EP1017864B1 - Alloy for producing metal foamed bodies using a powder with nucleating additives - Google Patents

Alloy for producing metal foamed bodies using a powder with nucleating additives Download PDF

Info

Publication number
EP1017864B1
EP1017864B1 EP98946304A EP98946304A EP1017864B1 EP 1017864 B1 EP1017864 B1 EP 1017864B1 EP 98946304 A EP98946304 A EP 98946304A EP 98946304 A EP98946304 A EP 98946304A EP 1017864 B1 EP1017864 B1 EP 1017864B1
Authority
EP
European Patent Office
Prior art keywords
powder
metal
silicon
particles
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98946304A
Other languages
German (de)
French (fr)
Other versions
EP1017864A1 (en
Inventor
Dieter Brungs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honsel Werke AG
Original Assignee
Honsel Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19810979A external-priority patent/DE19810979C2/en
Application filed by Honsel Werke AG filed Critical Honsel Werke AG
Publication of EP1017864A1 publication Critical patent/EP1017864A1/en
Application granted granted Critical
Publication of EP1017864B1 publication Critical patent/EP1017864B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1042Alloys containing non-metals starting from a melt by atomising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the invention relates to an alloy for the production of Metal foam bodies, a process for producing the Alloy with certain additives for manufacturing of metal foam bodies.
  • Various methods for producing metal foam bodies consist essentially in that a gas-releasing blowing agent is added to an alloy powder or a powder mixture of alloy constituents, an unexpanded semi-finished product being produced first and this semi-finished product subsequently being heated to a temperature above the decomposition temperature of the blowing agent, preferably is brought to foaming in the temperature range of the melting point of the metal alloy, after which the body thus foamed is then cooled.
  • the semi-finished product can be foamed freely or in a mold, and metal foams with a density of about 0.3 to 1.7 g / cm 3 can be produced using aluminum or aluminum alloys.
  • One method of making porous metal bodies is described and exists for example in DE-40 18 360 C1 from the steps: making a mixture of at least a metal powder and at least one gas-releasing Blowing agent powder, hot compacting this mixture into one Semi-finished product at a temperature at which the connection of the Metal powder particles predominantly done by diffusion and at a pressure high enough to disintegrate the Prevent blowing agent such that the metal particles are in a fixed connection with each other and a gas-tight seal for the gas particles of the Represent blowing agent, heating the thus produced Semi-finished product to a temperature above the Decomposition temperature of the blowing agent, preferably in Temperature range of the melting point of the used Metal, then cooling the so foamed Body.
  • the uneven foam structure can indicate an uneven nucleation for the Blistering due to uneven size and distribution of the silicon particles be stirred back.
  • the in the The matrix structure of embedded silicon particles is unevenly distributed and their size and shape also very uneven.
  • the invention is therefore based on the problem in the manufacture of a foamable Metal alloy, especially an aluminum alloy, for achieving the desired one Properties to achieve a foam structure that is as uniform as possible and as possible to achieve favorable strength properties.
  • a powder mixture for the production of Aluminum-metal foam bodies which according to the invention consist of a powder an aluminum alloy, a powder made of or with nucleating, a uniform Bubbles and homogeneous foam structure causing particles with a particle size less than 30 microns and a gas-releasing blowing agent powder, preferably for nucleation an addition of evenly distributed silicon, silicon carbide, Aluminum oxide and / or titanium boride particles is added.
  • the use of a also serves to solve the problem mentioned at the beginning Powder from or with nucleating, uniform bubble formation and homogeneous Particles causing foam structure as an additive to a mixture of at least one a metal powder forming metal matrix and at least one gas-releasing Blowing agent powder in the manufacture of metal foam bodies, the powder being made from Particles can consist of silicon, silicon carbide, aluminum oxide and / or titanium boride, which have a particle size smaller than 30 ⁇ m.
  • a powder can be distributed with evenly distributed Particles of a hypereutectic aluminum-silicon alloy with a proportion of Silicon in the form of silicon primary crystals in the particles of the hypereutectic Aluminum-silicon alloy of less than 12% by weight, based on the metal alloy.
  • the very finely divided particle structure in the powder added addition, especially the very finely divided one Silicon structure is crucial for a uniform Blistering and therefore for a homogeneous foam structure, because the particles in this fine distribution, especially the Silicon primary crystals as nucleating agents for the Bubble development work.
  • the foamable aluminum alloy can be, for example, an aluminum powder alloy with a blowing agent, for example titanium hydride (Tih 2 ) and a powder of a hypereutectic aluminum-silicon alloy with a proportion of the silicon in the form of silicon primary crystals in the powder of the hypereutectic aluminum-silicon alloy act of less than 12 wt .-% based on the metal alloy.
  • a blowing agent for example titanium hydride (Tih 2 ) and a powder of a hypereutectic aluminum-silicon alloy with a proportion of the silicon in the form of silicon primary crystals in the powder of the hypereutectic aluminum-silicon alloy act of less than 12 wt .-% based on the metal alloy.
  • the mixture is filled into a mold and compacted under pressure without the blowing agent powder decomposing.
  • the primary material thus produced can then be hot pressed or hot rolled or hot extruded without foaming. If this semi-finished product is heated up to about 800 ° C
  • foam products from a Aluminum alloy is only mentioned as an example.
  • the Invention also extends to foam products from everyone foamable metal, which is a powder with nucleating Particles for uniform bubble formation and homogeneous foam structure is added.

Abstract

The invention provides a metal alloy made from a metal matrix with added nucleating particles which causes uniform formation of bubbles and a homogenous foam structure. The invention also provides a method for producing metal foamed bodies including the following steps: producing a homogeneous mixture of at least one metal powder forming a metal matrix, a powder made of or made with nucleating particles causing uniform formation of bubbles and a homogenous foam structure, and at least one gas-generating gasifying agent powder; introducing the mixture into a mold or compacting the mixture under pressure, e.g., by cold or hot isostatic pressing, followed by hot forming, e.g., by extrusion or rolling, and optional further processing, e.g., by cold forming and/or machining; foaming by heating to a temperature above the temperature of decomposition of the gasifying agent, preferably inside the temperature range of the melting point of the metal used; and subsequent cooling of the body thus foamed. The invention also includes the use of a powder made of or with nucleating particles causing uniform formation of bubbles and a homogenous foam structure as an additive to a mixture consisting of at least one metal powder forming a metal matrix and at least one gas-generating gasifying agent powder in the production of metal foamed bodies.

Description

Die Erfindung betrifft eine Legierung zum Herstellen von Metallschaumkörpern, ein Verfahrem zum Herstellen der Legierung mit bestimmten Zusatzstoffen für die Herstellung von Metailschaumkorpern.The invention relates to an alloy for the production of Metal foam bodies, a process for producing the Alloy with certain additives for manufacturing of metal foam bodies.

Verschiedene Verfahren zum Herstellen von Metallschaumkörpern sind bekannt und bestehen im wesentlichen darin, daß einem Legierungspulver oder einer Pulvermischung aus Legierungsbestandteilen ein gasabspaltendes Treibmittel beigefügt wird, wobei zunachst ein unaufgeschaumtes Halbzeug hergestellt und dieses Halbzeug anschließend durch Aufheizen auf eine Temperatur oberhalb der Zersetzungstemperatur des Treibmittels, vorzugsweise im Temperaturbereich des Schmelzpunktes der Metallegierung, zum Aufschäumen gebracht wird, wonach der so aufgeschäumte Korper anschließend abgekühlt wird. Das Aufschaumen des Halbzeuges kann frei oder in einer Form erfolgen, und es lassen sich bei Verwendung von Aluminium bzw. Aluminiumlegierungen Metallschaumkörper mit einer Dichte von etwa 0,3 bis 1,7 g/cm3 herstellen.Various methods for producing metal foam bodies are known and consist essentially in that a gas-releasing blowing agent is added to an alloy powder or a powder mixture of alloy constituents, an unexpanded semi-finished product being produced first and this semi-finished product subsequently being heated to a temperature above the decomposition temperature of the blowing agent, preferably is brought to foaming in the temperature range of the melting point of the metal alloy, after which the body thus foamed is then cooled. The semi-finished product can be foamed freely or in a mold, and metal foams with a density of about 0.3 to 1.7 g / cm 3 can be produced using aluminum or aluminum alloys.

Ein Verfahren zum Herstellen poröser Metallkorper ist beispielsweise in der DE-40 18 360 C1 beschrieben und besteht aus den Schritten: Herstellen einer Mischung aus mindestens einem Metallpulver und mindestens einem gasabspaltendem Treibmittelpulver, Heißkompaktieren dieser Mischung zu einem Halbzeug bei einer Temperatur, bei der die Verbindung der Metallpulverteilchen überwiegend durch Diffusion erfolgt und bei einem Druck, der hoch genug ist, um die Zersetzung des Treibmittels zu verhindern, derart, daß die Metallteilchen sich in einer festen Verbindung untereinander befinden und einen gasdichten Abschluß für die Gasteilchen des Treibmittels darstellen, Aufheizen des derart hergestellten Halbzeuges auf eine Temperatur oberhalb der Zersetzungstemperatur des Treibmittels, vorzugsweise im Temperaturbereich des Schmelzpunktes des verwendeten Metalles, anschließendes Abkühlen des so aufgeschäumten Körpers.One method of making porous metal bodies is described and exists for example in DE-40 18 360 C1 from the steps: making a mixture of at least a metal powder and at least one gas-releasing Blowing agent powder, hot compacting this mixture into one Semi-finished product at a temperature at which the connection of the Metal powder particles predominantly done by diffusion and at a pressure high enough to disintegrate the Prevent blowing agent such that the metal particles are in a fixed connection with each other and a gas-tight seal for the gas particles of the Represent blowing agent, heating the thus produced Semi-finished product to a temperature above the Decomposition temperature of the blowing agent, preferably in Temperature range of the melting point of the used Metal, then cooling the so foamed Body.

Bei Verwendung von Reinaluminiumpulver mit einem Zusatz von 0,1 Gew.-% Titanhydridpulver ließ sich ein poröser Metallkörper mit einer Dichte von etwa 0,78 g/cm3 herstellen. Die typische Porengröße lag um 1 mm Durchmesser. Bei Verwendung eines fertig legierten Pulvers aus einer Aluminiumlegierung mit einem Legierungsanteil von 4 Gew.-% Magnesium und 0,4 Gew.-% Titanhydridpulver wurde eine Dichte von 0,62 g/cm3 bei einer typischen Porengröße von ca. 2 bis 3 mm erreicht.When using pure aluminum powder with an addition of 0.1% by weight of titanium hydride powder, a porous metal body with a density of about 0.78 g / cm 3 could be produced. The typical pore size was around 1 mm in diameter. When using a fully alloyed powder made of an aluminum alloy with an alloy content of 4% by weight of magnesium and 0.4% by weight of titanium hydride powder, a density of 0.62 g / cm 3 with a typical pore size of approx. 2 to 3 mm was achieved reached.

Bei diesem bekannten Verfahren und anderen Verfahren, beispielsweise dem entsprechend der US-3 087 807 A, ist nachteilig, daß die Blasenbildung beim Aufschäumen und damit die Struktur des Metallschaumkörpers sehr ungleichmäßig ist. Dies hat unverwünschte Auswirkungen auf die mechanischen Eigenschaften, so daß bereits versucht wurde, eine gleichmäßige Schaumstruktur durch Veränderung der Legierungszusammensetzung oder der Verfahrensführung zu erreichen. Diese Versuche führten entweder nicht zu der gewünschten gleichmäßigen Schaumstruktur oder erforderten eine aufwendige Prozeßführung, die das Herstellungsverfahren verteuerte.In this known method and other methods, for example that corresponding to US-3,087,807 A disadvantageous that the formation of bubbles when foaming and thus the structure of the metal foam body is very uneven. This has undesirable effects on the mechanical Properties, so that an attempt has already been made uniform foam structure by changing the Alloy composition or the conduct of the process to reach. These attempts either did not lead to the desired uniform foam structure or required a complex process control, the manufacturing process more expensive.

Bei Verwendung eines fertig legierten Pulvers aus einer Aluminiumlegierung vom Typ AlSi12 bzw. AlSi7Mg mit Titan-Hydrid-Pulverzusatz wurde ein ungünstigeres Aufschäumverhalten festgestellt, als bei Verwendung eines Pulvers bzw. einer Pulvermischung der Metallmatrix Al bzw. AlMg mit Zusatz von 12 % Siliciumpulver bzw. 7 % Siliciumpulver. Auch bei anderen Matrixlegierungen vom Typ AlMgSi wurde bestätigt, daß zusätzlich beigemischte Siliciumpulver zu einem verbesserten Aufschäumverhalten führen. Nachteilig war jedoch immer noch eine ungleichmäßige Schaumstruktur mit stark unterschiedlichen Porengrößen. When using a fully alloyed powder from a Aluminum alloy of the type AlSi12 or AlSi7Mg with Titanium hydride powder addition became a less favorable one Foaming behavior determined when using a Powder or a powder mixture of the metal matrix Al or AlMg with the addition of 12% silicon powder or 7% Silicon powder. Also with other matrix alloys of the type AlMgSi was confirmed to be added Silicon powder for improved foaming behavior to lead. However, a non-uniformity was still a disadvantage Foam structure with very different pore sizes.

Die ungleichmäßige Schaumstruktur kann auf eine ungleichmäßige Keimbildung für die Blasenbildung infolge ungleichmäßiger Größe und Verteilung der Siliciumpartikel zurückgerührt werden. Das Gefüge eines Strangpreßprofils, welches aus einer AlMgSi Pulvermischung mit 10 % Siliciumpulver hergestellt wurde, zeigt Bild 1. Die in das Matrixgefüge eingelagerten Siliciumpartikel sind ungleichmäßig verteilt und in ihrer Größe und Form ebenfalls stark ungleichmäßig.The uneven foam structure can indicate an uneven nucleation for the Blistering due to uneven size and distribution of the silicon particles be stirred back. The structure of an extruded profile, which consists of an AlMgSi Powder mixture was made with 10% silicon powder, shows Figure 1. The in the The matrix structure of embedded silicon particles is unevenly distributed and their size and shape also very uneven.

Der Erfindung liegt daher das Problem zugrunde, bei der Fertigung einer aufschäumbaren Metallegierung, insbesondere einer Aluminiumlegierung, für das Erreichen der gewünschten Eigenschaften eine möglichst gleichmäßige Schaumstruktur zu erzielen und möglichst günstige Festigkeitseigenschaften zu erreichen.The invention is therefore based on the problem in the manufacture of a foamable Metal alloy, especially an aluminum alloy, for achieving the desired one Properties to achieve a foam structure that is as uniform as possible and as possible to achieve favorable strength properties.

Ausgehend von dieser Problemstellung wird eine Pulvermischung zur Herstellung von Aluminium-Metallschaumkörpern vorgeschlagen, die erfindungsgemäß aus einem Pulver aus einer Aluminiumlegierung, einem Pulver aus bzw. mit keimbildenden, eine gleichmäßige Blasenbildung und homogene Schaumstruktur bewirkenden Partikeln mit einer Partikelgröße kleiner als 30 µm und einem gasabspaltenden Treibmittelpulver besteht, wobei vorzugsweise zur Keimbildung ein Zusatz von gleichmäßig verteilten Silicium-, Siliciumcarbid-, Aluminiumoxid- und/oder Titanboridpartikeln beigefügt ist.Based on this problem, a powder mixture for the production of Aluminum-metal foam bodies proposed, which according to the invention consist of a powder an aluminum alloy, a powder made of or with nucleating, a uniform Bubbles and homogeneous foam structure causing particles with a particle size less than 30 microns and a gas-releasing blowing agent powder, preferably for nucleation an addition of evenly distributed silicon, silicon carbide, Aluminum oxide and / or titanium boride particles is added.

Besonders vorteilhaft sind kleine, gleichmäßig verteilte Siliciumpartikel, die beim Versprühen von übereutektischen AlSi-Schmelzen mit bis zu etwa 50 % Silicium in den einzelnen Pulverkörnern entstehen (Bild 2). Das Herstellverfahren ist in der Patentanmeldung 198 01 941.6 derselben Anmelderin eine verschleißfeste Aluminiumlegierung insbesondere für die Herstellung von Zylinderlaufbuchsen betreffend beschrieben.Small, evenly distributed silicon particles are particularly advantageous when sprayed of hypereutectic AlSi melts with up to about 50% silicon in each Powder grains are created (picture 2). The manufacturing process is described in patent application 198 01 941.6 the same applicant a wear-resistant aluminum alloy, in particular for the Manufacture of cylinder liners described.

Das Gefüge eines Strangpreßprofils, welches aus einer AlMgSi-Pulvermischung mit 10 % Siliciumzusatz in Form der oben beschriebenen Pulverkörner hergestellt wurde, zeigt Bild 3. Die Siliciumpartikel haben eine gleichmäßige Größe zwischen etwa 10 - 30 µm und sind in der Matrix gleichmäßig verteilt.The structure of an extruded profile, which consists of an AlMgSi powder mixture with 10% Silicon additive was produced in the form of the powder grains described above, Figure 3 shows. The silicon particles have a uniform size between about 10 - 30 µm and are in of the matrix evenly distributed.

Zur Lösung des eingangs erwähnten Problems wird des weiteren ein Verfahren zum Herstellen von Metallschaumkörpern aus der vorstehend erwähnten Pulvermischung mit den Schritten: Herstellen einer homogenen Mischung aus mindestens einem eine Metallmatrix bildenden Metallpulver, einem Pulver aus bzw. mit keimbildenden, eine gleichmäßige Blasenbildung und homogene Schaumstruktur bewirkenden Partikeln und mindestens einem gasabspaltendem Treibmittelpulver, Einfüllen der Mischung in eine Form, ggf. Kompaktieren unter Druck, z. B. durch kalt- oder warm-isostatisches Pressen, anschließendes Warmumformen, z. B. durch Strangpressen oder Walzen, ggf. Weiterverarbeiten beispielsweise durch Kaltumformen und/oder spanende Bearbeitung, Aufschäumen durch Aufheizen auf eine Temperatur oberhalb der Zersetzungstemperatur des Treibmittels, vorzugsweise im Temperaturbereich des Schmelzpunktes des verwendeten Metalls und anschließendes Abkühlen des so aufgeschäumten Körpers vorgeschlagen.To solve the problem mentioned at the outset, a method for Manufacture of metal foam bodies from the powder mixture mentioned above with the Steps: Make a homogeneous mixture of at least one metal matrix forming metal powder, a powder from or with nucleating, a uniform Bubble formation and homogeneous foam structure causing particles and at least one gas-releasing blowing agent powder, filling the mixture into a mold, compacting if necessary under pressure, e.g. B. by cold or warm isostatic pressing, subsequent Hot forming, e.g. B. by extrusion or rolling, if necessary further processing for example by cold forming and / or machining, foaming Heating to a temperature above the decomposition temperature of the blowing agent, preferably in the temperature range of the melting point of the metal used and subsequent cooling of the foamed body proposed.

Schließlich dient der Lösung des eingangs erwähnten Problems auch die Verwendung eines Pulvers aus bzw. mit keimbildenden, eine gleichmäßige Blasenbildung und homogene Schaumstruktur bewirkenden Partikeln als Zusatz zu einer Mischung aus mindestens einem eine Metallmatrix bildenden Metallpulver und mindestens einem gasabspaltenden Treibmittelpulver bei der Herstellung von Metallschaumkörpern, wobei das Pulver aus Partikeln aus Silicium, Siliciumcarbid, Aluminiumoxid und/oder Titanborid bestehen kann, die eine Partikelgröße kleiner als 30 µm aufweisen. Zum Herstellen eines Schaumkörpers aus einer Matrix aus einer Aluminiumlegierung läßt sich ein Pulver mit gleichmäßig verteilten Partikeln einer übereutektischen Aluminium-Silicium-Legierung mit einem Anteil des Siliciums in Form von Siliciumprimärkristallen in den Partikeln der übereutektischen Aluminium-Silicium-Legierung von weniger als 12 Gew.-%, bezogen auf die Metallegierung.Finally, the use of a also serves to solve the problem mentioned at the beginning Powder from or with nucleating, uniform bubble formation and homogeneous Particles causing foam structure as an additive to a mixture of at least one a metal powder forming metal matrix and at least one gas-releasing Blowing agent powder in the manufacture of metal foam bodies, the powder being made from Particles can consist of silicon, silicon carbide, aluminum oxide and / or titanium boride, which have a particle size smaller than 30 µm. To make a foam body from In a matrix made of an aluminum alloy, a powder can be distributed with evenly distributed Particles of a hypereutectic aluminum-silicon alloy with a proportion of Silicon in the form of silicon primary crystals in the particles of the hypereutectic Aluminum-silicon alloy of less than 12% by weight, based on the metal alloy.

Die sehr fein verteilte Partikelstruktur in dem als Pulver hinzugefügten Zusatz, insbesondere die sehr fein verteilte Siliciumstruktur ist entscheidend für eine gleichmäßige Blasenbildung und damit für eine homogene Schaumstruktur, da die Partikel in dieser feinen Verteilung, insbesondere die Siliciumprimärkristalle als Keimbildner für die Blasenentwicklung wirken.The very finely divided particle structure in the powder added addition, especially the very finely divided one Silicon structure is crucial for a uniform Blistering and therefore for a homogeneous foam structure, because the particles in this fine distribution, especially the Silicon primary crystals as nucleating agents for the Bubble development work.

Bei der aufschäumbaren Aluminiumlegierung kann es sich beispielsweise um eine Aluminiumpulverlegierung mit einem Treibmittel, beispielsweise Titanhydrid (Tih2) und einem Pulver einer übereutektischen Aluminium-Silicium-Legierung mit einem Anteil des Siliciums in Form von Siliciumprimärkristallen in dem Pulver der übereutektischen Aluminium-Silicium-Legierung von weniger als 12 Gew.-% bezogen auf die Metallegierung handeln. Die Mischung wird-in eine Form gefüllt und unter Druck kompaktiert, ohne daß sich dabei das Treibmittelpulver zersetzt. Das so hergestellte Vormaterial läßt sich anschließend warmpressen oder warmwalzen oder warmfließpressen, ohne daß dabei ein Aufschäumen erfolgt. Wird dieses Halbzeug zum Aufschäumen auf bis zu etwa 800°C erhitzt, setzt das Treibmittel eingeschlossenes Gas frei, so daß das Aluminiumlegierungspulver aufschäumt. Wird das Aufschäumen des Halbzeugs in einer Form durchgeführt, füllt der Schaum die Kontur des Formhohlraums aus, nimmt dessen Form an und weist, je nach Aufschäumungsgrad und Art des Treibmittelzusatzes eine Dichte von etwa 0,3 bis 1,7 g/cm3 auf. Die aufgeschäumte Aluminiumlegierung weist im wesentlichen gleich große und gleichmäßig verteilte, geschlossene Poren auf, ist sehr druckfest, hat ein geringes Gewicht und erteilt dem geformten Gegenstand eine entsprechend dem jeweiligen Anwendungsfall erforderliche Festigkeit. The foamable aluminum alloy can be, for example, an aluminum powder alloy with a blowing agent, for example titanium hydride (Tih 2 ) and a powder of a hypereutectic aluminum-silicon alloy with a proportion of the silicon in the form of silicon primary crystals in the powder of the hypereutectic aluminum-silicon alloy act of less than 12 wt .-% based on the metal alloy. The mixture is filled into a mold and compacted under pressure without the blowing agent powder decomposing. The primary material thus produced can then be hot pressed or hot rolled or hot extruded without foaming. If this semi-finished product is heated up to about 800 ° C for foaming, the blowing agent releases trapped gas, so that the aluminum alloy powder foams. If the foaming of the semi-finished product is carried out in a mold, the foam fills the contour of the mold cavity, takes on its shape and, depending on the degree of foaming and the type of blowing agent additive, has a density of about 0.3 to 1.7 g / cm 3 . The foamed aluminum alloy has essentially the same size and evenly distributed, closed pores, is very pressure-resistant, has a low weight and gives the molded article the strength required for the respective application.

Die Herstellung von Schaumprodukten aus einer Aluminiumlegierung ist nur beispielsweise erwähnt. Die Erfindung erstreckt sich auch auf Schaumprodukte aus jedem schäumbaren Metall, dem ein Pulver mit keimbildenden Partikeln für eine gleichmäßige Blasenbildung und eine homogene Schaumstruktur zugesetzt ist.The production of foam products from a Aluminum alloy is only mentioned as an example. The Invention also extends to foam products from everyone foamable metal, which is a powder with nucleating Particles for uniform bubble formation and homogeneous foam structure is added.

Claims (12)

  1. Powder mixture for producing aluminium metal foamed bodies, comprising
    a powder of an aluminium alloy,
    a powder of or with nucleating particles causing uniform bubble formation and a homogenous foam structure and having a particle size smaller than 30 µm and
    a gas-releasing foaming agent powder.
  2. Powder mixture according to claim 1 with a powder of an aluminium alloy to form an aluminium matrix with an addition of evenly distributed silicon, silicon carbide, aluminium oxide and/or titanium boride particles.
  3. Powder mixture according to claim 1 or 2 with an addition of evenly distributed silicon particles or of particles of a hypereutectic aluminium-silicon alloy, the proportion of the silicon in the form of silicon particles or of silicon primary crystals in the particles of the hypereutectic aluminium-silicon alloy being less than 20 wt-% in relation to the total amount before foaming.
  4. Method for producing metal foamed bodies from a powder mixture according to claim 1, having the steps:
    producing a homogeneous mixture from at least one metal powder forming a metal matrix, a powder of or with nucleating particles causing uniform bubble formation and a homogeneous foam structure, and at least one gas-releasing foaming agent powder,
    filling the mixture into a mould,
    foaming by heating to a temperature above the decomposition temperature of the foaming agent and
    cooling of the body so foamed.
  5. Method according to claim 4, wherein compacting under pressure takes place in the mould.
  6. Method according to claim 5, wherein the compacting under pressure takes place by means of cold or hot isostatic pressing.
  7. Method according to claim 5 or 6, wherein after the compacting hot-working takes place, especially by means of extrusion or rolling.
  8. Method according to claim 5, 6 or 7, wherein after the compacting or the hot-working, further processing takes place through cold-working and/or machining.
  9. Use of a powder of or with nucleating particles causing uniform bubble formation and a homogeneous foam structure as an addition to a mixture formed from at least one metal powder forming a metal matrix and at least one gas-releasing foaming agent powder according to claim 1 in the production of metal foamed bodies.
  10. Use of a powder according to claim 9 with particles of silicon, silicon carbide, aluminium oxide and/or titanium boride.
  11. Use of a powder according to claim 9 or 10 having a particle size smaller than 30 µm.
  12. Use of a powder for producing a foamed body from a matrix formed from an aluminium alloy according to claim 9, 10 or 11 with evenly distributed particles of a hypereutectic aluminium-silicon alloy, the proportion of the silicon in the form of silicon primary crystals in the particles of the hypereutectic aluminium-silicon alloy being less than 12 wt-% in relation to the metal alloy.
EP98946304A 1997-08-30 1998-08-08 Alloy for producing metal foamed bodies using a powder with nucleating additives Expired - Lifetime EP1017864B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19737957 1997-08-30
DE19737957 1997-08-30
DE19810979 1998-03-13
DE19810979A DE19810979C2 (en) 1997-08-30 1998-03-13 Aluminum alloy for the production of aluminum foam bodies using a powder with nucleating additives
PCT/EP1998/005036 WO1999011832A1 (en) 1997-08-30 1998-08-08 Alloy for producing metal foamed bodies using a powder with nucleating additives

Publications (2)

Publication Number Publication Date
EP1017864A1 EP1017864A1 (en) 2000-07-12
EP1017864B1 true EP1017864B1 (en) 2001-11-07

Family

ID=26039579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98946304A Expired - Lifetime EP1017864B1 (en) 1997-08-30 1998-08-08 Alloy for producing metal foamed bodies using a powder with nucleating additives

Country Status (6)

Country Link
US (1) US6332907B1 (en)
EP (1) EP1017864B1 (en)
JP (1) JP3823024B2 (en)
AT (1) ATE208435T1 (en)
ES (1) ES2167938T3 (en)
WO (1) WO1999011832A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2801169C1 (en) * 2022-11-17 2023-08-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВО "КНИТУ") Method for producing aluminum foam

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2789187B1 (en) 1998-11-19 2001-11-30 Cirtes Ct D Ingenierie De Rech PROCESS FOR PRODUCING MECHANICAL PARTS, IN PARTICULAR PROTOTYPES, BY DECOMPOSITION INTO STRATES, ELEMENTARY STRATES OBTAINED ACCORDING TO THE PROCESS AND MECHANICAL PARTS THUS OBTAINED
FR2808896B1 (en) * 2000-05-15 2003-05-09 Cirtes Ct D Ingenierie De Rech DEVICE FOR PRODUCING PLATES FOR A RAPID PROTOTYPING PROCESS, METHOD FOR MACHINING AND ASSEMBLING SUCH PLATES AND PROTOTYPED PARTS THUS OBTAINED
DE50209776D1 (en) * 2001-05-19 2007-05-03 Goldschmidt Gmbh PREPARATION OF METAL FOAM
US7175689B2 (en) * 2001-06-15 2007-02-13 Huette Klein-Reichenbach Gesellschaft Mbh Process for producing a lightweight molded part and molded part made of metal foam
CA2389939A1 (en) * 2002-06-25 2003-12-25 Alicja Zaluska New type of catalytic materials based on active metal-hydrogen-electronegative element complexes for reactions involving hydrogen transfer
FR2845492B1 (en) 2002-10-07 2004-11-26 Cirtes Src MECHANICAL PART WITH AT LEAST ONE FLUID TRANSPORT CIRCUIT AND METHOD FOR DESIGNING SAME
ES2300564T3 (en) 2003-02-06 2008-06-16 Cirtes Src Sa Cooperative D'ues PROCEDURE FOR OPTIMIZATION OF STRATEG JOINTS IN A MODELIZATION OR PROTOTIPIFICATION FOR DECOMPOSITION IN STRATEGES AND PARTS AS OBTAINED.
DE102005005041A1 (en) * 2005-02-03 2006-08-10 Märkisches Werk GmbH Valve for controlling the gas exchange, in particular in internal combustion engines
JP4189401B2 (en) * 2005-10-05 2008-12-03 本田技研工業株式会社 Method for producing foamed aluminum
CN101855325A (en) * 2007-11-09 2010-10-06 火星工程有限公司 Nitrous oxide fuel blend monopropellants
JP2010209374A (en) * 2009-03-09 2010-09-24 Nippon Light Metal Co Ltd Foamed aluminum fitted with outer surface coating and method for producing the same
US20110005195A1 (en) * 2009-07-07 2011-01-13 Firestar Engineering, Llc Aluminum porous media
US20110111251A1 (en) * 2009-11-10 2011-05-12 Ken Evans Process for producing a foamed metal article and process for producing a foamable metal precursor
MX2015004050A (en) * 2012-09-28 2015-07-06 Dow Global Technologies Llc Foamed-metal components for wireless-communication towers.
CN104404287B (en) * 2014-11-17 2017-01-04 界首市一鸣新材料科技有限公司 A kind of process using foamed ceramics auxiliary to produce foamed aluminium
CN111394605A (en) * 2020-03-20 2020-07-10 江苏大学 TiB2Preparation method of particle reinforced foamed aluminum/aluminum alloy
CN113695857B (en) * 2021-09-09 2022-05-24 西北有色金属研究院 Preparation method of micro-flow porous metal material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3087807A (en) * 1959-12-04 1963-04-30 United Aircraft Corp Method of making foamed metal
DE2362293A1 (en) * 1973-12-14 1975-06-19 Technical Operations Basel Sa Foamed or cellular metals prodn - from aluminium using titanium hydride, and reinforced with steel inclusions
US4969428A (en) * 1989-04-14 1990-11-13 Brunswick Corporation Hypereutectic aluminum silicon alloy
NO172697C (en) 1989-07-17 1993-08-25 Norsk Hydro As PROCEDURE FOR THE MANUFACTURING OF PARTICULAR REINFORCED METAL FOAM AND RESULTING PRODUCT
US5112697A (en) * 1989-09-06 1992-05-12 Alcan International Limited Stabilized metal foam body
DE4018360C1 (en) * 1990-06-08 1991-05-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal
DE4101630A1 (en) * 1990-06-08 1991-12-12 Fraunhofer Ges Forschung METHOD FOR PRODUCING FOAMABLE METAL BODIES AND USE THEREOF
AU8326791A (en) * 1990-08-27 1992-03-17 Alcan International Limited Lightweight metal with isolated pores and its production
JPH0688154A (en) * 1992-09-04 1994-03-29 Mitsubishi Kasei Corp Metal compoisition and production of foamed metal composition
DE4340791A1 (en) 1993-11-23 1995-05-24 Admos Gleitlager Gmbh Berlin Prodn. of porous metal components
DE19651197C2 (en) * 1995-12-15 1999-10-28 Susan Dietzschold Material for producing porous metal bodies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2801169C1 (en) * 2022-11-17 2023-08-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВО "КНИТУ") Method for producing aluminum foam

Also Published As

Publication number Publication date
ES2167938T3 (en) 2002-05-16
JP3823024B2 (en) 2006-09-20
WO1999011832A1 (en) 1999-03-11
JP2001515140A (en) 2001-09-18
US6332907B1 (en) 2001-12-25
EP1017864A1 (en) 2000-07-12
ATE208435T1 (en) 2001-11-15

Similar Documents

Publication Publication Date Title
EP0884123B1 (en) Foamable metal body
EP1017864B1 (en) Alloy for producing metal foamed bodies using a powder with nucleating additives
EP0460392B1 (en) Process for making foamed metal bodies
EP1392875B1 (en) Method for producing metal/metal foam composite elements
DE4018360C1 (en) Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal
EP1083013B1 (en) Preparation of foamable metal bodies and metal foams
EP1915226B1 (en) Process for the powder metallurgy production of metal foam and of parts made from metal foam
EP1356131B1 (en) Method for the production of metallic foam and metal bodies produced according to said method
WO2002061160A2 (en) Production of flat, metallic integral foam
AT406649B (en) METHOD FOR PRODUCING POROUS MATRIX MATERIALS, IN PARTICULAR MOLDED BODIES, BASED ON METALS, AND SEMI-FINISHED PRODUCTS THEREFOR
DE19813176C2 (en) Process for the production of composite parts
AT413344B (en) METHOD FOR PRODUCING METAL FOAM BODIES
DE19810979C2 (en) Aluminum alloy for the production of aluminum foam bodies using a powder with nucleating additives
WO2019053184A1 (en) Method for foaming metal in a liquid bath
EP0868956B1 (en) Process for preparing metal articles with internal porosity
DE3234416A1 (en) METHOD FOR PRODUCING A HIGH-STRENGTH POWDER METAL MATERIAL AND THE MATERIAL RECEIVED
DE3901979C2 (en) Manufacture of gamma-titanium (TiAl) alloy objects by powder metallurgy
DE3043321A1 (en) SINTER PRODUCT FROM METAL ALLOY AND THE PRODUCTION THEREOF
WO2002060622A2 (en) Method for producing metallic foam and metal bodies produced according to said method
WO2005011901A1 (en) Expandable semi-finished product and method for producing metal parts with an internal porosity
EP2026925A1 (en) Method for metal foaming
DE1483173B1 (en) Process for the powder-metallurgical manufacture of a fine-grain alloy article
WO2003069002A1 (en) Expandable metal body, method for the production thereof and its use
DE1533421A1 (en) Method of manufacturing a body from ferritic stainless steel with a high chromium content

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HONSEL GMBH & CO. KG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010117

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 208435

Country of ref document: AT

Date of ref document: 20011115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59802094

Country of ref document: DE

Date of ref document: 20011213

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020207

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2167938

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20110822

Year of fee payment: 14

Ref country code: SE

Payment date: 20110823

Year of fee payment: 14

Ref country code: GB

Payment date: 20110824

Year of fee payment: 14

Ref country code: FR

Payment date: 20110829

Year of fee payment: 14

Ref country code: DE

Payment date: 20110831

Year of fee payment: 14

Ref country code: ES

Payment date: 20110825

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110825

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59802094

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 208435

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120808

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120809

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59802094

Country of ref document: DE

Effective date: 20130301

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120809