EP1272693A1 - Verfahren zum wachstum von stickstoff enthaltenden halbleiterkristallmaterialien - Google Patents

Verfahren zum wachstum von stickstoff enthaltenden halbleiterkristallmaterialien

Info

Publication number
EP1272693A1
EP1272693A1 EP01933606A EP01933606A EP1272693A1 EP 1272693 A1 EP1272693 A1 EP 1272693A1 EP 01933606 A EP01933606 A EP 01933606A EP 01933606 A EP01933606 A EP 01933606A EP 1272693 A1 EP1272693 A1 EP 1272693A1
Authority
EP
European Patent Office
Prior art keywords
growth
layer
initial
continuous
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01933606A
Other languages
German (de)
English (en)
French (fr)
Inventor
Bernd SCHÖTTKER
Bernd Wachtendorf
Michael Heuken
Gerd Strauch
Holger JÜRGENSEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aixtron SE
Original Assignee
Aixtron SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aixtron SE filed Critical Aixtron SE
Publication of EP1272693A1 publication Critical patent/EP1272693A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride

Definitions

  • the invention relates to a process for the growth of nitrogen-containing semiconductor crystal materials of the form A X B Y C Z N V M W , where A, B, C is a group II or III element, N nitrogen, M is a group V or VI element and X, Y, Z, W represent the mole fraction of each element of this compound, using an intermediate layer for the growth support z.
  • the method used to date is based on a two-step initial growth process, which is composed of a low-temperature growth step, also known as buffer layer growth, and the subsequent high-temperature growth [JP / B2 / 93].
  • the change in the growth regime ie the transition from the cubic to the hexagonal crystal structure for the growth interruption between the two temperature regimes, is a prominent factor, since it is assumed that the low-temperature buffer layer is recrystallizing [BOY98], [MTF + 98], [WKT + 96].
  • This two-step initial growth process is susceptible to reproducibility of the nucleation layers due to the various changes in growth parameters and susceptible to non-uniformities across the wafer. This has a considerable influence on the properties of the components made from it.
  • the luminosity and color of an LED is difficult to control using the two-step process.
  • the electrical direct current and high frequency properties of FET vary very widely.
  • the complicated manufacturing process which is based on the well-known two-step layer growth, which consists of a buffer layer and the deep substrate temperature temperature and further growth at a higher temperature on this buffer layer is avoided.
  • the advantages of the new process are better reproducibility and lower manufacturing costs for components.
  • the new initial growth procedure therefore prevents the two-step layer growth and thus avoids the manufacturing process with many necessary process steps. As a result, the manufacturing time and cost of a nitrogen-containing semiconductor crystal layer are reduced. At the same time, improved structural, electrical and optical properties are achieved.
  • the critical layer thickness of the nitrogen-containing semiconductor material on sapphire, SiC or Si has reached the critical layer thickness before the recrystallization takes place during the heating process.
  • the object of the invention is to produce a first layer on a substrate. This layer has further influence on the subsequent layers. This means that in addition to determining the composition, doping and layer sequence, an optimal coordination of the subsequent layers should be made possible while taking into account further desired properties described below. Complicated manufacturing processes with many process steps should be avoided. As a result, manufacturing time and costs are reduced.
  • the object on which the invention is based is achieved by a method according to claim 1. Further developments of the method according to the invention are the subject of claims 2 to 8.
  • the object on which the invention is based is achieved by a continuous growth process.
  • a x B ⁇ C z , N v , M w materials and layer systems and doped layer systems can advantageously be produced.
  • a high degree of homogeneity can advantageously also be achieved in a lateral direction.
  • Components can advantageously be produced.
  • Quantum pots can advantageously be produced.
  • n- and p-doping can be carried out simultaneously.
  • a reproducible production of A X B Y C Z ( N V , M W materials with different compositions X, Y, Z, V, W and different purities can advantageously be made possible.
  • Another advantageously predeterminable property is the surface morphology of the semiconductor materials.
  • Properties which can be advantageously predefined are the particle density and the impurity density on the wafer surface.
  • Another advantage is to enable a reproducible and very uniform or uniform application of A x _ B ⁇ C z , N v , M w components with respect to doping, layer thickness, composition and all other properties that are important for expenditure.
  • a process is described for the initial growth of nitrogen-containing semiconductor crystal materials of the form A X B Y C Z N V M W (A, B, C represent a group II or III element, N nitrogen, M a group V or VI- Element and X, Y, Z, W is the mole fraction of each element in this compound) on sapphire, SiC and Si using different ramp functions that allow a continuous change in growth parameters during initial growth.
  • This new initial growth process is characterized in that during the initial growth process of the nitrogen-containing semiconductor crystal materials on sapphire, SiC or Si, no abrupt change in the growth regime is required in order to realize a suitable structure for the further high-temperature growth.
  • the Al 2 0 3 substrate was exposed to a hydrogen atmosphere (150 mbar) for 30 min 1200 ° C heated [KWH + 98]. After this desorption step, the substrate temperature was then lowered to 530 ° C to ensure a reproducible initial situation for further growth. At this temperature, NH 3 was then fed into the reactor with a flow of 4500 sccm. Based on this substrate temperature, a linear ramp function was then used (from 830 ° C to 1200 ° C in 8min) to reach the usual high growth temperature of 1200 ° C. At the moment of starting the heating, TMGa was fed into the reactor with a low flow of 20sccm, which leads to GaN growth with a low growth rate.
  • a low growth rate layer was then grown for 4 minutes.
  • a ramp function linear ramp of the TMGa flow from 20sccm to 80 sccm in 15min
  • a 2 ⁇ m thick GaN layer and a 5-fold MQW GalnN / GaN were then deposited on this adaptation layer.
  • the following layer structure serves as a test structure: 5x 2nm InGaN / 15nm GaN 2 ⁇ m GaN: Si buffer layer 20nm GaN nucleation layer 400 ⁇ m sapphire substrates (0001)
  • the first nucleation layer is deposited at 530 ° C. under an N 2 atmosphere at 950 mbar for 8 minutes.
  • the layer has cubic components and is not connected.
  • growth is interrupted and heating to 1170 ° C.
  • a recrystallization takes place from the cubic crystal phase into the hexagonal phase.
  • the GaN buffer layer then grows at 1160 ° C.
  • continuous growth takes place when heating from 530 ° C. to 1170 ° C. without any interruption in growth and without any healing step which would allow recrystallization.
  • the growth takes place under H 2 at 200 mbar.
  • the comparison of the properties in Table 1 shows a higher luminous efficiency with the emission wavelength remaining the same.
  • Literature The comparison of the properties in Table 1 shows a higher luminous efficiency with the emission wavelength remaining the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)
EP01933606A 2000-04-12 2001-04-12 Verfahren zum wachstum von stickstoff enthaltenden halbleiterkristallmaterialien Withdrawn EP1272693A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10018128 2000-04-12
DE10018128 2000-04-12
PCT/DE2001/001446 WO2001077421A1 (de) 2000-04-12 2001-04-12 Verfahren zum wachstum von stickstoff enthaltenden halbleiterkristallmaterialien

Publications (1)

Publication Number Publication Date
EP1272693A1 true EP1272693A1 (de) 2003-01-08

Family

ID=7638470

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01933606A Withdrawn EP1272693A1 (de) 2000-04-12 2001-04-12 Verfahren zum wachstum von stickstoff enthaltenden halbleiterkristallmaterialien

Country Status (6)

Country Link
US (1) US7473316B1 (ja)
EP (1) EP1272693A1 (ja)
JP (1) JP2003530707A (ja)
KR (1) KR20030001416A (ja)
TW (1) TW507272B (ja)
WO (1) WO2001077421A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157169B2 (en) 2005-09-14 2015-10-13 International Rectifier Corporation Process for manufacture of super lattice using alternating high and low temperature layers to block parasitic current path
CN101802254B (zh) 2007-10-11 2013-11-27 瓦伦斯处理设备公司 化学气相沉积反应器
WO2010100699A1 (ja) * 2009-03-06 2010-09-10 パナソニック株式会社 窒化物半導体の結晶成長方法および半導体装置の製造方法
KR102369676B1 (ko) 2017-04-10 2022-03-04 삼성디스플레이 주식회사 표시 장치의 제조장치 및 표시 장치의 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187597A (ja) * 1990-11-22 1992-07-06 Matsushita Electric Ind Co Ltd 窒化ガリウム薄膜の製造方法
US5290393A (en) * 1991-01-31 1994-03-01 Nichia Kagaku Kogyo K.K. Crystal growth method for gallium nitride-based compound semiconductor
US5602418A (en) * 1992-08-07 1997-02-11 Asahi Kasei Kogyo Kabushiki Kaisha Nitride based semiconductor device and manufacture thereof
US5637146A (en) * 1995-03-30 1997-06-10 Saturn Cosmos Co., Ltd. Method for the growth of nitride based semiconductors and its apparatus
JP3424467B2 (ja) * 1996-11-21 2003-07-07 松下電器産業株式会社 窒化ガリウム系化合物半導体の製造方法
GB2327145A (en) * 1997-07-10 1999-01-13 Sharp Kk Graded layers in an optoelectronic semiconductor device
JP4214585B2 (ja) * 1998-04-24 2009-01-28 富士ゼロックス株式会社 半導体デバイス、半導体デバイスの製造方法及び製造装置
TW418549B (en) * 1998-06-26 2001-01-11 Sharp Kk Crystal growth method for nitride semiconductor, nitride semiconductor light emitting device, and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0177421A1 *

Also Published As

Publication number Publication date
JP2003530707A (ja) 2003-10-14
US7473316B1 (en) 2009-01-06
KR20030001416A (ko) 2003-01-06
TW507272B (en) 2002-10-21
WO2001077421A1 (de) 2001-10-18

Similar Documents

Publication Publication Date Title
DE69230260T2 (de) Halbleiteranordnung auf nitridbasis und verfahren zu ihrer herstellung
KR101549270B1 (ko) 질화물 나노와이어 및 이의 제조 방법
DE60217943T2 (de) Nitrid-Halbleitervorrichtung und Verfahren zu deren Herstellung
DE102006000150B4 (de) Verfahren zur Ausbildung einer bei einer niedrigen Temperatur gewachsenen Pufferschicht
DE69217903T2 (de) Halbleiteranordnung auf Basis von Gallium-Nitrid und Verfahren zur Herstellung
DE19680872B4 (de) Verfahren zur Herstellung eines Licht emittierenden Elements
DE10392313B4 (de) Auf Galliumnitrid basierende Vorrichtungen und Herstellungsverfahren
DE10223797B4 (de) Licht emittierende III-Nitrid-Anordnungen mit niedriger Ansteuerspannung und Herstellverfahren dafür
TWI445052B (zh) 藉由金屬有機化學氣相沈積(MOCVD)於多孔性氮化鎵(GaN)模板上氮化銦鎵(InGaN)之生長
DE112005000296B4 (de) Galliumnitrid-Verbindungshalbleiter-Mehrschichtstruktur, Lampe damit und Herstellungsverfahren dafür
DE69024246T2 (de) Verfahren zur Herstellung einer Dünnschichthalbleiterlegierung
DE112007002182B4 (de) Verfahren zum Herstellen einer Gruppe-III-Nitridverbindungshalbleiter-Lichtemissionsvorrichtung
DE102012103686B4 (de) Epitaxiesubstrat, Verfahren zur Herstellung eines Epitaxiesubstrats und optoelektronischer Halbleiterchip mit einem Epitaxiesubstrat
DE112007000313T5 (de) Verfahren zum Aufwachsenlassen von Halbleiter-Heterostrukturen auf der Basis von Galliumnitrid
WO2011117056A1 (de) Strahlungsemittierendes halbleiterbauelement und verfahren zur herstellung eines strahlungsemittierenden halbleiterbauelements
DE102015102592A1 (de) Verfahren zum Wachsen eines Nitrid-Einkristalls und Verfahren zum Herstellen einer Nitridhalbleitervorrichtung
DE102018213437B4 (de) Verfahren zur Herstellung von Galliumnitridsubstrat unter Verwendung von Hydrid-Gasphasenepitaxie
DE19781541B4 (de) Vorrichtung aus einem III-V-Verbindungshalbleiter und Verfahren zur Herstellung der Vorrichtung
DE10196361B4 (de) Verfahren zur Herstellung eines Gruppe-III-Nitrid-Halbleiterkristalls
DE10151092B4 (de) Verfahren zur Herstellung von planaren und rißfreien Gruppe-III-Nitrid-basierten Lichtemitterstrukturen auf Silizium Substrat
DE112023000173T5 (de) LED Chip auf Basis eines Aluminiumoxid Siliziumdioxid Verbundsubstrats und ein Herstellungsverfahren dafür
DE102004014940A1 (de) Halbleitervorrichtung, Verfahren zum Aufwachsen eines Nidridhalbleiters und Verfahren zur Herstellung einer Halbleitervorrichtung
EP1272693A1 (de) Verfahren zum wachstum von stickstoff enthaltenden halbleiterkristallmaterialien
EP2478551A1 (de) Semipolare wurtzitische gruppe-iii-nitrid basierte halbleiterschichten und darauf basierende halbleiterbauelemente
DE10313315A1 (de) Verfahren zum Herstellen eines III-V-Verbundhalbleiters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020921

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030307

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051102