EP1272300A1 - Method for producing metallic hollow bodies and miniaturized hollow bodies made thereby - Google Patents

Method for producing metallic hollow bodies and miniaturized hollow bodies made thereby

Info

Publication number
EP1272300A1
EP1272300A1 EP01915064A EP01915064A EP1272300A1 EP 1272300 A1 EP1272300 A1 EP 1272300A1 EP 01915064 A EP01915064 A EP 01915064A EP 01915064 A EP01915064 A EP 01915064A EP 1272300 A1 EP1272300 A1 EP 1272300A1
Authority
EP
European Patent Office
Prior art keywords
metal
metallic
reduced
starting materials
shaped bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01915064A
Other languages
German (de)
French (fr)
Other versions
EP1272300B1 (en
Inventor
Frank Bretschneider
Herbert Stephan
Jürgen BRÜCKNER
Günter Stephani
Lothar Schneider
Ulf Waag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Glatt Systemtechnik GmbH
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Glatt Systemtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Glatt Systemtechnik GmbH filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1272300A1 publication Critical patent/EP1272300A1/en
Application granted granted Critical
Publication of EP1272300B1 publication Critical patent/EP1272300B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1112Making porous workpieces or articles with particular physical characteristics comprising hollow spheres or hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • B22F1/0655Hollow particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1143Making porous workpieces or articles involving an oxidation, reduction or reaction step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]

Definitions

  • the invention relates to metallic miniaturized hollow molded articles according to claim 1. Furthermore, the invention relates to a method for producing metallic miniaturized hollow molded articles according to the preamble of claim 7.
  • hollow spheres are produced, since the necessary support elements in spherical form are usually easier to obtain. Instead of hollow spheres, however, all other types of support bodies can also be used. As a result, there are no hollow spheres, but hollow shaped bodies in the shape of the support bodies used in each case. In the present description, hollow spheres and hollow shaped bodies are basically understood as equivalents, insofar as the statements on the prior art do not actually relate to hollow spheres.
  • US 3,674,461 specifies hollow spherical particles made of aluminum, magnesium, boron and beryllium which are free of holes and seams and whose diameter is less than about 4.5 mm, the wall thickness being less than about 0.2 mm.
  • the respective material is built up on a core in the form of a powder coating. It is stated that the cores are filled into a rotating container in which there is a metered amount of the powdered coating material.
  • the core consists, for example, of naphthalene, anthracene, camphor or polyaldehyde.
  • the core is then sublimed in a vacuum over a longer period of time and removed in gaseous form through the coating.
  • the remaining high Len balls for example made of aluminum, oxidized at temperatures between 700 and 800 ° C.
  • shells are made from ceramics of the respective starting materials used.
  • US 3,792,136 describes a process for producing highly porous hollow metal oxide balls from a metal oxide from the group consisting of silicon, aluminum, calcium, magnesium and zirconium oxide.
  • a metal oxide from the group consisting of silicon, aluminum, calcium, magnesium and zirconium oxide.
  • Epoxy resin ball with a diameter of 2 to 4 mm soaked with an oxidizable salt solution of the metal mentioned with ammonium hydroxide.
  • the epoxy resin balls soaked with metal oxide are dried and carbonized. Thereafter, the spheres treated in this way are treated in an oxidizing atmosphere in such a way that the resin is driven off by decomposition and the carbon by oxidation and the intended metal oxide is formed.
  • the metal oxide balls have an overall porous structure.
  • DE 36 40 586 AI specifies a process for the production of hollow spheres or hollow spherical compounds with walls of increased strength. Additional layers are applied to metalized, spherical, light body particles with a core made of foamed polymer and a metal wall thickness of 5 to 20 ⁇ m.
  • the metallized spherical light body particles are coated with a dispersion of fine metal, its oxide or fine ceramic or refractory material. The layer thickness should be 15 to 500 ⁇ m.
  • the coated lightweight particles are dried, the polymer core is pyrolyzed at 400 ° C and then sintered at 900 to 1,400 ° C.
  • EP 0 300 543 A1 describes a process for producing metallic or ceramic hollow spheres, in which a solid layer is applied to an essentially spherical particle made of foamed polymer and the coated polymer core is pyrolyzed.
  • the spherical particles are treated while moving with an aqueous suspension which contains dissolved and suspended binders and metallic and / or ceramic powder particles.
  • the coated and dried particles are pyrolyzed with agitation at 400 to 500 ° C and sintered at temperatures of 1,000 to 1,500 ° C with agitation.
  • hollow spheres can be produced whose diameters are practically between 0.5 and 5 mm.
  • Such hollow spheres can be used to produce completely sintered structures or molded parts which can be used in practice and whose mass can be reduced to 3%, preferably to 1%, of the mass of the solid material used in each case.
  • the size of the powder particles used is of particular importance for the strength of the hollow spheres.
  • the ratio of strength and lightness of hollow spheres and the structures made from them is essentially determined by the ratio of spherical knife and ball wall thickness determined.
  • the optimal wall thickness of the hollow spheres should be about 0.5 to 3% of the outer diameter of the sphere. In most cases the wall thickness is around 1%.
  • Hollow balls with a diameter of 5 mm then have a wall thickness of about 50 ⁇ m, with a ball diameter of 1 mm it is only 10 to 20 ⁇ m and with balls of 0.5 mm diameter it is only 5 to a maximum of 15 ⁇ m wall thickness.
  • the minimum size of the styrofoam spheres used in practice as the carrier material, which determine the inner diameter of the hollow spheres, is limited to approximately 0.8 mm. Smaller styrofoam balls cannot be produced. The conditions are corresponding for carrier materials other than spherical. Coating the styrofoam balls increases their diameter even further. If hollow metallic spheres smaller than 0.8 mm are to be produced, non-foamed plastic spheres would have to be used. However, this increases the amount of plastic to be pyrolized so much that it is impossible to drive out the spherical core material in an economical and environmentally friendly manner.
  • powder particles must be used that have considerably smaller external dimensions than the thickness of the hollow spherical wall. Otherwise, the powder particles can sinter within the wall structure only at a few lateral points of contact with one another.
  • the average size of the powder particles should not be greater than 10% of the thickness of the spherical wall.
  • the homogeneity of the hollow spherical structure is largely determined by the size of the hollow spheres.
  • the practically achievable compressive strength and the homogeneity of the properties of sintered hollow spheres are limited by the size of the smallest available hollow spheres.
  • the compressive strength of a hollow spherical composite can be increased by pressing, the density of the hollow spherical composite also increases in an undesirable manner and the basically desired lightweight construction effect is lost again.
  • the invention is based on the object of specifying metallic miniaturized hollow molded articles, in particular for the advantageous use of such molded articles in structural components or semi-finished components with high compressive strength. Furthermore, the task is to specify a method with which metallic molded bodies can be produced.
  • the invention solves the problem for the metallic miniaturized hollow shaped body by the features mentioned in the characterizing part of claim 1.
  • the object for the method is achieved by the features mentioned in the characterizing part of claim 7.
  • Advantageous further developments are characterized in the respective subclaims and are described in more detail below together with the description of the preferred embodiment of the invention.
  • the miniaturized metallic hollow shaped bodies hereinafter simply called hollow spheres, consist of at least one heavy metal which is at a temperature below 1500 ° C., preferably below 1200 ° C., in a hydrogen or carbon-containing one Atmosphere can be reduced from a corresponding metal compound.
  • Fe, Ni, Co, Sn, Mo, Cr, Cu, Ag, Pd and W are used in particular as such a heavy metal.
  • the outer diameter of the metallic moldings is between 0.05 and 0.5 mm and the diameter / wall thickness ratio is between 0.5 and 3%.
  • the individual metallic moldings can also be made of alloys of the metals mentioned and / or the walls of the moldings can be constructed in multiple layers from the same or different materials.
  • the metallic miniaturized hollow molded bodies can be sintered in molded body assemblies to form components or semi-finished components.
  • the shaped bodies according to the invention lead to a high number of sintered points in the sintered shaped body composite.
  • the molded body composites are very homogeneous and have a very high compressive strength.
  • the molded body composites can be machined well without cutting and the homogeneous structure also allows the use of joining methods such as screws and nails.
  • the density of the shaped body assemblies is basically maintained. Depending on the selected diameter-wall thickness ratio, the density of the shaped body composites can be further reduced compared to the prior art.
  • the surfaces of the molded dressings have a low roughness.
  • the shaped bodies according to the invention cannot be produced using the means of the prior art.
  • a new method according to the invention is therefore specified for the production of the novel metallic miniaturized hollow shaped bodies.
  • a method according to the preamble of claim 7 is used for the production of metallic miniaturized hollow molded bodies, in which essentially reducible metal compounds, preferably metal oxides, metal hydroxides, metal carbonates or organometallic compounds (for example acetates) are used as starting materials for the structure of the shell layer on the carrier element , Formates, oxalates, acetyl acetonates) can be selected.
  • the coated carrier elements are sintered with an envelope layer containing at least one such metal compound (as so-called green compacts) during the heat treatment in a reducing atmosphere in such a way that the starting materials are reduced to the metal on which the metal compound used is based.
  • a cladding layer can also contain at least two compounds of different heavy metals, which form an alloy during sintering under reducing conditions.
  • the cladding layer can be formed from several layers, the same metal compound (s) or also different metal compounds being able to be contained in the individual layers.
  • the metal compounds can be used at least partially in colloidal form. It is also possible to use some of the metal compounds dissolved in a liquid, preferably water.
  • the average particle size of reducible metal compounds as starting materials should be as far as possible below 5 ⁇ m, that is, they should also be present in liquid in colloidal form.
  • the raw materials are often available as technical chemicals or as pigments for the paint industry in very small particle sizes, much cheaper than comparable metal powders.
  • Iron oxides for use as a pigment are commercially available, for example, in the range from 500 nm to less than 100 nm. Compared to metals, many metal compounds are very brittle, so that they are inexpensive to use in ball mills average particle size in the range of 1 micron can be ground. This is not possible with metals due to their ductility.
  • those with a diameter of less than 1 mm are regularly used as carrier elements.
  • the material of the carrier elements is first pyrolyzed in a known manner and expelled from the balls.
  • the metal compounds are converted into the respective metal on which the metal compound used is based in a reducing atmosphere.
  • a reducing protective gas atmosphere such as hydrogen, ammonia cracked gas, exogas or endogas when sintering. It can also be used to reduce oxides that can arise during thermal decomposition to metal.
  • the second, often stronger effect which is beneficial to increased shrinkage and thus the miniaturization is always of the fact that a metal compound ⁇ a lower specific gravity and thus a larger volume occupying than the metal itself.
  • Fe 2 0 3 has a density of 5.2 g / cm 3 . It consists of 69.9% by mass of iron. From 100 cm 3 Fe 2 0 3 , only 46 cm 3 of metallic iron is produced by reduction.
  • Nickel hydroxide has a density of 4.15 g / cm 3 . It consists of 63% by mass of nickel. Approx. 29 cm 3 of metallic nickel is produced from 100 cm 3 of nickel hydroxide by reduction.
  • the respective material-specific degree of shrinkage can be calculated precisely in advance.
  • the surface roughness of structures or components is significantly reduced. This creates surfaces that can usually be called smooth surfaces. Due to the smaller outer diameter of the hollow spheres, the structure of a hollow spherical composite is substantially more homogeneous overall and the mechanical properties are improved.
  • the shaped body assemblies can be easily machined and non-cutting. For example, nails or screws can also be inserted.
  • hollow iron balls are to be produced with an average diameter of approximately 0.5 mm and a wall thickness of approximately 10 ⁇ m.
  • a coating layer is made up of 1 suspension of a suspension consisting of a liquid and a binder and a red color pigment of Fe 2 O 3 with an average particle size of 0.32 ⁇ m on 1 liter of styrofoam balls with an average diameter of 0.8 mm ,
  • the thickness of the cladding layer is approximately 20 ⁇ m.
  • the polystyrene balls coated in this way are referred to as green compacts.
  • the diameter of the green compacts is approx. 0.84 mm and the volume has increased by approx. 10% from 1 liter to approx. 1.1 liters.
  • the organic components of the green compact are burned out.
  • the iron oxide is reduced and a sintered hollow sphere is formed.
  • the approx. 1.1 liters of green compacts become approx. 0.6 liters of metallic iron hollow spheres with an average diameter of approx. 0.3 mm and a wall thickness of approx. 10 ⁇ m.
  • a coating of a suspension consisting of a liquid in which a binder and nickel acetate are dissolved and a powder of nickel hydroxide is applied to 1 liter of polystyrene balls with an average diameter of 0.5 mm with an average particle size of 500 ⁇ m.
  • the thickness of the shell layer is approximately 15 ⁇ m.
  • the diameter of the green compacts is approx. 0.53 mm and the volume has increased from 1 liter to approx. 1.2 liters.
  • the organic and other volatile constituents of the green body are burned out in inert gas and the nickel oxide formed is reduced during subsequent heat treatment in a hydrogen atmosphere at temperatures of 1120 ° C. and a sintered hollow nickel sphere is formed.
  • the support body can be star-shaped, for example. These are advantageously produced by means of an extruder, the original extruder strand being subsequently cut up.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Forging (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

According to the invention, the shaped bodies are comprised of at least one heavy metal, preferably Fe, Ni, Co, Sn, Mo or W which can be reduced from a corresponding metallic compound at a temperature of less than 1 500° C. The shaped bodies have an outer diameter ranging from 0.05 to 0.5 mm, and a diameter-to-wall thickness ratio of 0.5 to 3%. According to the method, starting materials are deposited as an enveloping layer on supporting elements of any shape, and the green compacts thus produced are subsequently heat-treated. On that occasion, the supporting elements are pyrolyzed, the enveloping layers are essentially thermally decomposed and the decomposition products are sintered. The outer dimensions of the supporting elements are selected such that they are larger than the shaped bodies to be produced. Metallic compounds, preferably metal oxides, metal hydroxides, metal carbonates or organometallic compounds are used as starting materials and can be reduced at a temperature of less than 1 200° C. The thermal treatment is carried out in a reductive atmosphere containing hydrogen and/or carbon such that the starting materials are essentially reduced to the sintered metal which is based on the respectively used metallic compound.

Description

Metallische miniaturisierte hohle Formkörper und Verfahren zur Herstellung derartiger FormkörperMetallic miniaturized hollow moldings and method for producing such moldings
Die Erfindung betrifft metallische miniaturisierte hohle Formkörper nach Anspruch 1. Des Weiteren betrifft die Erfindung ein Verfahren zur Herstellung metallischer miniaturisierter hohler Formkörper nach dem Oberbegriff des Anspruches 7.The invention relates to metallic miniaturized hollow molded articles according to claim 1. Furthermore, the invention relates to a method for producing metallic miniaturized hollow molded articles according to the preamble of claim 7.
Die Herstellung metallischer, oxidischer oder keramischer Hohlkugeln ist seit längerer Zeit bekannt. Eine großtechnische Verwertung war jedoch lange Zeit praktisch nicht möglich. In jüngerer Zeit gewinnt die grundsätzliche Aufgabe wieder zunehmend an Bedeutung. Vorteilhafte Anwendungsmöglichkeiten derartiger Formkörper werden für die verschiedensten konstruktiven Zwecke gesehen, z.B. im Leichtbau, bei Crashabsorbern, Wärmeisolatoren und Schallabsorbern. The production of metallic, oxidic or ceramic hollow spheres has been known for a long time. Large-scale utilization was practically impossible for a long time. In recent times, the basic task has become increasingly important. Advantageous applications of such shaped bodies are seen for a wide variety of structural purposes, for example in lightweight construction, in crash absorbers, heat insulators and sound absorbers.
In der Praxis werden berwiegend Hohlkugeln hergestellt, da die erforderlichen Tragerelemente in Kugelform meist leichter zu beschaffen sind. Statt Hohlkugeln können aber auch alle andersartigen Formen von Tragerkorpern eingesetzt werden. Im Ergebnis entstehen dann keine Hohlkugeln sondern hohle Formkorper in der Form der jeweils eingesetzten Tragerkorper. In der vorliegenden Beschreibung werden Hohlkugeln und hohle Formkorper grundsatzlich als Äquivalente ver- standen, soweit die Ausfuhrungen zum Stand der Technik nicht tatsachlich Hohlkugeln betreffen.In practice, mainly hollow spheres are produced, since the necessary support elements in spherical form are usually easier to obtain. Instead of hollow spheres, however, all other types of support bodies can also be used. As a result, there are no hollow spheres, but hollow shaped bodies in the shape of the support bodies used in each case. In the present description, hollow spheres and hollow shaped bodies are basically understood as equivalents, insofar as the statements on the prior art do not actually relate to hollow spheres.
Nach dem Stand der Technik ist es bekannt, Hull- schichten auf einem Tragerelement abzuscheiden und diese Hullschicht zu sintern. Dabei wird das Tragerelement bereits vor Erreichen der Sintertemperatur pyrolysiert und der jeweilige Stoff durch die Hullschicht ausgetrieben. Nach der Sinterung entsteht ein hohler Formkorper, der sehr leicht ist und eine rela- tiv hohe Festigkeit aufweist.According to the prior art, it is known to deposit shell layers on a carrier element and to sinter this shell layer. The carrier element is pyrolyzed before the sintering temperature is reached and the respective substance is driven out through the shell layer. After sintering, a hollow molded body is created that is very light and has a relatively high strength.
Die US 3,674,461 gibt hohle kugelförmige Teilchen aus Aluminium, Magnesium, Bor und Beryllium an, die frei von Lochern und Nahten sind und deren Durchmesser kleiner als etwa 4,5 mm ist, wobei die Wanddicke weniger als etwa 0,2 mm betragt. Zum Aufbau der Teilchen wird das jeweilige Material in Form einer Pulverbeschichtung auf einen Kern aufgebaut. Dabei wird angegeben, dass die Kerne in einen rotierenden Behal- ter gefüllt werden, in dem sich eine dosierte Menge des pulverformigen Beschichtungsmaterials befindet. Der Kern besteht beispielsweise aus Naphthalin, An- thracen, Campher oder Polyaldehyd. Nachfolgend wird der Kern über einen längeren Zeitraum im Vakuum sub- limiert und gasformig durch die Beschichtung hindurch entfernt. Abschließend werden die verbleibenden höh- len Kugeln, z.B. aus Aluminium, bei Temperaturen zwischen 700 und 800 °C oxidiert. Im Ergebnis entstehen Schalen aus Keramiken der jeweils eingesetzten Ausgangsmaterialien.US 3,674,461 specifies hollow spherical particles made of aluminum, magnesium, boron and beryllium which are free of holes and seams and whose diameter is less than about 4.5 mm, the wall thickness being less than about 0.2 mm. To build up the particles, the respective material is built up on a core in the form of a powder coating. It is stated that the cores are filled into a rotating container in which there is a metered amount of the powdered coating material. The core consists, for example, of naphthalene, anthracene, camphor or polyaldehyde. The core is then sublimed in a vacuum over a longer period of time and removed in gaseous form through the coating. Finally, the remaining high Len balls, for example made of aluminum, oxidized at temperatures between 700 and 800 ° C. As a result, shells are made from ceramics of the respective starting materials used.
Die US 3,792,136 beschreibt ein Verfahren zur Herstellung von hochgradig porösen hohlen Metalloxidkugeln aus einem Metalloxid aus der Gruppe von Silizium-, Aluminium-, Kalzium-, Magnesium- und Zirkonoxid. Dazu werden z.B. Epoxydharzkugel mit einem Durchmesser von 2 bis 4 mm mit einer oxidierbaren Salzlosung des genannten Metalls mit Ammoniumhydroxid getrankt. Die mit Metalloxid getränkten Epoxydharzkugeln werden getrocknet und karbonisiert. Danach werden die so be- handelten Kugeln in einer oxidierenden Atmosphäre behandelt, derart dass das Harz durch Zersetzung sowie der Kohlenstoff durch Oxidation ausgetrieben wird und das vorgesehene Metalloxid gebildet wird. Die Metalloxidkugeln weisen insgesamt eine poröse Struktur auf.US 3,792,136 describes a process for producing highly porous hollow metal oxide balls from a metal oxide from the group consisting of silicon, aluminum, calcium, magnesium and zirconium oxide. For this, e.g. Epoxy resin ball with a diameter of 2 to 4 mm soaked with an oxidizable salt solution of the metal mentioned with ammonium hydroxide. The epoxy resin balls soaked with metal oxide are dried and carbonized. Thereafter, the spheres treated in this way are treated in an oxidizing atmosphere in such a way that the resin is driven off by decomposition and the carbon by oxidation and the intended metal oxide is formed. The metal oxide balls have an overall porous structure.
Die DE 36 40 586 AI gibt ein Verfahren zur Herstellung von Hohlkugeln oder Hohlkugelverbunden mit Wandungen erhöhter Festigkeit an. Dabei werden auf me- tallisierte kugelförmige Leichtkorperteilchen mit einem Kern aus geschäumten Polymer und einer Metallwanddicke von 5 bis 20 μm weitere Schichten aufgetragen. Die metallisierten kugelförmigen Leichtkorperteilchen werden mit einer Dispersion von feinteiligem Metall, dessen Oxid oder feinteiligen keramischen oder feuerfesten Material beschichtet. Die Schichtdicke soll 15 bis 500 μm betragen. Die beschichteten Leichtkorperteilchen werden getrocknet, der Polymerkern bei 400 °C pyrolysiert und anschließend bei 900 bis 1.400 °C gesintert. Im Ergebnis entstehen je nach Teilchengroße, Art und Sintertemperatur des nichtme- tallischen Werkstoffes Hohlkugeln mit einer dichten oder porösen Wandung. Wenn die Sinterung in Formen erfolgt, werden unmittelbar entsprechend geformte Hohlkugelverbunde aus gesinterten metallischen oder keramischen Hohlkugeln ausgebildet. Die Zellwande mit einer Wanddicke zwischen 15 und 500 μm sollen eine erhöhte Festigkeit aufweisen.DE 36 40 586 AI specifies a process for the production of hollow spheres or hollow spherical compounds with walls of increased strength. Additional layers are applied to metalized, spherical, light body particles with a core made of foamed polymer and a metal wall thickness of 5 to 20 μm. The metallized spherical light body particles are coated with a dispersion of fine metal, its oxide or fine ceramic or refractory material. The layer thickness should be 15 to 500 μm. The coated lightweight particles are dried, the polymer core is pyrolyzed at 400 ° C and then sintered at 900 to 1,400 ° C. As a result, depending on the particle size, type and sintering temperature of the non- metallic material hollow spheres with a dense or porous wall. If the sintering takes place in molds, correspondingly shaped hollow spherical composites are formed from sintered metallic or ceramic hollow spheres. The cell walls with a wall thickness between 15 and 500 μm should have increased strength.
Die EP 0 300 543 AI beschreibt ein Verfahren zum Her- stellen von metallischen oder keramischen Hohlkugeln, bei dem eine Feststoffschicht auf ein im Wesentlichen kugelförmiges Teilchen aus geschäumten Polymer aufgebracht und der beschichtete Polymerkern pyrolisiert wird. Die kugelförmigen Teilchen werden dabei unter Bewegung mit einer wassrigen Suspension behandelt, die gelöstes und suspendiertes Bindemittel und metallische und/oder keramische Pulverteilchen enthalt. Die beschichteten und getrockneten Teilchen werden unter Bewegung bei 400 bis 500 °C pyrolysiert und bei Temperaturen von 1.000 bis 1.500 °C unter Bewegung gesintert .EP 0 300 543 A1 describes a process for producing metallic or ceramic hollow spheres, in which a solid layer is applied to an essentially spherical particle made of foamed polymer and the coated polymer core is pyrolyzed. The spherical particles are treated while moving with an aqueous suspension which contains dissolved and suspended binders and metallic and / or ceramic powder particles. The coated and dried particles are pyrolyzed with agitation at 400 to 500 ° C and sintered at temperatures of 1,000 to 1,500 ° C with agitation.
Nach dem Stand der Technik können Hohlkugeln hergestellt werden, deren Durchmesser praktisch zwischen 0,5 und 5 mm liegen. Mit derartigen Hohlkugeln können komplett gesinterte Strukturen oder praktisch einsetzbare Formteile hergestellt werden, deren Masse bis auf 3 %, bevorzugt bis auf 1 % gegenüber der Masse des jeweils eingesetzten massiven Materials abge- senkt werden kann.According to the prior art, hollow spheres can be produced whose diameters are practically between 0.5 and 5 mm. Such hollow spheres can be used to produce completely sintered structures or molded parts which can be used in practice and whose mass can be reduced to 3%, preferably to 1%, of the mass of the solid material used in each case.
Von besonderer Bedeutung für die Festigkeit der Hohlkugeln ist die Große der eingesetzten Pulverteilchen. Das Verhältnis von Festigkeit und Leichtigkeit von Hohlkugeln und den daraus hergestellten Strukturen wird wesentlich durch das Verhältnis von Kugeldurch- messer und Kugelwanddicke bestimmt. Die optimale Wanddicke der Hohlkugeln sollte etwa 0,5 bis 3 % des Kugelaußendurchmessers betragen. In den meisten Fällen liegt die Wanddicke bei etwa 1 %. Hohlkugeln von 5 mm Durchmesser weisen danach eine Wanddicke von etwa 50 μm auf, bei einem Kugeldurchmesser von 1 mm sind es nur noch 10 bis 20 μm und bei Kugeln von 0,5 mm Durchmesser sind es nur noch 5 bis höchstens 15 μm Wanddicke .The size of the powder particles used is of particular importance for the strength of the hollow spheres. The ratio of strength and lightness of hollow spheres and the structures made from them is essentially determined by the ratio of spherical knife and ball wall thickness determined. The optimal wall thickness of the hollow spheres should be about 0.5 to 3% of the outer diameter of the sphere. In most cases the wall thickness is around 1%. Hollow balls with a diameter of 5 mm then have a wall thickness of about 50 μm, with a ball diameter of 1 mm it is only 10 to 20 μm and with balls of 0.5 mm diameter it is only 5 to a maximum of 15 μm wall thickness.
Die minimale Größe der in der Praxis als Trägermaterial eingesetzten Styroporkugeln, die den inneren Durchmesser der Hohlkugeln bestimmen, ist auf etwa 0,8 mm begrenzt. Kleinere Styroporkugeln sind nicht herstellbar. Bei anderen als kugelförmigen Trägermaterialien sind die Verhältnisse entsprechend. Durch das Beschichten der Styroporkugeln steigt deren Durchmesser noch weiter an. Sollen metallische Hohlkugeln kleiner als 0,8 mm hergestellt werden, müssten nicht aufgeschäumte Kunststoffkugeln eingesetzt werden. Dadurch steigt allerdings die Menge des zu pyro- lysierenden Kunststoffes so stark an, dass das Austreiben des Kugelkernmaterials auf wirtschaftliche und umweltfreundliche Weise unmöglich wird.The minimum size of the styrofoam spheres used in practice as the carrier material, which determine the inner diameter of the hollow spheres, is limited to approximately 0.8 mm. Smaller styrofoam balls cannot be produced. The conditions are corresponding for carrier materials other than spherical. Coating the styrofoam balls increases their diameter even further. If hollow metallic spheres smaller than 0.8 mm are to be produced, non-foamed plastic spheres would have to be used. However, this increases the amount of plastic to be pyrolized so much that it is impossible to drive out the spherical core material in an economical and environmentally friendly manner.
Zur Gewährleistung einer ausreichend hohen Festigkeit der Kugelwand, sind jeweils Pulverteilchen einzusetzen, die erheblich geringere Außenmaße haben als die Dicke der Hohlkugelwand. Anderenfalls können die Pul- verteilchen innerhalb der Wandstruktur nur an wenigen seitlichen Berührungspunkten untereinander sintern. Regelmäßig sollten die mittlere Größe der Pulverteilchen nicht größer als 10 % der Dicke der Kugelwand sein. D.h. bei der Herstellung von Hohlkugeln mit ei- nem äußeren Durchmesser von 1 mm ist ein Metallpulver mit einer mittleren Teilchengröße von 1 μm erforder- lieh. Derartige Metallpulver sind, zumindest aus relativ kostengünstigen Metallen, wie beispielsweise Eisen oder Kupfer, nicht handelsüblich. Zwar ist die Herstellung von Metallpulvern mit Teilchengroßen im Nanometerbereich möglich, aber diese Pulver sind sehr reaktionsfreudig und deshalb nur unter großem Aufwand verarbeitbar. Darüber hinaus sind diese Pulver so teuer, dass daraus hergestellte Werkstoffe für Massenanwendungen aus Preisgrunden uninteressant werden.To ensure a sufficiently high strength of the spherical wall, powder particles must be used that have considerably smaller external dimensions than the thickness of the hollow spherical wall. Otherwise, the powder particles can sinter within the wall structure only at a few lateral points of contact with one another. The average size of the powder particles should not be greater than 10% of the thickness of the spherical wall. This means that in the manufacture of hollow spheres with an outer diameter of 1 mm, a metal powder with an average particle size of 1 μm is required. borrowed. Such metal powders are not commercially available, at least from relatively inexpensive metals such as iron or copper. It is possible to produce metal powders with particle sizes in the nanometer range, but these powders are very reactive and can therefore only be processed with great effort. In addition, these powders are so expensive that materials made from them for mass applications become uninteresting for price reasons.
Das feinkornigste handelsübliche Eisenpulver, Carbonyleisenpulver, welches eine mittlere Teilchengroße im Bereich von 5 μm aufweist, eignet sich nur zur Herstellung von Wanddicken über 20 μm. Metalli- sehe Hohlkugeln im Bereich von 2 bis 4 mm sind aufgrund des hohen Preises von Carbonyleisenpulver so teuer, dass sie im Wettbewerb mit anderen vergleichbaren Leichtbaustrukturen nicht bestehen können. Kleinere Hohlkugeln sind in der Literatur zwar er- wahnt, sie sind jedoch nach dem Stand der Technik praktisch nicht herstellbar.The finest-grained commercial iron powder, carbonyl iron powder, which has an average particle size in the range of 5 μm, is only suitable for the production of wall thicknesses over 20 μm. Metallic hollow spheres in the range of 2 to 4 mm are so expensive due to the high price of carbonyl iron powder that they cannot compete with other comparable lightweight structures. Smaller hollow spheres are mentioned in the literature, but they are practically impossible to produce according to the prior art.
Bei der praktischen Anwendung der Hohlkugeln bzw. der hohlen Formkorper, insbesondere in festen Strukturen oder in Bauteilen, wird die Homogenitat der Hohlkugelstruktur maßgeblich von der Große der Hohlkugeln bestimmt. Demzufolge wird die praktisch realisierbare Druckfestigkeit und die Homogenitat der Eigenschaften von gesinterten Hohlkugelverbunden von der Große der kleinsten verfugbaren Hohlkugeln begrenzt. Zwar kann die Druckfestigkeit eines Hohlkugelverbundes durch Verpressen erhöht werden, jedoch steigt dabei auch die Dichte des Hohlkugelverbundes in meist unerwünschter Weise an und der grundsatzlich erwünschte Leichtbaueffekt geht wieder verloren. Der Erfindung liegt als Aufgabe zu Grunde, metallische miniaturisierte hohle Formkörper anzugeben, insbesondere für die vorteilhafte Anwendung derartiger Formkörper in konstruktiven Bauteilen oder Halbzeug- Bauteilen mit hoher Druckfestigkeit. Des Weiteren besteht die Aufgabe darin, ein Verfahren anzugeben, mit dem metallische Formkörper hergestellt werden können.In the practical application of the hollow spheres or the hollow shaped bodies, in particular in solid structures or in components, the homogeneity of the hollow spherical structure is largely determined by the size of the hollow spheres. As a result, the practically achievable compressive strength and the homogeneity of the properties of sintered hollow spheres are limited by the size of the smallest available hollow spheres. Although the compressive strength of a hollow spherical composite can be increased by pressing, the density of the hollow spherical composite also increases in an undesirable manner and the basically desired lightweight construction effect is lost again. The invention is based on the object of specifying metallic miniaturized hollow molded articles, in particular for the advantageous use of such molded articles in structural components or semi-finished components with high compressive strength. Furthermore, the task is to specify a method with which metallic molded bodies can be produced.
Die Erfindung löst die Aufgabe für die metallischen miniaturisierten hohlen Formkörper durch die im kennzeichnenden Teil des Anspruchs 1 genannten Merkmale. Die Aufgabe für das Verfahren wird durch die im kennzeichnenden Teil des Anspruchs 7 genannten Merkmale gelöst. Vorteilhafte Weiterbildungen sind in den je- weiligen Unteransprüchen gekennzeichnet und werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführung der Erfindung näher dargestellt.The invention solves the problem for the metallic miniaturized hollow shaped body by the features mentioned in the characterizing part of claim 1. The object for the method is achieved by the features mentioned in the characterizing part of claim 7. Advantageous further developments are characterized in the respective subclaims and are described in more detail below together with the description of the preferred embodiment of the invention.
Der Kern der Erfindung besteht insbesondere darin, dass die miniaturisierten metallischen hohlen Formkörper, nachfolgend vereinfachend auch nur Hohlkugeln genannt, aus mindestens einem Schwermetall bestehen, welches bei einer Temperatur unter 1500 °C, bevorzugt unter 1.200 °C in einer Wasserstoff- oder kohlen- stoffhaltigen Atmosphäre aus einer entsprechenden Metallverbindung reduziert werden kann. Als ein derartiges Schwermetall werden insbesondere Fe, Ni, Co, Sn, Mo, Cr, Cu, Ag, Pd und W eingesetzt. Der äußere Durchmesser der metallischen Formkörper liegt zwi- sehen 0,05 bis 0,5 mm und das Durchmesser-Wanddicken- Verhältnis liegt zwischen 0,5 bis 3 %.The essence of the invention is, in particular, that the miniaturized metallic hollow shaped bodies, hereinafter simply called hollow spheres, consist of at least one heavy metal which is at a temperature below 1500 ° C., preferably below 1200 ° C., in a hydrogen or carbon-containing one Atmosphere can be reduced from a corresponding metal compound. Fe, Ni, Co, Sn, Mo, Cr, Cu, Ag, Pd and W are used in particular as such a heavy metal. The outer diameter of the metallic moldings is between 0.05 and 0.5 mm and the diameter / wall thickness ratio is between 0.5 and 3%.
Die einzelnen metallischen Formkörper können auch aus Legierungen der genannten Metalle und/oder die Wan- düng der Formkörper kann mehrlagig aus gleichen oder ungleichen Materialien aufgebaut sein. In der Anwendung können die metallischen miniaturisierten hohlen Formkorper in Formkorperverbunden zu Bauteilen oder Halbzeug-Bauteilen versintert sein.The individual metallic moldings can also be made of alloys of the metals mentioned and / or the walls of the moldings can be constructed in multiple layers from the same or different materials. In use, the metallic miniaturized hollow molded bodies can be sintered in molded body assemblies to form components or semi-finished components.
Die erfindungsgemaßen Formkorper fuhren im gesinterten Formkorperverbund zu einer hohen Anzahl von Sinterpunkten. Die Formkorperverbunde sind sehr homogen und weisen eine sehr hohe Druckfestigkeit auf. Die Formkorperverbunde lassen sich spanend und spanlos gut bearbeiten und die homogene Struktur gestattet auch den Einsatz von Verbindungsverfahren wie Schrauben und Nageln.The shaped bodies according to the invention lead to a high number of sintered points in the sintered shaped body composite. The molded body composites are very homogeneous and have a very high compressive strength. The molded body composites can be machined well without cutting and the homogeneous structure also allows the use of joining methods such as screws and nails.
Die Dichte der Formkorperverbunde wird grundsatzlich beibehalten. Je nach dem gewählten Durchmesser- Wanddicken-Verhaltnis kann die Dichte der Formkorperverbunde gegenüber dem Stand der Technik weiter gesenkt werden. Die Oberflachen der Formkorperverbande weisen eine geringe Rauigkeit auf.The density of the shaped body assemblies is basically maintained. Depending on the selected diameter-wall thickness ratio, the density of the shaped body composites can be further reduced compared to the prior art. The surfaces of the molded dressings have a low roughness.
Die erfindungsgemaßen Formkorper sind mit den Mitteln des Standes der Technik nicht herstellbar. Deshalb wird zur Herstellung der neuartigen metallischen mi- niaturisierten hohlen Formkorper ein neues erfin- dungsgemaßes Verfahren angegeben.The shaped bodies according to the invention cannot be produced using the means of the prior art. A new method according to the invention is therefore specified for the production of the novel metallic miniaturized hollow shaped bodies.
Zur Herstellung von metallischen miniaturisierten hohlen Formkorpern wird erfindungsgemaß ein Verfahren nach dem Oberbegriff des Anspruchs 7 angewendet, bei dem als Ausgangsstoffe für den Aufbau der Hullschicht auf dem Tragerelement im Wesentlichen reduzierbare Metallverbindungen, vorzugsweise Metalloxide, Metallhydroxide, Metallcarbonate oder metallorganische Ver- bindungen (z.B. Acetate, Formiate, Oxalate, Acethylacetonate) , ausgewählt werden. Die beschichteten Trägerelemente werden mit einer mindestens eine solche Metallverbindung enthaltenden Hüllschicht (als sogenannte Grünlinge) bei der Wärme- behandlung in einer reduzierenden Atmosphäre derart gesintert, dass die Ausgangsstoffe zu dem Metall reduziert werden, welches der jeweils eingesetzten Metallverbindung zu Grunde liegt.According to the invention, a method according to the preamble of claim 7 is used for the production of metallic miniaturized hollow molded bodies, in which essentially reducible metal compounds, preferably metal oxides, metal hydroxides, metal carbonates or organometallic compounds (for example acetates) are used as starting materials for the structure of the shell layer on the carrier element , Formates, oxalates, acetyl acetonates) can be selected. The coated carrier elements are sintered with an envelope layer containing at least one such metal compound (as so-called green compacts) during the heat treatment in a reducing atmosphere in such a way that the starting materials are reduced to the metal on which the metal compound used is based.
In einer Hüllschicht können auch mindestens zwei Verbindungen verschiedener Schwermetalle enthalten sein, die beim Sintern unter reduzierenden Bedingungen eine Legierung bilden.A cladding layer can also contain at least two compounds of different heavy metals, which form an alloy during sintering under reducing conditions.
Die Hüllschicht kann aus mehreren Schichten gebildet werden, wobei in den einzelnen Schichten die gleiche (n) Metallverbindung (en) oder auch verschiedene Metallverbindungen enthalten sein können.The cladding layer can be formed from several layers, the same metal compound (s) or also different metal compounds being able to be contained in the individual layers.
Die Metallverbindungen können mindestens teilweise in kolloidaler Form eingesetzt werden. Es ist auch möglich, einen Teil der Metallverbindungen in einer Flüssigkeit, vorzugsweise Wasser, gelöst einzusetzen.The metal compounds can be used at least partially in colloidal form. It is also possible to use some of the metal compounds dissolved in a liquid, preferably water.
Die mittlere Teilchengröße reduzierbarer Metallverbindungen als Ausgangsstoffe soll möglichst weit unter 5 μm liegen, also auch in kolloidaler Form in Flüssigkeit enthalten sein. Die Ausgangsstoffe sind als technische Chemikalien oder als Pigmente für die Farbenindustrie in sehr geringen Teilchengrößen oft wesentlich preisgünstiger als vergleichbare Metallpulver erhältlich. Eisenoxide für die Anwendung als Pigment sind beispielsweise in Bereichen von 500 nm bis weniger als 100 nm handelsüblich. Gegenüber den Metallen sind viele Metallverbindungen sehr spröde, so dass sie in Kugelmühlen kostengünstig auf eine mittlere Teilchengröße im Bereich von 1 μm gemahlen werden können. Dies ist bei Metallen auf Grund deren Duktilität nicht möglich.The average particle size of reducible metal compounds as starting materials should be as far as possible below 5 μm, that is, they should also be present in liquid in colloidal form. The raw materials are often available as technical chemicals or as pigments for the paint industry in very small particle sizes, much cheaper than comparable metal powders. Iron oxides for use as a pigment are commercially available, for example, in the range from 500 nm to less than 100 nm. Compared to metals, many metal compounds are very brittle, so that they are inexpensive to use in ball mills average particle size in the range of 1 micron can be ground. This is not possible with metals due to their ductility.
In der Praxis sind Metallpulver unter 0,01 mm sehr teuer und nicht verfügbar.In practice, metal powders under 0.01 mm are very expensive and not available.
Als Trägerelemente werden entsprechend der Aufgabe der Erfindung regelmäßig solche mit einem Durchmesser von weniger als 1 mm eingesetzt.According to the object of the invention, those with a diameter of less than 1 mm are regularly used as carrier elements.
Bei der Wärmebehandlung der Grünlinge wird in bekannter Weise zuerst das Material der Trägerelemente pyrolysiert und aus den Kugeln ausgetrieben. Die Me- tallverbindungen werden beim Sintern in reduzierender Atmosphäre in das jeweilige Metall überführt, das der jeweils eingesetzten Metallverbindung zu Grunde liegt. Vorteilhaft ist es beim Sintern eine reduzierend wirkende Schutzgasatmosphäre wie beispielsweise Wasserstoff, Ammoniak-Spaltgas, Exogas oder Endogas zu verwenden. Damit können auch Oxide, die bei der thermischen Zersetzung entstehen können, zu Metall reduziert werden.In the heat treatment of the green compacts, the material of the carrier elements is first pyrolyzed in a known manner and expelled from the balls. During sintering, the metal compounds are converted into the respective metal on which the metal compound used is based in a reducing atmosphere. It is advantageous to use a reducing protective gas atmosphere such as hydrogen, ammonia cracked gas, exogas or endogas when sintering. It can also be used to reduce oxides that can arise during thermal decomposition to metal.
Bei der Sinterung der Formkörper bzw. eines Formkörperverbandes tritt durch das Austreiben der entsprechenden Stoffe bei der Reduktion eine Annäherung der Metallteilchen ein und damit eine Schwindung der Formkörper bzw. des Fromkörperverbandes .During the sintering of the molded articles or a molded article dressing, the expulsion of the corresponding substances during the reduction leads to an approximation of the metal particles and thus a shrinkage of the molded articles or the molded article dressing.
Dabei verringert sich sowohl der äußere Durchmesser der einzelnen Hohlkugel als auch die Dicke der Kugelwandung. Je geringer die Teilchengröße eines zu sinternden Ausgangsstoffes ist, desto größer ist die Schwindung. Schon in dieser Hinsicht wirkt sich eine geringe Teilchengröße der Metallverbindung positiv auf eine Miniaturisierung aus.This reduces both the outer diameter of the individual hollow spheres and the thickness of the spherical wall. The smaller the particle size of a starting material to be sintered, the greater the shrinkage. Even in this regard, a small particle size of the metal compound has a positive effect for miniaturization.
Der zweite, oft stärkere Effekt, der sich günstig auf eine erhöhte Schwindung und damit auf die Miniaturi- sierung auswirkt, ist die Tatsache, dass eine Metall¬ verbindung immer ein geringeres spezifisches Gewicht aufweist und damit ein größeres Volumen einnimmt als das Metall selbst.The second, often stronger effect which is beneficial to increased shrinkage and thus the miniaturization is always of the fact that a metal compound ¬ a lower specific gravity and thus a larger volume occupying than the metal itself.
An zwei Beispielen soll das näher verdeutlicht werden. Fe203 hat eine Dichte von 5,2 g/cm3. Es besteht zu 69,9 Masse-% aus Eisen. Aus 100 cm3 Fe203 entstehen durch Reduktion nur 46 cm3 metallisches Eisen. Nik- kelhydroxid hat eine Dichte von 4,15 g/cm3. Es be- steht zu 63 Masse-% aus Nickel, . Aus 100 cm3 Nickelhydroxid entstehen durch Reduktion ca. 29 cm3 metallisches Nickel.This should be illustrated in more detail using two examples. Fe 2 0 3 has a density of 5.2 g / cm 3 . It consists of 69.9% by mass of iron. From 100 cm 3 Fe 2 0 3 , only 46 cm 3 of metallic iron is produced by reduction. Nickel hydroxide has a density of 4.15 g / cm 3 . It consists of 63% by mass of nickel. Approx. 29 cm 3 of metallic nickel is produced from 100 cm 3 of nickel hydroxide by reduction.
Das jeweilige materialspezifische Maß der Schwindung lässt sich im Voraus exakt berechnen.The respective material-specific degree of shrinkage can be calculated precisely in advance.
Neben der bereits beschriebenen erhöhten Druckfestigkeit der fertigen Formkorperverbunde bestehen weitere Vorteile. Die Oberflächenrauigkeit von Strukturen oder Bauteilen wird wesentlich verringert. Dadurch entstehen Oberflächen, die üblicherweise als glatte Oberflächen bezeichnet werden können. Durch die kleineren äußeren Durchmesser der Hohlkugeln wird die Struktur eines Hohlkugelverbundes insgesamt wesent- lieh homogener und die mechanischen Eigenschaften werden verbessert. Die Formkorperverbunde können spanend und spanlos leicht bearbeitet werden. Z.B. können auch Nägel oder Schrauben eingebracht werden.In addition to the increased compressive strength of the finished shaped body assemblies already described, there are further advantages. The surface roughness of structures or components is significantly reduced. This creates surfaces that can usually be called smooth surfaces. Due to the smaller outer diameter of the hollow spheres, the structure of a hollow spherical composite is substantially more homogeneous overall and the mechanical properties are improved. The shaped body assemblies can be easily machined and non-cutting. For example, nails or screws can also be inserted.
Die Erfindung wird nachstehend an zwei Ausführungsbeispielen näher erläutert. Ausführungsbeispiel IThe invention is explained in more detail below using two exemplary embodiments. Embodiment I
Im Ausführungsbeispiel I sollen Eisen-Hohlkugeln mit einem mittleren Durchmesser von ca. 0,5 mm und einer Wanddicke von ca. 10 μm hergestellt werden.In exemplary embodiment I, hollow iron balls are to be produced with an average diameter of approximately 0.5 mm and a wall thickness of approximately 10 μm.
Verfahrensgemäß wird auf 1 Liter Styroporkugeln mit einem mittleren Durchmesser von 0,8 mm eine Hüll- schicht aus einer Suspension, bestehend aus einer Flüssigkeit und einem Bindemittel und einem roten Farbpigment aus Fe203 mit einer mittleren Teilchengröße von 0,32 μm, aufgebaut. Die Dicke der Hüllschicht beträgt ca. 20 μm. Die derart beschichteten Styroporkugeln werden als Grünlinge bezeichnet.According to the method, a coating layer is made up of 1 suspension of a suspension consisting of a liquid and a binder and a red color pigment of Fe 2 O 3 with an average particle size of 0.32 μm on 1 liter of styrofoam balls with an average diameter of 0.8 mm , The thickness of the cladding layer is approximately 20 μm. The polystyrene balls coated in this way are referred to as green compacts.
Der Durchmesser der Grünlinge beträgt ca. 0,84 mm und das Volumen ist um ca. 10 % von 1 Liter auf ca. 1,1 Liter angestiegen. Nach einer Wärmebehandlung in ei- ner Wasserstoffatmosphäre bei Temperaturen von ca. 1.150 °C werden die organischen Bestandteile des Grünlinges ausgebrannt. Das Eisenoxid wird reduziert und es bildet sich eine gesinterte Hohlkugel aus.The diameter of the green compacts is approx. 0.84 mm and the volume has increased by approx. 10% from 1 liter to approx. 1.1 liters. After heat treatment in a hydrogen atmosphere at temperatures of approx. 1,150 ° C, the organic components of the green compact are burned out. The iron oxide is reduced and a sintered hollow sphere is formed.
Aus den ca. 1,1 Liter Grünlingen werden nach der Sinterung ca. 0,6 Liter metallische Eisen-Hohlkugeln mit einem mittleren Durchmessern ca. 0,3 mm und einer Wanddicke von ca. 10 μm.After sintering, the approx. 1.1 liters of green compacts become approx. 0.6 liters of metallic iron hollow spheres with an average diameter of approx. 0.3 mm and a wall thickness of approx. 10 μm.
Ausführungsbeispiel IIEmbodiment II
Verfahrensgemäß wird auf 1 Liter Styroporkugeln mit einem mittleren Durchmesser von 0,5 mm eine Hüllschicht aus einer Suspension, bestehend aus einer Flüssigkeit, in der ein Bindemittel sowie Nickelace- tat gelöst sind und einem Pulver aus Nickelhydroxid mit einer mittleren Teilchengroße von 500 μm aufgebaut. Die Dicke der Hullschicht betragt ca. 15 μm. Der Durchmesser der Grünlinge betragt ca. 0,53 mm und das Volumen ist von 1 Liter auf ca. 1,2 Liter ange- stiegen. Nach einer Wärmebehandlung bei 400 °C inAccording to the method, a coating of a suspension consisting of a liquid in which a binder and nickel acetate are dissolved and a powder of nickel hydroxide is applied to 1 liter of polystyrene balls with an average diameter of 0.5 mm with an average particle size of 500 μm. The thickness of the shell layer is approximately 15 μm. The diameter of the green compacts is approx. 0.53 mm and the volume has increased from 1 liter to approx. 1.2 liters. After a heat treatment at 400 ° C in
Inertgas werden die organischen und sonstige fluchtige Bestandteile des Grunlinges ausgebrannt und bei einer anschließenden Wärmebehandlung in einer Wasserstoffatmosphare bei Temperaturen von 1.120 °C wird das entstandene Nickeloxid reduziert und es bildet sich eine gesinterte Nickel-Hohlkugel aus.The organic and other volatile constituents of the green body are burned out in inert gas and the nickel oxide formed is reduced during subsequent heat treatment in a hydrogen atmosphere at temperatures of 1120 ° C. and a sintered hollow nickel sphere is formed.
Aus den ca. 1,2 Liter Grünlingen entstehen nach der Sinterung ca. 0,5 Liter metallische Nickel-Hohlkugeln mit einem mittleren Durchmesser von 0,1 mm und einer Wanddicke von ca. 2 μm.After sintering, approx. 0.5 liters of metallic nickel hollow spheres with an average diameter of 0.1 mm and a wall thickness of approx. 2 μm are formed from the approx. 1.2 liters of green compacts.
Die Erfindung ist selbstverständlich nicht auf das beschriebene Ausfuhrungsbeispiel beschrankt.The invention is of course not limited to the exemplary embodiment described.
So ist es ohne weiteres möglich, das erfindungsgemaße Verfahren mit weiteren bekannten Verfahrensschritten zu kombinieren oder das Verfahren zur Herstellung von Hohlkugeln einzusetzen, deren äußerer Durchmesser großer als 0,5 mm ist.It is thus easily possible to combine the method according to the invention with other known method steps or to use the method for producing hollow spheres whose outer diameter is greater than 0.5 mm.
Die Tragerkorper können beispielsweise sternförmig ausgebildet sein. Diese werden vorteilhaft mittels eines Extruders hergestellt, wobei die ursprunglichen Extruderstrange nachfolgend zerstückelt werden. The support body can be star-shaped, for example. These are advantageously produced by means of an extruder, the original extruder strand being subsequently cut up.

Claims

Patentansprüche claims
1. Metallische miniaturisierte hohle Formkorper, dadurch gekennzeichnet, dass die metallischen Formkorper aus mindestens einem Schwermetall bestehen, welches bei einer Temperatur unter 1.500 °C aus einer entsprechenden Metallverbin- düng reduziert werden kann, und dass die metallischen Formkorper einen äußeren Durchmesser zwischen 0,05 bis 0,5 mm und ein Durchmesser- Wanddicken-Verhaltnis von 0,5 bis 3 % aufweisen.1. Metallic miniaturized hollow shaped bodies, characterized in that the metallic shaped bodies consist of at least one heavy metal, which can be reduced from a corresponding metal compound at a temperature below 1,500 ° C., and in that the metallic shaped bodies have an outer diameter between 0.05 up to 0.5 mm and a diameter-wall thickness ratio of 0.5 to 3%.
2. Metallische Formkorper nach Anspruch 1, dadurch gekennzeichnet, dass die metallischen2. Metallic shaped body according to claim 1, characterized in that the metallic
Formkorper aus mindestens einem Schwermetall bestehen, welches bei einer Temperatur unter 1.200 °C aus einer entsprechenden Metallverbindung reduziert werden kann.Shaped bodies consist of at least one heavy metal, which can be reduced from a corresponding metal compound at a temperature below 1200 ° C.
3. Metallische Formkorper nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die metallischen Formkorper aus Fe, Ni, Co, Sn, Mo, Cr, Cu, Ag, Pd oder W bestehen.3. Metallic moldings according to claim 1 or 2, characterized in that the metallic moldings consist of Fe, Ni, Co, Sn, Mo, Cr, Cu, Ag, Pd or W.
. Metallischer Formkorper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die metallischen Formkorper aus einer Legierung bestehen., Metallic molded body according to one of claims 1 to 3, characterized in that the metallic molded body consist of an alloy.
5. Metallische Formkorper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Wandung der metallischen Formkorper mehrlagig aus- gebildet ist.5. Metallic molded body according to one of claims 1 to 4, characterized in that the wall of the metallic molded body is constructed in multiple layers.
6. Metallische Formkorper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die metal- lischen Formkorper zu Bauteilen oder Halbzeug- Bauteilen versintert sind.6. Metallic shaped body according to one of claims 1 to 5, characterized in that the metal form bodies are sintered into components or semi-finished components.
7. Verfahren zur Herstellung metallischer miniaturisierter hohler Formkorper, bei dem die Aus- gangsstoffe als Hullschicht auf beliebig geformte Tragerelemente aufgebracht werden, die so hergestellten Grünlinge nachfolgend warmebehandelt werden, derart dass die Tragerelemente pyrolysiert und die Hullschichten im Wesentlichen thermisch zersetzt und die Zersetzungsprodukte gesintert werden, dadurch gekennzeichnet, dass Tragerelemente ausgewählt werden, die größere äußere Abmessungen aufweisen als die herzustellenden Formkorper, dass als Ausgangsstoffe Metallverbindungen, vorzugsweise Metalloxide, Metallhydroxide, Metallkarbonate oder metallorganische Verbindungen, ausgewählt werden, die bei einer Temperatur unter 1.500 °C reduzierbar sind, und dass die Grünlinge in einer reduzierenden Wasserstoff- und/oder kohlenstoffhaltigen Atmosphäre derart warmebehandelt werden, dass die Metallverbindung im Wesentlichen zu Metall reduziert und das Metall gesintert wird.7. A process for the production of metallic miniaturized hollow shaped bodies, in which the starting materials are applied as a shell layer to carrier elements of any shape, the green bodies thus produced are subsequently heat-treated such that the carrier elements are pyrolyzed and the shell layers are essentially thermally decomposed and the decomposition products are sintered , characterized in that support elements are selected which have larger external dimensions than the moldings to be produced, that metal compounds, preferably metal oxides, metal hydroxides, metal carbonates or organometallic compounds, are selected as starting materials, which can be reduced at a temperature below 1,500 ° C, and that the green bodies are heat-treated in a reducing hydrogen and / or carbon-containing atmosphere in such a way that the metal compound is substantially reduced to metal and the metal is sintered.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass Metallverbindungen ausgewählt werden, die bei einer Temperatur unter 1.200 °C reduzierbar sind.8. The method according to claim 7, characterized in that metal compounds are selected which can be reduced at a temperature below 1200 ° C.
9. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass als Metallverbindung eine solche auf der Basis der Metalle Fe, Ni, Co, Sn, Mo, Cr, Cu, Ag, Pd oder W ausgewählt wird. 9. The method according to claim 8 or 9, characterized in that one is selected as the metal compound based on the metals Fe, Ni, Co, Sn, Mo, Cr, Cu, Ag, Pd or W.
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass mindestens zwei eine Metalllegierung bildende Metallverbindungen ausgewählt werden.10. The method according to any one of claims 7 to 9, characterized in that at least two metal compounds forming a metal alloy are selected.
11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass pulverförmige Metallverbindung (en) eingesetzt wird/werden.11. The method according to any one of claims 7 to 10, characterized in that powdered metal compound (s) is / are used.
12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass die Ausgangsstoffe mindestens teilweise in kolloidaler oder gelöster Form eingesetzt werden.12. The method according to any one of claims 7 to 11, characterized in that the starting materials are used at least partially in colloidal or dissolved form.
13. Verfahren nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass die Ausgangsstoffe mehrschichtig auf die Trägerkörper aufgebracht werden.13. The method according to any one of claims 7 to 12, characterized in that the starting materials are applied in multiple layers to the carrier body.
14. Verfahren nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass die Wärmebehandlung der Grünlinge in einer Form für die Ausbildung von Bauteilen oder Halbzeug-Bauteilen erfolgt.14. The method according to any one of claims 7 to 13, characterized in that the heat treatment of the green compacts takes place in a mold for the formation of components or semi-finished components.
15. Verfahren nach einem der Ansprüche 7 bis 14, dadurch gekennzeichnet, dass als Trägerkörper solche ausgewählt werden, die mittels Extruder hergestellt wurden, wobei die ursprünglichen Extruderstränge nachfolgend zerstückelt werden. 15. The method according to any one of claims 7 to 14, characterized in that those are selected as the carrier body, which were produced by means of extruders, the original extruder strands are subsequently dismembered.
EP01915064A 2000-04-14 2001-02-22 Method for producing metallic hollow bodies and miniaturized hollow bodies made thereby Expired - Lifetime EP1272300B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10018501A DE10018501C1 (en) 2000-04-14 2000-04-14 Miniature metallic hollow molding is produced by reduction of metal compound coated on substrate and sintering
DE10018501 2000-04-14
PCT/DE2001/000761 WO2001078923A1 (en) 2000-04-14 2001-02-22 Metallic miniaturized hollow shaped bodies and method for producing shaped bodies of this type

Publications (2)

Publication Number Publication Date
EP1272300A1 true EP1272300A1 (en) 2003-01-08
EP1272300B1 EP1272300B1 (en) 2005-05-18

Family

ID=7638727

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01915064A Expired - Lifetime EP1272300B1 (en) 2000-04-14 2001-02-22 Method for producing metallic hollow bodies and miniaturized hollow bodies made thereby

Country Status (7)

Country Link
US (1) US20030077473A1 (en)
EP (1) EP1272300B1 (en)
JP (1) JP2003531287A (en)
AT (1) ATE295767T1 (en)
AU (1) AU4228601A (en)
DE (2) DE10018501C1 (en)
WO (1) WO2001078923A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4616220B2 (en) * 2006-07-18 2011-01-19 Jfeテクノリサーチ株式会社 Method for producing hollow metal body
JP4641010B2 (en) * 2006-07-25 2011-03-02 Jfeテクノリサーチ株式会社 Hollow metal body
DE102007005211B4 (en) 2007-01-30 2010-03-11 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for producing a composite material
DE102008006690B4 (en) * 2008-01-25 2010-01-07 Glatt Systemtechnik Gmbh Sintered hollow body
US20100021721A1 (en) * 2008-07-22 2010-01-28 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Composite material and method for the production of a composite material
JP2011219830A (en) * 2010-04-12 2011-11-04 Jfe Mineral Co Ltd Nickel fine particle, mixture of nickel fine particle, and conductive paste
US9719176B2 (en) 2013-09-20 2017-08-01 Hrl Laboratories, Llc Thermal barrier materials and coatings with low heat capacity and low thermal conductivity
US10647618B2 (en) 2014-09-19 2020-05-12 Hrl Laboratories, Llc Thermal and environmental barrier coating for ceramic substrates
US10030292B2 (en) 2014-05-26 2018-07-24 Hrl Laboratories, Llc Hydride-coated microparticles and methods for making the same
US9738788B1 (en) 2014-05-26 2017-08-22 Hrl Laboratories, Llc Nanoparticle-coated multilayer shell microstructures
US10648082B1 (en) 2014-09-21 2020-05-12 Hrl Laboratories, Llc Metal-coated reactive powders and methods for making the same
US10682699B2 (en) 2015-07-15 2020-06-16 Hrl Laboratories, Llc Semi-passive control of solidification in powdered materials
US10502130B2 (en) 2016-02-17 2019-12-10 GM Global Technology Operations LLC Composite thermal barrier coating
US10865464B2 (en) 2016-11-16 2020-12-15 Hrl Laboratories, Llc Materials and methods for producing metal nanocomposites, and metal nanocomposites obtained therefrom
US11117193B2 (en) 2017-02-01 2021-09-14 Hrl Laboratories, Llc Additive manufacturing with nanofunctionalized precursors
US11052460B2 (en) 2017-02-01 2021-07-06 Hrl Laboratories, Llc Methods for nanofunctionalization of powders, and nanofunctionalized materials produced therefrom
US11578389B2 (en) 2017-02-01 2023-02-14 Hrl Laboratories, Llc Aluminum alloy feedstocks for additive manufacturing
US11998978B1 (en) 2017-02-01 2024-06-04 Hrl Laboratories, Llc Thermoplastic-encapsulated functionalized metal or metal alloy powders
US11674204B2 (en) 2017-02-01 2023-06-13 Hrl Laboratories, Llc Aluminum alloy feedstocks for additive manufacturing
US20190032175A1 (en) 2017-02-01 2019-01-31 Hrl Laboratories, Llc Aluminum alloys with grain refiners, and methods for making and using the same
US11286543B2 (en) 2017-02-01 2022-03-29 Hrl Laboratories, Llc Aluminum alloy components from additive manufacturing
US11779894B2 (en) 2017-02-01 2023-10-10 Hrl Laboratories, Llc Systems and methods for nanofunctionalization of powders
US10960497B2 (en) 2017-02-01 2021-03-30 Hrl Laboratories, Llc Nanoparticle composite welding filler materials, and methods for producing the same
US11396687B2 (en) 2017-08-03 2022-07-26 Hrl Laboratories, Llc Feedstocks for additive manufacturing, and methods of using the same
US12012646B1 (en) 2017-02-01 2024-06-18 Hrl Laboratories, Llc Additively manufacturing components containing nickel alloys, and feedstocks for producing the same
US10851711B2 (en) 2017-12-22 2020-12-01 GM Global Technology Operations LLC Thermal barrier coating with temperature-following layer
US11865641B1 (en) 2018-10-04 2024-01-09 Hrl Laboratories, Llc Additively manufactured single-crystal metallic components, and methods for producing the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528809A (en) * 1965-04-15 1970-09-15 Canadian Patents Dev Hollow article production
US3420645A (en) * 1966-06-16 1969-01-07 Corning Glass Works Method for making hollow glass particle having a metallic copper coating
US3792139A (en) * 1972-08-09 1974-02-12 Us Army Process for flattening alumina substrates
DE2462128C3 (en) * 1974-01-07 1978-04-06 Toyo Kohan Co., Ltd., Tokio Process for the production of thin-walled metal hollow bodies
US3975194A (en) * 1974-03-04 1976-08-17 Canadian Patents And Development Limited Formation of hollow spherical articles
US3997435A (en) * 1975-10-29 1976-12-14 The United States Of America As Represented By The United States Energy Research And Development Administration Method for selecting hollow microspheres for use in laser fusion targets
US4637990A (en) * 1978-08-28 1987-01-20 Torobin Leonard B Hollow porous microspheres as substrates and containers for catalysts and method of making same
US4415512A (en) * 1979-07-20 1983-11-15 Torobin Leonard B Method and apparatus for producing hollow metal microspheres and microspheroids
DE3640586A1 (en) * 1986-11-27 1988-06-09 Norddeutsche Affinerie METHOD FOR PRODUCING HOLLOW BALLS OR THEIR CONNECTED WITH WALLS OF INCREASED STRENGTH
DE3724156A1 (en) * 1987-07-22 1989-02-02 Norddeutsche Affinerie METHOD FOR PRODUCING METALLIC OR CERAMIC HOLLOW BALLS
DE3902032A1 (en) * 1989-01-25 1990-07-26 Mtu Muenchen Gmbh SINED LIGHTWEIGHT MATERIAL WITH MANUFACTURING PROCESS
US4925740A (en) * 1989-07-28 1990-05-15 Rohr Industries, Inc. Hollow metal sphere filled stabilized skin structures and method of making
DE19603196A1 (en) * 1996-01-30 1997-08-07 Hoechst Ag Hollow inorganic microspheres
US6501784B1 (en) * 1998-04-20 2002-12-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermal insulation to be inserted between two insulating structures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0178923A1 *

Also Published As

Publication number Publication date
DE50106257D1 (en) 2005-06-23
WO2001078923A1 (en) 2001-10-25
DE10018501C1 (en) 2001-04-05
ATE295767T1 (en) 2005-06-15
EP1272300B1 (en) 2005-05-18
US20030077473A1 (en) 2003-04-24
AU4228601A (en) 2001-10-30
JP2003531287A (en) 2003-10-21

Similar Documents

Publication Publication Date Title
EP1272300B1 (en) Method for producing metallic hollow bodies and miniaturized hollow bodies made thereby
DE3724156A1 (en) METHOD FOR PRODUCING METALLIC OR CERAMIC HOLLOW BALLS
DE69532541T2 (en) High-strength, highly wear-resistant sintered diamond body
EP1251985B1 (en) Hollow balls and a method for producing hollow balls and for producing lightweight structural components by means of hollow balls
DE69814801T2 (en) Process for the production of metal matrix fiber composites
EP1915226B1 (en) Process for the powder metallurgy production of metal foam and of parts made from metal foam
EP0271944A1 (en) Process for manufacturing hollow spheres or their bonded structures with reinforced walls
DE19605858A1 (en) Process for the production of Al¶2¶O¶3¶ aluminide composites, their execution and use
EP3166741A1 (en) Method for producing a component
EP3797901B1 (en) Metal foam body and method for its production
DE2218455B2 (en) COMPOSED FOAM MADE OF INORGANIC HOLLOW BALLS IN A METAL MATRIX AND A PROCESS AND DEVICE FOR MANUFACTURING SUCH FOAMS
EP1557819A1 (en) Sound absorbing structure
WO2018134202A1 (en) Method for producing hard metal bodies by means of 3d printing
DE3102155C2 (en)
DE2856466A1 (en) METHOD FOR PRODUCING HIGH-RADIOACTIVE WASTE MATERIALS MADE FROM GLASS GRANULES EMBEDDED IN A METAL MATRIX
DE102007047874B4 (en) Porous shaped body of metal oxides and process for its preparation
EP3178587A1 (en) Method for producing a porous shaped body
EP1433553A1 (en) Composite material and method for its manufacture
WO2010066529A1 (en) Pre-product for the production of sintered metallic components, a method for producing the pre-product and the production of components
DE10328047B3 (en) Made of metal foam blocks component and method for its preparation
EP3173392A1 (en) Method and device for producing ceramic parts
DE10355298B4 (en) Precursor for and process for producing green bodies for sintered lightweight components
DE2255975C2 (en) Application of the process of nitriding iron alloy particles to certain alloy powders for the manufacture of pole horns for magnetic heads
DE102009057257A1 (en) Rotating body of a sintered material, useful as filtering body for filtering solids or liquids from gases, a packing or a packing bed in a column and a catalytic carrier, comprises an inner cavity and a macropore in a wall
WO2024089236A1 (en) Granular mixture for additive manufacturing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030425

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

Owner name: GLATT SYSTEMTECHNIK GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR PRODUCING METALLIC HOLLOW BODIES AND MINIATURIZED HOLLOW BODIES MADE THEREBY

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050518

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050518

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050518

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50106257

Country of ref document: DE

Date of ref document: 20050623

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050818

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050818

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050829

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051024

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090225

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090227

Year of fee payment: 9

Ref country code: NL

Payment date: 20090226

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090302

Year of fee payment: 9

Ref country code: GB

Payment date: 20090302

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090408

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090224

Year of fee payment: 9

BERE Be: lapsed

Owner name: *GLATT SYSTEMTECHNIK G.M.B.H.

Effective date: 20100228

Owner name: *FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20100228

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100222