=C1OC1=C(CCOCC2OC2)C=CC=C1 Chemical compound C(COCC1OC1)C(C=CC=C1)=C1OC(C(OC1=C(CCOCC2OC2)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CCOCC3OC3)C=CC=C2)OC2=C(CCOCC3OC3)C=CC=C2)=C1OC1=C(CCOCC2OC2)C=CC=C1 JCTDGQHNZXXCJB-UHFFFAOYSA-N 0.000 description 1
- 0 CC(C)(C)N=P(*)(C(C)(C)C)O* Chemical compound CC(C)(C)N=P(*)(C(C)(C)C)O* 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- ZFIVKAOQEXOYFY-UHFFFAOYSA-N Diepoxybutane Chemical compound C1OC1C1OC1 ZFIVKAOQEXOYFY-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000004420 Iupilon Substances 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 229920009204 Methacrylate-butadiene-styrene Polymers 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- SRTMEDAMKKPFEX-UHFFFAOYSA-N NC(C=CC=C1)=C1OC(C(OC(C=CC=C1)=C1N)=C(C(OP1N=PN=P[N]1)=C1OC(C=CC=C2)=C2N)OC(C=CC=C2)=C2N)=C1OC(C=CC=C1)=C1N Chemical compound NC(C=CC=C1)=C1OC(C(OC(C=CC=C1)=C1N)=C(C(OP1N=PN=P[N]1)=C1OC(C=CC=C2)=C2N)OC(C=CC=C2)=C2N)=C1OC(C=CC=C1)=C1N SRTMEDAMKKPFEX-UHFFFAOYSA-N 0.000 description 1
- WCJAHBFVNDRFEM-UHFFFAOYSA-N NCC(C=CC=C1)=C1OC(C(OC1=C(CN)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CN)C=CC=C2)OC2=C(CN)C=CC=C2)=C1OC1=C(CN)C=CC=C1 Chemical compound NCC(C=CC=C1)=C1OC(C(OC1=C(CN)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CN)C=CC=C2)OC2=C(CN)C=CC=C2)=C1OC1=C(CN)C=CC=C1 WCJAHBFVNDRFEM-UHFFFAOYSA-N 0.000 description 1
- LSEVRSRUPOUIKC-UHFFFAOYSA-N NCCC(C=CC=C1)=C1OC(C(OC1=C(CCN)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CCN)C=CC=C2)OC2=C(CCN)C=CC=C2)=C1OC1=C(CCN)C=CC=C1 Chemical compound NCCC(C=CC=C1)=C1OC(C(OC1=C(CCN)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CCN)C=CC=C2)OC2=C(CCN)C=CC=C2)=C1OC1=C(CCN)C=CC=C1 LSEVRSRUPOUIKC-UHFFFAOYSA-N 0.000 description 1
- OFUAKXNJWPWIIE-UHFFFAOYSA-N NCCCCC(C=CC=C1)=C1OC(C(OC1=C(CCCCN)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CCCCN)C=CC=C2)OC2=C(CCCCN)C=CC=C2)=C1OC1=C(CCCCN)C=CC=C1 Chemical compound NCCCCC(C=CC=C1)=C1OC(C(OC1=C(CCCCN)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CCCCN)C=CC=C2)OC2=C(CCCCN)C=CC=C2)=C1OC1=C(CCCCN)C=CC=C1 OFUAKXNJWPWIIE-UHFFFAOYSA-N 0.000 description 1
- HFPQERPMCAATLJ-UHFFFAOYSA-N OC(C=CC=C1)=C1OC(C(OC(C=CC=C1)=C1O)=C(C(OP1N=PN=P[N]1)=C1OC(C=CC=C2)=C2O)OC(C=CC=C2)=C2O)=C1OC(C=CC=C1)=C1O Chemical compound OC(C=CC=C1)=C1OC(C(OC(C=CC=C1)=C1O)=C(C(OP1N=PN=P[N]1)=C1OC(C=CC=C2)=C2O)OC(C=CC=C2)=C2O)=C1OC(C=CC=C1)=C1O HFPQERPMCAATLJ-UHFFFAOYSA-N 0.000 description 1
- AKKPVQUDGREEBN-UHFFFAOYSA-N OCC(C=CC=C1)=C1OC(C(OC1=C(CO)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CO)C=CC=C2)OC2=C(CO)C=CC=C2)=C1OC1=C(CO)C=CC=C1 Chemical compound OCC(C=CC=C1)=C1OC(C(OC1=C(CO)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CO)C=CC=C2)OC2=C(CO)C=CC=C2)=C1OC1=C(CO)C=CC=C1 AKKPVQUDGREEBN-UHFFFAOYSA-N 0.000 description 1
- HTEAAFOEVPKENC-UHFFFAOYSA-N OCCC(C=CC=C1)=C1OC(C(OC1=C(CCO)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CCO)C=CC=C2)OC2=C(CCO)C=CC=C2)=C1OC1=C(CCO)C=CC=C1 Chemical compound OCCC(C=CC=C1)=C1OC(C(OC1=C(CCO)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CCO)C=CC=C2)OC2=C(CCO)C=CC=C2)=C1OC1=C(CCO)C=CC=C1 HTEAAFOEVPKENC-UHFFFAOYSA-N 0.000 description 1
- BYKQWFUDBKXJDN-UHFFFAOYSA-N OCCCCC(C=CC=C1)=C1OC(C(OC1=C(CCCCO)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CCCCO)C=CC=C2)OC2=C(CCCCO)C=CC=C2)=C1OC1=C(CCCCO)C=CC=C1 Chemical compound OCCCCC(C=CC=C1)=C1OC(C(OC1=C(CCCCO)C=CC=C1)=C(C(OP1N=PN=P[N]1)=C1OC2=C(CCCCO)C=CC=C2)OC2=C(CCCCO)C=CC=C2)=C1OC1=C(CCCCO)C=CC=C1 BYKQWFUDBKXJDN-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical class OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- VAQVLARKYCBCNS-UHFFFAOYSA-N [2-[(2,4,4,6,6-pentaphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenyl]methanamine Chemical compound NCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=CC=CC=C2)(OC2=CC=CC=C2)OC2=CC=CC=C2)OC2=CC=CC=C2)C=CC=C1 VAQVLARKYCBCNS-UHFFFAOYSA-N 0.000 description 1
- HEFPLOJGSWHFOM-UHFFFAOYSA-N [2-[(2,4,4,6,6-pentaphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenyl]methanol Chemical compound OCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=CC=CC=C2)(OC2=CC=CC=C2)OC2=CC=CC=C2)OC2=CC=CC=C2)C=CC=C1 HEFPLOJGSWHFOM-UHFFFAOYSA-N 0.000 description 1
- CQCNSQWHVKCPMU-UHFFFAOYSA-N [2-[2,3,4-tris[2-(aminomethyl)phenoxy]-5-[(2-phenoxy-1,3,5-triaza-2lambda5,4,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]phenyl]methanamine Chemical compound NCC1=C(OC=2C(=C(C(=C(OP3(=NP=NP=N3)OC3=CC=CC=C3)C=2)OC2=C(C=CC=C2)CN)OC2=C(C=CC=C2)CN)OC2=C(C=CC=C2)CN)C=CC=C1 CQCNSQWHVKCPMU-UHFFFAOYSA-N 0.000 description 1
- LPWNBNJDWDYPGF-UHFFFAOYSA-N [2-[2,3,4-tris[2-(hydroxymethyl)phenoxy]-5-[(2-phenoxy-1,3,5-triaza-2lambda5,4,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]phenyl]methanol Chemical compound OCC1=C(OC=2C(=C(C(=C(OP3(=NP=NP=N3)OC3=CC=CC=C3)C=2)OC2=C(C=CC=C2)CO)OC2=C(C=CC=C2)CO)OC2=C(C=CC=C2)CO)C=CC=C1 LPWNBNJDWDYPGF-UHFFFAOYSA-N 0.000 description 1
- FKYXKBMZOPVIHL-UHFFFAOYSA-N [2-[2-[2-(aminomethyl)phenoxy]-3-[(2,4,4-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]phenyl]methanamine Chemical compound NCC1=C(OC=2C(=C(OP3(=NP=NP(=N3)(OC3=CC=CC=C3)OC3=CC=CC=C3)OC3=CC=CC=C3)C=CC=2)OC2=C(C=CC=C2)CN)C=CC=C1 FKYXKBMZOPVIHL-UHFFFAOYSA-N 0.000 description 1
- GNFIBBIPMSOXHS-UHFFFAOYSA-N [2-[2-[2-(hydroxymethyl)phenoxy]-3-[(2,4,4-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6-triphosphacyclohexa-1,3,5-trien-2-yl)oxy]phenoxy]phenyl]methanol Chemical compound OCC1=C(OC=2C(=C(OP3(=NP=NP(=N3)(OC3=CC=CC=C3)OC3=CC=CC=C3)OC3=CC=CC=C3)C=CC=2)OC2=C(C=CC=C2)CO)C=CC=C1 GNFIBBIPMSOXHS-UHFFFAOYSA-N 0.000 description 1
- YAXHYMVAKKKHAC-UHFFFAOYSA-N [2-[[4,6-bis[2-(aminomethyl)phenoxy]-2,4,6-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl]oxy]phenyl]methanamine Chemical compound NCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CN)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CN)OC2=CC=CC=C2)C=CC=C1 YAXHYMVAKKKHAC-UHFFFAOYSA-N 0.000 description 1
- GVORBNYIGCZZKW-UHFFFAOYSA-N [2-[[4,6-bis[2-(hydroxymethyl)phenoxy]-2,4,6-triphenoxy-1,3,5-triaza-2lambda5,4lambda5,6lambda5-triphosphacyclohexa-1,3,5-trien-2-yl]oxy]phenyl]methanol Chemical compound OCC1=C(OP2(=NP(=NP(=N2)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CO)(OC2=CC=CC=C2)OC2=C(C=CC=C2)CO)OC2=CC=CC=C2)C=CC=C1 GVORBNYIGCZZKW-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- IBVAQQYNSHJXBV-UHFFFAOYSA-N adipic acid dihydrazide Chemical compound NNC(=O)CCCCC(=O)NN IBVAQQYNSHJXBV-UHFFFAOYSA-N 0.000 description 1
- 239000004844 aliphatic epoxy resin Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PQLAYKMGZDUDLQ-UHFFFAOYSA-K aluminium bromide Chemical compound Br[Al](Br)Br PQLAYKMGZDUDLQ-UHFFFAOYSA-K 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- FAPDDOBMIUGHIN-UHFFFAOYSA-K antimony trichloride Chemical compound Cl[Sb](Cl)Cl FAPDDOBMIUGHIN-UHFFFAOYSA-K 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- AFBPHRMRBXPVPX-UHFFFAOYSA-M benzyl-dimethyl-tetradecylazanium;acetate Chemical compound CC([O-])=O.CCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 AFBPHRMRBXPVPX-UHFFFAOYSA-M 0.000 description 1
- OCBHHZMJRVXXQK-UHFFFAOYSA-M benzyl-dimethyl-tetradecylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 OCBHHZMJRVXXQK-UHFFFAOYSA-M 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- GLROGUSVUGSGPO-UHFFFAOYSA-N bis(3-methyl-7-oxabicyclo[4.1.0]heptan-4-yl) hexanedioate Chemical compound C1C2OC2CC(C)C1OC(=O)CCCCC(=O)OC1CC2OC2CC1C GLROGUSVUGSGPO-UHFFFAOYSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- KVRAGBDTQYNMNO-UHFFFAOYSA-N bis[2,4-bis(oxiran-2-ylmethoxy)phenyl]methanone Chemical compound C=1C=C(OCC2OC2)C=C(OCC2OC2)C=1C(=O)C(C(=C1)OCC2OC2)=CC=C1OCC1CO1 KVRAGBDTQYNMNO-UHFFFAOYSA-N 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 229910010277 boron hydride Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- BZDKYAZTCWRUDZ-UHFFFAOYSA-N buta-1,3-diene;methyl 2-methylprop-2-enoate;prop-2-enenitrile;styrene Chemical compound C=CC=C.C=CC#N.COC(=O)C(C)=C.C=CC1=CC=CC=C1 BZDKYAZTCWRUDZ-UHFFFAOYSA-N 0.000 description 1
- WWNGFHNQODFIEX-UHFFFAOYSA-N buta-1,3-diene;methyl 2-methylprop-2-enoate;styrene Chemical compound C=CC=C.COC(=O)C(C)=C.C=CC1=CC=CC=C1 WWNGFHNQODFIEX-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical compound FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000011353 cycloaliphatic epoxy resin Substances 0.000 description 1
- IFDVQVHZEKPUSC-UHFFFAOYSA-N cyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCC=CC1C(O)=O IFDVQVHZEKPUSC-UHFFFAOYSA-N 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- HXWGXXDEYMNGCT-UHFFFAOYSA-M decyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCC[N+](C)(C)C HXWGXXDEYMNGCT-UHFFFAOYSA-M 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 150000008056 dicarboxyimides Chemical class 0.000 description 1
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- YIFWXQBNRQNUON-UHFFFAOYSA-M dodecyl(trimethyl)azanium;iodide Chemical compound [I-].CCCCCCCCCCCC[N+](C)(C)C YIFWXQBNRQNUON-UHFFFAOYSA-M 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- GKIPXFAANLTWBM-UHFFFAOYSA-N epibromohydrin Chemical compound BrCC1CO1 GKIPXFAANLTWBM-UHFFFAOYSA-N 0.000 description 1
- LDLDYFCCDKENPD-UHFFFAOYSA-N ethenylcyclohexane Chemical compound C=CC1CCCCC1 LDLDYFCCDKENPD-UHFFFAOYSA-N 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- FVIZARNDLVOMSU-UHFFFAOYSA-N ginsenoside K Natural products C1CC(C2(CCC3C(C)(C)C(O)CCC3(C)C2CC2O)C)(C)C2C1C(C)(CCC=C(C)C)OC1OC(CO)C(O)C(O)C1O FVIZARNDLVOMSU-UHFFFAOYSA-N 0.000 description 1
- 239000004845 glycidylamine epoxy resin Substances 0.000 description 1
- 229960001867 guaiacol Drugs 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- FLBJFXNAEMSXGL-UHFFFAOYSA-N het anhydride Chemical compound O=C1OC(=O)C2C1C1(Cl)C(Cl)=C(Cl)C2(Cl)C1(Cl)Cl FLBJFXNAEMSXGL-UHFFFAOYSA-N 0.000 description 1
- CAYGQBVSOZLICD-UHFFFAOYSA-N hexabromobenzene Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1Br CAYGQBVSOZLICD-UHFFFAOYSA-N 0.000 description 1
- 229920005669 high impact polystyrene Polymers 0.000 description 1
- 239000004797 high-impact polystyrene Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- 150000002483 hydrogen compounds Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229910000043 hydrogen iodide Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012796 inorganic flame retardant Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- UJNZOIKQAUQOCN-UHFFFAOYSA-N methyl(diphenyl)phosphane Chemical compound C=1C=CC=CC=1P(C)C1=CC=CC=C1 UJNZOIKQAUQOCN-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Chemical class CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- RBXVOQPAMPBADW-UHFFFAOYSA-N nitrous acid;phenol Chemical class ON=O.OC1=CC=CC=C1 RBXVOQPAMPBADW-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002888 oleic acid derivatives Chemical class 0.000 description 1
- 125000001741 organic sulfur group Chemical group 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 150000004707 phenolate Chemical class 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002490 poly(thioether-sulfone) polymer Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- BBFCIBZLAVOLCF-UHFFFAOYSA-N pyridin-1-ium;bromide Chemical compound Br.C1=CC=NC=C1 BBFCIBZLAVOLCF-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- ZECBPBHBGNLLMU-UHFFFAOYSA-M sodium;4-methylphenolate Chemical compound [Na+].CC1=CC=C([O-])C=C1 ZECBPBHBGNLLMU-UHFFFAOYSA-M 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 1
- DDFYFBUWEBINLX-UHFFFAOYSA-M tetramethylammonium bromide Chemical compound [Br-].C[N+](C)(C)C DDFYFBUWEBINLX-UHFFFAOYSA-M 0.000 description 1
- USFPINLPPFWTJW-UHFFFAOYSA-N tetraphenylphosphonium Chemical compound C1=CC=CC=C1[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 USFPINLPPFWTJW-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 150000003613 toluenes Chemical class 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- MYWQGROTKMBNKN-UHFFFAOYSA-N tributoxyalumane Chemical compound [Al+3].CCCC[O-].CCCC[O-].CCCC[O-] MYWQGROTKMBNKN-UHFFFAOYSA-N 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- ILWRPSCZWQJDMK-UHFFFAOYSA-N triethylazanium;chloride Chemical compound Cl.CCN(CC)CC ILWRPSCZWQJDMK-UHFFFAOYSA-N 0.000 description 1
- NFMWFGXCDDYTEG-UHFFFAOYSA-N trimagnesium;diborate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]B([O-])[O-].[O-]B([O-])[O-] NFMWFGXCDDYTEG-UHFFFAOYSA-N 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 125000006839 xylylene group Chemical group 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49866—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
- H01L23/49894—Materials of the insulating layers or coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/4007—Curing agents not provided for by the groups C08G59/42 - C08G59/66
- C08G59/4071—Curing agents not provided for by the groups C08G59/42 - C08G59/66 phosphorus containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G79/00—Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
- C08G79/02—Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing phosphorus
- C08G79/025—Polyphosphazenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/5399—Phosphorus bound to nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L85/00—Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
- C08L85/02—Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers containing phosphorus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/145—Organic substrates, e.g. plastic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0373—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
Definitions
- the present invention relates to a flame-retardant epoxy resin composition, a molded article thereof and an electronic part.
- Epoxy resin has been widely used as insulating materials of electrical and electronic parts such as a laminate material and an encapsulating material for a semiconductor device, for example, IC, LSI, VLSI or the like because of excellencies in electrical characteristics such as insulating property, heat resistance, moisture resistance, acid resistance, solvent resistance, adhesiveness, mechanical properties, dimensional stability and others, and furthermore, relative inexpensiveness.
- epoxy resin used as an insulating material has also been required to have better characteristics thereof such as heat resistance (including soldering heat resistance), a flame retardance, moisture resistance, adhesiveness arid mechanical properties.
- a phosphazene compound is compounded into the resin as a flame retardant and/or a hardener (for example, Japanese Unexamined Patent Publication No. Sho-61-120850 , Japanese Unexamined Patent Publication No. Sho-48-37500 , Japanese Examined Patent Publication No. Hei-3-4565 , Japanese Examined Patent Publication No. Hei-6-104714 and Japanese Unexamined Patent Publication No. Hei-10-259292 ).
- Moisture resistance of epoxy resin is an especially important property in a case where the resin is used as material of a printed circuit board. That is, since laminates have a chance to be used in the air with a high frequency and an insulating property and, hence, a reliability are degraded due to moisture absorption, the resin is desired to have a low water absorption and no change in electrical characteristics such as an insulating property.
- the present inventors have conducted serious studies in order to solve the above problem, which, as a result of the studies, leads to a discovery that epoxy resin compounded with a specific phosphazene compound can exert conspicuously excellent performance, thereby having completed the present invention.
- a flame-retardant epoxy resin composition containing an epoxy resin (A), a phosphazene compound (B) and an epoxy hardener (C) wherein the component (B) is included in the range of 0.01 to 70 % by weight relative to a total quantity of the component (A) and the component(B), and wherein the component (B) is at least one member selected from the group consisting of
- the component (B) and the component (C) are included in the range of 0.01 to 70 % by weight and up to 70 % by weight, respectively, relative to a total quantity of the component (A), the component(B) and the component (C).
- a flame-retardant epoxy resin composition containing an epoxy resin (A), a phosphazene compound (B), an epoxy hardener (C) and an inorganic filler (D), wherein the component (B) and the component (C) are included in the range of 0.01 to 70 % by weight and up to 70 % by weight, respectively, relative to a total quantity of the component (A), the component(B) and the component (C), and the component (D) is included up to 95 % by weight relative to a total quantity of the component (A), the component(B), the component (C) and the component (D) and wherein the component (B) is at least one member selected from the group consisting of
- a phosphazene compound of the component (B) used in the present invention is good in reactivity and compatibility with an epoxy resin and considered to act as a hardener and a flame retardant for the epoxy resin.
- This compound does not degrade electrical characteristics such as an insulating property, mechanical properties, adhesiveness and others of the epoxy resin, rather exerts excellent performance to improve the characteristics and properties according to a case.
- a high reliability is therefore shown and also sustained over a long time by a molded article (a molded product) obtained by molding a flame-retardant epoxy resin composition of the present invention, for example an electronic part such as a laminate.
- Component (A) epoxy resins
- epoxy resins there can be exemplified the following epoxy resins commonly used in the electrical and electronic fields: for example, novolak epoxy resin obtained by a reaction between phenols and aldehydes, such as phenol novolak epoxy resin, brominated phenol novolak epoxy resin, orthocresol novolak epoxy resin or naphthol novolak epoxy resin; phenol epoxy resin obtained by a reaction between a phenol and epichlorohydrin, such as bisphenol-A epoxy resin, brominated bisphenol-A epoxy resin, bisphenol-F epoxy resin, bisphenol-AD epoxy resin, bisphenol-S epoxy resin, biphenol epoxy resin, alkyl-substituted biphenol epoxy resin or tris(hydroxyphenyl) methane; aliphatic epoxy resin obtained by a reaction between an alcohol and epichlorohydrin, such as trimethylol propane, oligopropylene glycol or hydrogenated bisphenol-A; glycidyl ester epoxy resin obtained by a reaction between hexahydrophthalic acid
- phenol novolak epoxy resin phenol novolak epoxy resin
- orthocresol novolak epoxy resin bisphenol-A epoxy resin
- biphenol epoxy resin phenol epoxy resin obtained by a reaction between tris(hydroxyphenyl) methane and epichlorohydrin and others.
- the epoxy resins can be used singly or in a combination of two or more thereof.
- Component (B) phosphazene compounds
- a phosphazene compound used as a component (B) of the present invention is at least one member selected from the group consisting of
- the phosphazene compounds can be used singly or in a combination of two or more thereof.
- the amino group-substituted phenyl group selectable as a substituent indicated by R 1 and R 2 is a group obtained by substituting 1 to 5 amino and/or aminoalkyl groups at any carbon atom or atoms on a benzene ring.
- an alkali metal salt described hereinafter means a potassium salt, a sodium salt, a lithium salt or the like.
- An amino phosphazene compound (1a) that is a phosphazene compound (1) in which one of n R 1 s and n R 2 s is additionally an amino group-substituted phenyl group and/or an aminoalkyl group-substituted phenyl group is obtained according to a known prior method, for example, in which an alkali metal salt of nitrophenol and/or nitroalkyl phenol and phosphonitrile chloride are reacted with each other to produce nitrophenoxy phosphazene or nitroalkylphenoxy phosphazene and then, hydrazine or hydrazine hydrate is used to reduce a nitro group thereof to an amino group in the presence of a catalyst with a halide of a metal selected from the group consisting of chromium, manganese, iron, cobalt, nickel, zinc and tin, or a sulfate carried on active charcoal. Furthermore, there can be adopted a catalytic
- R 3 OM indicates an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms; and M indicates lithium, sodium or potassium
- R 4 OM indicates an aryl group having 6 to 14 carbon atoms or an alkenylaryl group having 8 to 18 carbon atoms and M indicates lithium, sodium or potassium
- nitrophenols and nitroalkyl phenols there are named, for example, 3-nitrophenol, 4-nitrophenol, 4-nitromethyl phenol, 4-nitroethyl phenol, 4-nitrobutyl phenol and others.
- alcohol compounds and phenol compounds there are named, for example, alkali metal salts of methanol, ethanol, n-propanol, allylalcohol, isopropanol, n-butanol, n-octanol, 2,2,2-trifluoroethanol, 2,2,3,3,4,4,5,5-octafluoropentyl alcohol, phenol, 4-methyl phenol, 4-ethyl phenol, 1-naphtol, 2-natphthol, 4-allyl phenol, 4-chlorophenol, 4-trifluoromethyl phenol and others and sodium phenolate or sodium 4-methyl phenolate is preferable in terms of heat resistance.
- aminophosphazene compounds (1a) there can be named, for example, cyclotriphosphazenes with an aminophenoxy group and a phenoxy group as substitutes in a mixed manner such as aminophenoxypentaphenoxycyclotriphosphazene, di(aminophenoxy)-tetraphenoxycyclotriphosphazene, tri(aminophenoxy)-triphenoxycyclotriphosphazene, tetra(aminophenoxy)-diphenoxycyclotriphosphazene, penta(aminophenoxy)-phenoxycyclotriphosphazene, and hexaaminophenoxycyclotriphosphazene; cyclotriphosphazenes with an aminomethylphenoxy group and a phenoxy group as substitutes in a mixed manner such as aminomethylphenoxy-pentaphenoxycyclotriphosphazene, di(aminomethylphenoxy)-tetraphenoxycyclotriphosphazene, tri(aminomethylphen
- cyclotriphosphazenes with an aminoethylphenoxy group, and an octyloxy group, trifluoroethoxy group, an octafluoropentyloxy group, an ethylphenoxy group, a naphthyloxy group, an allyloxy group, a chlorophenoxy group or a trifluoromethylphenoxy group as substitutes in a mixed manner.
- the aminophosphazene compounds may include mixtures of compounds with two or more types of substituents.
- a hydroxy phosphazene compound (1b) that is a phosphazene compound (1) in which one of n R 1 s and n R 2 s is additionally a hydroxy group-substituted phenyl group and/or a hydroxyalkyl group-substituted phenyl group can be obtained according to known methods described in articles and a patent publication; for example, Masaaki YOKOYAMA, et.al.,; Journal of the Chemical Society of Japan. Industrial chemistry, Vol. 67, No. 9, p. 1378 (1964 ), Tomoya OKUBASHI, et.al.,; Journal of the Chemical Society of Japan. Industrial chemistry, Vol. 73, No. 6, p.
- a hydroxy phosphazene compound (1b) can also be produced by a reaction of an alkali meal salt of a hydroxyalkyl phenol such as 2-hydroxymethyl phenol, 3-hydroxymethyl phenol, 4-hydroxymethyl phenol, 4-hydroxyethyl phenol and 4-hydroxybutyl phenol with phosphonitrile chloride.
- a hydroxyalkyl phenol such as 2-hydroxymethyl phenol, 3-hydroxymethyl phenol, 4-hydroxymethyl phenol, 4-hydroxyethyl phenol and 4-hydroxybutyl phenol with phosphonitrile chloride.
- a hydroxy phosphazene compound (1b) in which plural ones of n R 1 s and n R2s are hydroxy groups and/or hydroxyalkyl groups is produced only by using at least one selected from the group consisting of alcohol compounds expressed by a formula of R 3 OM (in the formula, R 3 and M are the same as those of an aminophosphazene compound (1a) described above) and phenol compounds expressed by a formula of R 4 OM (in the formula, R 4 and M are the same as those of an aminophosphazene compound (1a) described above) together in a reaction between an alkali metal salt of 4-methoxyphenol, or 4-(benzyloxy)phenol in which one hydroxyl group of dihydric phenol is protected by a methyl group or benzyl group and/or an alkali metal salt of a hydroxyalkyl phenol described above, and phosphonitrile chloride.
- a phosphonitrile chloride solution is added to a solution of an alkali metal salt of methoxyphenol or 4-(benzyloxy)phenol to cause a reaction therebetween.
- This reaction is preferably performed in an organic solvent such as benzene, toluene, xylene, ether, tetrahydrofuran or the like at room temperature for a time of from 1 to 20 hours, followed by the reaction at a reflux temperature of a solvent in use for a time of about 1 to 3 hours for completion thereof.
- a method can be adopted in which a mixed solution of an alkali metal salt of methoxyphenol or 4-(benzyloxy)phenol and an alkali metal salt of alcohol or phenol compound is prepared in advance and a phosphonitrile halide solution is added dropwise to the mixed solution to cause a reaction with a similar effect.
- a removal reaction of a methyl or a benzyl protective group as a substitute of a methoxyphenoxy group or a benzyloxy group as a substitute is preferably performed in a way that pyridine hydrogen halide salt of a quantity in equivalent about 2 to 20 times, or preferably about 5 to 10 times as large as one equivalent quantity of a methyl or a benzyl protective group is used to cause a reaction at a reflux temperature for about 1 hour or less, while with more than a reaction time of 1 hour, a reaction product decomposes to reduce a yield.
- pyridine hydrogen halide salts there are named pyridine hydrogen chloride salt, pyridine hydrogen bromide salt and others.
- Removal of a methyl or a benzyl group as a protective group can also be achieved using a reagent such as iodotrimethylsilane, aluminum trichloride, aluminum tribromide, boron trifluoride, boron tribromide, hydrogen bromide, hydrogen iodide and others.
- a reagent such as iodotrimethylsilane, aluminum trichloride, aluminum tribromide, boron trifluoride, boron tribromide, hydrogen bromide, hydrogen iodide and others.
- the compound in order to obtain a compound in which all of chlorine atoms of phosphonitrile chloride are substituted with a hydroxyalkylphenoxy group (for example, a hydroxymethylphenoxy group, a hydroxyethylphenoxy group, a hydroxybutylphenoxy group or the like), the compound can be produced in a way that 1.01 to 2.0 equivalents of an alkali metal salt of a hydroxyalkyl phenol is used relative to chlorine of phosphonitrile chloride to cause a reaction preferably in an organic solvent such as benzene, toluene, xylene, ether, tetrahydrofuran or the like at room temperature for a time ranging 1 to 20 hours, followed by the reaction at a reflux temperature of a solvent in use for a time ranging from about 1 to about 3 hours to complete the reaction.
- an organic solvent such as benzene, toluene, xylene, ether, tetrahydrofuran or the like
- a method can be adopted in which a mixed solution of an alkali metal salt of hydroxyalkylphenol and an alkali metal salt of alcohol or phenol compound is prepared in advance and a phosphonitrile halide solution is dropwise added to the mixed solution to cause a reaction with a similar effect.
- hydroxyphosphazene compounds (1b) there can be named, for example, cyclotriphosphazenes with a hydroxyphenoxy group and a phenoxy group as substitutes in a mixed manner such as hydroxyphenoxypentaphenoxycyclotriphosphazene, di(hydroxyphenoxy)-tetraphenoxycyclotriphosphazene, tri(hydroxyphenoxy)-triphenoxycyclotriphosphazene, tetra(hydroxyphenoxy)-diphenoxycyclotriphosphazene, penta(hydroxyphenoxy)-phenoxycyclotriphosphazene, and hexahydroxyphenoxy cyclotriphosphazene; cyclotriphosphazenes with a hydroxymethylphenoxy group and a phenoxy group as substitutes in a mixed manner such as hydroxymethylphenoxypentaphenoxycyclotriphosphazene, di(hydroxymethylphenoxy)-tetraphenoxycyclotriphosphazene, tri(hydroxymethylphenoxy)-triphenoxycycl
- cyclotriphosphazenes with a hydroxyethylphenoxy group, and a butoxy group, an octyloxy group, trifluoroethoxy group, an octafluoropentyloxy group, an ethylphenoxy group, a naphthyloxy group, an allyloxy group, an allylphenoxy group, a chlorophenoxy group or a trifluoromethylphenoxy group as substitutes in a mixed manner.
- the hydroxyphosphazene compounds may include mixtures of compounds with two or more types of substituents.
- a glycidyl phosphazene compound (1c) can be produced in a way that a hydroxyphosphazene compound (1b) and epihalohydrin are reacted with each other in a solvent-free condition or in a proper solvent such as dimethyl sulfoxide in the presence of a quaternary ammonium salt such as tetramethyl ammonium chloride, tetramethyl ammonium bromide or the like, an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide or the like.
- a quaternary ammonium salt such as tetramethyl ammonium chloride, tetramethyl ammonium bromide or the like
- an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide or the like.
- epihalohydrins there can be used known compounds and the following are named: epichlorohydrin, epibromohydrin, epiiodohydrin and others.
- a quantity of usage thereof is generally in the range of from 1 to 50 mol and preferably in the range of from 3 to 15 mol per 1 mol of hydroxyl group of hydroxyphosphazene compound (1b)
- a quantity of usage thereof has only to be in the range of from 20 to 200 parts by weight relative to 100 parts by weight of epihalohydrin.
- a quantity of usage of an alkali metal hydroxide has only to be generally in the range of from 0.8 to 1.5 mol and preferably in the range of from 0.9 to 1.3 mol per 1 mol of hydroxyl group of a hydroxyphosphazene compound (1b).
- a quantity of usage of a quaternary ammonium salt has only to be generally in the range of 0.001 to 1 mol and preferably in the range of 0.005 to 0.5 mol per 1 mol of a hydroxyl group of a hydroxyphosphazene compound (1b)
- the reaction temperature is generally set in the range of from 20 to 130°C and preferably in the range of from 30 to 100°C.
- the reaction can also be progressed while water produced during the reaction is removed to outside the reaction system. After the reaction ends, a salt, dimethyl sulfoxide, and others as byproducts are removed by washing with water and epihalohydrin in excess is removed as a distillate, thereby enabling a glycidyl phosphazene compound (1c).
- the obtained glycidyl phosphazene compound (1c) may be dissolved into a solvent such as methylisobutyl ketone or the like to then, cause the solution to be heated at a temperature in the range of from 50 to 100°C for a time in the range of from 0.5 to 3 hours in the presence of an alkali metal hydroxide such as sodium hydroxide or the like. After the heat treatment, the solution is repeatedly washed with water to cause a water phase to be neutral and a solvent such as methylisobutyl ketone or the like is removed as a distillate under a reduced pressure, thereby obtaining a glycidyl phosphazene compound (1c) with an extremely high purity.
- a solvent such as methylisobutyl ketone or the like
- a quantity of usage of an alkali metal hydroxide is in the range of from 0.01 to 0.2 mol per 1 mol of an epoxy group of the glycidyl phosphazene compound (1c) to be processed.
- glycidyl phosphazene compounds (1b) there are named the following compounds, for example, cyclotriphosphazenes with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner such as glycidyloxyphenoxy-pentaphenoxycyclotriphosphazene, di(glycidyloxyphenoxy)-tetraphenoxycyclotriphosphazene, tri(glycidyloxyphenoxy)-triphenoxycyclotriphosphazene, tetra(glycidyloxyphenoxy)-diphenoxycyclotriphosphazene, penta(glycidyloxyphenoxy)-phenoxycyclotriphosphazene, and hexaglycidyloxyphenoxy cyclotriphosphazenes; cyclotriphosphazenes with a glycidyloxymethylphenoxy group and a phenoxy group as substitutes in a mixed manner such as glycidy
- cyclotriphosphazenes with a glycidyloxyethylphenoxy group, and a butoxy group, an octyloxy group, a trifluoroethoxy group, an octafluoropentyloxy group, an ethylphenoxy group, a naphthyloxy group, an allyloxy group, an allylphenoxy group, a chlorophenoxy group, a trifluoromethylphenoxy group or the like as substitutes in a mixed manner.
- polymers of a phosphazene compound (1) there are named, for example, polymers obtained by polymerization of one type or two or more types of grycidylphosphazene compounds (1c).
- a polymer of a glycidyl phosphazene compound (1c) is generally obtained by polymerizing a glycidyl phosphazene compound (1c) while heating in a solvent-free condition or in an organic solvent, in the presence of a catalyst such as a Lewis acid including aluminum chloride, boron trifluoride, iron chloride and antimony chloride, an alkali metal hydroxide including sodium hydroxide and potassium hydroxide, an organic aluminum compound including triethyl aluminum and aluminum tributoxide and an organic zinc compound including diethyl zinc and others or in the absence thereof.
- a catalyst such as a Lewis acid including aluminum chloride, boron trifluoride, iron chloride and antimony chloride, an alkali metal hydroxide including sodium hydroxide and potassium hydroxide, an organic aluminum compound including triethyl aluminum and aluminum tributoxide and an organic zinc compound including diethyl zinc and others or in the absence thereof.
- a reaction is caused in an organic solvent such as benzene, toluene, xylene, ether or tetrahydrofuran in the presence of potassium hydroxide as a catalyst at a temperature in the range of from 50°C to a reflux temperature of a solvent in use for a time in the range of from 1 to 20 hours and thereafter, the solvent and the catalyst used in the reaction are removed through operations such as concentration, washing and others, thereby obtaining the target compound.
- organic solvent such as benzene, toluene, xylene, ether or tetrahydrofuran
- polymers of a glycidyl phosphazene compound (1c) there are named the following polymers, for example, oligo or poly(glycidyloxyphenoxy-pentaphenoxy cyclotriphosphazene), oligo or poly(tri(glycidyloxyphenoxy)-triphenoxycyclotriphosphazene), oligo or poly(hexaglycidyloxyphenoxy-cyclotriphosphazene); oligo or poly(glycidyloxyethylphenoxy-pentaphenoxy cyclotriphosphazene), oligo or poly(tri(glycidyloxyethylphenoxy)-triphenoxy cyclotriphosphazene), oligo or poly(hexaglycidyloxyethylphenoxycyclotriphosphazene), a polymer of a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3
- reaction compounds of a phosphazene compound (1) with at least one type of compound selected from the group consisting of an epoxy compound, a phenol compound, an amine compound and an acid anhydride (the compounds are hereinafter referred collectively to as a reactive group containing compound unless otherwise specified)
- the following copolymers for example, a copolymer obtained by polymerizing an aminophosphazene compound (1a) and/or a hydroxyphosphazene compound (1b) with an epoxy compound, a copolymer obtained by polymerizing a glycidylphosphazene compound (1c) with a reactive group containing compound and others.
- Copolymerization of an aminophosphazene compound (1a) and/or a hydroxyphosphazene compound (1b) with an epoxy compound is performed, for example, by heating in an organic solvent or in a solvent-free condition in the presence or absence of a curing catalyst.
- a reaction has only to be caused in an organic solvent such as benzene, toluene, xylene, ether, tetrahydrofuran or the like using potassium hydroxide as a curing catalyst at a temperature in the range of from 50°C to a reflux temperature of a used solvent for a time in the range of from 1 to 20 hours and after the reaction ends, the solvent and the used catalyst are removed by operations such as concentration, washing and others, thereby enabling a desired copolymer to be obtained.
- an organic solvent such as benzene, toluene, xylene, ether, tetrahydrofuran or the like
- Epoxy resins can be the same as the known epoxy resins described above.
- Known monomers can be used as a monomer for epoxy resin and there can be named, for example, bifunctional epoxy compounds such as ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, diglycidyl ether of bisphenol A, butadiene diepoxide, 3,4-epoxycyclohexylmethyl-(3,4-epoxy)cyclohexane carboxylate, vinylcyclohexane dioxide, 4,4',-di(1,2-epoxyethyl)diphenyl ether, 4,4'-(1,2-epoxyethyl)biphenyl, 2,2-bis(3,4-epoxycyclohexyl)propane,
- copolymers between an aminophosphazene compounds (1a) and an epoxy compound there are named the following copolymers, for example, between epoxy compounds such as diglycidyl ether of bisphenol A, 4,4'-(1,2-epoxyethyl)biphenyl, 2,2-bis(3,4-epoxycyclohexyl)propane, glycidyl ether of resorcinol, diglycidyl ether of fluoroglucin or the like; and hexaaminophenoxy cyclotriphosphazene, hexaaminoethylphenoxy cyclotriphosphazene, a cyclotriphospazene with an aminophenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclotriphospazene with an aminoethylphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclotriphospazene with an aminoethylphenoxy group
- the copolymers can be used singly or in a combination of two or more thereof.
- a terminal end of a copolymer produced from the reaction may be an amino group or an epoxy group according to a quantitative relation therebetween.
- copolymers between a hydroxyphosphazene compounds (1b) and an epoxy compound there are named the following copolymers, for example, between hexahydroxyphenoxy cyclotriphosphazene, hexahydroxyethylphenoxy cyclotriphosphazene, a cyclotriphospazene with a hydroxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclotriphosphazene with a hydroxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a hydroxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n being 3000 on average) with a hydroxyphenoxy group and
- the copolymers can be used singly or in a combination of two or more thereof.
- a terminal end of a copolymer produced from the reaction may be a hydroxy group or an epoxy group according to a quantitative relation therebetween.
- a copolymer between a glycidylphosphazene compound (1c) and a reactive group containing compound can be produced by a reaction of a glycidylphosphazene compound (1c) with a reactive group containing compound.
- epoxy compounds there can be used epoxy compounds similar to those used in a case of production of a copolymer between an aminophosphazene compound (1a) and/or a hydroxyphosphazene compound (1b) and an epoxy compound.
- epoxy compounds can be used singly or in a combination of two or more thereof.
- copolymers between a glycidylphosphazene compounds (1c) and an epoxy compound there are named the following copolymers, for example, between diglycidyl ether of bisphenol A, or glycidyl ether of 4,4'-(1,2-epoxyethyl)biphenyl, 2,2-bis(3,4-epoxycyclohexyl)propane or resorcinol, or diglycidyl ether of phloroglucin or the like; and hexaglycidylphenoxy cyclotriphosphazene, hexaglycidylethylphenoxy cyclotriphosphazene, a cyclotriphosphazene with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclotriphosphazene with a glycidyloxyethylphenoxy group and a phenoxy group as
- copolymers between a glycidylphosphazene compound (1c) and a phenol compound there are named the following copolymers, for example, between resins obtained by condensation of bisphenol A, bisphenol F, dihydroxynaphthalene, phenol, cresol or xylenol and formaldehyde in the presence of an acidic catalyst, p-vinyl phenol resin, triphenolmethane condensate or the like; and hexaglycidylphenoxy cyclotriphosphazene, hexaglycidylethylphenoxy cyclotriphosphazene, a cyclotriphospazene with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclotriphospazene with a glycidyloxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclotriphospazene with a
- amine compounds there may be named the following compounds such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, polyamidepolyamine, menthenediamine, isophrone diamine, N-aminoethylpiperazine, bis(4-amino-3-methylcyclohexyl)methane, bis(4-aminocyclohexyl)methane, m-xylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, m-phenylenediamine, dicyandiamide, adipic acid dihydrazide, 3,9-bis(3-aminoporpyl)-2,4,8,10-tetraoxaspiro(5,5)undecane adduct and others.
- the amine compounds can be used singly or in a combination of two or more thereof.
- copolymers between a glycidylphosphazene compound (1c) and an amine compound there are named the following copolymers, for example, between an amine compound such as tetraethylenepentamine, m-xylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, m-phenylenediamine, dicyandiamide or the like; and hexaglycidylphenoxy cyclotriphosphazene, hexaglycidylethylphenoxy cyclotriphosphazene, a cyclotriphospazene with a glycidylphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclotriphospazene with a glycidylethylphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclotriphospazene with a glycidyleth
- anhydrides there are named the following anhydrides, for example, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, dodecylsuccinic anhydride, chlorendic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, ethyleneglycol bis(anhydrotrimate), methylcyclohexanetetracarboxylic anhydride, trimellitic anhydride, polyazelaic anhydride and others.
- anhydrides for example, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, dodecyl
- the anhydrides can be used singly or in a combination of two or more thereof.
- copolymers between a glycidylphosphazene compound (1c) and an acid anhydride there are named the following copolymers, for example, between tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, methylcyclohexanetetracarboxylic anhydride or the like; and hexaglycidylphenoxy cyclotriphosphazene, hexaglycidylethylphenoxy cyclotriphosphazene, a cyclotriphosphazene with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclotriphosphazen
- epoxy hardeners there are named a compound having a phenolic hydroxyl group, an aromatic amine compound, an acid anhydride and others. Among them, preferable is a compound having a phenolic hydroxyl group in consideration of moisture resistance, moldability, storage stability and others.
- an epoxy resin for example, resins obtained by condensation or co-condensation of a phenol such as phenol, cresol, xylenol, resorcinol, catechol, bisphenol A or bisphenol F, or a naphthol such as ⁇ -naphthol, ⁇ -naphthol or dihydroxynaphthalene with an aldehyde such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde or salicylaldehyde in the presence of an acidic catalyst, p-vinyl phenol resin, phenol-aralkyl resin having a xylylene group, synthesized from a phenol and dimethoxy-p-xylene, dicyclopentadiene-modified phenol resin, triphenol
- An inorganic filler has a characteristic not only to enhance a dripping preventive effect of a resin composition but to also improve a mechanical strength thereof.
- inorganic filler while any of inorganic filler commonly used in this field can be employed, there can be named the following: for example, powder of fused silica, crystal silica, alumina, aluminum hydroxide, magnesium hydroxide, zinc oxide, zinc borate, zircon, antimony trioxide, talc, calcium silicate, calcium carbonate, silicon carbide, boron carbide, beryllia, zirconia, titanium white, clay, mica, talc and others; beads produced from the above powder; kaolin, barium sulfate, barium carbonate, calcium sulfate, titanium oxide, glass beads, glass balloons, glass flakes, fibrous alkali metal titanate (sodium titanate fibers and others), fibrous borate (aluminum borate fibers, magnesium borate fibers and others), zinc oxide fibers, titanium oxide
- Compounding proportions of components (A) to (D) described above in a composition of the present invention meet the following relation, in which, as to components of an epoxy resin (A), a phosphazene compound (B), an epoxy hardener (C) and an inorganic filler (D), the component (B) has only to be in the range of from 0.01 to 70 % by weight and preferably in the range of from 0.1 to 60 % by weight and the component (C) has only to be up to 70 % by weight and preferably up to 60 % by weight relative to a total quantity of the components (A) to (C), and the component (D) has only to be up to 95 % by weight and preferably up to 90 % by weight relative to a total quantity of the components (A) to (D).
- a type of epoxy resin and types of other components used together have only to be selected within the ranges of compounding quantities described above giving consideration to performance required of a target flame-retardant epoxy resin composition, a type of a laminate manufactured using the flame-retardant epoxy resin composition, types of an encapsulating material and a material of a casting mold, and an effect of further improving performance of flame retardance, moisture resistance, soldering heat resistance, mechanical properties and moldability of a flame-retardant epoxy resin composition to be obtained.
- the ratio is preferably set in the range of from 0.7 to 1.3 in order to suppress respective unreacted portions low.
- an equivalent ratio of an epoxy resin as a component (A), a phosphazene compound as a component (B) and a functional group of an epoxy hardener as a component (C) are preferably all set in the range of from 0.7 to 1.3.
- a curing accelerator may be included in a flame-retardant epoxy resin composition of the present invention in addition to the above components.
- curing accelerators there can be used accelerators known in this field and there can be named the following, for example, basic active hydrogen compounds such as dicyandiamide and adipic acid hydrazide; bicycloamidines such as 1,8-diazabicyclo(5,4,0)undecene-7 and 1,5-diazabycyclo(3,4,0)nonene-5, and derivatives such as phenolates thereof, octyl salts thereof and oleic acid salts thereof; oxyalkylamines such as triethanolamine, tetramethylbutanediamine, tetramethylpentanediamine, tetramethylhexanediamine, triethylenediamine, dimethylaniline, benzyl dimethylamine, dimethylaminoethanol and dimethylaminopentanol; tertiary amines such as tris(di
- Fluororesin and others can be compounded into a flame-retardant epoxy resin composition of the present invention for the purpose to improve flame-retardant performance, especially dripping (fire spreading due to dripping in burning) preventive performance to a higher level.
- fluororesin there can be used known fluororesin which are named, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE), poly(trifluorochloroethylene) (CTFE), polyfluorovinylidene (PVdF) and others.
- PTFE polytetrafluoroethylene
- FEP tetrafluoroethylene-hexafluoropropylene copolymer
- PFA tetrafluoroethylene-perfluoroalkylvinylether copolymer
- ETFE tetrafluoroethylene-ethylene copolymer
- CTFE poly(trifluorochloroethylene)
- PVdF polyfluorovinylidene
- VdF
- a compounding quantity of fluororesin is generally on the order in the range of from 0.01 to 2.5 % by weight and preferably on the order in the range of from 0.1 to 1.2 % by weight relative to a total quantity of the epoxy resin (A), the phosphazene compound (B) and the epoxy hardener (C), though a compounding quantity thereof can be properly selected in a wide range according to various conditions such as a type of an epoxy resin, a quantity of usage of a flame retardant, types and compounding quantities of other additive agents, an application for a flame-retardant resin composition to be obtained.
- additive agents can be compounded into a flame-retardant epoxy resin composition of the present invention in a range in which preferable characteristics thereof are not lost at any degree.
- the additive agents there are named, for example, the curing accelerator, natural waxes, synthetic waxes, straight-chain aliphatic acids and salts thereof, acid amides, esters, release agents such as paraffins, phosphazene compounds other than phosphazene compounds as the components (B) of the present invention, phosphate esters, condensed phosphate esters, other organic phosphorus compounds; flame retardants such as phosphorus as an element, red phosphorus, chlorinated paraffin, brominated toluene, hexabromobenzene, antimony trioxide and other inorganic flame retardants; colorants such as carbon black and red iron oxide; and coupling agents (silane coupling agents such as 3-glycidoxypropyltrimethoxy silane and titanium based coupling agents such as t
- General resin additive agents can further be compounded into a flame-retardant epoxy resin composition of the present invention in a range in which preferable characteristics thereof are not lost at any degree. While no specific limitation is imposed thereon, there are named, for example, ultraviolet absorbents such as benzophenone based, benzotriazole based, cyanoacrylate based, triazine based and others, a light stabilizing agent such as hindered amine based, antioxidants such as hindered phenol, organic phosphorus based peroxide decomposing agent, organic sulfur based peroxide decomposing agent; light intercepting agents such as rutile type titanium oxide, zinc oxide, chromium oxide, cerium oxide and others; metal deactivating agents such as benzotriazole based and others; quenching agents such as organic nickel compound and others; an anti-cloudness agent, an anti-mold agent, an antibacterial agent, pigments and others.
- ultraviolet absorbents such as benzophenone based, benzotriazole based, cyan
- a flame-retardant epoxy resin composition of the present invention can be produced by mixing and/or kneading prescribed quantities or proper quantities of an epoxy resin (A), a phosphazene compound (B), an epoxy hardener (C), an inorganic filler (D) and, when required, furthermore, fluororesin and other flame retardants according to a known method.
- Mixing of the components have only to be performed in a proper sequence of operations, and two or more types among mixed component composites and single components may be mixed to one compound prior to the usage.
- thermoplastic resin and/or thermoset resin there may be used one type or two or more types of polymers selected from the group consisting of the phosphazene compounds (1) and one type or two or more types selected from the group consisting of reaction products obtained from a reaction of a phosphazene compound (1) with a reactive group containing compound.
- synthetic resins no specific limitation is placed thereon but there can be used any one of known thermoplastic resin and/or thermoset resin.
- thermoplastic resins there are named the following resins: polyethylene, polypropylene, polyisoprene, chlorinated polyethylene, polyvinyl chloride, polybutadiene, polystyrene, high-impact polystyrene, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin (ABS resin), methyl methacrylate-butadiene-styrene resin (MBS resin), methyl methacrylate-acrylonitrile-butadiene-styrene resin (MABS resin), acrylonitrile-acrylic rubber-styrene resin (AAS resin), poly(methyl (meta)acrylate), polyester (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and others), polycarbonate, polyphenylene ether (PPE), modified polyphenylene ether, polyamide (aliphatic and/or aromatic), polyphenylene
- thermoset resins there are named the following resins: for example, polyurethane, phenol resin, melamine resin, bismaleimide-triazine resin, urea resin, unsaturated polyester resin, diallyl phthalate resin, silicone resin, epoxy resin (bisphenol-A epoxy resin, bisphenol-F epoxy resin, bisphenol-AD epoxy resin, phenol novolak epoxy resin, cresol novolak epoxy resin, cycloaliphatic epoxy resin, glycidyl ester based epoxy resin, glycidyl amine based epoxy resin, heterocyclic epoxy resin, urethane-modified epoxy resin, brominated bisphenol-A epoxy resin and others) and others.
- resins for example, polyurethane, phenol resin, melamine resin, bismaleimide-triazine resin, urea resin, unsaturated polyester resin, diallyl phthalate resin, silicone resin, epoxy resin (bisphenol-A epoxy resin, bisphenol-F epoxy resin, bisphenol-AD epoxy resin, phenol novolak epoxy resin,
- thermoplastic resins and the thermoset resins each are employed singly or in a combination of two or more thereof.
- the flame retardant quantity thereof is generally on the order in the range of from 0.01 to 100 parts by weight and preferably on the order in the range of from 0.5 to 60 parts by weight relative to 100 parts by weight of a synthetic resin, though a compounding quantity thereof can be properly selected in a wide range according to various conditions such as types of a synthetic resin and a flame retardant, a type and a compounding quantity of another additive agent, required performance, an application and others of a resin composition to be obtained.
- the resin composition there can be compounded one type or two or more types of additive agents selected from the group consisting of the components shown in the section of [Inorganic filler] and the various additives shown in the section of [Other components].
- the resin composition can be produced by mixing and/or kneading a synthetic resin, a flame retardant and when required, other additive agents.
- molded articles of various shapes can be formed using common molding means for synthetic resin.
- a flame-retardant epoxy resin composition of the present invention may be compounded into one of the various types of synthetic resin described above to produce a new flame-retardant resin composition.
- a flame-retardant epoxy resin composition of the present invention is compounded into a thermoplastic and/or a thermoset resin
- a mixture composed of various types of components in the form of powder, beads, flakes or pellets has only to be mixed and/kneaded into a compound using an extruder such as a single screw extruder, a double screw extruder or the like, a Banbury mixer, a pressure kneader, or a kneader with a twin-roll type or the like.
- an extruder such as a single screw extruder, a double screw extruder or the like, a Banbury mixer, a pressure kneader, or a kneader with a twin-roll type or the like.
- a molded article of any shape can be produced according to a known molding method such as press molding, injection molding, extrusion molding, casting or the like.
- An flame-retardant epoxy resin composition of the present invention thus obtained can be applied to various types of fields where a synthetic resin can be used and used especially as electronic part materials such as laminate material, encapsulating material, optical material, casting material and others in fields of electrical, electronic and communication equipment, and precision equipment. Furthermore, a flame-retardant epoxy resin composition of the present invention can be applied in common ways of usage of an epoxy resin such as paint, adhesive agent, a transportation vehicle and equipment, fiber products, various types of fabrication machines, food packaging films and a vessel, articles associated with agriculture, forest and fishery, materials for civil engineering and building, medical supplies, components of furniture; composite material for aerospace use and others.
- an epoxy resin such as paint, adhesive agent, a transportation vehicle and equipment, fiber products, various types of fabrication machines, food packaging films and a vessel, articles associated with agriculture, forest and fishery, materials for civil engineering and building, medical supplies, components of furniture; composite material for aerospace use and others.
- a flame-retardant epoxy resin composition of the present invention is used in paper base copper clad laminate, a glass cloth base copper clad laminate, composite copper clad laminate, a flexible copper clad laminate and others to construct an electronic part.
- a laminate can be fabricated using a known method. For example, a process goes this way: a proper sheet-like substrate such as glass cloth is impregnated with a varnish including a flame-retardant epoxy resin composition of the present invention to form a prepreg and thereafter, prepregs are used to fabricate a copper clad laminate or the like.
- substrates that are commonly used in this field can be used, which are named, for example,: glass woven cloth, glass non-woven cloth and cloth composed of components other than a glass such as paper or aramid fibers.
- a varnish used for fabricating a prepreg can be prepared by dissolving an epoxy resin composition of the present invention into an organic solvent.
- organic solvents no specific limitation is imposed thereon as far as an epoxy resin composition of the present invention can be dissolved thereinto, which are named, for example, toluene, xylene, acetone, methylethyl ketone, methylisobutyl ketone, N,N,-dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide, trichloroethylene, trichloroethane, methylene chloride, dioxane, ethyl acetate and others.
- various types of coupling agents may be added into a varnish in order to improve a close adherence ability on a sheet-like substrate.
- One to several prepregs obtained are placed between two copper foils and the prepregs with the two copper foils are hot pressed at a temperature of the order between 100 to 250°C under pressure between 0.1 to 10 MPa to mold, thereby fabricating a double sided copper clad substrate for conductive circuit formation.
- a necessary number of double sided copper clad substrates are placed between the prepreg sheets, and the substrates and the sheets are hot pressed at a temperature of the order between 100 to 250°C under a pressure between 0.1 to 10 MPa for adhesion-molding to obtain a multilayer board.
- holes for interlayer conduction are formed in the multilayer board, the holes are copper plated to achieve interlayer conduction and a conductor of the outermost layer is formed, thereby enabling a copper laminate to be obtained.
- a flame-retardant epoxy resin composition of the present invention is used as materials of a build-up type multilayer printed wiring board, for example, materials of an interlayer insulating film, a solder resist, a resin coated copper foil and others to construct an electronic part.
- a flame-retardant epoxy resin composition of the present invention and other components when required are at first dissolved into a proper organic solvent such as toluene, methylethyl ketone, methylcellosolve or the like to prepare a varnish, the varnish is applied on a copper foil or a carrier film such as made of polyester or polyimide to dry the varnish coat by heating and to thereby semi-harden the coat, which is a common method, thus fabricating a carrier-provided resin film.
- a proper organic solvent such as toluene, methylethyl ketone, methylcellosolve or the like
- carrier-provided resin films are, according to a common method, laminated on an inner layer circuit sheet (a glass epoxy laminate) serving as a core by heating under pressure with a laminator, one of various types, to obtain a build-up type multilayer printed wiring board.
- inner layer circuit sheet a glass epoxy laminate
- the composition can be used as solder resist material (solder resist ink) capable of developing and printing.
- a flame-retardant epoxy resin composition of the present invention on a heat resistant resin film or a conductive foil as an adhesive agent for a electronic part, there can be obtained a flexible printed wiring board such as a single sided flexible printed wiring board, a double sided flexible printed wiring board, a multilayer flexible printed wiring board and others.
- heat resistant resin films while no specific limitation is placed thereon as far as the films are self-extinguishing and contain no halogen, there are named polyimide film, polyethyleneterephthalate film, polyethylenenaphthalate film and others among which a polyimide film is especially preferable from the viewpoint of heat resistance, mechanical properties, electrical characteristics, a flame retardance and others.
- conductive foils there are named a copper foil, an aluminum foil, a nickel foil, a stainless foil, alloy foils such as an iron-nickel foil and others, among which a copper foil is especially preferable in an aspect of flexibility, electrical characteristics, machinability and others.
- a flame-retardant epoxy resin composition of the present invention is used in an adhesive agent with anisotropic conductivity, a sheet with anisotropic conductivity, a film with anisotropic conductivity, a paste material with anisotropic conductivity and the like for use in electrical connection of a finely patterned circuit of a liquid crystal display (LCD) and a tape carrier package (TCP), TCP and a printed circuit substrate (PCB) and others, thus constructing an electronic part.
- LCD liquid crystal display
- TCP tape carrier package
- PCB printed circuit substrate
- a flame-retardant epoxy resin composition of the present invention is used in a semiconductor encapsulating material and an opto-device encapsulating material, for example film semiconductor encapsulating material, high thermal conductivity semiconductor encapsulating material, area bump package encapsulating material, bump bonding structure encapsulating material, flip chip encapsulating material, lead-free solder encapsulating material, flip chip mounting under-fill material, wafer-level under-fill material, photo-coupler encapsulating material and others to construct an electronic part.
- an opto-device encapsulating material for example film semiconductor encapsulating material, high thermal conductivity semiconductor encapsulating material, area bump package encapsulating material, bump bonding structure encapsulating material, flip chip encapsulating material, lead-free solder encapsulating material, flip chip mounting under-fill material, wafer-level under-fill material, photo-coupler encapsulating material and others to construct an electronic part.
- IC Integrated Circuit
- LSI Small Outline Package
- VLSI Integrated Circuit
- thyrister diode
- TSOP Thin Small Outline Package
- BGA Ball Grid Array
- CSP Chip Scale/Size Package
- COF Chip On Film/FPC
- a flame-retardant epoxy resin composition of the present invention can be used as encapsulating material for fabrication of LED, a photodiode, a phototransistor, CCD and others.
- a flame-retardant epoxy resin composition of the present invention is used in an optical material of an interlayer insulating film for an element of a liquid crystal display of a segment type, a simple matrix scheme or an active matrix scheme and in encapsulating material for an element of a liquid crystal display, thus constructing an electronic part. Furthermore, a flame-retardant epoxy resin composition of the present invention can be used as a casting material in a coil insulating material for a relay, a motor, a transformer, an antenna and others.
- Electronic parts described above are subjected to any suitable electrical treatment and machining to follow and further used in the following applications, which are, for example, a printer, a computer, a word processor, a key board, a compact information terminal equipment (PDA), a telephone, a portable telephone, a facsimile, a copier, an electronic cash register (ECR), a hand held calculator, an electronic notepad, an electronic dictionary, a card, a holder, an administrative and OA equipment including stationary, a washer, a refrigerator, a cleaner, a microwave oven, a lighting fixture, a game machine, an iron, home electrical appliance such as electric foot warmer, a television set, VTR, a video camera, a radio cassette player, a tape recorder, a mini-disk player, a CD player, a DVD player, a speaker, AV equipment such as a liquid crystal display, an EL display, a plasma display and others, a connector, a relay, a capacitor, a switch, a coil bobbin,
- compositions of the present invention are processed into molded articles and incorporated into various types of construction materials such as an adhesive agent and a paint, and there are exemplified the following items, which are: materials for an automobile, a vehicle, a ship, an air plane and building such as various types of packing in and a top cloth of a chair or a seat; a belt, ceiling and wall boards, a convertible top, an arm rest, a door trim board, a rear package tray, a carpet, a mat, a sun visor, a wheel cover, a mattress cover, an air bag, an insulating material, a hand grasp, a hand strap, wire covering material, electrically insulating material, paint, coating material, facing material, flooring, a corner wall, a carpet, wall paper, wall facing material, outer facing material, inner facing material, roofing, a sound insulating board, heat insulating board, window shade or curtain; and equipment and supplies for daily life and sports such as clothes, curtain, bed sheets, plywood
- the temperature was measured in conformity with ASTM D-648 with a load of 1.82 Mpa, which is used as an index for heat resistance.
- test piece of a size of 1/16 inch in thickness, 5 inch in length and 0.5 inch in width was prepared and an evaluation test for flame retardance was applied to the test piece according to UL-94 standard (Test for Flammability of Plastic Materials for Parts in Devices and Appliances UL94, Fourth Edition). Definitions of terms and evaluation criteria used in UL94 are as follows:
- Afterflame is that flaming (burning with a flame) of a material after contact of a flame (after removing an igniter) is sustained.
- An afterflame time is a length of a time during which a material is burning with a flame after contact of a flame under test conditions.
- Afterglow is that after flaming is over or after contact of a flame unless flaming occurs, glowing of a material (though not burned with a flame, being kept in a red heat state serving as an igniter) is sustained as is.
- An afterglow time is a length of a time during which after contact of a flame and/or after flaming is over, a material is kept in a read heat state serving as an igniter under test conditions.
- thermoplastic resin thermoset resin and fluororesin, the following resins were employed:
- the dispersion liquid was refluxed at temperature of 132°C for another 144 min to complete a reaction. Then, the dispersion liquid was subjected to suction filtration to remove non-reacted ammonium chloride and a filtrate was distilled under a reduced pressure of 1.3 to 2.7 hPa at 30 to 40°C to remove chlorobenzene as a distillate and to obtain 704 g of a reaction product. A yield of the reaction product was 98.1% relative to the dropped phosphorous trichloride.
- reaction product was dissolved into chlorobenzene and recrystallization was performed to obtain 452 g of a mixture of 76% hexachlorocyclotriphosphazene and 24% octachlorocyclotetraphosphazene.
- a residual chlorobenzene solution left after recrystallization is concentrated to obtain 249 g of cyclic and chain chlorophosphazenes (a mixture in the general formula (1) with n being 3 to 15, where R 1 O- group and R 2 O- group are substituted with chlorine atoms).
- a phosphazene having amino groups at some but not all sites in a yellow solid state was obtained to a weight of 75.2 g (at a total yield of 94%) in a similar process to Synthesis Example 2 except for use of 87.6 g (0.3 unit mol) of cyclic and chain clorophosphazenes produced in Synthesis Example 1 (a mixture in the general formula (1) with n being 3 to 15, where R 1 O- group and R 2 O- group are substituted with chlorine atoms) instead of hexachlorocyclotriphosphazene and 299.7 g (1.5 mol) of 4-nitromethylphenol instead of 4-nitophenol.
- a structure thereof was [NP(OC 6 H 4 ) 0.97 (OC 6 H 4 CH 2 NH 2 ) 1.03 ] 3 as the result of 1 H- and 31 P-NMR analysis.
- An amino value (active hydrogen equivalent)of the compound was measured according to a common method and a result was 127 g/eq.
- a THF solution of sodium salt of p-cresol prepared separately (140.6 g (1.3 mol) of p-cresol, 28.8 g (1.2 mol) of sodium and 400 ml of THF) was dropped into the solution of the partially substituted compound over 1 hour while controlling a reaction temperature so as to be at 30°C or lower by cooling. Then, the reaction was performed for 5 hours at room temperature and furthermore for another 3 hours at a reflux temperature to complete the reaction. After completion of the reaction, THF as a solvent was removed under a reduced pressure as a distillate, 1 L of toluene was added to the product to again dissolve and furthermore, 500 mL of water was added to wash the product, followed by liquid separation.
- a THF solution of 4-hydroxyethylphenolate prepared separately (179.6 g (1.3 mol) of 4-hydroxyethylphenol, 28.8 g (1.2 mol) of sodium and 400 ml of THF) was added dropwise into the solution of the partially substituted compound over 1 hour while controlling a reaction temperature so as to be at 30°C or lower by cooling. Then, the reaction was performed for 5 hours at room temperature and furthermore for another 6 hours at a reflux temperature to complete the reaction. After completion of the reaction, THF as a solvent was distilled off under a reduced pressure, then 1 L of toluene was added to the product to redissolve the product and furthermore 500 mL of water was added to wash the product, followed by liquid separation.
- a residual chlorine quantity of the product is 0.01% or lower and synthesis of the compound was confirmed by performing 1 H- and 31 P-NMR analysis.
- a hydroxyl group content was 6.0% (a theoretical value of 6.1%).
- An estimated structure thereof was [NP(OC 6 H 4 CH 2 CH 2 OH) 0.99 (OC 6 H 4 ) 1.01 ] 3,4 .
- a hydroxyl group value of the compound was 278 g/eq.
- a phosphazene having glycidyl groups at some but not all sites in a yellow solid state was obtained to a weight of 92.2 g (at a yield of 93%) in a similar process to Synthesis Example 6 except for use of 82.5 g (0.3 unit mol) of a phosphazene (D) having hydroxyethyl groups at some but not all sites obtained in Synthesis Example 5.
- Synthesis of the compound was confirmed by performing 1 H- and 31 P-NMR analysis. An estimated structure thereof was [NP(OC 6 H 4 CH 2 CH 2 O Gly ) 0.99 (OC 6 H 4 ) 1.01 ] 3,4 .
- An epoxy equivalent of the compound was 333 g/eq.
- reaction mixture was concentrated and further redissolved into 500 ml of toluene, thereafter washed with water, washed with a 5% sodium hydroxide aqueous solution three times, washed with a 5% hydrochloric acid aqueous solution, washed with a 5% sodium hydrogencarbonate aqueous solution and washed with water three times, followed by concentration and drying of the reaction mixture to obtain 109 g (at a yield of 94%) of a light yellow solid.
- a phosphazene polymer (H) in a yellow solid state was obtained to a weight of 184.2 g in a similar process to Synthesis Example 9 except for use of 82.5 g (0.3 unit mol) of a mixture (D) of a cyclotriphosphazene and a cyclotetraphosphazene having a hydroxyethyl group, [NP(OC 6 H 4 CH 2 CH 2 OH) 0.99 (OC 6 H 4 ) 1.01 ] 3.4 , obtained in Synthesis Example 5. An IR analysis was performed to confirm the absence of a glycidyl group in the product.
- N.N'-dimethylformamide was added to 100 parts by weight of phenol novolak epoxy resin, 63 parts by weight of a phosphazene compound (A) prepared in Synthesis Example 2 and 0.2 part by weight of triphenylphosphine to prepare a varnish having a non-volatile matter concentration of 60%.
- a varnish having a non-volatile matter concentration of 60%.
- 100 parts of glass cloth of 0.18 mm in thickness made by NITTO BOSEKI CO. LTD. was impregnated with 85 parts of the varnish as solid matter, and the impregnated glass cloth was dried for 5 min in a drying furnace at 150°C to fabricate a prepreg of a resin content of 45.9%.
- a soldering heat resistance and a peel strength were measured in conformity with JIS C 6481, wherein a soldering heat resistance was evaluated by inspecting whether or not appearance abnormality occurs after moisture absorption of a test piece kept in boiling water for 2 hours and in addition, immersion in a solder bath at 260 °C for 120 sec. Compounding recipes and results are shown in Table 1.
- Double-sided copper clad laminates were fabricated in a method similar to that used in Example 1 except for adoption of the recipes shown in Table 1. From the evaluation results shown in Table 1, it is found that the laminates of compounding recipes shown in respective examples are all excellent in flame retardance and moisture resistance.
- An epoxy resin composition of the present invention was produced in a procedure in which 12 % by weight of a phosphazene compound (D) obtained in Synthesis Example 5, 72 % by weight of fused silica powder, 0.5 % by weight of ester wax and 0.5 % by weight of a silane coupling agent were added to 15 % by weight of cresol novolak epoxy resin (with an epoxy equivalent of 215), all the components were mixed at ordinary temperature and furthermore kneaded at a temperature from 90 to 95°C, followed by cooling and obtained hard blocks were pulverized.
- a phosphazene compound (D) obtained in Synthesis Example 5 72 % by weight of fused silica powder, 0.5 % by weight of ester wax and 0.5 % by weight of a silane coupling agent were added to 15 % by weight of cresol novolak epoxy resin (with an epoxy equivalent of 215), all the components were mixed at ordinary temperature and furthermore kneaded at a temperature from 90 to 95°C, followed
- the epoxy resin composition is transfer injected into a metal mold heated at 170°C and hardened therein to fabricate a molded article (an encapsulated article).
- a water absorption, a glass transition temperature and moisture resistance were measured on the molded article and test methods therefor are as follows:
- Molded articles were fabricated to evaluate properties such as moisture resistance and others in a similar manner to Example 6 except for use of a phosphazene compound (K) obtained in Synthesis Example 8 instead of a phosphazene compound (D). Results are shown in Table 2.
- Table 2 example 6 comparative example 2 water absorption (%) 0.03 0.49 glass transition temperature (°C) 169 161 moisture resistance after 40 hours elapses 0/20 4/20 after 100 hours elapses 0/20 12/20 after 150 hours elapses 0/20 20/20 after 200 hours elapses 0/20 -
- Example 6 of the present invention wherein phosphazene compounds having an amino group, a hydroxy group and a glycidyl group were used, a hot-state hardness was increased, water absorption was low, an adhesion strength and high temperature storage characteristics were improved as compared with Comparative Example 2 containing a phenoxyphosphazene compound.
- a flame retardant of the present invention was used, molded articles were excellent in not only high temperature storage characteristics but also flame retardance.
- composition was prepared into a test piece of 1/16 inch in thickness by means of injection molding and the test pieces was subjected to evaluation on flame retardance on the basis of the test method of UL-94, measurement on a thermal deformation temperature in conformity with ASTM D-648 and further juicing and mold deposit (MD) phenomena were observed in molding.
- a phenoxyphosphazene compound (K) of Synthetic Example 8 was used instead of a phosphazene compound (G) of Synthetic Example 9 and preparation of test pieces and evaluation thereof were performed in a similar way to Reference Example 1. Results are shown in Table 3.
- composition was prepared into a test piece of 1/16 inch in thickness by means of injection molding and the test pieces were subjected to evaluation on flame retardance on the basis of the test method of UL-94 and measurement on a thermal deformation temperature in conformity with ASTM D-648 and furthermore, juicing and mold deposit (MD) phenomena were observed in molding. Results are shown in Table 3.
- a phenoxyphosphazene compound (K) produced in Synthesis Example 8 was used instead of a phosphazene compound (G) produced in Synthetic Example 9 and preparation of test pieces and evaluation thereof were performed in a similar way to Reference Example 5. Results are shown in Table 3.
- a flame-retardant epoxy resin composition of the present invention was excellent in heat resistance and moisture resistance.
- a molded article obtained by molding a flame-retardant epoxy resin composition of the present invention has such excellent characteristics and is useful for various types of products.
- electronic parts such as printed circuit substrate using a flame-retardant epoxy resin composition of the present invention were excellent in heat resistance and moisture resistance and, consequently, have high usefulness in industrial aspects.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
- The present invention relates to a flame-retardant epoxy resin composition, a molded article thereof and an electronic part.
- Epoxy resin has been widely used as insulating materials of electrical and electronic parts such as a laminate material and an encapsulating material for a semiconductor device, for example, IC, LSI, VLSI or the like because of excellencies in electrical characteristics such as insulating property, heat resistance, moisture resistance, acid resistance, solvent resistance, adhesiveness, mechanical properties, dimensional stability and others, and furthermore, relative inexpensiveness.
- In company with great development in the electronic technology in recent years, a progress toward high integration in a semiconductor device and a laminate has reached to higher level and at the same time, requirements for higher reliability thereof have been increased. In such a current situation, epoxy resin used as an insulating material has also been required to have better characteristics thereof such as heat resistance (including soldering heat resistance), a flame retardance, moisture resistance, adhesiveness arid mechanical properties.
- In order to improve characteristics, especially flame retardance and heat resistance, of epoxy resin, a phosphazene compound is compounded into the resin as a flame retardant and/or a hardener (for example,
Japanese Unexamined Patent Publication No. Sho-61-120850 Japanese Unexamined Patent Publication No. Sho-48-37500 Japanese Examined Patent Publication No. Hei-3-4565 Japanese Examined Patent Publication No. Hei-6-104714 Japanese Unexamined Patent Publication No. Hei-10-259292 - Phosphazene compounds disclosed in the prior arts all lack a sufficient effect in an aspect of improving moisture resistance of epoxy resin. Moisture resistance of epoxy resin is an especially important property in a case where the resin is used as material of a printed circuit board. That is, since laminates have a chance to be used in the air with a high frequency and an insulating property and, hence, a reliability are degraded due to moisture absorption, the resin is desired to have a low water absorption and no change in electrical characteristics such as an insulating property. In a case where a phosphazene compound low in effect of improving moisture resistance is used as a laminate material, inconveniences such as swelling or peeling of a metal sheet, a metal foil or the like occurs due to moisture absorption in a high temperature treatment such as a soldering process, thereby disabling a laminate with a long term reliability to be obtained.
- The present inventors have conducted serious studies in order to solve the above problem, which, as a result of the studies, leads to a discovery that epoxy resin compounded with a specific phosphazene compound can exert conspicuously excellent performance, thereby having completed the present invention.
- That is, according to the present invention, there is provided a flame-retardant epoxy resin composition containing an epoxy resin (A), a phosphazene compound (B) and an epoxy hardener (C) wherein the component (B) is included in the range of 0.01 to 70 % by weight relative to a total quantity of the component (A) and the component(B), and
wherein the component (B) is at least one member selected from the group consisting of - (1) a cyclic and/or a chain phosphazene compound expressed by a general formula (1):
- (2) a polymer of the cyclic and/or the chain phosphazene compound; and
- (3) a reaction product of the cyclic and/or the chain phosphazene compound with at least one compound selected from the group consisting of an epoxy compound, a phenol compound, an amine compound and an acid anhydride.
- In the flame-retardant epoxy resin composition the component (B) and the component (C) are included in the range of 0.01 to 70 % by weight and up to 70 % by weight, respectively, relative to a total quantity of the component (A), the component(B) and the component (C).
- Furthermore, according to the present invention, there is provided a flame-retardant epoxy resin composition containing an epoxy resin (A), a phosphazene compound (B), an epoxy hardener (C) and an inorganic filler (D), wherein the component (B) and the component (C) are included in the range of 0.01 to 70 % by weight and up to 70 % by weight, respectively, relative to a total quantity of the component (A), the component(B) and the component (C), and the component (D) is included up to 95 % by weight relative to a total quantity of the component (A), the component(B), the component (C) and the component (D) and
wherein the component (B) is at least one member selected from the group consisting of - (1) a cyclic and a chain phosphazene compound expressed by a general formula (1):
- (2) a polymer of the cyclic and/or the chain phosphazene compound; and
- (3) a reaction product of the cyclic and/or the chain phosphazene compound with at least one compound selected from the group consisting of an epoxy compound, a phenol compound, an amine compound and an acid anhydride.
- A phosphazene compound of the component (B) used in the present invention is good in reactivity and compatibility with an epoxy resin and considered to act as a hardener and a flame retardant for the epoxy resin. This compound does not degrade electrical characteristics such as an insulating property, mechanical properties, adhesiveness and others of the epoxy resin, rather exerts excellent performance to improve the characteristics and properties according to a case. A high reliability is therefore shown and also sustained over a long time by a molded article (a molded product) obtained by molding a flame-retardant epoxy resin composition of the present invention, for example an electronic part such as a laminate.
- Description will be given for components used in the present invention below. Note that the term of a "polymer" used in this specification includes an oligomer.
- As epoxy resins, there can be exemplified the following epoxy resins commonly used in the electrical and electronic fields: for example, novolak epoxy resin obtained by a reaction between phenols and aldehydes, such as phenol novolak epoxy resin, brominated phenol novolak epoxy resin, orthocresol novolak epoxy resin or naphthol novolak epoxy resin; phenol epoxy resin obtained by a reaction between a phenol and epichlorohydrin, such as bisphenol-A epoxy resin, brominated bisphenol-A epoxy resin, bisphenol-F epoxy resin, bisphenol-AD epoxy resin, bisphenol-S epoxy resin, biphenol epoxy resin, alkyl-substituted biphenol epoxy resin or tris(hydroxyphenyl) methane; aliphatic epoxy resin obtained by a reaction between an alcohol and epichlorohydrin, such as trimethylol propane, oligopropylene glycol or hydrogenated bisphenol-A; glycidyl ester epoxy resin obtained by a reaction between hexahydrophthalic acid, tetrahydrophthalic acid or phthalic acid and epichlorohydrin or 2-methyl epichlorohydrin; glycidyl amine epoxy resin obtained by a reaction between an amine such as diaminodiphenyl methane or amino phenol and epichlorohydrin; heterocyclic epoxy resin obtained by a reaction between a polyamine such as isocyanuric acid and epichlorohydrin; and modified compounds of the above epoxy resins. Among them, preferable are phenol novolak epoxy resin, orthocresol novolak epoxy resin, bisphenol-A epoxy resin, biphenol epoxy resin, phenol epoxy resin obtained by a reaction between tris(hydroxyphenyl) methane and epichlorohydrin and others. The epoxy resins can be used singly or in a combination of two or more thereof.
- A phosphazene compound used as a component (B) of the present invention is at least one member selected from the group consisting of
- (1) a cyclic and/or a chain phosphazene compound expressed by a general formula (1):
- (2) a phosphazene polymer obtained by polymerization of the cyclic and/or the chain phosphazene compound; and
- (3) a reaction product of the cyclic and/or the chain phosphazene compound with at least one compound selected from the group consisting of an epoxy compound, a phenol compound, an amine compound and an acid anhydride.
- The phosphazene compounds can be used singly or in a combination of two or more thereof.
- The amino group-substituted phenyl group selectable as a substituent indicated by R1 and R2 is a group obtained by substituting 1 to 5 amino and/or aminoalkyl groups at any carbon atom or atoms on a benzene ring. This applies to the aminoalkyl group-substituted phenyl group where the aminoalkyl group has 1 to 6 carbon atoms, the hydroxy group-substituted phenyl group, the hydroxyalkyl group-substituted phenyl group where the hydroxyalkyl group has 1 to 6 carbon atoms, the glycidyloxy group-substituted phenyl group and the glycidyloxyalkyl group-substituted phenyl group where the glycidyloxyalkyl group has 4 to 9 carbon atoms in a similar manner.
- Note that an alkali metal salt described hereinafter means a potassium salt, a sodium salt, a lithium salt or the like.
- An amino phosphazene compound (1a) that is a phosphazene compound (1) in which one of n R1s and n R2s is additionally an amino group-substituted phenyl group and/or an aminoalkyl group-substituted phenyl group is obtained according to a known prior method, for example, in which an alkali metal salt of nitrophenol and/or nitroalkyl phenol and phosphonitrile chloride are reacted with each other to produce nitrophenoxy phosphazene or nitroalkylphenoxy phosphazene and then, hydrazine or hydrazine hydrate is used to reduce a nitro group thereof to an amino group in the presence of a catalyst with a halide of a metal selected from the group consisting of chromium, manganese, iron, cobalt, nickel, zinc and tin, or a sulfate carried on active charcoal. Furthermore, there can be adopted a catalytic hydrogenation method using a Raney nickel catalyst described in Inorganic Chemistry, 6(2), 394, 1967 and a known lithium aluminum hydride reduction method or a known boron hydride reduction method.
- Furthermore, in the reaction of an alkali metal salt of nitrophenol and/or nitroalkyl phenol and phosphonitrile chloride with each other, there can be included, as a reactant, at least one selected from the group consisting of alcohol compounds expressed by R3OM (in the formula, R3 indicates an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms; and M indicates lithium, sodium or potassium) and phenol compounds expressed by R4OM (in the formula, R4 indicates an aryl group having 6 to 14 carbon atoms or an alkenylaryl group having 8 to 18 carbon atoms and M indicates lithium, sodium or potassium). Thereby, there are obtained aminophosphazene compounds (1a) each having plural amino and/or aminoalkyl group-substituted phenol groups as substitutes.
- As nitrophenols and nitroalkyl phenols, there are named, for example, 3-nitrophenol, 4-nitrophenol, 4-nitromethyl phenol, 4-nitroethyl phenol, 4-nitrobutyl phenol and others.
- As alcohol compounds and phenol compounds, there are named, for example, alkali metal salts of methanol, ethanol, n-propanol, allylalcohol, isopropanol, n-butanol, n-octanol, 2,2,2-trifluoroethanol, 2,2,3,3,4,4,5,5-octafluoropentyl alcohol, phenol, 4-methyl phenol, 4-ethyl phenol, 1-naphtol, 2-natphthol, 4-allyl phenol, 4-chlorophenol, 4-trifluoromethyl phenol and others and sodium phenolate or sodium 4-methyl phenolate is preferable in terms of heat resistance.
- As concrete examples of aminophosphazene compounds (1a), there can be named, for example, cyclotriphosphazenes with an aminophenoxy group and a phenoxy group as substitutes in a mixed manner such as aminophenoxypentaphenoxycyclotriphosphazene, di(aminophenoxy)-tetraphenoxycyclotriphosphazene, tri(aminophenoxy)-triphenoxycyclotriphosphazene, tetra(aminophenoxy)-diphenoxycyclotriphosphazene, penta(aminophenoxy)-phenoxycyclotriphosphazene, and hexaaminophenoxycyclotriphosphazene; cyclotriphosphazenes with an aminomethylphenoxy group and a phenoxy group as substitutes in a mixed manner such as aminomethylphenoxy-pentaphenoxycyclotriphosphazene,
di(aminomethylphenoxy)-tetraphenoxycyclotriphosphazene,
tri(aminomethylphenoxy)-triphenoxycyclotriphosphazene,
tetra(aminomethylphenoxy)-diphenoxycyclotriphosphazene,
penta(aminomethylphenoxy)-phenoxycyclotriphosphazene, and
hexaaminomethylphenoxy cyclotriphosphazene; cyclotriphosphazenes with an aminoethylphenoxy group and a phenoxy group as substitutes in a mixed manner such as aminoethylphenoxy-pentaphenoxycyclotriphosphazene,
di(aminoethylphenoxy)-tetraphenoxycyclotriphosphazene,
tri(aminoethylphenoxy)-triphenoxycyclotriphosphazene,
tetra(aminoethylphenoxy)-diphenoxycyclotriphosphazene,
penta(aminoethylphenoxy)-phenoxycyclotriphosphazene, and
hexaaminoethylphenoxy cyclotriphosphazene; cyclotriphosphazenes with an aminobutylphenoxy group and a phenoxy group as substitutes in a mixed manner such as aminobutylphenoxy-pentaphenoxycyclotriphosphazene,
di(aminobutylphenoxy)-tetraphenoxycyclotriphosphazene,
tri(aminobutylphenoxy)-triphenoxycyclotriphosphazene,
tetra(aminobutylphenoxy)-diphenoxycyclotriphosphazene,
penta(aminobutylphenoxy)-phenoxycyclotriphosphazene, and
hexaaminobutylphenoxy-cyclotriphosphazene; and others. - Furthermore, there are named cyclotriphosphazenes with an aminoethylphenoxy group, and an octyloxy group, trifluoroethoxy group, an octafluoropentyloxy group, an ethylphenoxy group, a naphthyloxy group, an allyloxy group, a chlorophenoxy group or a trifluoromethylphenoxy group as substitutes in a mixed manner.
- Furthermore, there are named cyclotetraphosphazene, cyclopentaphosphazene, cyclohexaphosphazene, a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15), a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n being 3000 on average) and a cyclic (=cyclo) and linear phosphazene mixture (a mixture of cyclic and linear phosphazenes of the general formula (1) with n = 1000 on average) each with an aminophenoxy group and a phenoxy group as substitutes in a mixed manner.
- Furthermore, there are named cyclotetraphosphazene, cyclopentaphosphazene, cyclohexaphosphazene, a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15), a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n = 3000 on average) and a cyclic (=cyclo) and linear phosphazene mixture (a mixture of cyclic and linear phosphazenes of the general formula (1) with n = 1000 on average) each with an aminoethylphenoxy group and a phenoxy group as substitutes in a mixed manner. The aminophosphazene compounds may include mixtures of compounds with two or more types of substituents.
- Among the above aminophosphazenes (1a), preferable are, for example, hexaaminophenoxycyclotriphosphazene; hexaaminoethylphenoxycyclotriphosphazene; a cyclotriphosphazene with an aminophenoxy group and a phenoxy group as substitutes in a mixed manner; a cyclotriphosphazene with an aminoethylphenoxy group and a phenoxy group as substitutes in a mixed manner; a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with an aminophenoxy group and a phenoxy group as substitutes in a mixed manner; a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n = 3000 on average) with an aminoethylphenoxy group and a phenoxy group as substitutes in a mixed manner and especially preferable are a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with an aminophenoxy group and a phenoxy group as substitutes in a mixed manner and a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n = 3000 on average) with an aminoethylphenoxy group and a phenoxy group as substitutes in a mixed manner.
- A hydroxy phosphazene compound (1b) that is a phosphazene compound (1) in which one of n R1s and n R2s is additionally a hydroxy group-substituted phenyl group and/or a hydroxyalkyl group-substituted phenyl group can be obtained according to known methods described in articles and a patent publication; for example, Masaaki YOKOYAMA, et.al.,; Journal of the Chemical Society of Japan. Industrial chemistry, Vol. 67, No. 9, p. 1378 (1964), Tomoya OKUBASHI, et.al.,; Journal of the Chemical Society of Japan. Industrial chemistry, Vol. 73, No. 6, p. 1164 (1970),
Japanese Unexamined Patent Publication No. Sho-58-219190 Japanese Unexamined Patent Publication No. Sho-54-145394 Japanese Unexamined Patent Publication No. Sho-54-145395 - Furthermore, a hydroxy phosphazene compound (1b) can also be produced by a reaction of an alkali meal salt of a hydroxyalkyl phenol such as 2-hydroxymethyl phenol, 3-hydroxymethyl phenol, 4-hydroxymethyl phenol, 4-hydroxyethyl phenol and 4-hydroxybutyl phenol with phosphonitrile chloride.
- A hydroxy phosphazene compound (1b) in which plural ones of n R1s and n R2s are hydroxy groups and/or hydroxyalkyl groups is produced only by using at least one selected from the group consisting of alcohol compounds expressed by a formula of R3OM (in the formula, R3 and M are the same as those of an aminophosphazene compound (1a) described above) and phenol compounds expressed by a formula of R4OM (in the formula, R4 and M are the same as those of an aminophosphazene compound (1a) described above) together in a reaction between an alkali metal salt of 4-methoxyphenol, or 4-(benzyloxy)phenol in which one hydroxyl group of dihydric phenol is protected by a methyl group or benzyl group and/or an alkali metal salt of a hydroxyalkyl phenol described above, and phosphonitrile chloride.
- As examples of compounds in which one hydroxyl group of dihydric phenol is protected by a methyl group or benzyl group, there are named 4-methoxyphenol, 3-methoxyphenol, 2-methoxyphenol, 4-(benzyloxy)phenol and others.
- In order to obtain a compound in which all of chlorine atoms of phosphonitrile chloride are substituted with methoxyphenoxy and/or 4-(benzyloxy)phenoxy, a phosphonitrile chloride solution is added to a solution of an alkali metal salt of methoxyphenol or 4-(benzyloxy)phenol to cause a reaction therebetween. This reaction is preferably performed in an organic solvent such as benzene, toluene, xylene, ether, tetrahydrofuran or the like at room temperature for a time of from 1 to 20 hours, followed by the reaction at a reflux temperature of a solvent in use for a time of about 1 to 3 hours for completion thereof. On the other hand, in order to obtain a compound in which part of chlorine atoms of phosphonitrile chloride is substituted with a methoxyphenoxy group and/or a benzylphenoxy group, a solution of an alkali metal salt of methoxyphenol or 4-(benzyloxy)phenol prepared quantitatively so as to leave the other part of chlorine atoms of phosphonitrile chloride unsubstituted during the reaction is added to a phosphonitrile chloride solution with a preferable result. By substituting unsubstituted chlorine atoms of partially substituted phosphonitrile chloride with an alkali metal salt of an alcohol or phenol compound described above, there can be obtained a compound with a methoxyphenoxy or 4-(benzyloxy)phenoxy group and R3O-group and/or R4O-group (R3 and R4 are the same as those in an aminophosphazene compound (1a) described above) as substitutes in a mixed manner. The reaction is preferably caused in conditions of a temperature from room temperature to a reflux temperature or lower of a solvent in use and a time ranging about 3 to about 8 hours. Note that, in this case, a method can be adopted in which a mixed solution of an alkali metal salt of methoxyphenol or 4-(benzyloxy)phenol and an alkali metal salt of alcohol or phenol compound is prepared in advance and a phosphonitrile halide solution is added dropwise to the mixed solution to cause a reaction with a similar effect. Then, a removal reaction of a methyl or a benzyl protective group as a substitute of a methoxyphenoxy group or a benzyloxy group as a substitute is preferably performed in a way that pyridine hydrogen halide salt of a quantity in equivalent about 2 to 20 times, or preferably about 5 to 10 times as large as one equivalent quantity of a methyl or a benzyl protective group is used to cause a reaction at a reflux temperature for about 1 hour or less, while with more than a reaction time of 1 hour, a reaction product decomposes to reduce a yield. As pyridine hydrogen halide salts, there are named pyridine hydrogen chloride salt, pyridine hydrogen bromide salt and others. Removal of a methyl or a benzyl group as a protective group can also be achieved using a reagent such as iodotrimethylsilane, aluminum trichloride, aluminum tribromide, boron trifluoride, boron tribromide, hydrogen bromide, hydrogen iodide and others.
- Furthermore, in order to obtain a compound in which all of chlorine atoms of phosphonitrile chloride are substituted with a hydroxyalkylphenoxy group (for example, a hydroxymethylphenoxy group, a hydroxyethylphenoxy group, a hydroxybutylphenoxy group or the like), the compound can be produced in a way that 1.01 to 2.0 equivalents of an alkali metal salt of a hydroxyalkyl phenol is used relative to chlorine of phosphonitrile chloride to cause a reaction preferably in an organic solvent such as benzene, toluene, xylene, ether, tetrahydrofuran or the like at room temperature for a time ranging 1 to 20 hours, followed by the reaction at a reflux temperature of a solvent in use for a time ranging from about 1 to about 3 hours to complete the reaction.
- In order to obtain a compound in which part of chlorine atoms of phosphonitrile chlorides substituted with a hydroxyalkylphenoxy group, a solution of an alkali metal salt of hydroxyalkylphenol prepared so as to leave the other part of chlorine atoms of phosphonitrile chloride unsubstituted during the reaction is added to a phosphonitrile halide solution with a preferable result. By substituting unsubstituted chlorine atoms of partially substituted phosphonitrile chloride with an alkali metal salt of an alcohol or phenol compound described above, there can be obtained a compound with a hydroxyalkylphenoxy group and R3O-group and/or R4O-group (R3 and R4 are the same as those in an aminophosphazene compound (1a) described above) as substitutes in a mixed manner. A reaction is preferably caused in conditions of a temperature from room temperature to a reflux temperature or lower of a solvent in use and a time ranging about 3 to about 8 hours. Note that, in this case, a method can be adopted in which a mixed solution of an alkali metal salt of hydroxyalkylphenol and an alkali metal salt of alcohol or phenol compound is prepared in advance and a phosphonitrile halide solution is dropwise added to the mixed solution to cause a reaction with a similar effect.
- As concrete examples of hydroxyphosphazene compounds (1b), there can be named, for example, cyclotriphosphazenes with a hydroxyphenoxy group and a phenoxy group as substitutes in a mixed manner such as hydroxyphenoxypentaphenoxycyclotriphosphazene, di(hydroxyphenoxy)-tetraphenoxycyclotriphosphazene, tri(hydroxyphenoxy)-triphenoxycyclotriphosphazene, tetra(hydroxyphenoxy)-diphenoxycyclotriphosphazene, penta(hydroxyphenoxy)-phenoxycyclotriphosphazene, and hexahydroxyphenoxy cyclotriphosphazene; cyclotriphosphazenes with a hydroxymethylphenoxy group and a phenoxy group as substitutes in a mixed manner such as hydroxymethylphenoxypentaphenoxycyclotriphosphazene, di(hydroxymethylphenoxy)-tetraphenoxycyclotriphosphazene, tri(hydroxymethylphenoxy)-triphenoxycyclotriphosphazene, tetra(hydroxymethylphenoxy)-diphenoxycyclotriphosphazene, penta(hydroxymethylphenoxy)-phenoxycyclotriphosphazene, and hexahydroxymethylphenoxy cyclotriphosphazenes; cyclotriphosphazenes with a hydroxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner such as hydroxyethylphenoxy-pentaphenoxycyclotriphosphazene, di(hydroxyethylphenoxy) -tetraphenoxycyclotriphosphazene, tri(hydroxyethylphenoxy)-triphenoxycyclotriphosphazene, tetra(hydroxyethylphenoxy)-diphenoxycyclotriphosphazene, penta(hydroxyethylphenoxy)-phenoxycyclotriphosphazene, and hexahydroxyethylphenoxy cyclotriphosphazenes; cyclotriphosphazenes with a hydroxybutylphenoxy group and a phenoxy group as substitutes in a mixed manner such as hydroxybutylphenoxypentaphenoxycyclotriphosphazene, di(hydroxybutylphenoxy)-tetraphenoxycyclotriphosphazene, tri(hydroxybutylphenoxy)-triphenoxycyclotriphosphazene, tetra(hydroxybutylphenoxy)-diphenoxycyclotriphosphazene, penta(hydroxybutylphenoxy)-phenoxy cyclotriphosphazene, and hexahydroxybutylphenoxy cyclotriphosphazenes.
- Furthermore, there are named cyclotriphosphazenes with a hydroxyethylphenoxy group, and a butoxy group, an octyloxy group, trifluoroethoxy group, an octafluoropentyloxy group, an ethylphenoxy group, a naphthyloxy group, an allyloxy group, an allylphenoxy group, a chlorophenoxy group or a trifluoromethylphenoxy group as substitutes in a mixed manner.
- Furthermore, there are named cyclotetraphosphazene, cyclopentaphosphazene, cyclohexaphosphazene, a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15), a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n = 3000 on average) and a cyclic (= cyclo) and linear phosphazene mixture (a mixture of cyclic and linear phosphazenes of the general formula (1) with n = 1000 on average) each with a hydroxyphenoxy group and a phenoxy group as substitutes in a mixed manner.
- Furthermore, there are named cyclotetraphosphazene, cyclopentaphosphazene, cyclohexaphosphazene, a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15), a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n = 3000 on average) and a cyclic (= cyclo) and linear phosphazene mixture (a mixture of cyclic and linear phosphazenes of the general formula (1) with n = 1000 on average) each with a hydroxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner. The hydroxyphosphazene compounds may include mixtures of compounds with two or more types of substituents.
- Among the above hydroxyphosphazenes, preferable are, for example, hexahydroxyphenoxycyclotriphosphazene; hexahydroxyethylphenoxycyclotriphosphazene; a cyclotriphosphazene with a hydroxyphenoxy group, a hydroxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner; a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a hydroxyphenoxy group and a phenoxy group as substitutes in a mixed manner; a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n = 3000 on average) with a hydroxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner, and especially preferable are a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a hydroxyphenoxy group and a phenoxy group as substitutes in a mixed manner and a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n = 3000 on average) with a hydroxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner.
- A glycidyl phosphazene compound (1c) can be produced in a way that a hydroxyphosphazene compound (1b) and epihalohydrin are reacted with each other in a solvent-free condition or in a proper solvent such as dimethyl sulfoxide in the presence of a quaternary ammonium salt such as tetramethyl ammonium chloride, tetramethyl ammonium bromide or the like, an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide or the like. In a case where a quaternary ammonium salt is used, since a reaction is ceased at a stage of a ring opening addition reaction, the above reaction is followed by addition of an alkali metal hydroxide to cause an ring closing reaction. If an alkali metal hydroxide is added at the start of the reaction, the ring opening addition reaction and the ring closing reaction can be performed successively.
- As epihalohydrins, there can be used known compounds and the following are named: epichlorohydrin, epibromohydrin, epiiodohydrin and others. A quantity of usage thereof is generally in the range of from 1 to 50 mol and preferably in the range of from 3 to 15 mol per 1 mol of hydroxyl group of hydroxyphosphazene compound (1b)
- In a case where dimethyl sulfoxide is used, a quantity of usage thereof has only to be in the range of from 20 to 200 parts by weight relative to 100 parts by weight of epihalohydrin.
- A quantity of usage of an alkali metal hydroxide has only to be generally in the range of from 0.8 to 1.5 mol and preferably in the range of from 0.9 to 1.3 mol per 1 mol of hydroxyl group of a hydroxyphosphazene compound (1b). A quantity of usage of a quaternary ammonium salt has only to be generally in the range of 0.001 to 1 mol and preferably in the range of 0.005 to 0.5 mol per 1 mol of a hydroxyl group of a hydroxyphosphazene compound (1b)
- The reaction temperature is generally set in the range of from 20 to 130°C and preferably in the range of from 30 to 100°C. The reaction can also be progressed while water produced during the reaction is removed to outside the reaction system. After the reaction ends, a salt, dimethyl sulfoxide, and others as byproducts are removed by washing with water and epihalohydrin in excess is removed as a distillate, thereby enabling a glycidyl phosphazene compound (1c).
- In order to remove an impurity, the obtained glycidyl phosphazene compound (1c) may be dissolved into a solvent such as methylisobutyl ketone or the like to then, cause the solution to be heated at a temperature in the range of from 50 to 100°C for a time in the range of from 0.5 to 3 hours in the presence of an alkali metal hydroxide such as sodium hydroxide or the like. After the heat treatment, the solution is repeatedly washed with water to cause a water phase to be neutral and a solvent such as methylisobutyl ketone or the like is removed as a distillate under a reduced pressure, thereby obtaining a glycidyl phosphazene compound (1c) with an extremely high purity. In this process, a quantity of usage of an alkali metal hydroxide is in the range of from 0.01 to 0.2 mol per 1 mol of an epoxy group of the glycidyl phosphazene compound (1c) to be processed. By repeating such a process, there can be obtained a glycidyl phosphazene compound (1c) with a much higher purity.
- As concrete examples of glycidyl phosphazene compounds (1b), there are named the following compounds, for example, cyclotriphosphazenes with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner such as glycidyloxyphenoxy-pentaphenoxycyclotriphosphazene, di(glycidyloxyphenoxy)-tetraphenoxycyclotriphosphazene,
tri(glycidyloxyphenoxy)-triphenoxycyclotriphosphazene,
tetra(glycidyloxyphenoxy)-diphenoxycyclotriphosphazene,
penta(glycidyloxyphenoxy)-phenoxycyclotriphosphazene, and
hexaglycidyloxyphenoxy cyclotriphosphazenes; cyclotriphosphazenes with a glycidyloxymethylphenoxy group and a phenoxy group as substitutes in a mixed manner such as glycidyloxymethylphenoxy-pentaphenoxycyclotriphosphazene,
di(glycidyloxymethylphenoxy)-tetraphenoxy cyclotriphosphazene,
tri(glycidyloxymethylphenoxy)-triphenoxycyclotriphosphazene,
tetra(glycidyloxymethylphenoxy)-diphenoxy-cyclotriphosphazene,
penta(glycidyloxymethylphenoxy)-phenoxycyclotriphosphazene, and
hexaglycidyloxymethylphenoxy cyclotriphosphazenes; cyclotriphosphazenes with a glycidyloxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner such as glycidyloxyethylphenoxy-pentaphenoxycyclotriphosphazene,
di(glycidyloxyethylphenoxy)-tetraphenoxy-cyclotriphosphazene, tri(glycidyloxyethylphenoxy)-triphenoxy cyclotriphosphazene, tetra(glycidyloxyethylphenoxy)-diphenoxy-cyclotriphosphazene, penta(glycidyloxyethylphenoxy)-phenoxy cyclotriphosphazene, and
hexaglycidyloxyethylphenoxycyclotriphosphazenes; cyclotriphosphazenes with a glycidyloxybutylphenoxy group and a phenoxy group as substitutes in a mixed manner such as glycidyloxybutylphenoxy-pentaphenoxycyclotriphosphazene,
di(glycidyloxybutylphenoxy)-tetraphenoxy cyclotriphosphazene,
tri(glycidyloxybutylphenoxy)-triphenoxycyclotriphosphazene,
tetra(glycidyloxybutylphenoxy)-diphenoxy cyclotriphosphazene,
penta(glycidyloxybutylphenoxy)-phenoxy cyclotriphosphazene, and
hexaglycidyloxybutylphenoxycyclotriphosphazenes. - Furthermore, there are named cyclotriphosphazenes with a glycidyloxyethylphenoxy group, and a butoxy group, an octyloxy group, a trifluoroethoxy group, an octafluoropentyloxy group, an ethylphenoxy group, a naphthyloxy group, an allyloxy group, an allylphenoxy group, a chlorophenoxy group, a trifluoromethylphenoxy group or the like as substitutes in a mixed manner.
- Furthermore, there are named cyclotetraphosphazene, cyclopentaphosphazene, cyclohexaphosphazene, a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15), a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n = 3000 on average) and a cyclic (=cyclo) and linear phosphazene mixture (a mixture of cyclic and linear phosphazenes of the general formula (1) with n = 1000 on average) each with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner.
- Furthermore, there are named cyclohexaphosphazene with a glycidyloxyethylphenoxy group, a glycidyloxyethylphenoxy group, a glycidyloxyethylphenoxy group or the like,and a phenoxy group in a mixed manner, a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a glycidyloxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner, a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n = 3000 on average) with a glycidyloxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner, and a cyclic (= cyclo) and linear phosphazene mixture (a mixture of cyclic and linear phosphazenes of the general formula (1) with n = 1000 on average) each with a glycidyloxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner. The glycidyl phosphazene compounds may include mixtures of compounds with two or more types of substituents.
- Among the above glycidyl phosphazene compounds, preferable are, for example, hexaglycidyloxyphenoxy cyclotriphosphazene; hexaglycidyloxyethylphenoxy cyclotriphosphazene; cyclotriphosphazene with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner; cyclotriphosphazene with a glycidyloxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner; a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner; a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n = 3000 on average) with a glycidyloxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner, and especially preferable are a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner and a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n = 3000 on average) with a glycidyloxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner.
- As polymers of a phosphazene compound (1), there are named, for example, polymers obtained by polymerization of one type or two or more types of grycidylphosphazene compounds (1c).
- A polymer of a glycidyl phosphazene compound (1c) is generally obtained by polymerizing a glycidyl phosphazene compound (1c) while heating in a solvent-free condition or in an organic solvent, in the presence of a catalyst such as a Lewis acid including aluminum chloride, boron trifluoride, iron chloride and antimony chloride, an alkali metal hydroxide including sodium hydroxide and potassium hydroxide, an organic aluminum compound including triethyl aluminum and aluminum tributoxide and an organic zinc compound including diethyl zinc and others or in the absence thereof. In a case where hexaglycidyloxyphenoxy cyclotriphosphazene is used, for example, a reaction is caused in an organic solvent such as benzene, toluene, xylene, ether or tetrahydrofuran in the presence of potassium hydroxide as a catalyst at a temperature in the range of from 50°C to a reflux temperature of a solvent in use for a time in the range of from 1 to 20 hours and thereafter, the solvent and the catalyst used in the reaction are removed through operations such as concentration, washing and others, thereby obtaining the target compound.
- As concrete examples of polymers of a glycidyl phosphazene compound (1c), there are named the following polymers, for example, oligo or poly(glycidyloxyphenoxy-pentaphenoxy cyclotriphosphazene), oligo or poly(tri(glycidyloxyphenoxy)-triphenoxycyclotriphosphazene), oligo or poly(hexaglycidyloxyphenoxy-cyclotriphosphazene); oligo or poly(glycidyloxyethylphenoxy-pentaphenoxy cyclotriphosphazene), oligo or poly(tri(glycidyloxyethylphenoxy)-triphenoxy cyclotriphosphazene), oligo or poly(hexaglycidyloxyethylphenoxycyclotriphosphazene), a polymer of a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a polymer of a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a glycidyloxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner, a polymer of a cyclic (= cyclo) and linear phosphazene mixture (a mixture of cyclic and linear phosphazenes of the general formula (1) with n being 1000 on average) with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed mannerand, and a polymer of a cyclic (= cyclo) and linear phosphazene mixture (a mixture of cyclic and linear phosphazenes of the general formula (1) with n being 1000 on average) with a glycidyloxyethylphenoxy group and a phenoxy group. as substitutes in a mixed manner.
- Among the polymers, preferable are oligo or poly(glycidyloxyphenoxy-pentaphenoxycyclotriphosphazene), oligo or poly(glycidyloxyethylphenoxypentaphenoxy-cyclotriphosphazene), a polymer of a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a polymer of a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a glycidyloxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner, and especially preferable are a polymer of a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a polymer of a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a glycidyloxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner and others.
- As reaction compounds of a phosphazene compound (1) with at least one type of compound selected from the group consisting of an epoxy compound, a phenol compound, an amine compound and an acid anhydride (the compounds are hereinafter referred collectively to as a reactive group containing compound unless otherwise specified), there are named the following copolymers, for example, a copolymer obtained by polymerizing an aminophosphazene compound (1a) and/or a hydroxyphosphazene compound (1b) with an epoxy compound, a copolymer obtained by polymerizing a glycidylphosphazene compound (1c) with a reactive group containing compound and others.
- Copolymerization of an aminophosphazene compound (1a) and/or a hydroxyphosphazene compound (1b) with an epoxy compound is performed, for example, by heating in an organic solvent or in a solvent-free condition in the presence or absence of a curing catalyst. In a case where hexaaminophenoxy cyclotriphosphazene or hexahydroxyphenoxy cyclotriphosphazene reacts with diglycidyl ether of bisphenol A, for example, a reaction has only to be caused in an organic solvent such as benzene, toluene, xylene, ether, tetrahydrofuran or the like using potassium hydroxide as a curing catalyst at a temperature in the range of from 50°C to a reflux temperature of a used solvent for a time in the range of from 1 to 20 hours and after the reaction ends, the solvent and the used catalyst are removed by operations such as concentration, washing and others, thereby enabling a desired copolymer to be obtained.
- As epoxy compounds, there can be used an epoxy resin and a monomer for an epoxy resin. Epoxy resins can be the same as the known epoxy resins described above. Known monomers can be used as a monomer for epoxy resin and there can be named, for example, bifunctional epoxy compounds such as ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, diglycidyl ether of bisphenol A, butadiene diepoxide, 3,4-epoxycyclohexylmethyl-(3,4-epoxy)cyclohexane carboxylate, vinylcyclohexane dioxide, 4,4',-di(1,2-epoxyethyl)diphenyl ether, 4,4'-(1,2-epoxyethyl)biphenyl, 2,2-bis(3,4-epoxycyclohexyl)propane, glycidyl ether of resorcinol, diglycidyl ether of phloroglucin, diglycidyl ether of methyl phloroglucin, bis(2,3-epoxycyclopentyl) ether, 2-(3,4-epoxy)cyclohexane-5,5-spiro(3,4-epoxy)cyclohexane-m-dioxane, bis(3,4-epoxy-6-methylcyclohexyl)adipate, N,N'-m-phenylenebis(4,5-epoxy-1,2-cyclohexane)dicarboxyimide; tri- or higher functional epoxy compounds such triglycidyl ether of p-aminophenol, polyallyl glycidyl ether, 1,3,5-tri(1,2-epoxyethyl)benzene, 2,2',4,4'-tetraglycidoxybenzophenone, polyglycidyl ether of phenol formaldehyde novolak, triglycidyl ether of trimethylolpropane and others. Epoxy resins and monomers thereof are used singly or in a combination of two or more thereof.
- As concrete examples of copolymers between an aminophosphazene compounds (1a) and an epoxy compound, there are named the following copolymers, for example, between epoxy compounds such as diglycidyl ether of bisphenol A, 4,4'-(1,2-epoxyethyl)biphenyl, 2,2-bis(3,4-epoxycyclohexyl)propane, glycidyl ether of resorcinol, diglycidyl ether of fluoroglucin or the like; and hexaaminophenoxy cyclotriphosphazene, hexaaminoethylphenoxy cyclotriphosphazene, a cyclotriphospazene with an aminophenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclotriphospazene with an aminoethylphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with an aminophenoxy group and a phenoxy group as substitutes in a mixed manner, a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n = 3000 on average) with an aminoethylphenoxy group and a phenoxy group as substitutes in a mixed manner or the like. The copolymers can be used singly or in a combination of two or more thereof. In a reaction between an aminophosphazene compound (1a) and an epoxy compound, a terminal end of a copolymer produced from the reaction may be an amino group or an epoxy group according to a quantitative relation therebetween.
- As concrete examples of copolymers between a hydroxyphosphazene compounds (1b) and an epoxy compound, there are named the following copolymers, for example, between hexahydroxyphenoxy cyclotriphosphazene, hexahydroxyethylphenoxy cyclotriphosphazene, a cyclotriphospazene with a hydroxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclotriphosphazene with a hydroxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a hydroxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n being 3000 on average) with a hydroxyphenoxy group and a phenoxy group as substitutes in a mixed manner or the like; and diglycidyl ether of bisphenol A, 4,4'-(1,2-epoxyethyl)biphenyl, 2,2-bis(3,4-epoxycyclohexyl)propane, glycidyl ether of resorcinol, diglycidyl ether of phloroglucin or the like. The copolymers can be used singly or in a combination of two or more thereof. In a reaction between a cyclic hydroxyphosphazene compound (1b) and an epoxy compound, a terminal end of a copolymer produced from the reaction may be a hydroxy group or an epoxy group according to a quantitative relation therebetween.
- A copolymer between a glycidylphosphazene compound (1c) and a reactive group containing compound can be produced by a reaction of a glycidylphosphazene compound (1c) with a reactive group containing compound.
- As epoxy compounds, there can be used epoxy compounds similar to those used in a case of production of a copolymer between an aminophosphazene compound (1a) and/or a hydroxyphosphazene compound (1b) and an epoxy compound. Herein as well, epoxy compounds can be used singly or in a combination of two or more thereof. As concrete examples of copolymers between a glycidylphosphazene compounds (1c) and an epoxy compound, there are named the following copolymers, for example, between diglycidyl ether of bisphenol A, or glycidyl ether of 4,4'-(1,2-epoxyethyl)biphenyl, 2,2-bis(3,4-epoxycyclohexyl)propane or resorcinol, or diglycidyl ether of phloroglucin or the like; and hexaglycidylphenoxy cyclotriphosphazene, hexaglycidylethylphenoxy cyclotriphosphazene, a cyclotriphosphazene with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclotriphosphazene with a glycidyloxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n = 3000 on average) with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner or the like. In the copolymers, a terminal end of each polymer may be a phosphazene compound or an epoxy compound. These copolymers can be used singly or in a combination of two or more thereof.
- As concrete examples of copolymers between a glycidylphosphazene compound (1c) and a phenol compound, there are named the following copolymers, for example, between resins obtained by condensation of bisphenol A, bisphenol F, dihydroxynaphthalene, phenol, cresol or xylenol and formaldehyde in the presence of an acidic catalyst, p-vinyl phenol resin, triphenolmethane condensate or the like; and hexaglycidylphenoxy cyclotriphosphazene, hexaglycidylethylphenoxy cyclotriphosphazene, a cyclotriphospazene with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclotriphospazene with a glycidyloxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n being 3000 on average) with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner or the like. In the copolymers, a terminal end of each polymer may be a glycidyl group or a hydroxy group. The copolymers can be used singly or in a combination of two or more thereof.
- As amine compounds, there may be named the following compounds such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, polyamidepolyamine, menthenediamine, isophrone diamine, N-aminoethylpiperazine, bis(4-amino-3-methylcyclohexyl)methane, bis(4-aminocyclohexyl)methane, m-xylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, m-phenylenediamine, dicyandiamide, adipic acid dihydrazide, 3,9-bis(3-aminoporpyl)-2,4,8,10-tetraoxaspiro(5,5)undecane adduct and others. The amine compounds can be used singly or in a combination of two or more thereof.
- As concrete examples of copolymers between a glycidylphosphazene compound (1c) and an amine compound, there are named the following copolymers, for example, between an amine compound such as tetraethylenepentamine, m-xylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, m-phenylenediamine, dicyandiamide or the like; and hexaglycidylphenoxy cyclotriphosphazene, hexaglycidylethylphenoxy cyclotriphosphazene, a cyclotriphospazene with a glycidylphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclotriphospazene with a glycidylethylphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a glycidylphenoxy group and a phenoxy group as substitutes in a mixed manner, a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n = 3000 on average) with a glycidylphenoxy group and a phenoxy group as substitutes in a mixed manner or the like. In the copolymers, a terminal end of each polymer may be a glycidyl group or an amino group. The copolymers can be used singly or in a combination of two or more thereof.
- As acid anhydrides, there are named the following anhydrides, for example, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, dodecylsuccinic anhydride, chlorendic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, ethyleneglycol bis(anhydrotrimate), methylcyclohexanetetracarboxylic anhydride, trimellitic anhydride, polyazelaic anhydride and others. The anhydrides can be used singly or in a combination of two or more thereof. As concrete examples of copolymers between a glycidylphosphazene compound (1c) and an acid anhydride, there are named the following copolymers, for example, between tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, methylcyclohexanetetracarboxylic anhydride or the like; and hexaglycidylphenoxy cyclotriphosphazene, hexaglycidylethylphenoxy cyclotriphosphazene, a cyclotriphosphazene with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclotriphosphazene with a glycidyloxyethylphenoxy group and a phenoxy group as substitutes in a mixed manner, a cyclophosphazene mixture (a mixture of cyclophosphazenes of the general formula (1) with n being 3 to 15) with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner, a linear phosphazene mixture (a mixture of linear phosphazenes of the general formula (1) with n = 3000 on average) with a glycidyloxyphenoxy group and a phenoxy group as substitutes in a mixed manner or the like. In the copolymers, a terminal end of each polymer may be a glycidyl group or an acid residue. The copolymers can be used singly or in a combination of two or more thereof.
- As epoxy hardeners, there are named a compound having a phenolic hydroxyl group, an aromatic amine compound, an acid anhydride and others. Among them, preferable is a compound having a phenolic hydroxyl group in consideration of moisture resistance, moldability, storage stability and others. As compounds each having a phenolic hydroxyl group, there are named, without a specific limitation imposed on compounds as far as the compounds show a curing action exerted to an epoxy resin, for example, resins obtained by condensation or co-condensation of a phenol such as phenol, cresol, xylenol, resorcinol, catechol, bisphenol A or bisphenol F, or a naphthol such as α-naphthol, β-naphthol or dihydroxynaphthalene with an aldehyde such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde or salicylaldehyde in the presence of an acidic catalyst, p-vinyl phenol resin, phenol-aralkyl resin having a xylylene group, synthesized from a phenol and dimethoxy-p-xylene, dicyclopentadiene-modified phenol resin, triphenolmethane condensate and others. These can be used singly or in a combination of two or more thereof.
- An inorganic filler has a characteristic not only to enhance a dripping preventive effect of a resin composition but to also improve a mechanical strength thereof. As inorganic filler, while any of inorganic filler commonly used in this field can be employed, there can be named the following: for example, powder of fused silica, crystal silica, alumina, aluminum hydroxide, magnesium hydroxide, zinc oxide, zinc borate, zircon, antimony trioxide, talc, calcium silicate, calcium carbonate, silicon carbide, boron carbide, beryllia, zirconia, titanium white, clay, mica, talc and others; beads produced from the above powder; kaolin, barium sulfate, barium carbonate, calcium sulfate, titanium oxide, glass beads, glass balloons, glass flakes, fibrous alkali metal titanate (sodium titanate fibers and others), fibrous borate (aluminum borate fibers, magnesium borate fibers and others), zinc oxide fibers, titanium oxide fibers, magnesium oxide fibers, gypsum fibers, aluminum silicate fibers, calcium silicate fibers, silicon carbide fibers, titanium carbide fibers, titanium nitride fibers, carbon fibers, alumina-silica fibers, zirconia fibers, quartz fibers, thin titanate flakes, thin titanium dioxide flakes and others. The inorganic filler can be used singly or in a combination of two or more thereof.
- Compounding proportions of components (A) to (D) described above in a composition of the present invention meet the following relation, in which, as to components of an epoxy resin (A), a phosphazene compound (B), an epoxy hardener (C) and an inorganic filler (D), the component (B) has only to be in the range of from 0.01 to 70 % by weight and preferably in the range of from 0.1 to 60 % by weight and the component (C) has only to be up to 70 % by weight and preferably up to 60 % by weight relative to a total quantity of the components (A) to (C), and the component (D) has only to be up to 95 % by weight and preferably up to 90 % by weight relative to a total quantity of the components (A) to (D).
- A type of epoxy resin and types of other components used together have only to be selected within the ranges of compounding quantities described above giving consideration to performance required of a target flame-retardant epoxy resin composition, a type of a laminate manufactured using the flame-retardant epoxy resin composition, types of an encapsulating material and a material of a casting mold, and an effect of further improving performance of flame retardance, moisture resistance, soldering heat resistance, mechanical properties and moldability of a flame-retardant epoxy resin composition to be obtained.
- While no specific limitation is placed on an equivalent ratio of an epoxy resin (A) and a functional group of a component (C) (the number of groups of (C)/the number of epoxy groups of (A)), the ratio is preferably set in the range of from 0.7 to 1.3 in order to suppress respective unreacted portions low.
- Since a phosphazene compound as a (B) component works not only as a flame retardant but also as an epoxy resin or an epoxy hardener, an equivalent ratio of an epoxy resin as a component (A), a phosphazene compound as a component (B) and a functional group of an epoxy hardener as a component (C) are preferably all set in the range of from 0.7 to 1.3.
- Preferred embodiments of a flame-retardant epoxy resin composition of the present invention will be shown below.
- (1) A flame-retardant epoxy resin composition in which as to components of an epoxy resin (A) and a phosphazene compound (B), the phosphazene compound component (B) is compounded in the range of from 0.01 to 70 % by weight (and preferably in the range of from 0.1 to 60 % by weight) relative to a total quantity of the components (A) and (B).
- (2) A flame-retardant epoxy resin composition in which as to components of an epoxy resin (A), a phosphazene compound (B) and an epoxy hardener (C), the phosphazene compound component (B) is compounded in the range of from 0.01 to 70 % by weight (and preferably in the range of from 0.1 to 60 % by weight) and the epoxy hardener component (C) is compounded up to 70% by weight (and preferably up to 60 % by weight) relative to a total quantity of the components (A), (B) and (C).
- (3) A flame-retardant epoxy resin composition in which as to components of an epoxy resin (A), a phosphazene compound (B), an epoxy hardener (C) and an inorganic filler (D), the phosphazene compound component (B) is compounded in the range of from 0.01 to 70 % by weight (and preferably in the range of from 0.1 to 60 % by weight), the epoxy hardener component (C) is compounded up to 70 % by weight (and preferable up to 60 % by weight) relative to a total quantity of the components (A), (B) and (C); and the inorganic filler component (D) is compounded up to 95 % by weight (and preferably up to 90 % by weight) relative to a total quantity of the components (A), (B). (C) and (D).
- (4) A flame-retardant epoxy resin composition in which a polymer of a cyclic and/or a chain phosphazene compound of the general formula (1) is compounded as a phosphazene compound (B) in any one of the flame-retardant epoxy resin compositions (1), (2) and (3)
- (5) A flame-retardant epoxy resin composition obtained by compounding any one of the flame-retardant epoxy resin compositions (1), (2), (3) and (4) into a thermoplastic resin and/or a thermoset resin.
- A curing accelerator may be included in a flame-retardant epoxy resin composition of the present invention in addition to the above components. As curing accelerators, there can be used accelerators known in this field and there can be named the following, for example, basic active hydrogen compounds such as dicyandiamide and adipic acid hydrazide; bicycloamidines such as 1,8-diazabicyclo(5,4,0)undecene-7 and 1,5-diazabycyclo(3,4,0)nonene-5, and derivatives such as phenolates thereof, octyl salts thereof and oleic acid salts thereof; oxyalkylamines such as triethanolamine, tetramethylbutanediamine, tetramethylpentanediamine, tetramethylhexanediamine, triethylenediamine, dimethylaniline, benzyl dimethylamine, dimethylaminoethanol and dimethylaminopentanol; tertiary amines such as tris(dimethylaminomethyl)phenol, N-methylmorpholine and N-ethylmorpholine; imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-methyl-4-ethylimidazole, 2-phenyl-4-methylimidazole, 1-butylimidazole, 1-propyl-2-methylimidazole, 1-bezyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-azine-2-methylimidazole and 1-azine-2-uindecylimidazole; quaternary ammonium salts such as cetyl trimethyl ammonium bromide, cetyl trimethyl ammonium chloride, dodecyl trimethyl ammonium iodide, trimethyl decyl ammonium chloride, benzyl dimethyl tetradecyl ammonium chloride, benzyl methyl palmityl ammonium chloride, allyl dodecyl trimethyl ammonium bromide and benzyl dimethyl tetradecyl ammonium acetate; organic phosphines such as tributyl phosphine, methyl diphenyl phosphine and triphenyl phosphine; and tetraphenyl borates such as triphenylphosphine tetraphenyl borate, tetraphenylphosphonium tetraphenyl borate, triethylamine tetraphenyl borate, N-methylmorpholine tetraphenyl borate, 2-ethyl-4-methylimidazole tetraphenyl borate and 2-ethyl-1,4-dimethylimidazole tetraphenyl borate. The curing accelerators can be used singly or in a combination of two or more thereof.
- Fluororesin and others can be compounded into a flame-retardant epoxy resin composition of the present invention for the purpose to improve flame-retardant performance, especially dripping (fire spreading due to dripping in burning) preventive performance to a higher level. As fluororesin, there can be used known fluororesin which are named, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE), poly(trifluorochloroethylene) (CTFE), polyfluorovinylidene (PVdF) and others. Among them, preferable is PTFE. Fluororesins can be used singly or in a combination of two or more thereof. No specific limitation is placed on a compounding quantity of fluororesin and in a case of a composition of the present invention consisting of an epoxy resin (A), a phosphazene compound (B) and an epoxy hardener (C), a compounding quantity of fluororesin is generally on the order in the range of from 0.01 to 2.5 % by weight and preferably on the order in the range of from 0.1 to 1.2 % by weight relative to a total quantity of the epoxy resin (A), the phosphazene compound (B) and the epoxy hardener (C), though a compounding quantity thereof can be properly selected in a wide range according to various conditions such as a type of an epoxy resin, a quantity of usage of a flame retardant, types and compounding quantities of other additive agents, an application for a flame-retardant resin composition to be obtained.
- Various types of additive agents can be compounded into a flame-retardant epoxy resin composition of the present invention in a range in which preferable characteristics thereof are not lost at any degree. As the additive agents, there are named, for example, the curing accelerator, natural waxes, synthetic waxes, straight-chain aliphatic acids and salts thereof, acid amides, esters, release agents such as paraffins, phosphazene compounds other than phosphazene compounds as the components (B) of the present invention, phosphate esters, condensed phosphate esters, other organic phosphorus compounds; flame retardants such as phosphorus as an element, red phosphorus, chlorinated paraffin, brominated toluene, hexabromobenzene, antimony trioxide and other inorganic flame retardants; colorants such as carbon black and red iron oxide; and coupling agents (silane coupling agents such as 3-glycidoxypropyltrimethoxy silane and titanium based coupling agents such as tetraoctylbis(phosphite)titanate and others). The additives can be used singly or in a combination of two or more thereof.
- General resin additive agents can further be compounded into a flame-retardant epoxy resin composition of the present invention in a range in which preferable characteristics thereof are not lost at any degree. While no specific limitation is imposed thereon, there are named, for example, ultraviolet absorbents such as benzophenone based, benzotriazole based, cyanoacrylate based, triazine based and others, a light stabilizing agent such as hindered amine based, antioxidants such as hindered phenol, organic phosphorus based peroxide decomposing agent, organic sulfur based peroxide decomposing agent; light intercepting agents such as rutile type titanium oxide, zinc oxide, chromium oxide, cerium oxide and others; metal deactivating agents such as benzotriazole based and others; quenching agents such as organic nickel compound and others; an anti-cloudness agent, an anti-mold agent, an antibacterial agent, pigments and others.
- A flame-retardant epoxy resin composition of the present invention can be produced by mixing and/or kneading prescribed quantities or proper quantities of an epoxy resin (A), a phosphazene compound (B), an epoxy hardener (C), an inorganic filler (D) and, when required, furthermore, fluororesin and other flame retardants according to a known method. Mixing of the components have only to be performed in a proper sequence of operations, and two or more types among mixed component composites and single components may be mixed to one compound prior to the usage.
- As flame retardants for other synthetic resins, there may be used one type or two or more types of polymers selected from the group consisting of the phosphazene compounds (1) and one type or two or more types selected from the group consisting of reaction products obtained from a reaction of a phosphazene compound (1) with a reactive group containing compound. As the synthetic resins, no specific limitation is placed thereon but there can be used any one of known thermoplastic resin and/or thermoset resin. As concrete examples of thermoplastic resins, there are named the following resins: polyethylene, polypropylene, polyisoprene, chlorinated polyethylene, polyvinyl chloride, polybutadiene, polystyrene, high-impact polystyrene, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin (ABS resin), methyl methacrylate-butadiene-styrene resin (MBS resin), methyl methacrylate-acrylonitrile-butadiene-styrene resin (MABS resin), acrylonitrile-acrylic rubber-styrene resin (AAS resin), poly(methyl (meta)acrylate), polyester (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and others), polycarbonate, polyphenylene ether (PPE), modified polyphenylene ether, polyamide (aliphatic and/or aromatic), polyphenylene sulfide, polyimide, poly(ether ether ketone), polysulfone, polyallylate, poly(ether ketone) poly(ether nitrile), poly(thioether sulfone), poly(ether sulfone), polybenzimidazole, polycarbodiimide, polyamidimide, poly(etherimide), a liquid crystal polymer and others. Among them, preferable are polyester, ABS resin, polycarbonate, modified polyphenylene ether, polyamide and others. As concrete examples of thermoset resins, there are named the following resins: for example, polyurethane, phenol resin, melamine resin, bismaleimide-triazine resin, urea resin, unsaturated polyester resin, diallyl phthalate resin, silicone resin, epoxy resin (bisphenol-A epoxy resin, bisphenol-F epoxy resin, bisphenol-AD epoxy resin, phenol novolak epoxy resin, cresol novolak epoxy resin, cycloaliphatic epoxy resin, glycidyl ester based epoxy resin, glycidyl amine based epoxy resin, heterocyclic epoxy resin, urethane-modified epoxy resin, brominated bisphenol-A epoxy resin and others) and others. Among them, preferable are polyurethane, phenol resin, melamine resin, epoxy resin and others and especially preferable is epoxy resin. The thermoplastic resins and the thermoset resins each are employed singly or in a combination of two or more thereof. No specific limitation is placed on a compounding quantity of a flame retardant into a synthetic resin, but the flame retardant quantity thereof is generally on the order in the range of from 0.01 to 100 parts by weight and preferably on the order in the range of from 0.5 to 60 parts by weight relative to 100 parts by weight of a synthetic resin, though a compounding quantity thereof can be properly selected in a wide range according to various conditions such as types of a synthetic resin and a flame retardant, a type and a compounding quantity of another additive agent, required performance, an application and others of a resin composition to be obtained. In the resin composition, there can be compounded one type or two or more types of additive agents selected from the group consisting of the components shown in the section of [Inorganic filler] and the various additives shown in the section of [Other components]. The resin composition can be produced by mixing and/or kneading a synthetic resin, a flame retardant and when required, other additive agents. Furthermore, molded articles of various shapes can be formed using common molding means for synthetic resin.
- Moreover, a flame-retardant epoxy resin composition of the present invention may be compounded into one of the various types of synthetic resin described above to produce a new flame-retardant resin composition.
- In a case where a flame-retardant epoxy resin composition of the present invention is compounded into a thermoplastic and/or a thermoset resin, a mixture composed of various types of components in the form of powder, beads, flakes or pellets has only to be mixed and/kneaded into a compound using an extruder such as a single screw extruder, a double screw extruder or the like, a Banbury mixer, a pressure kneader, or a kneader with a twin-roll type or the like. Then, a molded article of any shape can be produced according to a known molding method such as press molding, injection molding, extrusion molding, casting or the like.
- An flame-retardant epoxy resin composition of the present invention thus obtained can be applied to various types of fields where a synthetic resin can be used and used especially as electronic part materials such as laminate material, encapsulating material, optical material, casting material and others in fields of electrical, electronic and communication equipment, and precision equipment. Furthermore, a flame-retardant epoxy resin composition of the present invention can be applied in common ways of usage of an epoxy resin such as paint, adhesive agent, a transportation vehicle and equipment, fiber products, various types of fabrication machines, food packaging films and a vessel, articles associated with agriculture, forest and fishery, materials for civil engineering and building, medical supplies, components of furniture; composite material for aerospace use and others.
- More detailed description will be given for applications as electronic parts in fields of electrical, electronic and communication equipment, and precision equipment.
- A flame-retardant epoxy resin composition of the present invention is used in paper base copper clad laminate, a glass cloth base copper clad laminate, composite copper clad laminate, a flexible copper clad laminate and others to construct an electronic part. A laminate can be fabricated using a known method. For example, a process goes this way: a proper sheet-like substrate such as glass cloth is impregnated with a varnish including a flame-retardant epoxy resin composition of the present invention to form a prepreg and thereafter, prepregs are used to fabricate a copper clad laminate or the like.
- As sheet like substrates for use in preparation of prepreg, substrates that are commonly used in this field can be used, which are named, for example,: glass woven cloth, glass non-woven cloth and cloth composed of components other than a glass such as paper or aramid fibers.
- A varnish used for fabricating a prepreg can be prepared by dissolving an epoxy resin composition of the present invention into an organic solvent. As organic solvents, no specific limitation is imposed thereon as far as an epoxy resin composition of the present invention can be dissolved thereinto, which are named, for example, toluene, xylene, acetone, methylethyl ketone, methylisobutyl ketone, N,N,-dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide, trichloroethylene, trichloroethane, methylene chloride, dioxane, ethyl acetate and others. Furthermore, various types of coupling agents may be added into a varnish in order to improve a close adherence ability on a sheet-like substrate.
- One to several prepregs obtained are placed between two copper foils and the prepregs with the two copper foils are hot pressed at a temperature of the order between 100 to 250°C under pressure between 0.1 to 10 MPa to mold, thereby fabricating a double sided copper clad substrate for conductive circuit formation. After a circuit pattern is formed on the double sided substrate, a necessary number of double sided copper clad substrates are placed between the prepreg sheets, and the substrates and the sheets are hot pressed at a temperature of the order between 100 to 250°C under a pressure between 0.1 to 10 MPa for adhesion-molding to obtain a multilayer board. After the adhesion-molding, holes for interlayer conduction are formed in the multilayer board, the holes are copper plated to achieve interlayer conduction and a conductor of the outermost layer is formed, thereby enabling a copper laminate to be obtained.
- A flame-retardant epoxy resin composition of the present invention is used as materials of a build-up type multilayer printed wiring board, for example, materials of an interlayer insulating film, a solder resist, a resin coated copper foil and others to construct an electronic part.
- To be concrete, a flame-retardant epoxy resin composition of the present invention and other components when required are at first dissolved into a proper organic solvent such as toluene, methylethyl ketone, methylcellosolve or the like to prepare a varnish, the varnish is applied on a copper foil or a carrier film such as made of polyester or polyimide to dry the varnish coat by heating and to thereby semi-harden the coat, which is a common method, thus fabricating a carrier-provided resin film. Then, carrier-provided resin films are, according to a common method, laminated on an inner layer circuit sheet (a glass epoxy laminate) serving as a core by heating under pressure with a laminator, one of various types, to obtain a build-up type multilayer printed wiring board.
- In a case where a component to be cured by energy rays such as ultraviolet rays or electron rays is contained in a flame-retardant epoxy resin composition of the present invention, the composition can be used as solder resist material (solder resist ink) capable of developing and printing.
- By applying a flame-retardant epoxy resin composition of the present invention on a heat resistant resin film or a conductive foil as an adhesive agent for a electronic part, there can be obtained a flexible printed wiring board such as a single sided flexible printed wiring board, a double sided flexible printed wiring board, a multilayer flexible printed wiring board and others. As heat resistant resin films, while no specific limitation is placed thereon as far as the films are self-extinguishing and contain no halogen, there are named polyimide film, polyethyleneterephthalate film, polyethylenenaphthalate film and others among which a polyimide film is especially preferable from the viewpoint of heat resistance, mechanical properties, electrical characteristics, a flame retardance and others. As conductive foils, there are named a copper foil, an aluminum foil, a nickel foil, a stainless foil, alloy foils such as an iron-nickel foil and others, among which a copper foil is especially preferable in an aspect of flexibility, electrical characteristics, machinability and others.
- A flame-retardant epoxy resin composition of the present invention is used in an adhesive agent with anisotropic conductivity, a sheet with anisotropic conductivity, a film with anisotropic conductivity, a paste material with anisotropic conductivity and the like for use in electrical connection of a finely patterned circuit of a liquid crystal display (LCD) and a tape carrier package (TCP), TCP and a printed circuit substrate (PCB) and others, thus constructing an electronic part.
- A flame-retardant epoxy resin composition of the present invention is used in a semiconductor encapsulating material and an opto-device encapsulating material, for example film semiconductor encapsulating material, high thermal conductivity semiconductor encapsulating material, area bump package encapsulating material, bump bonding structure encapsulating material, flip chip encapsulating material, lead-free solder encapsulating material, flip chip mounting under-fill material, wafer-level under-fill material, photo-coupler encapsulating material and others to construct an electronic part. As products obtained by using a flame-retardant epoxy resin composition of the present invention, there can be exemplified: IC, LSI, VLSI, thyrister, diode, TSOP (Thin Small Outline Package), BGA (Ball Grid Array), CSP (Chip Scale/Size Package), COF(Chip On Film/FPC) and others.
- As opto-device material, a flame-retardant epoxy resin composition of the present invention can be used as encapsulating material for fabrication of LED, a photodiode, a phototransistor, CCD and others.
- A flame-retardant epoxy resin composition of the present invention is used in an optical material of an interlayer insulating film for an element of a liquid crystal display of a segment type, a simple matrix scheme or an active matrix scheme and in encapsulating material for an element of a liquid crystal display, thus constructing an electronic part. Furthermore, a flame-retardant epoxy resin composition of the present invention can be used as a casting material in a coil insulating material for a relay, a motor, a transformer, an antenna and others.
- Electronic parts described above are subjected to any suitable electrical treatment and machining to follow and further used in the following applications, which are, for example, a printer, a computer, a word processor, a key board, a compact information terminal equipment (PDA), a telephone, a portable telephone, a facsimile, a copier, an electronic cash register (ECR), a hand held calculator, an electronic notepad, an electronic dictionary, a card, a holder, an administrative and OA equipment including stationary, a washer, a refrigerator, a cleaner, a microwave oven, a lighting fixture, a game machine, an iron, home electrical appliance such as electric foot warmer, a television set, VTR, a video camera, a radio cassette player, a tape recorder, a mini-disk player, a CD player, a DVD player, a speaker, AV equipment such as a liquid crystal display, an EL display, a plasma display and others, a connector, a relay, a capacitor, a switch, a coil bobbin, a battery, a CCD sensor, an electric wire, a cable, electrical and electronic parts such as a transformer, a motor, an antenna coil, a deflection york, a distribution board, a clock and others, and communication equipment such as non-contact data carrier package system, and others.
- In addition, as other applications of compositions of the present invention, the compositions are processed into molded articles and incorporated into various types of construction materials such as an adhesive agent and a paint, and there are exemplified the following items, which are: materials for an automobile, a vehicle, a ship, an air plane and building such as various types of packing in and a top cloth of a chair or a seat; a belt, ceiling and wall boards, a convertible top, an arm rest, a door trim board, a rear package tray, a carpet, a mat, a sun visor, a wheel cover, a mattress cover, an air bag, an insulating material, a hand grasp, a hand strap, wire covering material, electrically insulating material, paint, coating material, facing material, flooring, a corner wall, a carpet, wall paper, wall facing material, outer facing material, inner facing material, roofing, a sound insulating board, heat insulating board, window shade or curtain; and equipment and supplies for daily life and sports such as clothes, curtain, bed sheets, plywood, a synthetic fiber plate, carpet, a main entrance mat, a sheet, a bucket, a hose, a container, eyeglasses, a bag, a case, goggles, a ski, a snowboard, a skateboard, a racket, a tent and a musical instrument.
- Then, there will be shown synthetic examples, examples and comparative examples and therewith, detailed description will be given of the present invention. Evaluation of various aspects of performance was valued as measured according to the following schemes.
- The temperature was measured in conformity with ASTM D-648 with a load of 1.82 Mpa, which is used as an index for heat resistance.
- A test piece of a size of 1/16 inch in thickness, 5 inch in length and 0.5 inch in width was prepared and an evaluation test for flame retardance was applied to the test piece according to UL-94 standard (Test for Flammability of Plastic Materials for Parts in Devices and Appliances UL94, Fourth Edition). Definitions of terms and evaluation criteria used in UL94 are as follows:
- Afterflame is that flaming (burning with a flame) of a material after contact of a flame (after removing an igniter) is sustained.
- An afterflame time is a length of a time during which a material is burning with a flame after contact of a flame under test conditions.
- Afterglow is that after flaming is over or after contact of a flame unless flaming occurs, glowing of a material (though not burned with a flame, being kept in a red heat state serving as an igniter) is sustained as is.
- An afterglow time is a length of a time during which after contact of a flame and/or after flaming is over, a material is kept in a read heat state serving as an igniter under test conditions.
- t1 is an afterflame time after a first flaming operation,
- t2 is an afterflame time after a second flaming operation and
- t3 is an afterglow time after the second flaming operation.
- 94 V-0
- (1) afterflame times t1 or t2 of each of test pieces is 10 sec or less,
- (2) the sum (t1 + t2) of afterflame times of 5 test pieces is 50 sec or less,
- (3) the sum (t2 + t3) of an afterflame time and an afterglow time of each of test pieces after the second flaming operation is 30 sec or less,
- (4) afterflame or afterglow of any test piece does not reach a fixation clamp, and
- (5) a sign of cotton is not ignited by a flaming particle or droppings.
- As thermoplastic resin, thermoset resin and fluororesin, the following resins were employed:
- Epoxy resin: phenol novolak epoxy resin made by DAINIPPON INK KABUSHIKI KAISHA with a trade name of Epiclon N-770,
- Epoxy resin: cresol novolak epoxy resin with an epoxy equivalent of 215 g/eq.,
- Phenol resin: a hydroxyl equivalent of 106 g/eq.,
- Aromatic polycarbonate resin made by Mitsubishi Engineering Plastics Corp with a trade name of Iupilon S-2000N
- ABS resin made by Mitsui Chemical Corp. with a trade name of Santac UT-61,
and - Polytetrafluoroethylene (PTFE) made by Asahi Glass Co., Ltd. with a trade name of G-307.
- The following synthetic Examples 1 to 5 are not covered by the claims.
- Into a 10L flask equipped with a reflux condenser, a thermometer, a stirrer, a phosphorous trichloride dropper and a chlorine gas blowing pipe, 5 L of chlorobenzene, 365 g (6.8 mol) of ammonium chloride and 5.0 g of zinc chloride were put to obtain a mixed dispersion liquid. The dispersion liquid was heated to a temperature of 130°C and 851 g of phosphorous trichloride was dropped thereinto at the temperate under reflux at a feed rate of 8.9 g/min over 96 min and 454 g of chlorine gas was simultaneously fed thereinto at a feed rate of 4.7 g/min over 96 min. After phosphorus trichloride and chlorine gas were fed, the dispersion liquid was refluxed at temperature of 132°C for another 144 min to complete a reaction. Then, the dispersion liquid was subjected to suction filtration to remove non-reacted ammonium chloride and a filtrate was distilled under a reduced pressure of 1.3 to 2.7 hPa at 30 to 40°C to remove chlorobenzene as a distillate and to obtain 704 g of a reaction product. A yield of the reaction product was 98.1% relative to the dropped phosphorous trichloride. The reaction product was dissolved into chlorobenzene and recrystallization was performed to obtain 452 g of a mixture of 76% hexachlorocyclotriphosphazene and 24% octachlorocyclotetraphosphazene. A residual chlorobenzene solution left after recrystallization is concentrated to obtain 249 g of cyclic and chain chlorophosphazenes (a mixture in the general formula (1) with n being 3 to 15, where R1O- group and R2O- group are substituted with chlorine atoms). Furthermore, the mixture of hexachlorocyclotriphosphazene and octachlorocyclotetraphosphazene were recrystallized three times with hexane to obtain 312 g of hexachlorocyclotriphosphazene of a purity 99.9%.
- Into a 2 L four-necked flask equipped with a reflux condenser, a thermometer, a stirrer and a dropping funnel, 208.7 g (1.5 mol) of 4-nitrophenol, 141.2 g (1.5 mol) of phenol, 303.6 g (3.0 mol) of triethylamine and 1200 mL of tetrahydrofuran (THF) were put to obtain a solution. Then, a solution of 116 g (1 unit mol, NPCl2 is 1 unit) of hexachlorocyclotriphosphazene of a purity 99.9% in 300 mL of THF was dropped into the THF solution of 4-nitrophenol, phenol and triethylamine over 2 hours while cooling the solution properly by stirring so that a reaction temperature is 30°C or lower. After the dropping, the reaction was successively continued at room temperature for another 12 hours while stirring the solution. Then, the reaction was further performed at a reflux temperature of the solvent for another 6 hours to complete the reaction. After the reaction ended, a solid (cyclotriphosphazene with a nitrophenoxy group and a phenoxy group as substitutes in a mixed manner and triethylamine hydrochloric acid salt) was filtered out and the solid was repeatedly washed with 2 % potassium hydroxide aqueous solution at 40°C and water sufficient times till water used in the last washing became neutral. After vacuum drying, there was obtained 272.0 g of a yellow solid at a yield of 98 %. A residual chlorine quantity is 0.01 % or less and synthesis of the compound was confirmed by performing 1H- and 31P-NMR analysis. A structure thereof was [NP(OC6H4)0.97(OC6H4NO2)1.03]3 as the result of the analysis.
- Into a 1 L four-necked flask, 83.3 g (0.3 unit mol) of a cyclotriphosphazene with a nitrophenoxy group and a phenoxy group as substitutes in a mixed manner obtained according to the above process, 5.0 g of active charcoal, 0.5 g of ferric chloride 6 hydrate salt and 600 mL of THF were put and the solution was heated as a pretreatment under reflux for 10 min. Then, 37.6 g (0.6 mol) of 80 % hydrazine hydrate was added to the solution, followed by a reaction at a reflux temperature for 8 hours. After the reaction ended, the charcoal was filtered out and a filtrate was concentrated and dried to obtain 71.8 g of a light yellow solid at a yield of 97 %. A change from a nitro group to an amino group was confirmed by performing 1Hand 31P-NMR analysis. A structure thereof was [NP(OC6R4)0.97(OC6H4NH2)1.03]3 as the result of the analysis. An amino value (active hydrogen equivalent) of the compound was measured according to a common method and a result was 120 g/eq.
- A phosphazene having amino groups at some but not all sites in a yellow solid state was obtained to a weight of 75.2 g (at a total yield of 94%) in a similar process to Synthesis Example 2 except for use of 87.6 g (0.3 unit mol) of cyclic and chain clorophosphazenes produced in Synthesis Example 1 (a mixture in the general formula (1) with n being 3 to 15, where R1O- group and R2O- group are substituted with chlorine atoms) instead of hexachlorocyclotriphosphazene and 299.7 g (1.5 mol) of 4-nitromethylphenol instead of 4-nitophenol. A structure thereof was [NP(OC6H4)0.97(OC6H4CH2NH2)1.03]3 as the result of 1H- and 31P-NMR analysis. An amino value (active hydrogen equivalent)of the compound was measured according to a common method and a result was 127 g/eq.
- Into a 2 L four-necked flask equipped with a reflux condenser, a thermometer, a stirrer and a dropping funnel, 116 g (1 unit mol, NPCl2 is 1 unit) of a mixture of 82 % hexaclorocyclotriphosphazen and 18 % octaclorocyclotetraphosphazen and 200mL of THF were put to obtain a solution. Then, a THF solution of 4-methoxyphenol sodium salt prepared separately (126.5 g (1.1 mol) of 4-methoxyphenol, 23 g (1 g-atom) of sodium and 400 mL of tetrahydrofuran) was dropped while stirring into the TFT solution of the mixture of hexachlorocyclotriphosphazene and octaclorocyclotetraphosphazen over 1 hour. Since there were observed a violent heat release, the reaction was performed while properly cooling the solution so that a reaction temperature does not exceed 30°C. After the dropping, the reaction was successively continued at 60°C for another 6 hours while stirring the solution. A residual chlorine quantity of a partially substituted compound obtained by the reaction was at 17.17% and an estimated structure thereof was [NPCl0.99(OC6H4OCH3)1.01]3,4.
- Then, a THF solution of sodium salt of p-cresol prepared separately (140.6 g (1.3 mol) of p-cresol, 28.8 g (1.2 mol) of sodium and 400 ml of THF) was dropped into the solution of the partially substituted compound over 1 hour while controlling a reaction temperature so as to be at 30°C or lower by cooling. Then, the reaction was performed for 5 hours at room temperature and furthermore for another 3 hours at a reflux temperature to complete the reaction. After completion of the reaction, THF as a solvent was removed under a reduced pressure as a distillate, 1 L of toluene was added to the product to again dissolve and furthermore, 500 mL of water was added to wash the product, followed by liquid separation. An organic layer was washed with a 5% sodium hydroxide aqueous solution once and further with a 2% sodium hydroxide aqueous solution once, and thereafter, washed with a (1 + 9) hydrochloric acid aqueous solution once, washed with 5% sodium hydrogencarbonate aqueous solution once, and washed with water twice to cause a pH value of a water layer to be neutral. Then the organic layer was separated and dehydrated with anhydrous magnesium sulfate, followed by removal of toluene as distillate to obtain 270.8 g (at a yield of 98%) of a product in a light yellow oily state. A residual chlorine quantity is 0.01% or lower.
- Into a 2 L four-necked flask, 247.9 g (0.9 unit mol) of a cyclophosphazene with a 4-methoxyphenoxy group and 4-methylphenoxy group as substitutes in a mixed manner obtained according to the above process and 1040.0 g (9.0 mol) of pyridine hydrochloric acid salt were put and a temperature of the mixture is gradually raised, followed by a reaction at a temperature in the range of 205 to 210°C for 1 hour. After cooling the mixture down to room temperature, 300 mL of water was added thereto to dissolve a reaction product and excessive pyridine hydrochloric acid salt and further a pH value of the mixture was adjusted to 6 to 7 with a 20% sodium hydroxide aqueous solution to prepare a reaction solution. Then, extraction was performed on the reaction solution with 1 L of ethyl acetate 4 times, thereafter the collected extracts were combined and washed with 1 L of water saturated with sodium sulfate four times, an organic layer was separated and the organic layer was dehydrated with anhydrous magnesium sulfate, followed by removal of ethyl acetate under a reduced pressure as distillate. Then, the concentrate was dissolved into 300 ml of methanol and the solution was added into 3 L of water to thereby precipitate a crystal, which process was repeated three times, followed by vacuum drying of the crystal obtained by the precipitation to obtain 200.0 g (a yield of 85%) of a light yellow crystal. A residual chlorine quantity in the product is at 0.01% or lower and a quantity of hydroxyl group (OH in %) was quantified according to acetylation method using acetic anhydride and pyridine described on page 316 in Analytical Chemistry Handbook, organic version (compiled by Society of Japan Analytical Chemistry) to obtain a value of 6.5% (the theoretical value of 6.6%). Synthesis of the compound was confirmed by performing 1H- and 31P-NMR analysis. An estimated structure thereof was [NP(OC6H4CH3)0.99(OC6H4OH)1.01]3,4. A hydroxyl group value of the compound was 259 g/eq.
- Into a 2 L four-necked flask equipped with a reflux condenser, a thermometer, a stirrer and a dropping funnel, 116 g (1 unit mol, NPCl2 is 1 unit) of a mixture of 82 % hexachlorocyclotriphosphazene and 18 % octaclorocyclotetraphosphazen and 200mL of THF were put to obtain a solution. Then, a THF solution of phenol sodium salt prepared separately (103.5 g (1.1 mol) of phenol, 23 g (1 g-atom) of sodium and 400 mL of tetrahydrofuran) was added dropwise while cooling by stirring into the THF solution of the mixture of hexachlorocyclotriphosphazene and octaclorocyclotetraphosphazen over 1 hour. After the dropping, the reaction was successively performed at 60°C for another 6 hours while stirring the solution. A residual chlorine quantity of a partially substituted compound obtained by the reaction was at 20.16% and an estimated structure thereof was [NPCl0.99(OC6H4)1.01]3,4.
- A THF solution of 4-hydroxyethylphenolate prepared separately (179.6 g (1.3 mol) of 4-hydroxyethylphenol, 28.8 g (1.2 mol) of sodium and 400 ml of THF) was added dropwise into the solution of the partially substituted compound over 1 hour while controlling a reaction temperature so as to be at 30°C or lower by cooling. Then, the reaction was performed for 5 hours at room temperature and furthermore for another 6 hours at a reflux temperature to complete the reaction. After completion of the reaction, THF as a solvent was distilled off under a reduced pressure, then 1 L of toluene was added to the product to redissolve the product and furthermore 500 mL of water was added to wash the product, followed by liquid separation. An organic layer was washed with a 5% sodium hydroxide aqueous solution once and furthermore with a 2% sodium hydroxide aqueous solution once, and thereafter, washed with a (1 + 9) hydrochloric acid aqueous solution once, washed with 5% sodium hydrogencarbonate aqueous solution once, and washed with water twice to cause a pH value of the water layer to be neutral. Then the organic layer was separated and dehydrated with anhydrous magnesium sulfate, followed by distillation of toluene to obtain 250.2 g (at a yield of 91%) of a product in a light yellow oily state. A residual chlorine quantity of the product is 0.01% or lower and synthesis of the compound was confirmed by performing 1H- and 31P-NMR analysis. A hydroxyl group content was 6.0% (a theoretical value of 6.1%). An estimated structure thereof was [NP(OC6H4CH2CH2OH)0.99(OC6H4)1.01]3,4. A hydroxyl group value of the compound was 278 g/eq.
- Into a 1 L reactor equipped with a stirrer, a reflux condenser and a thermometer, 78.4 g (0.3 unit mol) of phosphazene (C) having hydroxy groups at some but not all sites obtained in Synthesis Example 4 and 277.6 (3 mol) of epichlorohydrin were put to heat and dissolve. Then, a 40% sodium hydroxide aqueous solution (12 g (0.30 mole) of sodium hydroxide) was added dropwise to the phosphazene solution at a temperature in the range of 95 to 118°C over 60 min. The reaction was performed at the same temperature for another 15 min to complete the reaction. After completion of the reaction, epichlorohydrin and water were distilled off, 1 L of chloroform and 1 L of water were added to the reaction solution, followed by washing with water twice. An organic layer separated was dehydrated with anhydrous magnesium sulfate, followed by distillation of chloroform to obtain 87.7 g of a light yellow solid at a yield of 92%. Synthesis of the compound was confirmed by performing 1H- and 31P-NMR analysis. An estimated structure thereof was [NP(OC6H4CH3)0.99(OC6H4OGly)1.01]3.4 (where Gly indicates a glycidyl group and this applies hereinafter in the description). An epoxy equivalent of the compound was 315 g/eq.
- A phosphazene having glycidyl groups at some but not all sites in a yellow solid state was obtained to a weight of 92.2 g (at a yield of 93%) in a similar process to Synthesis Example 6 except for use of 82.5 g (0.3 unit mol) of a phosphazene (D) having hydroxyethyl groups at some but not all sites obtained in Synthesis Example 5. Synthesis of the compound was confirmed by performing 1H- and 31P-NMR analysis. An estimated structure thereof was [NP(OC6H4CH2CH2OGly)0.99(OC6H4)1.01]3,4. An epoxy equivalent of the compound was 333 g/eq.
- The following synthetic Examples 8 to 10 are not covered by the claims.
- Into a 1L four-necked flask equipped with a stirrer, a thermometer and a reflux condenser, 123.0 g (1.3 mol) of phenol was added and further 500 ml of THF was added to form a homogeneous solution. Then, 27.6 g of metallic sodium was put into the solution at a temperature of 25°C or lower and thereafter, a temperature of the solution was raised to 61°C over 1 hour after input of metallic sodium, followed by stirring the solution at a temperature from 61 to 68°C for 6 hours, thereby preparing a sodium phenolate solution.
- In parallel to the above reaction, 58.0 g (0.5 unit mol) of a mixture of hexachlorocyclotriphosphazene and octachlorocyclotetraphosphazene (76% a trimer and 24% a tetramer) were dissolved into 250mL of THF in a 2 L four-necked flask and the sodium phenolate solution prepared as described above was added dropwise into the solution of the mixture in a state being stirred at a temperature of 25°C or lower. After the dropping ended, a reaction was caused in the mixture solution at a temperature from 71 to 78°C for 15 hours while stirring. After completion of the reaction, the reaction mixture was concentrated and further redissolved into 500 ml of toluene, thereafter washed with water, washed with a 5% sodium hydroxide aqueous solution three times, washed with a 5% hydrochloric acid aqueous solution, washed with a 5% sodium hydrogencarbonate aqueous solution and washed with water three times, followed by concentration and drying of the reaction mixture to obtain 109 g (at a yield of 94%) of a light yellow solid.
- A residual chorine quantity (Hy-Cl) was 0.07% and it was confirmed that the product (K) was the following compound by performing 1H- and 31P-NMR analysis:
[N = P(-OPh)2]3,4.
- Into a 1L reactor equipped with a stirrer, a reflux condenser and a thermometer, 78.3 g (0.3 unit mol) of a phosphazene (A) having amino groups at some but not all sites: [NP(OC6H4)0.97(OC6H4NH2)1.03]3 obtained in Synthesis Example 2, 105.5 g (0.31 mol) of bisphenol-A diglycidyl ether, 1.0 g of triethanolamine and 700 mL of THF were put and a reaction was performed in the solution under reflux for 6 hours. After completion of the reaction, the reaction solution was concentrated and dried to obtain 180.1 g of a yellow solid. An IR analysis was performed to confirm the absence of a glycidyl group in the product.
- A phosphazene polymer (H) in a yellow solid state was obtained to a weight of 184.2 g in a similar process to Synthesis Example 9 except for use of 82.5 g (0.3 unit mol) of a mixture (D) of a cyclotriphosphazene and a cyclotetraphosphazene having a hydroxyethyl group, [NP(OC6H4CH2CH2OH)0.99(OC6H4)1.01]3.4, obtained in Synthesis Example 5. An IR analysis was performed to confirm the absence of a glycidyl group in the product.
- Into a 1L reactor equipped with a stirrer, a reflux condenser and a thermometer, 190.7 g (0.6 unit mol) of a mixture (E) of a cyclotriphosphazene and a cyclotetraphosphazene each having a glycidyl group, [NP(OC6H4CH3)0.99(OC6H4O-Gly)1.01]3,4, obtained in Synthesis Example 6, 1.0 g of triethanolamine and 700 mL of THF were put and a reaction was caused in the solution under reflux for 6 hours. After completion of the reaction, the reaction solution was concentrated and dried to obtain 181.9 g of a yellow solid. An IR analysis was performed to confirm the absence of a glycidyl group in the product.
- Into a 1L reactor equipped with a stirrer, a reflux condenser and a thermometer, 99.1 g (0.3 unit mol) of a mixture (F) of a cyclotriphosphazene and a cyclotetraphosphazene each having a glycidyl group,
[NP(OC6H4CH2CH2OGly)0.99(OC6H4)1.01]3,4, obtained in Synthesis Example 7, 28.2 g (0.3 mol) of phenol, 1.0 g of triethanolamine and 700 mL of THF were put and a reaction was performed in the solution under reflux for 6 hours. After completion of the reaction ended, the reaction solution was concentrated and dried to obtain 123.5 g of a yellow solid. An IR analysis was performed to confirm the absence of a glycidyl group in the product. - The following Examples 1 to 3 and Comparative Example 1 are not covered by the claims.
- N.N'-dimethylformamide was added to 100 parts by weight of phenol novolak epoxy resin, 63 parts by weight of a phosphazene compound (A) prepared in Synthesis Example 2 and 0.2 part by weight of triphenylphosphine to prepare a varnish having a non-volatile matter concentration of 60%. Using the varnish, 100 parts of glass cloth of 0.18 mm in thickness made by NITTO BOSEKI CO. LTD. was impregnated with 85 parts of the varnish as solid matter, and the impregnated glass cloth was dried for 5 min in a drying furnace at 150°C to fabricate a prepreg of a resin content of 45.9%. Six pieces of prepreg thus fabricated were superimposed on one another, two electrolytic copper foils of 35 µm in thickness were further superimposed on the top and bottom sides thereof, the superimposed intermediate was subjected to hot pressure molding at 190°C under a pressure of 4 Mpa for 120 min to finally obtain a double-sided copper clad laminate of 1.2 mm in thickness. A flame retardance of the laminate thus obtained was evaluated according to the UL-94V standard. A soldering heat resistance and a peel strength were measured in conformity with JIS C 6481, wherein a soldering heat resistance was evaluated by inspecting whether or not appearance abnormality occurs after moisture absorption of a test piece kept in boiling water for 2 hours and in addition, immersion in a solder bath at 260 °C for 120 sec. Compounding recipes and results are shown in Table 1.
- Double-sided copper clad laminates were fabricated in a method similar to that used in Example 1 except for adoption of the recipes shown in Table 1. From the evaluation results shown in Table 1, it is found that the laminates of compounding recipes shown in respective examples are all excellent in flame retardance and moisture resistance.
Table 1 example 1 example 2 example 3 example 4 example 5 comparative example 1 phenol novolak resin 100 100 100 50 50 100 phosphazene compound A 63 phosphazene compound B 67 phosphazene compound D 146 phosphazene compound E 50 phosphazene compound F 50 phosphazene compound K 70 phenol resin 45 44 tripheaylphos-phme 0.2 0.2 0.2 0.2 0.2 0.2 phosphorus content (%) 4.8 4.8 6.7 3.4 3.3 5.5 nitrogen content (%) 2.2 2.1 3 1.5 1.5 2.5 UL-94V V-0 V-0 V-0 V-0 V-0 V-0 soldering heat resistance not anomalous not anomalous not anomalous not anomalous not anomalous peeled peel strength (kN/m) 1.79 1.75 1.83 1.83 1.82 1.05 - The following Example 6 and Comparative Example 2 are not covered by the claims.
- An epoxy resin composition of the present invention was produced in a procedure in which 12 % by weight of a phosphazene compound (D) obtained in Synthesis Example 5, 72 % by weight of fused silica powder, 0.5 % by weight of ester wax and 0.5 % by weight of a silane coupling agent were added to 15 % by weight of cresol novolak epoxy resin (with an epoxy equivalent of 215), all the components were mixed at ordinary temperature and furthermore kneaded at a temperature from 90 to 95°C, followed by cooling and obtained hard blocks were pulverized.
- The epoxy resin composition is transfer injected into a metal mold heated at 170°C and hardened therein to fabricate a molded article (an encapsulated article). A water absorption, a glass transition temperature and moisture resistance were measured on the molded article and test methods therefor are as follows:
- Water Absorption (wt %): an epoxy resin composition of the present invention was transfer molded to produce a test piece of 50 mm in diameter and 3 mm in thickness, the test piece was stored in a saturated water vapor atmosphere at 127°C under 2 atm for 24 hours and a water absorption was calculated from a change in weight of the test piece.
- Glass Transition Temperature (°C): a test piece same as the test piece for a water absorption test was post-cured (at 175°C for 8 hours) and thereafter, the test piece were subjected to measurement of a glass transition temperature with a thermal analyzer.
- Moisture Resistance (PCT after immersion in a solder bath): A silicon chip (a test element) having two or more aluminum wires thereon was adhered to a 42 alloy frame by using an epoxy resin composition of the present invention and the chip was processed into a flat package molded article of 5 x 10 x 1.5 (mm) in size by transfer molding at 175°C for 2 min. The intermediate molded article was post cured at 175°C for 8 hours, followed by a moisture resistance test on the test piece. That is, the flat package molded article was subjected firstly to moisture absorption by storing in an atmosphere at 40°C and 90% RH for 100 hours in advance, secondly to an immersion treatment in a solder bath at 250°C for 10 sec, then PCT was performed on the article in a saturated water vapor atmosphere at 127°C under 2.5 atm and if wire disconnection due to corrosion of aluminum occurs on the article in the PCT, the article was evaluated as defective. A relationship between an elapsed time and a frequency of defective occurrence in PCT was investigated. The number of samples was 20.
- Molded articles (encapsulated articles) were fabricated to evaluate properties such as moisture resistance and others in a similar manner to Example 6 except for use of a phosphazene compound (K) obtained in Synthesis Example 8 instead of a phosphazene compound (D). Results are shown in Table 2.
Table 2 example 6 comparative example 2 water absorption (%) 0.03 0.49 glass transition temperature (°C) 169 161 moisture resistance after 40 hours elapses 0/20 4/20 after 100 hours elapses 0/20 12/20 after 150 hours elapses 0/20 20/20 after 200 hours elapses 0/20 - - In Example 6 of the present invention, wherein phosphazene compounds having an amino group, a hydroxy group and a glycidyl group were used, a hot-state hardness was increased, water absorption was low, an adhesion strength and high temperature storage characteristics were improved as compared with Comparative Example 2 containing a phenoxyphosphazene compound. In the examples wherein a flame retardant of the present invention was used, molded articles were excellent in not only high temperature storage characteristics but also flame retardance.
- The following Reference Examples 1 and 2 are not covered by the claims.
- Fifteen parts of a phosphazene compound (G) of Synthetic Example 9 and 0.5 part of PTFE were added to a resin composed of 70 parts by weight of aromatic polycarbonate resin and 30 parts by weight of ABS resin and the components were mixed in a mixer and thereafter, fused and kneaded using a 25 mm two-roll kneader to obtain a flame-retardant resin composition.
- The composition was prepared into a test piece of 1/16 inch in thickness by means of injection molding and the test pieces was subjected to evaluation on flame retardance on the basis of the test method of UL-94, measurement on a thermal deformation temperature in conformity with ASTM D-648 and further juicing and mold deposit (MD) phenomena were observed in molding.
- Phosphazene compounds (H) to (J) of Synthetic Examples 10 to 12 were used instead of a phosphazene compound (G) of Synthetic Example 9 and preparation of test pieces and evaluation thereof were performed in a similar way to Reference Example 1. Results are shown in Table 3.
- The following Reference Comparative Example 1 and Reference Examples 5 and 6 are not covered by the claims.
- A phenoxyphosphazene compound (K) of Synthetic Example 8 was used instead of a phosphazene compound (G) of Synthetic Example 9 and preparation of test pieces and evaluation thereof were performed in a similar way to Reference Example 1. Results are shown in Table 3.
- Twenty five parts of a phosphazene polymer (G) produced in Synthetic Example 9 were added to 100 parts of ABS resin and the components were mixed in a mixer and thereafter, fused and kneaded using a 25 mm two-roll kneader to obtain a flame-retardant resin composition.
- The composition was prepared into a test piece of 1/16 inch in thickness by means of injection molding and the test pieces were subjected to evaluation on flame retardance on the basis of the test method of UL-94 and measurement on a thermal deformation temperature in conformity with ASTM D-648 and furthermore, juicing and mold deposit (MD) phenomena were observed in molding. Results are shown in Table 3.
- Phosphazene compounds (H) to (J) of Synthetic Examples 10 to 12 were used instead of a phosphazene compound (G) produced in Synthetic Example 9 and preparation of test pieces and evaluation thereof were performed in a similar way to Reference Example 5. Results are shown in Table 3.
- The following Reference Comparative Example 2 is not covered by the claims.
- A phenoxyphosphazene compound (K) produced in Synthesis Example 8 was used instead of a phosphazene compound (G) produced in Synthetic Example 9 and preparation of test pieces and evaluation thereof were performed in a similar way to Reference Example 5. Results are shown in Table 3. Note that the term "Comparative Example" in the tables is an abbreviation of the term "Reference Comparative Example."
Table 3 synthetic resin flame retardant PTFE part by weight UL-94V thermal deformation temperature (°C) juicing in molding MD reference example 1 PC/ABS G 0.5 V-0 109 absent absent reference example 2 PC/ABS H 0.5 V-0 106 absent absent reference example 3 PC/ABS I 0.5 V-0 108 absent absent reference example 4 PC/ABS J 0.5 V-0 106 absent absent reference example 5 ABS G 0.5 V-0 82 absent absent referee example 6 ABS H 0.5 V-0 83 absent absent reference example 7 ABS I 0.5 V-0 81 absent absent reference example 8 ABS J 0.5 V-0 83 absent absent Comparative example 1 PC/ABS K 0.5 V-0 98 present present comparative example 2 ABS K 0.5 V-0 78 present present - In such way, Reference Examples 7 and 8 using phosphazene compounds of the present invention, thermal deformation temperature was raised, neither of juicing and mold deposit phenomena was recognized as compared with Reference Comparative Examples 1 and 2 containing phenoxyphosphazenes. In all of the examples using flame retardants of the present invention, any of vaporization, disappearance and bleeding out was not observed and in addition they are excellent in flame retardance.
- A flame-retardant epoxy resin composition of the present invention was excellent in heat resistance and moisture resistance.
- Therefore, a molded article obtained by molding a flame-retardant epoxy resin composition of the present invention has such excellent characteristics and is useful for various types of products.
- Furthermore, electronic parts such as printed circuit substrate using a flame-retardant epoxy resin composition of the present invention were excellent in heat resistance and moisture resistance and, consequently, have high usefulness in industrial aspects.
Claims (5)
- A flame-retardant epoxy resin composition comprising an epoxy resin (A), a phosphazene compound (B) and an epoxy hardener (C), wherein said phosphazene compound (B) is included in the range of 0.01 to 70 % by weight relative to a total quantity of said epoxy resin (A) and said phosphazene compound (B), and
wherein said phosphazene compound (B) is at least one member selected from the group consisting of(1) a cyclic and/or a chain phosphazene compound expressed by a general formula (1):(2) a polymer of said cyclic and/or said chain phosphazene compound; and(3) a reaction product of said cyclic and/or said chain phosphazene compound with at least one compound selected from the group consisting of an epoxy compound, a phenol compound, an amine compound and an acid anhydride. - The flame-retardant epoxy resin composition according to claim 1, wherein said phosphazene compound (B) and said epoxy hardener (C) are included in the range of 0.01 to 70 % by weight and up to 70 % by weight, respectively, relative to a total quantity of said epoxy resin (A), said phosphazene compound (B) and said epoxy hardener (C).
- A flame-retardant epoxy resin composition comprising an epoxy resin (A), a phosphazene compound (B), an epoxy hardener (C) and an inorganic filler (D), wherein said phosphazene compound (B) and said epoxy hardener (C) are included in the range of 0.01 to 70 % by weight and up to 70 % by weight, respectively, relative to a total quantity of said epoxy resin (A), said phosphazene compound (B) and said epoxy hardener (C), and said inorganic filler (D) is included up to 95 % by weight relative to a total quantity of said epoxy resin (A), said phosphazene compound (B), said epoxy hardener (C) and said inorganic filler (D) and
wherein said component (B) is at least one member selected from the group consisting of(1) a cyclic and/or a chain phosphazene compound expressed by a general formula (1):(2) a polymer of said cyclic and/or said chain phosphazene compound; and(3) a reaction product of said cyclic and/or said chain phosphazene compound with at least one compound selected from the group consisting of an epoxy compound, a phenol compound, an amine compound and an acid anhydride. - A molded article obtained by molding the flame-retardant epoxy resin composition according to any one of claims 1 to 3.
- An electronic part obtained by molding the flame-retardant epoxy resin composition according to any one of claims 1 to 3.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000078987 | 2000-03-21 | ||
JP2000078987 | 2000-03-21 | ||
JP2000331189A JP3394029B2 (en) | 2000-03-21 | 2000-10-30 | Flame-retardant epoxy resin composition, molded product thereof, and electronic component |
JP2000331189 | 2000-10-30 | ||
PCT/JP2001/002154 WO2001070844A1 (en) | 2000-03-21 | 2001-03-19 | Flame-retardant epoxy resin composition, molded object thereof, and electronic part |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1273608A1 EP1273608A1 (en) | 2003-01-08 |
EP1273608A4 EP1273608A4 (en) | 2004-09-08 |
EP1273608B1 true EP1273608B1 (en) | 2007-07-04 |
Family
ID=26588001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01912477A Expired - Lifetime EP1273608B1 (en) | 2000-03-21 | 2001-03-19 | Flame-retardant epoxy resin composition, molded object thereof, and electronic part |
Country Status (8)
Country | Link |
---|---|
US (1) | US6797750B2 (en) |
EP (1) | EP1273608B1 (en) |
JP (1) | JP3394029B2 (en) |
KR (1) | KR20020095190A (en) |
AT (1) | ATE366269T1 (en) |
DE (1) | DE60129216T2 (en) |
TW (1) | TWI290150B (en) |
WO (1) | WO2001070844A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110616037A (en) * | 2019-10-31 | 2019-12-27 | 扬中市国鹰电器有限公司 | Scale-preventing insulating coating for electric heating pipe and preparation method thereof |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6825254B2 (en) * | 2000-09-04 | 2004-11-30 | Asahi Kasei Chemicals Corporation | Polyphenylene ether resin composition |
JP4880841B2 (en) * | 2001-09-19 | 2012-02-22 | 太陽ホールディングス株式会社 | Multilayer printed wiring board using resin composition for forming roughened surface |
JP3726189B2 (en) * | 2002-05-30 | 2005-12-14 | 大塚化学ホールディングス株式会社 | Phosphazene-modified phenolic resin, flame retardant, flame retardant resin composition, and flame retardant resin molding |
US20030236388A1 (en) * | 2002-06-12 | 2003-12-25 | General Electric Company | Epoxy polymer precursors and epoxy polymers resistant to damage by high-energy radiation |
JP3888254B2 (en) * | 2002-07-29 | 2007-02-28 | 富士電機ホールディングス株式会社 | Multilayer printed wiring board |
US20040229391A1 (en) * | 2003-04-25 | 2004-11-18 | Kazuyuki Ohya | LED lamp manufacturing process |
JP4380237B2 (en) * | 2003-06-25 | 2009-12-09 | 住友ベークライト株式会社 | Thermosetting resin composition epoxy resin composition and semiconductor device |
JP2005047995A (en) * | 2003-07-30 | 2005-02-24 | Kaneka Corp | Heat-resistant resin composition having improved flame retardancy and its utilization |
JP2005120228A (en) * | 2003-10-16 | 2005-05-12 | Nitto Denko Corp | Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the composition |
DE112004002030B4 (en) * | 2003-11-07 | 2010-12-02 | Asahi Kasei Chemicals Corporation | Flame retardant composition, flame retardant resin composition and molded article |
US7019283B2 (en) * | 2004-02-09 | 2006-03-28 | Bruce Industries, Inc. | LED burning prevention |
DE102004031190A1 (en) * | 2004-06-28 | 2006-01-19 | Tesa Ag | Heat-activated adhesive tape for the bonding of electronic components and printed conductors |
US7671147B2 (en) | 2004-06-29 | 2010-03-02 | Asahi Kasei Chemicals Corporation | Composition of oxazolidine epoxy resin, epoxy phosphazene, phosphorus compound or polyphenylene ether and curing agent |
US20060019102A1 (en) * | 2004-07-26 | 2006-01-26 | Kuppsuamy Kanakarajan | Flame-retardant halogen-free polyimide films useful as thermal insulation in aircraft applications and methods relating thereto |
JP2006073966A (en) * | 2004-09-06 | 2006-03-16 | Mitsui Mining & Smelting Co Ltd | Printed circuit board and semiconductor device |
KR100765518B1 (en) * | 2004-12-17 | 2007-10-10 | 엘지전자 주식회사 | Plasma Display Apparatus and Manufacturing Method thereof |
JP2006229127A (en) * | 2005-02-21 | 2006-08-31 | Showa Denko Kk | Thermosetting composition for solder resist and its curing object |
ITMI20052378A1 (en) * | 2005-12-13 | 2007-06-14 | Controlcavi Ind S R L | FIRE RESISTANT ELECTRICAL CABLE WITH SAFETY FEATURES TOTAL OPERATION |
CN101389712A (en) * | 2006-02-27 | 2009-03-18 | 昭和电工株式会社 | Thermosetting resin composition containing low-chlorine multifunctional aliphatic glycidyl ether compound, cured product of such composition and use thereof |
US7849542B2 (en) | 2006-06-21 | 2010-12-14 | Dreamwell, Ltd. | Mattresses having flame resistant panel |
US8641957B2 (en) * | 2006-07-05 | 2014-02-04 | GM Global Technology Operations LLC | Molding cosmetic composite panels with visible fibers from ultraviolent light resistant epoxy compositions |
US20080043166A1 (en) * | 2006-07-28 | 2008-02-21 | Hewlett-Packard Development Company Lp | Multi-level layer |
KR200458041Y1 (en) * | 2007-03-30 | 2012-01-18 | 서울반도체 주식회사 | Light emitting device |
US7709740B2 (en) * | 2007-05-07 | 2010-05-04 | Jji Technologies, Llc | Flame retardant wire and cable |
KR100876266B1 (en) * | 2007-09-28 | 2008-12-26 | 삼성에스디아이 주식회사 | Rechargeable battery |
JP5692487B2 (en) * | 2007-10-11 | 2015-04-01 | 株式会社伏見製薬所 | Epoxy compound composition |
US9024455B2 (en) | 2010-05-26 | 2015-05-05 | Hitachi Chemical Company, Ltd. | Semiconductor encapsulation adhesive composition, semiconductor encapsulation film-like adhesive, method for producing semiconductor device and semiconductor device |
JP5610252B2 (en) * | 2008-08-02 | 2014-10-22 | 株式会社伏見製薬所 | Glycidyloxy group-containing cyclic phosphazene compound and process for producing the same |
US7982133B2 (en) * | 2008-08-29 | 2011-07-19 | Pratt & Whitney Canada Corp. | Crack controlled resin insulated electrical coil |
JP5418114B2 (en) * | 2009-09-30 | 2014-02-19 | Jsr株式会社 | Polyimide material, polyimide resin composition, film and method for producing the same |
JP2011100927A (en) * | 2009-11-09 | 2011-05-19 | Sony Chemical & Information Device Corp | Bonding agent composition |
JP5691156B2 (en) * | 2009-11-11 | 2015-04-01 | 日本電気株式会社 | Flame retardant resin composition |
US8592628B2 (en) | 2010-06-03 | 2013-11-26 | Battelle Energy Alliance, Llc | Phosphazene additives |
KR101214078B1 (en) | 2010-06-10 | 2012-12-20 | 주식회사 케이씨씨 | Epoxy resin composition having excellent electrical characteristics for sealing semiconductor |
US9184355B2 (en) * | 2011-06-27 | 2015-11-10 | Daicel Corporation | Curable resin composition for reflection of light, and optical semiconductor device |
WO2014186279A1 (en) | 2013-05-13 | 2014-11-20 | Momentive Specialty Chem Inc | Composites and epoxy resins based on aryl substituted compounds |
JP6343923B2 (en) * | 2013-12-18 | 2018-06-20 | 日亜化学工業株式会社 | Light emitting device |
US20170210098A1 (en) * | 2015-11-30 | 2017-07-27 | Heidi Moore | Permeable elastomeric membrane adhered to fire-rated structural osb panels |
TWI580714B (en) * | 2016-03-10 | 2017-05-01 | 台燿科技股份有限公司 | Resin composition and uses of the same |
CN109496256A (en) * | 2016-07-22 | 2019-03-19 | 首尔伟傲世有限公司 | Cast light emitting diode illuminating apparatus |
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
KR101876754B1 (en) * | 2016-12-16 | 2018-07-10 | 한화첨단소재 주식회사 | Thermosetting resin composition for improving self-extinguishing performance for battery module for battery pack of electric vehicle |
JP6890452B2 (en) * | 2017-03-31 | 2021-06-18 | 日本化薬株式会社 | Transparent flame retardant sheet |
JP6827404B2 (en) * | 2017-11-30 | 2021-02-10 | 三菱電機株式会社 | Semiconductor devices and power converters |
JP2019161105A (en) * | 2018-03-15 | 2019-09-19 | 東芝メモリ株式会社 | Semiconductor device |
JP7391775B2 (en) * | 2019-08-28 | 2023-12-05 | ファナック株式会社 | Arm-like structures and robots |
US11707851B2 (en) | 2019-08-28 | 2023-07-25 | Fanuc Corporation | Arm-shaped structure body and robot |
JP7343366B2 (en) * | 2019-11-20 | 2023-09-12 | ファナック株式会社 | Robot casing and robot |
CN111635618B (en) * | 2020-05-09 | 2022-11-04 | 北京工商大学 | Phosphazene-based organic metal complex flame-retardant epoxy resin and preparation method thereof |
JP2024501213A (en) * | 2020-12-18 | 2024-01-11 | スリーエム イノベイティブ プロパティズ カンパニー | Electrets containing substituted cyclotriphosphazene compounds and articles obtained therefrom |
CN112876735B (en) * | 2021-01-19 | 2022-04-12 | 润工节能科技(承德)有限公司 | High-temperature-resistant non-combustible resin and preparation method thereof |
CN115368709B (en) * | 2022-09-26 | 2023-05-09 | 衡阳华瑞电气有限公司 | Magnetic suspension train driving motor insulating resin and preparation method thereof |
CN117070126B (en) * | 2023-09-28 | 2024-03-05 | 北京景泰消防科技有限公司 | Corrosion-resistant water-based fireproof paint and preparation method thereof |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3844983A (en) * | 1970-05-01 | 1974-10-29 | Horizons Inc | Arrangement related to inflatable life rafts room temperature curing poly(fluoroalkoxyphosphazene)copolymers and terpolymers |
JPS61115929A (en) * | 1984-11-13 | 1986-06-03 | Fujitsu Ltd | Epoxy resin composition for sealing semiconductor |
US4668589A (en) * | 1985-11-21 | 1987-05-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Aminophenoxycyclotriphosphazene cured epoxy resins and the composites, laminates, adhesives and structures thereof |
JPH06104714B2 (en) * | 1991-03-08 | 1994-12-21 | 和歌山県 | New epoxy resin curing agent |
JP3354594B2 (en) * | 1992-07-06 | 2002-12-09 | 和歌山県 | Aminophosphazene epoxy resin curing agent |
JP3206778B2 (en) | 1993-02-24 | 2001-09-10 | 日本化薬株式会社 | Cyclic phosphazene compound, resin composition and cured product thereof |
JP3591786B2 (en) * | 1995-01-13 | 2004-11-24 | 日本化薬株式会社 | Phosphazene derivative, resin composition and cured product thereof |
GB2304716A (en) * | 1995-09-04 | 1997-03-26 | Minnesota Mining & Mfg | Flame-retarded epoxy systems; spirocyclic phosphazenes |
JP3783312B2 (en) | 1997-01-17 | 2006-06-07 | 日立化成工業株式会社 | Epoxy resin molding material for electronic component sealing and electronic component |
JP3886206B2 (en) | 1997-04-28 | 2007-02-28 | 日華化学株式会社 | Durable flameproofing method for synthetic fibers |
JP3032528B1 (en) * | 1999-04-27 | 2000-04-17 | 東芝ケミカル株式会社 | Sealing resin composition and semiconductor sealing device |
-
2000
- 2000-10-30 JP JP2000331189A patent/JP3394029B2/en not_active Expired - Lifetime
-
2001
- 2001-03-19 EP EP01912477A patent/EP1273608B1/en not_active Expired - Lifetime
- 2001-03-19 US US10/221,813 patent/US6797750B2/en not_active Expired - Fee Related
- 2001-03-19 DE DE60129216T patent/DE60129216T2/en not_active Expired - Lifetime
- 2001-03-19 AT AT01912477T patent/ATE366269T1/en not_active IP Right Cessation
- 2001-03-19 KR KR1020027012381A patent/KR20020095190A/en not_active Application Discontinuation
- 2001-03-19 WO PCT/JP2001/002154 patent/WO2001070844A1/en active IP Right Grant
- 2001-03-21 TW TW090106630A patent/TWI290150B/en not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110616037A (en) * | 2019-10-31 | 2019-12-27 | 扬中市国鹰电器有限公司 | Scale-preventing insulating coating for electric heating pipe and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
US6797750B2 (en) | 2004-09-28 |
JP2001335676A (en) | 2001-12-04 |
JP3394029B2 (en) | 2003-04-07 |
WO2001070844A1 (en) | 2001-09-27 |
DE60129216D1 (en) | 2007-08-16 |
EP1273608A4 (en) | 2004-09-08 |
EP1273608A1 (en) | 2003-01-08 |
US20030114606A1 (en) | 2003-06-19 |
KR20020095190A (en) | 2002-12-20 |
DE60129216T2 (en) | 2007-11-15 |
TWI290150B (en) | 2007-11-21 |
ATE366269T1 (en) | 2007-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1273608B1 (en) | Flame-retardant epoxy resin composition, molded object thereof, and electronic part | |
TW553971B (en) | Epoxy resin composition and electronic parts | |
US8053378B2 (en) | Modified phenolic resin, epoxy resin composition containing the same, and prepreg containing the composition | |
JP5916160B2 (en) | Method for producing epoxy compound composition | |
JP5177730B2 (en) | Hydroxyl group-containing cyclic phosphazene compound and process for producing the same | |
EP3620459B1 (en) | Phosphorus-containing phenolic compound, phosphorus-containing epoxy resin, curable resin composition thereof, or epoxy resin composition and cured product thereof | |
EP2682398B1 (en) | Phosphorus-atom-containing oligomer composition, curable resin composition, substance resulting from curing same, and printed circuit board | |
JP3479884B2 (en) | Flame retardant epoxy resin composition and electronic component | |
US20050228148A1 (en) | Phosphorus- containing epoxy resin, phosphorus- containing epoxy resin composition, process for producing the resin, sealant containing the composition, molding material containing the composition, and laminate containing the composition | |
TWI623562B (en) | Epoxy resin composition and cured product thereof | |
JP5177731B2 (en) | Epoxy group-containing cyclic phosphazene compound and method for producing the same | |
JP3723899B2 (en) | Epoxy resin, flame retardant, flame retardant resin composition, and flame retardant resin molded article | |
EP2123712A1 (en) | Epoxy resin composition and electronic part | |
JP3726189B2 (en) | Phosphazene-modified phenolic resin, flame retardant, flame retardant resin composition, and flame retardant resin molding | |
JP6809206B2 (en) | Epoxy resin, curable resin composition and its cured product | |
JP2004323864A (en) | Preparation process of phosphazene-modified phenolic resin | |
JP2004010867A (en) | Reactive flame-retardant, its manufacturing method, and flame-retardant resin composition, sealing material and laminate obtained using the same | |
JP2018048251A (en) | Polyfunctional epoxy resin, method for producing the same, curable resin composition and cured product thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021018 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20040727 |
|
17Q | First examination report despatched |
Effective date: 20041203 |
|
17Q | First examination report despatched |
Effective date: 20041203 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60129216 Country of ref document: DE Date of ref document: 20070816 Kind code of ref document: P |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071015 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071204 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070704 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070704 |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070704 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070704 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071005 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070704 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080331 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110216 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60129216 Country of ref document: DE Effective date: 20121002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121002 |