EP1266693A2 - Massnahme zur Vermeidung von lokal zerstörerisch wirkenden elektrischen Felddichten an einer rotationssymmetrischen Elektrodenanordnung - Google Patents

Massnahme zur Vermeidung von lokal zerstörerisch wirkenden elektrischen Felddichten an einer rotationssymmetrischen Elektrodenanordnung Download PDF

Info

Publication number
EP1266693A2
EP1266693A2 EP02009524A EP02009524A EP1266693A2 EP 1266693 A2 EP1266693 A2 EP 1266693A2 EP 02009524 A EP02009524 A EP 02009524A EP 02009524 A EP02009524 A EP 02009524A EP 1266693 A2 EP1266693 A2 EP 1266693A2
Authority
EP
European Patent Office
Prior art keywords
electrode
reaction vessel
process liquid
measures
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02009524A
Other languages
English (en)
French (fr)
Other versions
EP1266693A3 (de
EP1266693B1 (de
Inventor
Wolfgang Dr. Frey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP1266693A2 publication Critical patent/EP1266693A2/de
Publication of EP1266693A3 publication Critical patent/EP1266693A3/de
Application granted granted Critical
Publication of EP1266693B1 publication Critical patent/EP1266693B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C2019/183Crushing by discharge of high electrical energy

Definitions

  • the invention relates to a measure or measures to avoid of locally destructive electric field densities on a rotationally symmetrical electrode arrangement.
  • Such an electrode arrangement is part of a Fragmentation. It consists of one with high voltage actable, rod-shaped electrode, the high-voltage electrode and one always at a fixed electrical potential lying counter electrode. Both have a predetermined distance to each other.
  • the rod longitudinal axis of the high voltage electrode lies on the axis of rotation.
  • the counter electrode is a component the bottom of a reaction vessel. It is with process fluid is filled and is loaded with process goods that via pulsed and powerful electrical discharge in the Electrode gap to a required grain size range is fractionated.
  • the high voltage electrode is with a Insulator leaving a bare end area exposed given length encased. This bare end area is completely immersed in the process liquid.
  • the electrode arrangement is connected to an electrical energy store, a Marx generator z. B., connected when reached a predetermined charging voltage over a spark gap is discharged into the two-electrode system.
  • a Marx generator z. B. connected when reached a predetermined charging voltage over a spark gap is discharged into the two-electrode system.
  • reaction liquid often water but also others suitable liquids, process material in the form of debris, any conglomerate baked tightly together Solid, tilted.
  • the discharge is controlled by setting the electrical parameters controlled so that there are high-current discharge channels between form the two electrodes and thereby the same blow up by electrical influence and mechanically over Shatter shock waves.
  • the grain size of the fragments can be can be controlled within limits by the number of discharges. At the deepest area of the reaction vessel are the finely smashed Parts removed (see DE 195 34 232).
  • Central but highly stressed component of such a fragmentation system is that in the process liquid in the reaction vessel protruding electrode, especially the place where the three media: bare electrode, insulating jacket end and process liquid - This is a ring area - meet each other at the same time.
  • the high voltage electrode is from the high voltage connection to the bare tip area taking into account the pulsed operation with tough insulator material immediately encased around the bare electrode surface, that has direct contact with the process liquid to keep small. Loss currents before the ignition of the fragmentation Discharge channel between the electrode tip and the counter electrode in the bottom of the reaction vessel the electrolytic conductivity of the process liquid flow should be prevented, but at least on a tolerable Be limited. So that will be none or at least consumes less energy in the pre-discharge phase. In order to there is more energy in the fragmentation effective per discharge Discharge phase available.
  • Discharge channels start from the free electrode surface outgoing, at the joint process liquid insulator electrode and preferably run along the insulator surface especially if there is little fragmentation material in the reaction vessel located, the isolator is due to the high current Discharge destroyed.
  • the invention is based, with the electrode their encasing insulator made of tough material in their geometry in the border area insulator-electrode tip process liquid to be designed so that the tangential to the insulator surface directed field strength at the isolator forehead at the transition to Electrode is as small as possible.
  • the rotationally symmetrical structure is: insulator electrode shown in sections.
  • the arrangement is here only half of the axis of rotation due to the nature of the symmetry, the left edge of the picture.
  • insulator, electrode and process liquid here water, all three mutually meet (three-media interface / area), exists, field-related seen the field relief.
  • the electrode has where them from the encasing insulator into the process liquid an annular bulge occurs around the circumference, facing outwards has no edges, i.e. with a radius equal to half Bead thickness is rounded.
  • the curve can also be used with others Measurements must be carried out, this is only manufacturing technology very easy.
  • the density of the equipotential lines is in this three-media impact area low, hence very likely to start from there no discharge channels. They are most likely to form or preferably in areas of high equipotential line density off, i.e. on the area facing the counter electrode the forehead of the bead or just the tip of the electrode, like the arrangement of the line array shows.
  • the discharges are in the Start the front area of the bare electrode preferably.
  • the frustoconical shape, indicated in Figure 2 here is a grid made of dielectric, tough material like PE or nylon or the like. That is already sufficiently fragmented Well can trickle through in the area. This Depending on the dielectric property, the grating tightens the potential lines in addition to themselves and thus sets the Density of the same further down in the electrode area. The condition, that discharge channels can start there through these measures also very considerably and therefore effectively reduced.
  • the comparison shows the effectiveness of the measure the design (Figure 3) according to the prior art with the ( Figure 1 and / or 2) of the invention.
  • the density of the equipotential lines is in the conventional design in the three media zone incomparably higher and thus the electrical load the insulator in its forehead zone much larger.
  • FIG. 4 shows the meaning of the electrode and their stress in operation are highlighted.
  • the whole Fragmentation system is schematic with its essential components outlined.
  • the Marx generator is the fragmentation device via the im simplest case in the case of self-breakthrough spark gap connected to the output. It couples to the spark gap Reaction tube protruding immediately.
  • the electrode is covered with the insulator.
  • the insulator protrudes above the level of the process liquid, here water, out, so that in this area in operation safely Isolation exists, it leaves the end area in the process liquid the electrode is free, since only from there are the discharge channels in series through the fragmentation material and the process liquid should train.
  • the design of the counter electrode is process dependent and here e.g. only the bottom of the reaction bucket from which it is electrical goes straight back to the Marx generator.

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Ceramic Capacitors (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

Die hochspannungsbeaufschlagbare Elektrode in einer mit elektrischen Hochleistungspulsen betriebenen Fragmentieranlage ist zentrales Bauteil. Ihre geometrisch optimale Anpassung an die elektrischen Zustände ist für den zuverlässigen Langzeitbetrieb der Anlage von entscheidender Bedeutung. Die Gestaltung dieser Elektrodenspitze ist derart, dass sich, für das Prozessvolumen gesehen, die elektrische Entladung in höchster Wirksamkeit ausbilden kann, die Elektrodenform dort aber derart ist, dass an der Drei-Medien-Stoßzone, nackte Elektrode, Isolatorstirn, Prozessflüssigkeit, eine materialschonende elektrische Feldentlastung besteht.

Description

Die Erfindung betrifft eine Maßnahme oder Maßnahmen zur Vermeidung von lokal zerstörerisch wirkenden elektrischen Felddichten an einer rotationssymmetrischen Elektrodenanordung.
Eine solche Elektrodenanordnung ist hier Bestandteil einer Fragmentieranlage. Sie besteht aus einer mit Hochspannung beaufschlagbaren, stabförmigen Elektrode, der Hochspannungselektrode und einer stets auf festem elektrischen Potential liegenden Gegenelektrode. Beide haben einen vorgegebenen Abstand zueinander. Die Stablängsachse der Hochspannungselektrode liegt auf der Rotationsachse. Die Gegenelektrode ist Bestandteil des Bodens eines Reaktionsgefäßes. Es ist mit Prozessflüssigkeit gefüllt und wird mit Prozessgut beschickt, das über impulsartige und leistungsstarke elektrische Entladung im Elektrodenzwischenraum auf einen geforderten Körnungsbereich fraktioniert wird. Die Hochspannungselektrode ist mit einem Isolator unter Freilassung eines blankliegenden Endbereichs vorgegebener Länge ummantelt. Dieser blanke Endbereich ist völlig in die Prozessflüssigkeit eingetaucht.
Die Elektrodenanordnung ist an einen elektrischen Energiespeicher, einen Marxgenerator z. B., angeschlossen, der bei Erreichen einer vorgegebenen Ladespannung über eine Funkenstrecke in das Zweielektrodensystem entladen wird. In die Prozessoder auch Reaktionsflüssigkeit, häufig Wasser aber auch andere geeignete Flüssigkeiten, wird Prozessgut in Form von Schuttstücken, irgendwelche fest zusammen gebackene konglomerierte Festkörper, gekippt.
Die Entladung wird über die Einstellung der elektrischen Parameter so gesteuert, daß sich stromstarke Entladungskanäle zwischen den beiden Elektroden ausbilden und dadurch dieselben durch elektrische Einwirkung sprengen und mechanisch über Schockwellen zertrümmern. Die Korngröße der Fragmente kann durch die Anzahl Entladungen in Grenzen gesteuert werden. Am tiefsten Bereich des Reaktionsgefäßes werden die fein zertrümmerten Teile entnommen (siehe hierzu DE 195 34 232).
Zentrales aber hoch belastetes Bauteil einer solchen Fragmentieranlage ist die in die Prozeßflüssigkeit im Reaktionsgefäß ragende Elektrode, insbesondere die Stelle, wo die drei Medien: blanke Elektrode, Isoliermantelende und Prozessflüssigkeit - das ist ein Ringbereich - gleichzeitig gegenseitig aufeinandertreffen.
Die Hochspannungselektrode ist ab dem Hochspannungsanschluß bis zum blankliegenden Spitzenbereich unter Berücksichtigung des impulsartigen Betriebs mit zähem Isolatormaterial unmittelbar ummantelt, um die blankliegende Elektrodenoberfläche, die direkten Kontakt mit der Prozessflüssigkeit hat, gezielt klein zu halten. Verlustströme, die vor dem Zünden des fragmentierwirksamen Entladungskanals zwischen Elektrodenspitze und der Gegenelektrode im Boden des Reaktionsgefäßes aufgrund der elektrolytischen Leitfähigkeit der Prozessflüssigkeit fließen, sollen unterbunden, zumindest aber auf ein tolerables Maß beschränkt werden. Damit wird keine oder zumindest aber weniger Energie in der Vorentladungsphase verbraucht. Damit steht pro Entladung mehr Energie in der fragmentierwirksamen Entladungsphase zur Verfügung.
Wesentlich für die Wirksamkeit der Fragmentieranlage ist, daß der elektrische Durchschlag durch das Fragmentiergut hindurch früher erfolgt als nur durch die Prozeßflüssigkeit, dem Wasser beispielsweise.
Im praktischen Betrieb hat sich gezeigt, dass die Standzeit des Isolators gemäß der Ausführung nach dem Stand der Technik durch Gleitentladungen entlang seiner Oberfläche zur Prozessflüssigkeit stark begrenzt ist.
Entladungskanäle starten, von der freien Elektrodenoberfläche ausgehend, an der Stoßstelle Prozeßflüssigkeit-Isolator-Elektrode und verlaufen bevorzugt entlang der Isolatoroberfläche insbesondere, wenn sich wenig Fragmentiergut im Reaktionsgefäß befindet, dabei wird der Isolator infolge der stromstarken Entladung zerstört.
Der Erfindung liegt die Aufgabe zugrunde, die Elektrode mit ihrem ummantelnden Isolator aus zähem Material in ihrer Geometrie im Grenzgebiet Isolator-Elektrodenspitze-Prozeßflüssigkeit so zu gestalten, daß die tangential zur Isolatoroberfläche gerichtete Feldstärke an der Isolatorstirn am Übergang zur Elektrode möglichst gering ist.
Die Aufgabe wird durch die im Anspruch 1 beiden aufgeführten kennzeichnenden Merkmale oder durch eines der beiden Merkmale alleine gelöst. Im einzelnen ist das:
  • die Hochspannungselektrode hat an ihrem blankliegenden Bereich, der völlig in die Prozessflüssigkeit eingetaucht ist, im Anschluss an den Isolator einen ringförmigen metallischen, zur Umgebung hin runden Wulst zur Entlastung vom elektrischen Feld in diesem Bereich. Der Isolator stößt mit seiner Stirn daran bzw. kommt mit ihr dort dem Wulst sehr nahe. Vom dem Wulst aus läuft die Elektrode in die ebenfalls blanke Elektrodenspitze aus und steht der Gegenelektrode im Reaktionsgefäß im vorgegeben Abstand gegenüber.
  • Die andere oder weitere Maßnahme ist:
  • Ein kegelstumpfmantelförmiger dielektrischer Einsatz aus nicht sprödem Material befindet sich im Elektrodenzwischenraum. Er verdrängt durch seine Anwesenheit das elektrischen Feld in sein Inneres. Der Einsatz liegt mit seiner kleineren Öffnung auf dem Boden des Reaktionsgefäßes rotationssymmetrisch zu der Rotationsachse. Grundsätzlich ist als ein solcher dielektrischer Einsatz ein aufsammelndes rotationsförmiges Gebilde geeignet, dessen Achse auf der der Elektrodenanordnung liegt und im Bereich seiner Rotationsachse eine durchgehende Öffnung für den Durchfall der Fragmente hat, die eventuell trichterförmig ist, auf jeden Fall aber die Ausbildung von Entladungskanälen zur Gegenelektrode hin zulässt.
  • Er ist gemäß Anspruch 2 nicht durchlässig ist und hat damit für das gesamte drauffallende Prozessgut Sammelwirkung zur Mitte hin, oder er ist nach Anspruch 3 perforiert und hat entsprechend der Lochweite für das drauffallende Prozessgut Sieboder Separationswirkung, indem, gemessen an der Lochweite, großkörniges Prozessgut zur Mitte durch die kleine Kegelstumpfmantelöffnung und, daran gemessen, kleinkörniges Prozessgut hindurchfällt und absinkt.
    Die Schonung des problematische Drei-Medien-Gebiets, blanke Elektrode, Isolatorstirn und Prozessflüssigkeit, durch die geeignete Feldsteuerung entlastet dasselbe dadurch, dass es nahezu feldfrei bzw. feldschwach gehalten wird. Dadurch ist dort die Ausbildung eines Entladungskanals oder von Entladungskanälen entlang der Isolatoroberfläche sehr unwahrscheinlich. Zur Folge hat das eine beträchtliche Erhöhung der Lebensdauer der gesamten Hochspannungselektrode oder gleichbedeutend: ihre elektrischen Eigenschaften bleiben langzeitstabil.
    Die in Anspruch 1 aufgeführten Maßnahmen werden in der Zeichnung mit den Figuren 1 bis 3 näher erläutert. Es zeigt:
  • Figur 1 das Äquipotentiallinienbild mit Feldentlastung,
  • Figur 2 das Äquipotentiallinienbild mit Feldentlastung und
  • Feldverdrängung,
  • Figur 3 das Äquipotentiallinienbild ohne Feldentlastung und
  • Figur 4 die Fragmentieranlage im schematisierten Aufbau.
  • In Figur 1 ist das rotationssymmetrische Gebilde: Isolator-Elektrode ausschnittsweise dargestellt. Die Anordnung ist hier wegen der Art der Symmetrie nur hälftig zur Rotationsachse, dem linken Bildrand, dargestellt. Dort, wo Isolator, Elektrode und Prozeßflüssigkeit, hier Wasser, alle drei sich gegenseitig treffen (Drei-Medien-Stoßstelle/Gebiet), besteht, feldtechnisch gesehen, die Feldentlastung. Die Elektrode hat dort, wo sie aus dem ummantelnden Isolator in die Prozeßflüssigkeit tritt einen ringförmigen Wulst um den Umfang, der nach außen hin keine Kanten aufweist, also mit dem Radius gleich der halben Wulstdicke abgerundet ist. Die Rundung kann auch mit anderen Maßen durchgeführt sein, diese hier ist nur fertigungstechnisch sehr einfach.
    Die Dichte der Äquipotentiallinien ist in diesem Drei-Medien-Stoßgebiet gering, folglich starten von dort aus sehr wahrscheinlich keine Entladungskanäle. Die bilden sich höchstwahrscheinlich bzw. vorzugsweise in Gebieten hoher Äquipotentialliniendichte aus, also an dem zur Gegenelektrode weisenden Gebiet der Stirn des Wulstes oder eben der Elektrodenspitze, wie die Anordnung der Linienschar zeigt. Die Entladungen werden im Stirnbereich der blanken Elektrode bevorzugt starten.
    Das kegelstumpfmantelförmige, in Figur 2 angedeutete Gebilde ist hier ein Gitter aus dielektrischem, zähem Material wie PE bzw. Nylon oder dergleichen. Das schon hinreichend fragmentierte Gut kann im dortigen Bereich hindurch rieseln. Dieses Gitter zerrt je nach dielektrischer Eigenschaft gewissermaßen die Potentiallinen noch zusätzlich zu sich und setzt damit die Dichte derselben im Elektrodenbereich weiter herab. Die Voraussetzung, daß dort Entladungskanäle starten können, ist durch diese Maßnahmen auch ganz erheblich und damit wirksam abgebaut.
    Die Wirksamkeit der Maßnahme zeigt sich durch den Vergleich der Gestaltung (Figur 3) nach dem Stand der Technik mit dem (Figur 1 und/oder 2) der Erfindung. Die Dichte der Äquipotentiallinien ist in der herkömmlichen Gestaltung in der Drei-Medien-Zone ungleich höher und damit die elektrische Belastung des Isolator in seiner Stirnzone ungleich größer.
    In Figur 4 ist der Übersicht halber die Bedeutung der Elektrode und deren Belastung im Betrieb hervorgehoben. Die gesamte Fragmentieranlage ist schematisch mit ihren wesentlichen Baugruppen skizziert. An den elektrischen Energiespeicher, den Marx-Generator, ist die Fragmentiereinrichtung über die im einfachsten Fall im Selbstdurchbruch arbeitende Funkenstrecke am Ausgang angeschlossen. An die Funkenstrecke koppelt die ins Reaktionsgefäß ragende Elektrode unmittelbar an. Im Bereich des Reaktionsgefäßes ist die Elektrode mit dem Isolator ummantelt. Der Isolator ragt über den Pegel der Prozeßflüssigkeit, hier Wasser, hinaus, so daß in diesem Gebiet im Betrieb sicher Isolation besteht, er läßt in der Prozeßflüssigkeit den Endbereich der Elektrode frei, da nur von dort sich die Entladungskanäle in Reihe durch das Fragmentiergut und die Prozeßflüssigkeit ausbilden sollen.
    Die Gestaltung der Gegenelektrode ist prozeßabhängig und hier z.B. nur der Boden des Reaktionskübels, von dem aus es elektrisch unmittelbar zurück zum Marx-Generator geht.

    Claims (3)

    1. Maßnahmen zur Vermeidung von lokal zerstörerisch wirkenden elektrischen Felddichten an einer rotationssymmetrischen Elektrodenanordung aus einer mit Hochspannung beaufschlagbaren, stabförmigen Elektrode und einer auf festem elektrischen Potential liegenden Gegenelektrode, die einen vorgebbaren Abstand zueinander haben,
      wobei:
      die Stablängsachse auf der Rotationsachse liegt,
      die Gegenelektrode Bestandteil des Bodens eines Reaktionsgefäßes ist, das mit Prozessflüssigkeit gefüllt ist, in dem Prozessgut eingebracht ist, das über impulsartige und leistungsstarke elektrische Entladungen zwischen den beiden Elektroden fraktioniert wird,
      die Hochspannungselektrode mit einem Isolator unter Freilassung eines blankliegenden Endbereichs vorgegebener Länge ummantelt ist und dieser blanke Endbereich völlig in die Prozessflüssigkeit eingetaucht ist,
      gekennzeichnet dadurch, dass die Hochspannungselektrode an ihrem blankliegenden, in die Prozessflüssigkeit eingetauchten Bereich, im Anschluss an den Isolator einen ringförmigen metallischen, zur Umgebung hin runden Wulst zur Abschwächung des dortigen elektrischen Feldes hat und dann vollends in die zu einer Gegenelektrode im Reaktionsgefäß exponierten Elektrodenspitze ausläuft, und/oder
      ein zur Elektrodenachse rotationsförmiger dielektrischer Einsatz mit zentralem Durchgang im Elektrodenzwischenraum zur Verdrängung des elektrischen Feldes auf dem Boden des Reaktionsgefäßes mit seiner Öffnung aufliegt.
    2. Maßnahmen nach Anspruch 1, dadurch gekennzeichnet, dass der dielektrische Einsatz kegelstumpfmantelförmig und durch seine Wand hindurch für fragmentiertes Gut nicht durchlässig ist.
    3. Maßnahmen nach Anspruch 1, dadurch gekennzeichnet, dass der dielektrische Einsatz kegelstumpfmantelförmig und seine Wand derartig perforierte ist, dass er für fragmentiertes Gut unter einer vorgegebenen Korngröße durchlässig ist.
    EP02009524A 2001-06-01 2002-04-26 Fragmentiervorrichtung mit rotationssymmetrischer Elektrodenanordnung Expired - Lifetime EP1266693B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10126646A DE10126646C2 (de) 2001-06-01 2001-06-01 Rotationssymmetrische Elektrodenanordnung aus einer mit Hochspannung beaufschlagbaren, stabförmigen Elektrode
    DE10126646 2001-06-01

    Publications (3)

    Publication Number Publication Date
    EP1266693A2 true EP1266693A2 (de) 2002-12-18
    EP1266693A3 EP1266693A3 (de) 2004-10-20
    EP1266693B1 EP1266693B1 (de) 2005-10-05

    Family

    ID=7686836

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02009524A Expired - Lifetime EP1266693B1 (de) 2001-06-01 2002-04-26 Fragmentiervorrichtung mit rotationssymmetrischer Elektrodenanordnung

    Country Status (3)

    Country Link
    EP (1) EP1266693B1 (de)
    AT (1) ATE305820T1 (de)
    DE (2) DE10126646C2 (de)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2008017172A1 (de) * 2006-08-11 2008-02-14 Selfrag Ag Verfahren zur fragmentierung von material mittels hochspannungsentladungen
    WO2008113189A1 (de) * 2007-03-16 2008-09-25 Selfrag Ag Probenbehälter und anordnung zur elektrodynamischen fragmentierung von proben
    CN112169965A (zh) * 2020-09-22 2021-01-05 东北大学 一种矿石高压脉冲放电预处理系统及其使用方法

    Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19534232A1 (de) 1995-09-15 1997-03-20 Karlsruhe Forschzent Verfahren zur Zerkleinerung und Zertrümmerung von aus nichtmetallischen oder teilweise metallischen Bestandteilen konglomerierten Festkörpern und zur Zerkleinerung homogener nichtmetallischer Festkörper

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    SU1719075A1 (ru) * 1990-04-06 1992-03-15 Экспериментальный кооператив "ЭГИДА-А" Устройство дл электрогидравлического дроблени и измельчени твердых материалов
    DE19545580C2 (de) * 1995-12-07 2003-02-13 Rheinmetall W & M Gmbh Verfahren und Anordnung zum Aufschluß von elastischen Materialien in Verbindung mit metallischen Materialien
    DE19736027C2 (de) * 1997-08-20 2000-11-02 Tzn Forschung & Entwicklung Verfahren und Vorrichtung zum Aufschluß von Beton, insbesondere von Stahlbetonplatten

    Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19534232A1 (de) 1995-09-15 1997-03-20 Karlsruhe Forschzent Verfahren zur Zerkleinerung und Zertrümmerung von aus nichtmetallischen oder teilweise metallischen Bestandteilen konglomerierten Festkörpern und zur Zerkleinerung homogener nichtmetallischer Festkörper

    Cited By (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2008017172A1 (de) * 2006-08-11 2008-02-14 Selfrag Ag Verfahren zur fragmentierung von material mittels hochspannungsentladungen
    WO2008113189A1 (de) * 2007-03-16 2008-09-25 Selfrag Ag Probenbehälter und anordnung zur elektrodynamischen fragmentierung von proben
    AU2007349730B2 (en) * 2007-03-16 2011-08-25 Selfrag Ag Sample holder and assembly for the electrodynamic fragmentation of samples
    US8138952B2 (en) 2007-03-16 2012-03-20 Selfrag Ag Sample holder and assembly for the electrodynamic fragmentation of samples
    CN112169965A (zh) * 2020-09-22 2021-01-05 东北大学 一种矿石高压脉冲放电预处理系统及其使用方法

    Also Published As

    Publication number Publication date
    EP1266693A3 (de) 2004-10-20
    DE10126646C2 (de) 2003-04-10
    DE50204434D1 (de) 2005-11-10
    ATE305820T1 (de) 2005-10-15
    DE10126646A1 (de) 2002-12-12
    EP1266693B1 (de) 2005-10-05

    Similar Documents

    Publication Publication Date Title
    DE3937904C2 (de) Verbesserung des Zündverhaltens an einer Unterwasser-Funkenstrecke
    DE1782048B2 (de) Hochspannungseinrichtung in Form eines Hochspannungsgenerators oder Hochspannungs-Koaxialkabels
    EP1667798B1 (de) Aufbau einer elektrodynamischen fraktionieranlage
    DE2209089A1 (de) Elektrisches Hochspannungsgerät
    EP2136925B1 (de) Anordnung zur elektrodynamischen fragmentierung von proben
    DE102005015785A1 (de) Transformator mit elektrischer Abschirmung
    DE6929694U (de) Vorrichtung zur bestimmung von lasten
    DE2844725A1 (de) Elektrode fuer einen ozon-generator
    DE3101354C2 (de) Funkenstrecke für die Begrenzung von Überspannungen
    DE102006037914B3 (de) Reaktionsgefäß einer hochspannungsimpulstechnischen Anlage und Verfahren zum Zertrümmern/Sprengen spröder, hochfester keramischer/mineralischer Werk-/Verbundwerkstoffe
    EP2564479B1 (de) Funkenstrecke
    EP1266693A2 (de) Massnahme zur Vermeidung von lokal zerstörerisch wirkenden elektrischen Felddichten an einer rotationssymmetrischen Elektrodenanordnung
    DE202012004602U1 (de) Hochfrequenz-Plasmazündvorrichtung
    DE112008000228T5 (de) Ionengenerator
    DE1798370A1 (de) Meldevorrichtung fuer die UEberwachung von nichtionisierbaren Stroemungsmitteln
    DE2311281A1 (de) Gekapselter ventilableiter
    CH645482A5 (de) Gekapselte ueberspannungsableitungsvorrichtung fuer eine hochspannungsanlage.
    DE2142638B2 (de) Transformator zum erzeugen der ruecklaufspannung fuer den zeilenruecklauf in fernsehempfaengern
    DE614378C (de) Roentgenanlage
    DE2928727C2 (de) Kabelendverschluß für Mittelspannungs- und Hochspannungskabel
    DE102009034707B4 (de) Vorrichtung und Verfahren zur Hochspannungsimpulsbehandlung sowie dessen Verwendung
    DE316990C (de)
    DE2348137A1 (de) Elektrische hochspannungseinrichtung mit einer metallkapselung und einem ueberspannungsableiter
    WO1992015104A1 (de) Stromwandler
    DE762230C (de) Elektrostatische Abschirmung fuer mit Wanderwellen beanspruchte, aus Scheibenspulen aufgebaute Roehrenwicklungen von elektrischen Transformatoren oder Drosselspulen

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    17P Request for examination filed

    Effective date: 20041111

    RTI1 Title (correction)

    Free format text: ROTATIONALLY SYMMETRIC ELECTRODE ASSEMBLY

    17Q First examination report despatched

    Effective date: 20041213

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RTI1 Title (correction)

    Free format text: APPARATUS FOR REDUCING AND CRUSHING COMPRISING A ROTATIONALLY SYMMETRIC ELECTRODE ASSEMBLY

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20051005

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051005

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20051005

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50204434

    Country of ref document: DE

    Date of ref document: 20051110

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060105

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060105

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060116

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060306

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060430

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060706

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051005

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060426

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051005

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH

    Free format text: FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE) -TRANSFER TO- FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE)

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: NEW ADDRESS: GARTENSTRASSE 28 A, 5400 BADEN (CH)

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20190416

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 305820

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20200426

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200426

    REG Reference to a national code

    Ref country code: BE

    Ref legal event code: MM

    Effective date: 20200430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200430

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20210421

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20210421

    Year of fee payment: 20

    Ref country code: FI

    Payment date: 20210420

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20210422

    Year of fee payment: 20

    Ref country code: CH

    Payment date: 20210422

    Year of fee payment: 20

    Ref country code: SE

    Payment date: 20210420

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20210421

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 50204434

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20220425

    REG Reference to a national code

    Ref country code: FI

    Ref legal event code: MAE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20220425

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20220425