EP1915226B1 - Process for the powder metallurgy production of metal foam and of parts made from metal foam - Google Patents

Process for the powder metallurgy production of metal foam and of parts made from metal foam Download PDF

Info

Publication number
EP1915226B1
EP1915226B1 EP06775813A EP06775813A EP1915226B1 EP 1915226 B1 EP1915226 B1 EP 1915226B1 EP 06775813 A EP06775813 A EP 06775813A EP 06775813 A EP06775813 A EP 06775813A EP 1915226 B1 EP1915226 B1 EP 1915226B1
Authority
EP
European Patent Office
Prior art keywords
pressure
metal
metal foam
metallic material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06775813A
Other languages
German (de)
French (fr)
Other versions
EP1915226A1 (en
Inventor
John Banhart
Francisco Garcia-Moreno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Original Assignee
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH filed Critical Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Publication of EP1915226A1 publication Critical patent/EP1915226A1/en
Application granted granted Critical
Publication of EP1915226B1 publication Critical patent/EP1915226B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to a method for powder metallurgy production of metal foam and of parts made of metal foam.
  • Metal foam is also commonly called metal foam.
  • Aqueous solutions, plastics or glass can be foamed.
  • foam metals stands for elasticity, strength and temperature resistance
  • Foam stands for low weight, cushioning, high porosity and a large specific surface area.
  • Metal foam is a novel material with specifically introduced pore structure, it is non-flammable and has a high strength. Foams made of metal are airy materials that are light, stiff, but flexible and absorb a lot of energy in the event of a crash. Metal foam can also fulfill a wide range of other technical tasks and is particularly suitable for applications as thermal insulation, noise and vibration damping or as a compression element.
  • Metal foams can be up to 85 percent air and only 15 percent metal, which makes them very light. They look like conventional plastic foams, but are much firmer. The manufacturing processes were too expensive, too expensive and too difficult to control until a few years ago, and the results were therefore rarely reproducible. But there are now melting and powder metallurgical processes that promise a high quality of the foamed metal.
  • various methods are known and used. For example, a slurry is prepared at room temperature to produce steel foam from steel powder, water and a stabilizer. Phosphoric acid is added to this mixture as a binding and blowing agent. Two reactions then take place in the slurry, leading to the formation of a stable foam structure.
  • a melt metallurgical process is used, for example, in EP 1 288 320 A2 described by gas bubbles are introduced into a melt.
  • at least one gas introduction tube with a defined gas outlet cross section protrudes into the melt through which individual bubbles are blown into the melt.
  • the size of the bubbles is controlled by the adjustment of the Einströmparameter of the gas.
  • a disadvantage of these melt metallurgical processes is that a molten metal in the pure state can not be foamed.
  • the melt before carrying out the foaming, the melt must be mixed with a viscosity-increasing agent, for example an inert gas ( GB 1,287,994 ), or with ceramic particles ( EP 0 666 784 B).
  • a viscosity-increasing agent for example an inert gas ( GB 1,287,994 ), or with ceramic particles ( EP 0 666 784 B).
  • a powder metallurgical process for producing porous metal bodies is described in US Pat DE 101 15 230 C2 and DE 40 18 360 CI, in which a mixture containing a powdered metallic material containing at least one metal and / or a metal alloy and a gas-releasing propellant-containing powder is compacted into a semi-finished product.
  • This semifinished product is foamed under the action of temperature, wherein a propellant-containing powder is used, in which the temperature of the maximum decomposition is less than 120 K below the melting temperature of the metal or the solidus temperature of the metal alloy.
  • a first step metal particles and at least one at elevated temperature gas (e) donating agent, so-called blowing agents, mixed, whereupon in a second step, the mixture formed under elevated pressure and elevated temperature to a semi-finished part and this while maintaining the Pressurization below the decomposition or outgassing temperature of the propellant is allowed to cool or cooled.
  • Another method for producing metal foam bodies is in WO 2004/063406 A2 described.
  • This method can be used as a powder metallurgy or as a melt metallurgical process.
  • a sufficient gas supply of the melt is achieved in order the solidification of the same can cause the formation of a metal foam body low density.
  • This effect can be usefully exploited according to the described solution for producing a metal foam body desired shape when the liquid metal is first placed in a mold and then allowed to solidify in this at least temporarily reduced ambient pressure.
  • JP 01-127631 also describes a process in which hydrogen, nitrogen, oxygen is introduced into the liquid metal analogously to the abovementioned solution under atmospheric pressure or blowing agent particles, such as nitride, hydride or oxide, release gas into the melt by thermal cracking.
  • the gasified liquid metal is placed in a mold and held under reduced pressure, at 400 to 760 mmHg for a period of time.
  • metal foam bodies of high quality can be provided.
  • these methods are extremely complicated with respect to the material used and the required devices, because it is necessary to use at least two powder components, namely metal particles and fuel particles.
  • the individual powder components must be intimately mixed prior to heating and the powder grains are sintered together, for example by hot isostatic pressing, in order to achieve in the produced metal foam body pores with a homogeneous distribution as possible.
  • a further disadvantage is that gas escapes from the blowing agent particles even before the metal melts and accumulates in cracks, defects, etc. This results in different sized and unevenly distributed pores in the metal foam. Pore size and volumetric expansion are difficult to control during the process.
  • the object of the invention is to provide a method for the production of metal foam and parts made of metal foam, the easy to perform without the use of blowing agents and without expensive devices, the trapped pores are as small as possible pores, have a nearly the same volume and a homogeneous distribution.
  • the metal foam parts produced by the process according to the invention should have a high dimensional stability.
  • This object is achieved by a method having the features of claim 1 by a powdered metallic material containing at least one metal and / or a metal alloy, mixed without the use of propellants and then under mechanical pressure and a temperature of up to 400 C. is pressed to form a dimensionally stable semifinished product.
  • This semi-finished product is placed in a pressure-tight sealable chamber, which is then sealed pressure-tight and the semifinished product is heated at the selected initial pressure to the melting or solidus temperature of the powdered metallic material. After reaching the melting or solidus temperature of the powdered metallic material, the pressure in the chamber is reduced to a selected final pressure.
  • the semifinished product foams up without the use of blowing agents and the resulting metal foam solidifies during the subsequent lowering of the temperature. The lowering of the temperature takes place after the beginning of the pressure reduction according to a predetermined gradient, wherein the selected final pressure is always achieved before the solidification of the powdery metallic material.
  • a gas pressure up to approximately 50 bar is generated before or during the heating of the semifinished product in the closed chamber. After reaching the melting or solidus temperature of the pulverulent metallic material, the pressure in the closed chamber is reduced from the initial pressure to a predetermined gradient down to the final pressure of 1 bar.
  • the heating of the semifinished product takes place in the closed chamber at an initial pressure of about 1 bar and after reaching the melting or solidus temperature of the powdered metallic material, the pressure in the closed chamber is reduced to a final pressure of about 0.1 to 0.01 bar after a predetermined gradient.
  • a certain gas atmosphere can be created, for example an oxygen atmosphere or an atmosphere of moist air.
  • the pulverulent metallic material is preferably compacted at a gas pressure of between 1 and 50 bar and a mechanical pressure of 200-400 MPa and a temperature of up to 400 ° C.
  • the pulverulent metallic material is pretreated before being compacted into the semifinished product by modifying the surface of the individual granules of the pulverulent metallic material, for example by oxidizing or moistening.
  • dimensionally stable metal foam bodies can also be produced simply if, instead of any pressure-tight chamber, a pressure-tight sealable molding tool, which has the shape of the metal foam body to be produced, is used.
  • a reservoir provided in the molding tool ensures that the metal foam, which is excessively expanded by the foaming of the metal, can escape from the molding tool through an opening to the reservoir. This also ensures that the molding tool is completely filled with the metal foam. With the reduction of pressure is also the Lowered temperature, so that the metal foam solidifies in the mold and thereby assumes the shape of the molding tool. After solidification of the metal foam, the metal foam body can be removed from the molding tool.
  • the advantages of the method according to the invention are, in particular, that it is possible to produce metal foam or body made of metal foam, without complicated devices for introducing gas bubbles into the melt or the use of blowing agents, in a simple manner.
  • a further advantage is that with the method according to the invention low-density metal foam can be produced in which the pores have small dimensions (volumes), are distributed almost uniformly and homogeneously throughout the metal foam.
  • An additional advantage is that the pore size and the volume expansion can be adjusted within certain limits very easily and precisely by adjustable different pressure differences between the initial and final pressure or during the process, wherein there is a direct relationship between the pore size and the volume expansion. Ie. the pore size and the volume expansion can be predetermined by observing certain limit values by setting the initial pressure and the final pressure. But it is also possible that when observing the process, this can be terminated at any time upon reaching a desired pore size or volume expansion.
  • a metal foam is made without the use of additional gas-imparting blowing agents.
  • aluminum powder 99.7 with an average particle size of about 20 microns in a metal cylinder at a gas pressure of 1 bar and at a mechanical pressure of 300 MPa and at a temperature of about 400 ° C over a Period of 15 min to a semi-finished uni-axially compacted.
  • the semifinished product melts.
  • the average pore size is about 2 mm.
  • the temperature in the chamber is reduced by about 5 K / s to below the melting temperature of the aluminum, so that the liquid aluminum foam solidifies and thus the aluminum foam is solid.
  • This mixture is uni-axially compacted in a metal cylinder at a gas pressure of 1 bar and at a mechanical pressure of 300 MPa and at a temperature of about 400 ° C over a period of about 15 minutes to form a semifinished product. Thereafter, this semi-finished product is placed in a pressure-tight chamber and heated under an air atmosphere at an initial pressure of 8 bar to a temperature of about 550 ° C, which is thus slightly above the solidus temperature of AlSi6Cu4 of about 516 ° C.
  • the propellant begins to release hydrogen.
  • the gas released and trapped in the molten aluminum of the semifinished product forms very small pores having an average diameter of less than 0.1 mm.
  • the gas enclosed in the semi-finished product causes the sample to foam within 15 seconds.
  • the temperature is reduced by about 5 K / s to below the solidus temperature of AlSi6Cu4, so that the liquid AlSi6Cu4 foam solidifies and thus the foam solidifies.
  • An AlSi6Cu4 foam produced by this comparison method has pores which are homogeneously distributed in the metal foam, round and small, the average pore size being about 0.5 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

A method for a powder-metallurgical production of metal foamed material and of parts made of metal foamed material includes mixing a pulverulent metallic material including at least one of a metal and a metal alloy; pressing, under mechanical pressure, the mixed pulverulent metallic material so as to form a dimensionally stable semi-finished product; placing the semi-finished product into a chamber that is configured to be sealed pressure-tight; sealing the chamber; heating the semi-finished product to a melting or solidus temperature of the pulverulent metallic material; once the melting or solidus temperature has been reached, reducing the pressure in the chamber from an initial pressure to a final pressure so that the semi-finished product foams so as to form a metal foam; and lowering the temperature of the metal foam so as to solidify the metal foam.

Description

Die Erfindung betrifft ein Verfahren zur pulvermetallurgischen Herstellung von Metallschaumstoff und von Teilen aus Metallschaumstoff. Metallschaumstoff wird üblicherweise auch Metallschaum genannt.The invention relates to a method for powder metallurgy production of metal foam and of parts made of metal foam. Metal foam is also commonly called metal foam.

Wässrige Lösungen, Kunststoffe oder Glas können geschäumt werden. Es hat in den letzten Jahrzehnten immer wieder Bestrebungen gegeben, auch Metalle zu schäumen und neuartige Schaumstoffe herzustellen, die aufgrund der Kombination der typischen Schaummorphologie mit den bekannten Vorzügen metallischer Werkstoffe ein neues Eigenschaftsspektrum aufweisen; Metall steht für Elastizität, Festigkeit und Temperaturbeständigkeit; Schaum steht für geringes Gewicht, Dämpfung, hohe Porosität und eine große spezifische Oberfläche.Aqueous solutions, plastics or glass can be foamed. There have been efforts in recent decades repeatedly to also foam metals and produce novel foams, which have a new property spectrum due to the combination of the typical foam morphology with the known benefits of metallic materials; Metal stands for elasticity, strength and temperature resistance; Foam stands for low weight, cushioning, high porosity and a large specific surface area.

Metallschaum ist ein neuartiger Werkstoff mit gezielt eingebrachter Porenstruktur, er ist nicht brennbar und hat eine große Festigkeit. Schäume aus Metall sind luftige Werkstoffe, die leicht, steif, aber flexibel sind und im Crash-Fall viel Energie aufnehmen. Metallschaum kann auch ein breites Spektrum weiterer technischer Aufgaben erfüllen und ist besonders geeignet für Anwendungen als Wärmedämmung, Geräusch- und Vibrationsdämpfung oder als Stauchelement.Metal foam is a novel material with specifically introduced pore structure, it is non-flammable and has a high strength. Foams made of metal are airy materials that are light, stiff, but flexible and absorb a lot of energy in the event of a crash. Metal foam can also fulfill a wide range of other technical tasks and is particularly suitable for applications as thermal insulation, noise and vibration damping or as a compression element.

Metallschäume können bis zu 85 Prozent aus Luft und nur zu 15 Prozent aus Metall bestehen, das macht sie sehr leicht. Sie sehen aus wie konventionelle Kunststoffschäume, sind aber viel fester. Die Herstellungsverfahren waren bis vor einigen Jahren zu aufwändig, zu teuer und zu schwierig zu kontrollieren, und die Ergebnisse waren daher nur selten reproduzierbar. Doch mittlerweile gibt es schmelz- und pulvermetallurgische Verfahren, die eine hohe Qualität des geschäumten Metalls versprechen. Zur Herstellung von Metallschäumen sind verschiedene Verfahren bekannt und gebräuchlich. Beispielsweise wird zur Herstellung von Stahlschaum aus Stahlpulver, Wasser und einem Stabilisator bei Raumtemperatur ein Schlicker hergestellt. Dieser Mischung wird Phosphorsäure als Binde- und Treibmittel zugegeben. Im Schlicker finden dann zwei Reaktionen statt, die zur Bildung einer stabilen Schaumstruktur führen. Zum einen entstehen bei der Reaktion zwischen Stahlpulver und Säure Wasserstoffgasbläschen, die ein Aufschäumen bewirken. Zum anderen bildet sich ein Metallphosphat, das durch seine Klebewirkung die Porenstruktur verfestigt. Der so hergestellte Schaum wird getrocknet und anschließend schadstofffrei zum metallischen Verbund gesintert.Metal foams can be up to 85 percent air and only 15 percent metal, which makes them very light. They look like conventional plastic foams, but are much firmer. The manufacturing processes were too expensive, too expensive and too difficult to control until a few years ago, and the results were therefore rarely reproducible. But there are now melting and powder metallurgical processes that promise a high quality of the foamed metal. For the production of metal foams, various methods are known and used. For example, a slurry is prepared at room temperature to produce steel foam from steel powder, water and a stabilizer. Phosphoric acid is added to this mixture as a binding and blowing agent. Two reactions then take place in the slurry, leading to the formation of a stable foam structure. On the one hand, in the reaction between steel powder and acid, hydrogen gas bubbles are produced which cause foaming. On the other hand, a metal phosphate is formed, which solidifies the pore structure by its adhesive effect. The foam thus produced is dried and then sintered free of harmful substances to the metallic composite.

Ein schmelzmetallurgisches Verfahren wird beispielsweise in der EP 1 288 320 A2 beschrieben, indem Gasblasen in eine Schmelze eingebracht werden. Dazu ragt mindestens ein Gaseintragsrohr mit einem definierten Gasaustrittsquerschnitt in die Schmelze hinein durch welches Einzelblasen in die Schmelze geblasen werden. Die Größe der Blasen wird dabei durch die Einstellung der Einströmparameter des Gases gesteuert.A melt metallurgical process is used, for example, in EP 1 288 320 A2 described by gas bubbles are introduced into a melt. For this purpose, at least one gas introduction tube with a defined gas outlet cross section protrudes into the melt through which individual bubbles are blown into the melt. The size of the bubbles is controlled by the adjustment of the Einströmparameter of the gas.

In der EP 1 419 835 A1 wird ein Verfahren und eine Vorrichtung zur Herstellung von fließfähigem Metallschaum mit einer monomodalen Verteilung der Abmessungen der Hohlräume vorgestellt, denen ebenfalls ein schmelzmetallurgisches Verfahren zu Grunde liegt. Dabei ragen mindestens zwei benachbarte gleichartig dimensionierte Eintragsrohre mit einem definierten Abstand zueinander in ein metallurgisches Gefäß mit einer schäumbaren Metallschmelze hinein. In den Bereichen der einragenden Rohrenden werden jeweils Blasen gebildet, wobei unter Aneinanderlegen von Bereichen der Blasenoberflächen und unter Ausformung von Partikel enthaltenden Zwischenwänden eine zusammenhängende Schaumformation gebildet wird.In the EP 1 419 835 A1 a method and an apparatus for producing flowable metal foam with a monomodal distribution of the dimensions of the cavities is presented, which is also based on a melt metallurgical process. In this case, at least two adjacent identically dimensioned feed pipes protrude at a defined distance from one another into a metallurgical vessel with a foamable molten metal. Bubbles are formed in the regions of the protruding tube ends, with juxtaposition of regions of the bubble surfaces and formation of particles containing intermediate walls a continuous foam formation is formed.

Nachteilig ist bei diesen schmelzmetallurgischen Verfahren, dass eine Metallschmelze in reinem Zustand nicht aufschäumbar ist. Zum Zweck der Erzielung einer Aufschäumbarkeit muss vor einer Durchführung des Aufschäumens die Schmelze mit einem viskositätssteigernden Mittel, beispielsweise einem Inertgas ( GB 1,287,994 ), oder mit Keramikpartikel ( EP 0 666 784 B) versetzt werden. Nur der an der Schmelzenoberfläche angesammelte Metallschaum ist fließfähig. Dies ist zwar für eine formgebende Verarbeitung des Metallschaumes günstig, kann aber in Folge mangelnder Stabilisierung der metallischen Wände zu einem partiellen Zusammenfallen des gebildeten Metallschaumes und damit zur einer unkontrollierbaren Ausbildung dichter Zonen im Inneren eines so erstellten Gegenstandes führen. Ferner kann ein Teil der gebildeten Blasen bzw. das gelösten Gases während der Erstarrung einer Schmelze aus dieser austreten, so dass ein Einschluss des freigesetzten Gases in der Schmelze nicht erfolgt und folglich die Porosität der mit diesem Verfahren erstellten Gegenstände gering ist. Außerdem sind zur Einbringung der Gasblasen in die Schmelze aufwändige Vorrichtungen erforderlich.A disadvantage of these melt metallurgical processes is that a molten metal in the pure state can not be foamed. For the purpose of achieving a foamability, before carrying out the foaming, the melt must be mixed with a viscosity-increasing agent, for example an inert gas ( GB 1,287,994 ), or with ceramic particles ( EP 0 666 784 B). Only the metal foam accumulated on the melt surface is free-flowing. Although this is favorable for a shaping processing of the metal foam, but may result in a lack of stabilization of the metallic walls to a partial collapse of the metal foam formed and thus to an uncontrollable formation of dense zones in the interior of a created object. Furthermore, a part of the bubbles formed or the dissolved gas during the solidification of a melt can escape from this, so that an inclusion of the released gas in the melt does not take place and consequently the porosity of the objects created by this method is low. In addition, expensive devices are required for introducing the gas bubbles into the melt.

Ein pulvermetallurgisches Verfahren zur Herstellung poröser Metallkörper wird in der DE 101 15 230 C2 und DE 40 18 360 CI vorgestellt, bei dem eine Mischung, die ein pulverförmiges metallisches Material, welches mindestens ein Metall und/oder eine Metalllegierung sowie ein gasabspaltendes treibmittelhaltiges Pulver enthält, zu einem Halbzeug kompaktiert wird. Dieses Halbzeug wird unter Temperatureinwirkung aufgeschäumt wobei ein treibmittelhaltiges Pulver verwendet wird, bei dem die Temperatur der maximalen Zersetzung weniger als 120 K unter der Schmelztemperatur des Metalls oder der Solidustemperatur der Metalllegierung liegt. In der WO 2005/011901 A1 wird vorgeschlagen, dass zur Herstellung von Metallteilen mit innerer Porosität zuerst ein schäumbares Halbzeug bestehend aus Metall und mindestens einem bei erhöhter Temperatur Gas abgebenden Treibmittel, bei welchem das Metall eine im Wesentlichen geschlossene Matrix bildet, in welcher Treibmittelteilchen eingelagert sind, hergestellt wird. Eine gesteigerte Güte eines erstellten Metallschaumkörpers soll mit einem Halbzeug erreicht werden, bei welchem die die Treibmittelteilchen einschießende Metallmatrix durch Diffusions- und/oder Press-Schweißung von Metallpartikeln gebildet ist. In einem ersten Schritt werden dazu Metallpartikel und mindestens ein bei erhöhter Temperatur Gas(e) abgebendes Mittel, so genannte Treibmittel, gemischt, worauf in einem zweiten Schritt die Mischung unter erhöhtem Druck und erhöhter Temperatur zu einem Halbzeug-Teil geformt und dieses bei Aufrechterhaltung der Druckbeaufschlagung unter die Zersetzungs- bzw. Ausgastemperatur des Treibmittels erkalten gelassen oder gekühlt wird. In einem dritten Schritt wird eine Erwärmung des Halbzeugteiles über die Zersetzungstemperatur des Treibmittels und bei Bildung einer inneren Porosität eine Ausformung des Halbzeuges zu einem Metallschaum-Teil erfolgen.A powder metallurgical process for producing porous metal bodies is described in US Pat DE 101 15 230 C2 and DE 40 18 360 CI, in which a mixture containing a powdered metallic material containing at least one metal and / or a metal alloy and a gas-releasing propellant-containing powder is compacted into a semi-finished product. This semifinished product is foamed under the action of temperature, wherein a propellant-containing powder is used, in which the temperature of the maximum decomposition is less than 120 K below the melting temperature of the metal or the solidus temperature of the metal alloy. In the WO 2005/011901 A1 It is proposed that for the production of metal parts with internal porosity first a foamable semi-finished product consisting of metal and at least a high temperature gas evolving propellant, wherein the metal forms a substantially closed matrix in which propellant particles are incorporated. An increased quality of a created metal foam body is to be achieved with a semi-finished product, in which the propellant particles einschießende metal matrix is formed by diffusion and / or pressure-welding of metal particles. In a first step, metal particles and at least one at elevated temperature gas (e) donating agent, so-called blowing agents, mixed, whereupon in a second step, the mixture formed under elevated pressure and elevated temperature to a semi-finished part and this while maintaining the Pressurization below the decomposition or outgassing temperature of the propellant is allowed to cool or cooled. In a third step, a heating of the semi-finished part on the decomposition temperature of the blowing agent and in forming an internal porosity, a shaping of the semi-finished product to a metal foam part.

Ein weitere Verfahren zur Herstellung von Metallschaumkörpern ist in der WO 2004/063406 A2 beschrieben. Dieses Verfahren kann als pulvermetallurgisches oder auch als schmelzmetallurgisches Verfahren angewendet werden. Bei dieser Lösung wird beim Aufschmelzen eines Einsatzmaterials unter Atmosphärendruck in einem offenen Schmelzgefäß ohne Überdruckvorrichtungen und einem gleichzeitigen und/oder darauf folgenden Einbringen von Gas in die flüssige Phase des Einsatzmateriales, durch eingebrachte Treibmittel oder durch Gaseinbringung, eine ausreichende Gasbeaufschlagung der Schmelze erreicht, um bei der Erstarrung derselben die Ausbildung eines Metallschaumkörpers geringer Dichte bewirken zu können. Diese Wirkung kann gemäß der beschriebenen Lösung zur Herstellung eines Metallschaumkörpers gewünschter Form dann nutzbringend ausgenutzt werden, wenn das Flüssigmetall zuerst in eine Form gebracht wird und dann in dieser bei zumindest zeitweilig vermindertem Umgebungsdruck erstarren gelassen wird. Durch eine Verfestigung der Schmelze bei vermindertem Umgebungsdruck, vorzugsweise 0,03 bar bis 0,2 bar, kommt es in der Schmelze zu einer Ausbildung einer Vielzahl von Gasblasen, welche jedoch auf Grund der einsetzenden bzw. fortschreitenden Erstarrung der Schmelze in dieser eingeschlossen werden und so erstellte Metallschaumkörper eine geringe Dichte aufweisen.Another method for producing metal foam bodies is in WO 2004/063406 A2 described. This method can be used as a powder metallurgy or as a melt metallurgical process. In this solution, when melting a feedstock under atmospheric pressure in an open crucible without pressure devices and a simultaneous and / or subsequent introduction of gas into the liquid phase of the feedstock, introduced by blowing agent or by gas introduction, a sufficient gas supply of the melt is achieved in order the solidification of the same can cause the formation of a metal foam body low density. This effect can be usefully exploited according to the described solution for producing a metal foam body desired shape when the liquid metal is first placed in a mold and then allowed to solidify in this at least temporarily reduced ambient pressure. By a consolidation of the Melt at reduced ambient pressure, preferably 0.03 bar to 0.2 bar, it comes in the melt to form a plurality of gas bubbles, which are included due to the onset or progressive solidification of the melt in this and so created metal foam body a low density.

In der JP 01-127631 (Abstract) wird ebenfalls ein Verfahrens beschrieben, bei dem analog zur vorgenannten Lösung unter atmosphärischem Druck Wasserstoff, Stickstoff, Sauerstoff in das flüssige Metall eingebracht wird oder Treibmittelpartikel, wie Nitrid, Hydrid oder Oxid, durch thermisches Cracken Gas in die Schmelze abgeben. Das mit Gas versetzte flüssige Metall wird in ein Formwerkzeug gegeben und über einen gewissen Zeitraum unter verringertem Druck, bei 400 bis 760 mmHg gehalten.In the JP 01-127631 (Abstract) also describes a process in which hydrogen, nitrogen, oxygen is introduced into the liquid metal analogously to the abovementioned solution under atmospheric pressure or blowing agent particles, such as nitride, hydride or oxide, release gas into the melt by thermal cracking. The gasified liquid metal is placed in a mold and held under reduced pressure, at 400 to 760 mmHg for a period of time.

Mit derartigen pulvermetallurgischen Verfahren können Metallschaumkörper hoher Qualität bereitgestellt werden. Allerdings sind diese Verfahren bezüglich des eingesetzten Materials und der erforderlichen Vorrichtungen äußerst aufwändig, weil ein Einsatz wenigstens zweier Pulverkomponenten, nämlich von Metallpartikeln und Treibstoffpartikeln, notwendig ist. Auch müssen die einzelnen Pulverkomponenten vor einem Erwärmen innig vermengt und die Pulverkörner miteinander gesintert werden, beispielsweise durch heißisostatisches Pressen, um im hergestellten Metallschaumkörper Poren mit einer möglichst homogenen Verteilung zu erzielen. Ein weiterer Nachteil besteht darin, dass bereits vor dem Schmelzen des Metalls Gas aus den Treibmittelpartikel entweicht und sich in Rissen, Defekten, etc. ansammelt. Dadurch entstehen unterschiedlich große und ungleichmäßig verteilte Poren im Metallschaumstoff.
Die Porengröße und die Volurpenexpansion sind während des Prozesses schwer regelbar.
With such powder metallurgy methods, metal foam bodies of high quality can be provided. However, these methods are extremely complicated with respect to the material used and the required devices, because it is necessary to use at least two powder components, namely metal particles and fuel particles. Also, the individual powder components must be intimately mixed prior to heating and the powder grains are sintered together, for example by hot isostatic pressing, in order to achieve in the produced metal foam body pores with a homogeneous distribution as possible. A further disadvantage is that gas escapes from the blowing agent particles even before the metal melts and accumulates in cracks, defects, etc. This results in different sized and unevenly distributed pores in the metal foam.
Pore size and volumetric expansion are difficult to control during the process.

Die Aufgabe der Erfindung besteht darin, ein Verfahren zur Herstellung von Metallschaumstoff und von Teilen aus Metallschaumstoff anzugeben, das einfach, ohne Einsatz von Treibmitteln und ohne aufwändige Vorrichtungen durchzuführen ist, wobei die eingeschlossenen Poren möglichst kleinporig sind, ein nahezu gleiches Volumen und eine homogene Verteilung aufweisen. Die nach dem erfindungsgemäßen Verfahren hergestellten Teile aus Metallschaumstoff sollen eine hohe Maßhaltigkeit aufweisen.The object of the invention is to provide a method for the production of metal foam and parts made of metal foam, the easy to perform without the use of blowing agents and without expensive devices, the trapped pores are as small as possible pores, have a nearly the same volume and a homogeneous distribution. The metal foam parts produced by the process according to the invention should have a high dimensional stability.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst, indem ein pulverförmiges metallisches Material, welches mindestens ein Metall und/oder eine Metalllegierung enthält, gemischt ohne Einsatz von Treibmitteln und anschließend unter mechanischem Druck und einer Temperatur von bis zur 400 C zu einem formstabilen Halbzeug gepresst wird. Dieses Halbzeug wird in eine druckdicht verschließbare Kammer eingelegt, die anschließend druckdicht verschlossen und das Halbzeug bei dem gewählten Anfangsdruck auf die Schmelz- bzw. Solidustemperatur des pulverförmigen metallischen Materials aufgeheizt wird. Nach Erreichen der Schmelz- bzw. Solidustemperatur des pulverförmigen metallischen Materials wird der Druck in der Kammer auf einen gewählten Enddruck reduziert. Dabei schäumt sich das Halbzeug auf ohne Einsatz von Treibmitteln und der sich dadurch gebildete Metallschaumstoff erstarrt während der anschließenden Absenkung der Temperatur. Das Absenken der Temperatur erfolgt nach dem Beginn der Druckreduzierung nach einem vorgegebenen Gradienten, wobei der gewählte Enddruck immer vor dem Erstarren des pulverförmigen metallischen Materials erreicht wird.This object is achieved by a method having the features of claim 1 by a powdered metallic material containing at least one metal and / or a metal alloy, mixed without the use of propellants and then under mechanical pressure and a temperature of up to 400 C. is pressed to form a dimensionally stable semifinished product. This semi-finished product is placed in a pressure-tight sealable chamber, which is then sealed pressure-tight and the semifinished product is heated at the selected initial pressure to the melting or solidus temperature of the powdered metallic material. After reaching the melting or solidus temperature of the powdered metallic material, the pressure in the chamber is reduced to a selected final pressure. The semifinished product foams up without the use of blowing agents and the resulting metal foam solidifies during the subsequent lowering of the temperature. The lowering of the temperature takes place after the beginning of the pressure reduction according to a predetermined gradient, wherein the selected final pressure is always achieved before the solidification of the powdery metallic material.

Als besonders vorteilhaft hat sich erwiesen, dass vor bzw. während des Aufheizens des Halbzeugs in der geschlossenen Kammer ein Gasdruck bis ca. 50 bar erzeugt wird. Nach Erreichen der Schmelz- bzw. Solidustemperatur des pulverförmigen metallischen Materials wird der Druck in der geschlossenen Kammer vom Anfangsdruck nach einem vorgegebenen Gradienten bis auf den Enddruck von 1 bar reduziert. Eine andere Alternative besteht darin, dass das Aufheizen des Halbzeugs in der geschlossenen Kammer bei einem Anfangsdruck von ca. 1 bar erfolgt und nach Erreichen der Schmelz- bzw. Solidustemperatur des pulverförmigen metallischen Materials der Druck in der geschlossenen Kammer auf einen Enddruck von ca. 0,1 bis 0,01 bar nach einem vorgegebenen Gradienten reduziert wird. Es ist aber auch möglich, die Druckreduzierung nach dem Aufschäumen auf andere Enddrücke, beispielsweise von einem Anfangsdruck von bis zu 50 bar auf einen Enddruck von > 1 bar oder aber auch auf < 1 bar zu realisieren.It has proved to be particularly advantageous that a gas pressure up to approximately 50 bar is generated before or during the heating of the semifinished product in the closed chamber. After reaching the melting or solidus temperature of the pulverulent metallic material, the pressure in the closed chamber is reduced from the initial pressure to a predetermined gradient down to the final pressure of 1 bar. Another alternative is that the heating of the semifinished product takes place in the closed chamber at an initial pressure of about 1 bar and after reaching the melting or solidus temperature of the powdered metallic material, the pressure in the closed chamber is reduced to a final pressure of about 0.1 to 0.01 bar after a predetermined gradient. But it is also possible to realize the pressure reduction after foaming to other end pressures, for example, from an initial pressure of up to 50 bar to a final pressure of> 1 bar or even to <1 bar.

In der geschlossenen Kammer kann vorteilhafterweise eine bestimmte Gasatmosphäre geschaffen werden, beispielsweise eine Sauerstoffatmosphäre oder eine Atmosphäre aus feuchter Luft.In the closed chamber advantageously a certain gas atmosphere can be created, for example an oxygen atmosphere or an atmosphere of moist air.

Zur Herstellung des formstabilen Halbzeugs wird das pulverförmige metallische Material vorzugsweise bei einem Gasdruck zwischen 1 und 50 bar sowie einem mechanischen Druck von 200-400 MPa und einer Temperatur von bis zu 400 °C kompaktiert.To produce the dimensionally stable semifinished product, the pulverulent metallic material is preferably compacted at a gas pressure of between 1 and 50 bar and a mechanical pressure of 200-400 MPa and a temperature of up to 400 ° C.

Es ist vorteilhaft, wenn das pulverförmige metallische Material vor dem Kompaktieren zu dem Halbzeug vorbehandelt wird, indem die Oberfläche der einzelnen Körner des pulverförmigen metallischen Materials modifiziert wird, beispielsweise durch oxydieren oder anfeuchten.It is advantageous if the pulverulent metallic material is pretreated before being compacted into the semifinished product by modifying the surface of the individual granules of the pulverulent metallic material, for example by oxidizing or moistening.

Mit dem erfindungsgemäßen Verfahren können auch einfach maßhaltige Metallschaumkörper hergestellt werden, wenn anstelle einer beliebigen druckdichten Kammer ein druckdicht verschließbares Formteilwerkzeug, welches die Form des herzustellenden Metallschaumkörpers aufweist, verwendet wird.With the method according to the invention, dimensionally stable metal foam bodies can also be produced simply if, instead of any pressure-tight chamber, a pressure-tight sealable molding tool, which has the shape of the metal foam body to be produced, is used.

Ein im Formteilwerkzeug vorhandenes Reservoir gewährleistet, dass der durch das Aufschäumen des Metalls überschüssige Metallschaum aus dem Formteilwerkzeug durch eine Öffnung zu dem Reservoir austreten kann. Dadurch wird auch erreicht, dass das Formteilwerkzeug vollständig mit dem Metallschaum gefüllt ist. Mit der Reduzierung des Drucks wird auch die Temperatur gesenkt, so dass der Metallschaumstoff in der Form erstarrt und dabei die Form des Formteilwerkzeugs annimmt. Nach dem Erstarren des Metallschaums kann der Metallschaumkörper dem Formteilwerkzeug entnommen werden.A reservoir provided in the molding tool ensures that the metal foam, which is excessively expanded by the foaming of the metal, can escape from the molding tool through an opening to the reservoir. This also ensures that the molding tool is completely filled with the metal foam. With the reduction of pressure is also the Lowered temperature, so that the metal foam solidifies in the mold and thereby assumes the shape of the molding tool. After solidification of the metal foam, the metal foam body can be removed from the molding tool.

Weitere vorteilhafte Ausgestaltungen der Erfindung können den Unteransprüchen entnommen werden.Further advantageous embodiments of the invention can be taken from the subclaims.

Die Vorteile des erfindungsgemäßen Verfahrens liegen insbesondere darin, dass es möglich ist, Metallschaumstoff bzw. Körper aus Metallschaumstoff, ohne aufwändige Vorrichtungen zum Einbringen von Gasblasen in die Schmelze oder die Verwendung von Treibmitteln, auf einfache Art und Weise herzustellen. Ein weiterer Vorteil besteht darin, dass mit dem erfindungsgemäßen Verfahren Metallschaumstoff mit geringer Dichte hergestellt werden kann, bei dem die Poren kleine Abmessungen (Volumina) aufweisen, nahezu gleichmäßig groß und homogen im gesamten Metallschaumstoff verteilt sind. Ein zusätzlicher Vorteil besteht darin, dass durch einstellbare unterschiedliche Druckdifferenzen zwischen Anfangs- und Enddruck die Porengröße und die Volumenexpansion in bestimmten Grenzen sehr einfach und genau wählbar bzw. während des Prozesses einstellbar sind, wobei zwischen der Porengröße und der Volumenexpansion ein unmittelbarer Zusammenhang besteht. D. h. die Porengröße und die Volumenexpansion können, unter Beachtung bestimmter Grenzwerte, dadurch vorbestimmt werden, dass der Anfangsdruck und der Enddruck festgelegt werden. Es ist aber auch möglich, dass bei Beobachtung des Prozesses, dieser jederzeit bei Erreichen einer gewünschten Porengröße bzw. Volumenexpansion beendet werden kann.The advantages of the method according to the invention are, in particular, that it is possible to produce metal foam or body made of metal foam, without complicated devices for introducing gas bubbles into the melt or the use of blowing agents, in a simple manner. A further advantage is that with the method according to the invention low-density metal foam can be produced in which the pores have small dimensions (volumes), are distributed almost uniformly and homogeneously throughout the metal foam. An additional advantage is that the pore size and the volume expansion can be adjusted within certain limits very easily and precisely by adjustable different pressure differences between the initial and final pressure or during the process, wherein there is a direct relationship between the pore size and the volume expansion. Ie. the pore size and the volume expansion can be predetermined by observing certain limit values by setting the initial pressure and the final pressure. But it is also possible that when observing the process, this can be terminated at any time upon reaching a desired pore size or volume expansion.

Wenn das Aufschäumen des Halbzeugs aus dem pulverförmigen metallischen Material nicht in einer einfachen Kammer sondern in einem Formteilwerkzeug, erfolgt, kann man auf einfache Weise maßhaltige Metallschaumkörper herstellen.If the foaming of the semifinished product from the pulverulent metallic material does not take place in a simple chamber but in a molding tool, dimensionally stable metal foam bodies can be produced in a simple manner.

Die Erfindung soll nachstehend an Hand von zwei ausgewählten Ausführungsbeispielen näher erläutert werden:The invention will be explained in more detail below with reference to two selected exemplary embodiments:

Im ersten bevorzugten Verfahren wird ein Metallschaumstoff ohne Verwendung von zusätzlichen gasabgebenden Treibmitteln hergestellt. Dazu wird in einem ersten Prozessschritt Aluminiumpulver (99,7) mit einer durchschnittlichen Korngröße von ca. 20 µm in einem Metallzylinder bei einem Gasdruck von 1 bar sowie bei einem mechanischen Druck von 300 MPa und bei einer Temperatur von ca. 400 °C über einen Zeitraum von 15 min zu einem Halbzeug uni-axial kompaktiert.
Danach wird dieses Halbzeug in einer druckdichten Kammer platziert und unter einer Luftatmosphäre bei einem Anfangsdruck p1 = 10 bar auf eine Temperatur von ca. 700°C erhitzt, die somit etwas oberhalb der Schmelztemperatur des Aluminium von ca. 660°C liegt. Wenn diese Temperatur ausreichend lange aufrecht erhalten bleibt schmilzt das Halbzeug. Sobald das Halbzeug vollständig geschmolzen ist, wird der Gasdruck in der Kammer vom Anfangsdruck p1 = 10 bar auf den Enddruck p2= 1 bar mit einem Gradienten von 0,2 bar/s reduziert, so dass sich das im Halbzeug eingeschlossene Gas, in dem gleichen Verhältnis wie der Gasdruck in der Kammer reduziert wird, ausdehnt und somit die Probe innerhalb von ca. 45 s zum Schäumen bringt. Die durchschnittliche Porengröße beträgt ca. 2 mm. Abschließend wird die Temperatur in der Kammer mit ca. 5 K/s bis unter die Schmelztemperatur des Aluminium reduziert, so dass der flüssige Aluminiumschaum erstarrt und somit der Aluminiumschaumstoff fest wird.
In the first preferred process, a metal foam is made without the use of additional gas-imparting blowing agents. For this purpose, in a first process step aluminum powder (99.7) with an average particle size of about 20 microns in a metal cylinder at a gas pressure of 1 bar and at a mechanical pressure of 300 MPa and at a temperature of about 400 ° C over a Period of 15 min to a semi-finished uni-axially compacted.
Thereafter, this semi-finished product is placed in a pressure-tight chamber and heated under an air atmosphere at an initial pressure p 1 = 10 bar to a temperature of about 700 ° C, which is thus slightly above the melting temperature of the aluminum of about 660 ° C. If this temperature is maintained for a sufficiently long time, the semifinished product melts. As soon as the semifinished product has completely melted, the gas pressure in the chamber is reduced from the initial pressure p 1 = 10 bar to the final pressure p 2 = 1 bar with a gradient of 0.2 bar / s, so that the gas enclosed in the semifinished product, in the same ratio as the gas pressure in the chamber is reduced, expands and thus causes the sample within about 45 s to foam. The average pore size is about 2 mm. Finally, the temperature in the chamber is reduced by about 5 K / s to below the melting temperature of the aluminum, so that the liquid aluminum foam solidifies and thus the aluminum foam is solid.

In einem weiteren Vergleichsbeispiel wird ein Verfahren dargestellt, mit dem ein Aluminiumschaumstoff unter Verwendung von geringen Mengen von gasabgebenden Treibmitteln hergestellt wird.In a further comparative example, a process is illustrated by which an aluminum foam is made using small amounts of gas donating propellants.

In einem ersten Prozessschritt wird Pulver aus AlSi6Cu4 mit einer durchschnittlichen Korngröße von ca. 20 µm mit 0,5 Gew.% TiH2 , welches eine durchschnittliche Korngröße von ca. 10 µm aufweist, homogen vermischt. Dieses Gemisch wird in einem Metallzylinder bei einem Gasdruck von 1 bar sowie bei einem mechanischen Druck von 300 MPa und bei einer Temperatur von ca. 400 °C über einen Zeitraum von ca. 15 min zu einem Halbzeug uni-axial kompaktiert. Danach wird dieses Halbzeug in einer druckdichten Kammer platziert und unter einer Luftatmosphäre bei einem Anfangsdruck von 8 bar auf eine Temperatur von ca. 550°C erhitzt, die somit etwas oberhalb der Solidustemperatur des AlSi6Cu4 von ca. 516°C liegt. Bereits bei Temperaturen oberhalb von 400°C beginnt das Treibmittel Wasserstoff abzugeben. Das im geschmolzenen Aluminium des Halbzeugs freigesetzte und eingeschlossene Gas bildet, durch den äußeren Druck bedingt, sehr kleine Poren, die einen durchschnittlichen Durchmesser von weniger als 0,1 mm aufweisen. Sobald das Halbzeug vollständig geschmolzen ist, wird der Gasdruck in der Kammer vom Anfangsdruck p1 = 8 bar um ca. 3 bar auf einen Enddruck p2 = 5 bar mit einem Gradienten von 0,2 bar/s reduziert. Dabei bringt das im Halbzeug eingeschlossene Gas die Probe innerhalb 15 s zum Schäumen. Nachdem der AlSi6Cu4-Schaum das vorgegebene Volumen erreicht hat, wird die Temperatur mit ca. 5 K/s bis unter die Solidustemperatur von AlSi6Cu4 reduziert, so dass der flüssige AlSi6Cu4-Schaum erstarrt und somit der Schaumstoff fest wird.In a first process step, powder of AlSi6Cu4 with an average particle size of about 20 microns with 0.5 wt.% TiH 2 , which has an average particle size of about 10 microns, homogeneously mixed. This mixture is uni-axially compacted in a metal cylinder at a gas pressure of 1 bar and at a mechanical pressure of 300 MPa and at a temperature of about 400 ° C over a period of about 15 minutes to form a semifinished product. Thereafter, this semi-finished product is placed in a pressure-tight chamber and heated under an air atmosphere at an initial pressure of 8 bar to a temperature of about 550 ° C, which is thus slightly above the solidus temperature of AlSi6Cu4 of about 516 ° C. Already at temperatures above 400 ° C, the propellant begins to release hydrogen. The gas released and trapped in the molten aluminum of the semifinished product, due to the external pressure, forms very small pores having an average diameter of less than 0.1 mm. As soon as the semifinished product has completely melted, the gas pressure in the chamber is reduced from the initial pressure p 1 = 8 bar by approx. 3 bar to a final pressure p 2 = 5 bar with a gradient of 0.2 bar / s. The gas enclosed in the semi-finished product causes the sample to foam within 15 seconds. After the AlSi6Cu4 foam has reached the specified volume, the temperature is reduced by about 5 K / s to below the solidus temperature of AlSi6Cu4, so that the liquid AlSi6Cu4 foam solidifies and thus the foam solidifies.

Ein mit diesem Vergleichsverfahren hergestellter AlSi6Cu4-Schaumstoff weist Poren auf, die im Metallschaumstoff homogen verteilt, rund und klein sind, wobei die durchschnittliche Porengröße ca. 0,5 mm beträgt. Die Größe der Poren kann durch den gewählten Druckunterschied zwischen Anfangsdruck und Enddruck (Δp = p1-p2 ) einfach über zwei Größenordnungen von ca. 0,1 mm bis ca. 10 mm Durchmesser eingestellt werden.An AlSi6Cu4 foam produced by this comparison method has pores which are homogeneously distributed in the metal foam, round and small, the average pore size being about 0.5 mm. The size of the pores can be easily adjusted by the chosen pressure difference between initial pressure and final pressure (Δp = p 1 -p 2 ) over two orders of magnitude from about 0.1 mm to about 10 mm diameter.

Claims (19)

  1. A method for the powder-metallurgical production of metal foamed material and of parts made of metal foamed material, in which a pulverulent metallic material containing at least one metal and/or a metal alloy is mixed and pressed to form a dimensionally stable semi-finished product under mechanical pressure, characterized in that the semi-finished product is placed into a chamber that can be sealed pressure-tight, the chamber is subsequently sealed and then the semi-finished product is heated up to the melting or solidus temperature of the pulverulent metallic material and, once the melting or solidus temperature of the pulverulent metallic material has been reached, the pressure in the chamber is reduced from an initial pressure (p1) to a final pressure (p2), whereby the semi-finished product foams without the use of foaming agents and the metal foam thus formed solidifies during the subsequent lowering of the temperature.
  2. The method according to claim 1, characterized in that the pulverulent metallic material is pretreated in that the surface of the individual powder grains is modified, for instance, through oxidation or moistening.
  3. The method according to claim 1, characterized in that the powder grains of the pulverulent metallic material has dimensions that average about 1 µm to 100 µm on the.
  4. The method according to claim 1, characterized in that the semi-finished product is compacted at a gas pressure between 1 bar and 50 bar as well as at a mechanical pressure ranging from 200 MPa to 400 MPa at a temperature of less than 400°C.
  5. The method according to claim 1, characterized in that the semi-finished product is pretreated in that the surface is modified, for instance, through oxidation, electrolytic oxidation or moistening.
  6. The method according to claim 1, characterized in that a defined gas atmosphere prevails in the sealed chamber.
  7. The method according to claim 6, characterized in that an oxygen atmosphere prevails in the sealed chamber.
  8. The method according to claim 6, characterized in that an atmosphere consisting of moist air prevails in the sealed chamber.
  9. The method according to claim 1, characterized in that an initial pressure (p1) of up to approximately 50 bar is generated in the sealed chamber before or while the semi-finished product is being heated up.
  10. The method according to claim 1, characterized in that the semi-finished product is heat up in the sealed chamber at an initial pressure (p1) of about 1 bar.
  11. The method according to claim 9, characterized in that, once the melting or solidus temperature of the pulverulent metallic material has been reached, the pressure in the sealed chamber is reduced according to a prescribed gradient from the initial pressure (p1) to the final pressure (p2) of about 1 bar.
  12. The method according to claim 1 or 10, characterized in that, once the melting or solidus temperature of the pulverulent metallic material has been reached, the pressure in the sealed chamber is reduced according to a prescribed gradient from the initial pressure (p1) to the final pressure (p2) of about 0.1 bar to 0.01 bar.
  13. The method according to claim 1 and 9 or 10, characterized in that the pressure in the sealed chamber is reduced from the initial pressure (p1) to the final pressure (p2) within a time span of about 1 second to 1000 seconds.
  14. The method according to claims 1, 10, 12 and 13, characterized in that the temperature in the chamber is only lowered after the beginning of the pressure reduction according to a prescribed gradient, whereby the solidification temperature of the pulverulent metallic material is only reached after the final pressure (p2) has been reached.
  15. The method according to claim 1, characterized in that the size of the pores in the metal foam can be systematically set within a range from approximately 0.1 mm to approximately 10 mm by selecting the pressure differential (Δp = p1 - p2) between the initial pressure (p1) and the final pressure (p2).
  16. The method according to claims 1 and 15, characterized in that the increase of the pore size in the metal foam can be terminated at any time by terminating the pressure reduction and by subsequently lowering the temperature of the metal foam to below the solidification temperature of the pulverulent metallic material for example, once the desired pore size or volume expansion has been reached.
  17. The method according to claim 1, characterized in that the volume expansion of the metal foam can be systematically set to about ten times the initial volume by selecting the pressure differential (Δp = p1 - p2) between the initial pressure (p1) and the final pressure (p2).
  18. The method according to claims 1 and 17, characterized in that the volume expansion of the metal foam can be terminated by terminating the pressure reduction and by subsequently lowering the temperature of the metal foam to below the solidification temperature of the pulverulent metallic material for example, once a prescribed volume has been reached.
  19. The method according to claim 1, characterized in that a dimensionally stable metal foam object can be produced.
EP06775813A 2005-08-02 2006-08-02 Process for the powder metallurgy production of metal foam and of parts made from metal foam Active EP1915226B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005037305A DE102005037305B4 (en) 2005-08-02 2005-08-02 Process for the powder metallurgy production of metal foam and parts made of metal foam
PCT/DE2006/001375 WO2007014559A1 (en) 2005-08-02 2006-08-02 Process for the powder metallurgy production of metal foam and of parts made from metal foam

Publications (2)

Publication Number Publication Date
EP1915226A1 EP1915226A1 (en) 2008-04-30
EP1915226B1 true EP1915226B1 (en) 2009-06-17

Family

ID=37199001

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06775813A Active EP1915226B1 (en) 2005-08-02 2006-08-02 Process for the powder metallurgy production of metal foam and of parts made from metal foam

Country Status (7)

Country Link
US (1) US8562904B2 (en)
EP (1) EP1915226B1 (en)
JP (1) JP2009503260A (en)
AT (1) ATE433814T1 (en)
DE (2) DE102005037305B4 (en)
ES (1) ES2327066T3 (en)
WO (1) WO2007014559A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024468A (en) * 2008-07-15 2010-02-04 Tohoku Univ Method for producing porous metal, and porous metal
DE102009020004A1 (en) 2009-05-05 2010-11-11 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Powder metallurgical process for the production of metal foam
CN101948962B (en) * 2010-09-19 2012-07-25 昆明理工大学 Vacuum foaming method for preparing foamed aluminum/aluminum alloy
DE102011109693B3 (en) * 2011-08-06 2012-09-13 Lfk-Lenkflugkörpersysteme Gmbh Structure component for an operational missile system
DE102011111614B3 (en) * 2011-08-25 2013-01-03 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Melting metallurgical process, useful for preparing metal foamed body, comprises providing molten metal into reservoir, introducing the metal in evacuable frothing vessel, and foaming the metal through rapid evacuation of the vessel
MX2015003526A (en) * 2012-09-21 2015-10-14 Smiths Detection Watford Ltd Sample collection thermal desorber.
DE102017121512A1 (en) 2017-09-15 2019-03-21 Pohltec Metalfoam Gmbh Process for foaming metal with thermal contact
WO2019053181A1 (en) 2017-09-15 2019-03-21 Pohltec Metalfoam Gmbh Method for foaming metal with thermal contact
DE102017121511A1 (en) 2017-09-15 2019-03-21 Pohltec Metalfoam Gmbh Process for producing a semifinished product for a composite material
DE102017121513A1 (en) 2017-09-15 2019-03-21 Pohltec Metalfoam Gmbh Process for foaming metal in the liquid bath
PL241832B1 (en) * 2018-04-19 2022-12-12 Akademia Gorniczo Hutnicza Im Stanislawa Staszica W Krakowie Method for recycling of chips from aluminum or its alloys
CN111331138B (en) * 2020-02-19 2021-11-16 北京锦灏科技有限公司 Method for preparing foam metal thin-wall composite pipe with controllable filling density gradient
CN115416358B (en) * 2022-08-24 2024-05-28 山东英乐威装备科技有限公司 Lamination process for silicon carbide reaction plate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2006445C3 (en) * 1969-02-19 1975-01-02 Ethyl Corp., Richmond, Va. (V.St.A.) Process for the production of aluminum foam moldings
JPH01127631A (en) * 1987-11-10 1989-05-19 Agency Of Ind Science & Technol Production of foamed metal
DE4018360C1 (en) 1990-06-08 1991-05-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal
DE4101630A1 (en) * 1990-06-08 1991-12-12 Fraunhofer Ges Forschung METHOD FOR PRODUCING FOAMABLE METAL BODIES AND USE THEREOF
US5281251A (en) * 1992-11-04 1994-01-25 Alcan International Limited Process for shape casting of particle stabilized metal foam
AT406027B (en) 1996-04-19 2000-01-25 Leichtmetallguss Kokillenbau W METHOD FOR PRODUCING MOLDED PARTS FROM METAL FOAM
DE10115230C2 (en) * 2000-03-28 2002-11-28 Fraunhofer Ges Forschung Process for producing porous metal bodies and use thereof
US6733722B2 (en) * 2000-09-13 2004-05-11 Neue Materialien Furth Gmbh Method for producing a moulded body from foamed metal
DE10045494C2 (en) 2000-09-13 2002-07-18 Neue Materialien Fuerth Gmbh Process for producing a shaped body from metal foam
JP2003112253A (en) * 2001-06-15 2003-04-15 Huette Klein-Reichenbach Gmbh Apparatus and method of manufacturing foamy metal
AT411768B (en) * 2002-09-09 2004-05-25 Huette Klein Reichenbach Gmbh METHOD AND DEVICE FOR PRODUCING FLOWABLE METAL FOAM
AT413344B (en) * 2003-01-13 2006-02-15 Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh METHOD FOR PRODUCING METAL FOAM BODIES
AT412876B (en) * 2003-08-05 2005-08-25 Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh FOAMING SEMI-FINISHED AND METHOD FOR PRODUCING METAL PARTS OF INTERNAL PORO-SITY

Also Published As

Publication number Publication date
DE502006004012D1 (en) 2009-07-30
WO2007014559A1 (en) 2007-02-08
JP2009503260A (en) 2009-01-29
EP1915226A1 (en) 2008-04-30
US8562904B2 (en) 2013-10-22
DE102005037305B4 (en) 2007-05-16
DE102005037305A1 (en) 2007-03-29
ES2327066T3 (en) 2009-10-23
US20080314546A1 (en) 2008-12-25
ATE433814T1 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
EP1915226B1 (en) Process for the powder metallurgy production of metal foam and of parts made from metal foam
DE69006359T2 (en) METHOD FOR PRODUCING A DISPERSION-FASTENED METAL FOAM AND METHOD FOR PRODUCING IT.
DE10248888B4 (en) Process for the production of near net shape, metallic and / or ceramic components
EP2044230B1 (en) Method for the production of metal foams
EP1397223A2 (en) Production of metal foams
EP1017864B1 (en) Alloy for producing metal foamed bodies using a powder with nucleating additives
DE10115230C2 (en) Process for producing porous metal bodies and use thereof
EP1587772B1 (en) Method for producing porous sintered bodies
EP2427284B1 (en) Powder-metallurgical method for producing metal foam
AT413344B (en) METHOD FOR PRODUCING METAL FOAM BODIES
WO2019053184A1 (en) Method for foaming metal in a liquid bath
DE102017121512A1 (en) Process for foaming metal with thermal contact
DE19638927C2 (en) Process for the production of highly porous, metallic moldings
DE102011118295A1 (en) Producing an aluminum foam body, comprises providing a microporous body made of aluminum alloy reinforced with hard material particles, and melting the microporous body and then treating a melt under vacuum by acting upon with vibrations
EP1597004B1 (en) Method for foaming powder-molded bodies comprising a cellular structure
DE19810979C2 (en) Aluminum alloy for the production of aluminum foam bodies using a powder with nucleating additives
EP0868956B1 (en) Process for preparing metal articles with internal porosity
EP1602739B1 (en) Method for recycling of light metal parts
EP1323616A1 (en) Vehicle steering wheel from foamed metal
AT412876B (en) FOAMING SEMI-FINISHED AND METHOD FOR PRODUCING METAL PARTS OF INTERNAL PORO-SITY
WO2019053181A1 (en) Method for foaming metal with thermal contact
EP3661678A1 (en) Method for producing a semi-finished product for a composite material
DE10236047A1 (en) Producing a metal foamed body from a metal powder comprises introducing a gas or gas mixture into the metal powder to produce a mixture, compacting the mixture, and foaming the mixture by heating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080303

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GARCIA-MORENO, FRANCISCO

Inventor name: BANHART, JOHN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELMHOLTZ-ZENTRUM BERLIN FUER MATERIALIEN UND ENER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006004012

Country of ref document: DE

Date of ref document: 20090730

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2327066

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090917

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091017

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

BERE Be: lapsed

Owner name: HELMHOLTZ-ZENTRUM BERLIN FUR MATERIALIEN UND ENER

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090917

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091017

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

26N No opposition filed

Effective date: 20100318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090802

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110610

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110727

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20110715

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 433814

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120802

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502006004012

Country of ref document: DE

Effective date: 20140412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230822

Year of fee payment: 18