EP1266425A1 - Multifrequency antenna for instrument with small volume - Google Patents

Multifrequency antenna for instrument with small volume

Info

Publication number
EP1266425A1
EP1266425A1 EP01905562A EP01905562A EP1266425A1 EP 1266425 A1 EP1266425 A1 EP 1266425A1 EP 01905562 A EP01905562 A EP 01905562A EP 01905562 A EP01905562 A EP 01905562A EP 1266425 A1 EP1266425 A1 EP 1266425A1
Authority
EP
European Patent Office
Prior art keywords
antenna
ribbon
capacitor
frequency
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01905562A
Other languages
German (de)
French (fr)
Other versions
EP1266425B1 (en
Inventor
Jean-François Zürcher
Anja Skrivervik
Olivier Staub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asulab AG
Original Assignee
Asulab AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asulab AG filed Critical Asulab AG
Priority to EP01905562A priority Critical patent/EP1266425B1/en
Publication of EP1266425A1 publication Critical patent/EP1266425A1/en
Application granted granted Critical
Publication of EP1266425B1 publication Critical patent/EP1266425B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G21/00Input or output devices integrated in time-pieces
    • G04G21/04Input or output devices integrated in time-pieces using radio waves
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R60/00Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements

Definitions

  • the present invention relates to an antenna of elongated shape for a small volume instrument, in particular a telephone watch, capable of receiving and transmitting radio messages on at least two frequencies of high and low values, this antenna being constituted, a starting from a power point, from a first radiant element whose length is tuned to the high frequency and from at least one second radiant element, following the first, the length of this second element added to that of the first having a total length tuned to the low frequency, the first and second radiant elements being connected together by a resonant circuit whose resonant frequency is chosen to limit the length of the antenna to its first element when the high frequency is active and for use the total length of the antenna when the low frequency is active
  • each strand of the antenna comprises a first radiant element 3, then a resonant circuit 5 and finally a second radiant element 4
  • the antenna is designed to be tuned on two different frequencies, for example 28 and 21 MHz
  • the length L1 of the first radiant element 3 is adapted to the frequency of 28 MHz (or more exactly to the quarter of the wavelength of this frequency)
  • the length L2 of the second radiant element 4 added to the length L1 of the first element leads to a radiant element of length L3 adapted to the frequency of 21 MHz (or as p read high at a quarter of the wavelength of this frequency)
  • the resonant circuit 5 is an oscillating circuit comprising a coil 6 and a capacitor 7 connected in parallel The values of these
  • the antenna is made up by means of tubes forming the radiant elements 3 and 4, these tubes being joined by a sleeve containing the resonant circuit 5 produced by means of discrete components, either a coil or inductor 6 and a capacitor 7
  • the frequencies used in small volume instruments, for example a mobile phone or even a phone watch are much higher than those mentioned above If the principle of adapting the antenna to at least two different frequencies may remain the same as described above, the technique used for these short wavelengths must be adapted to the antenna used This antenna must be able to operate at least on the official frequencies standardized for example by the GSM system (Group Special Mobile) which provides a high frequency f h equal to 1.9 GHz and a low frequency f b equal to 900 MHz
  • the antenna is characterized by that the first and second radiant elements each have a conductive tape of substantially rectangular shape and that the resonant circuit comprises the combination of an inductor and a capacitor, said inductor being a substantially straight narrow strip formed integrally with at least one of said ribbons and linked to this ribbon by one of its ends.
  • document EP 0 470 797 describes an antenna capable of adapting to several frequencies.
  • the document WO 99/03168 describes a compact antenna capable of adapting at least to a low frequency and a high frequency, this antenna being in particular intended to equip mobile telephony devices
  • the antenna has two radiant elements connected together by a resonant circuit which can be represented diagrammatically as the paralleling of a capacitor and an inductor.
  • this resonant circuit and in particular the inductance in the form of a relatively wide printed ribbon in the form of a meander
  • the capacity value of the resonant circuit is determined HERE by the parasitic capacity present between the “turns” or meanders of the inductance
  • a drawback of this solution resides in the fact that the adjustment of the resonant frequency of the resonant circuit is difficult to effect Indeed , if you wish to modify the inductance value of the resonant circuit, it is necessary to modify the width and / or the length of the meander By carrying out such an operation, the value of the parasitic capacitance of the resonant circuit is affected at the same time
  • the solution according to the present invention has the advantage of being able to easily adjust the resonant frequency of the resonant circuit by acting independently on the value of the inductance or on the value of the capacitor.
  • the inductance formed by a narrow track substantially rectilinear does not appreciably affect the capacity value of the resonant circuit
  • a narrow track for the inductance has the advantage of a higher inductance at equal size compared to the solution envisaged in document WO 99/03168 characteristics and advantages of the invention will now emerge from the description which follows, made with reference to the appended drawing and giving, by way of explanation but in no way limiting, several advantageous embodiments of the invention, drawing in which
  • FIG. 1 is a diagram explaining a dual-frequency antenna executed according to a prior art
  • FIG. 2 shows a first embodiment of the antenna according to the invention, this antenna being self-supporting
  • FIG. 3 illustrates a second embodiment of the antenna according to the invention, this antenna being self-supporting and integrated for example into a telephone watch,
  • FIG. 4 shows a third embodiment of the antenna according to the invention, this antenna forming an integral part of a printed circuit
  • Figure 5 shows a fourth embodiment of the antenna according to the invention
  • - the FIG. 6 is a section along the line VI-VI visible in FIG. 5
  • FIG. 7 shows a fifth embodiment of the antenna according to the invention, this embodiment being a variant of the antenna mounted in FIG. 5,
  • - Figure 9 shows a sixth embodiment of the antenna of the invention
  • - Figure 10 is a plan view of the antenna of the invention, view on which are plotted the level curves of the electrical component of the electromagnetic field when the antenna works at the low frequency f b , and
  • FIG. 11 is a plan view of the antenna of the invention, view on which are plotted the level curves of the electrical component of the electromagnetic field when the antenna works at the high frequency f h
  • the antenna 1 in question has an elongated shape. It is intended for an instrument of small volume, in particular for a telephone housed in a watch, this telephone being capable of receiving and transmitting radio messages
  • the antenna 1 is also capable of working on at least two frequencies of values high f h and low f b and is constituted, from a supply point 2, a first radiant element 3 whose length L1 is tuned to the high frequency f h and at least one second radiant element 4 which follows the first, the length L2 of this second element 4 added to that of the first having a total length L3 tuned to the low frequency f b
  • the same figures 2 to 9 show that the first and second radiant elements 3 and 4 are connected together by a resonant circuit 5
  • the resonance frequency f r of this resonant circuit 5 is chosen to limit the length of the antenna 1 to its first radiant element 3 when the high frequency f h is active and to use the total length L3 of the antenna when the low frequency e f D is active
  • the invention is remarkable first in that the first and second radiant elements 3 and 4 each have a conductive strip of substantially rectangular shape, these strips being placed one after the other Then the invention is remarkable in that the resonant circuit 5 comprises the combination of an inductor 6 and a capacitor 7, 7 'this inductor 6 being a substantially substantially narrow narrow strip formed integrally with at least one of said ribbons and linked to this ribbon by one of its ends 8, 8 'In this respect, all of Figures 2 to 9 show that the end 8 of the inductor 6 is linked to the ribbon 3 and that the inductor 6 is formed integrally with one of the ribbons, in this case with the ribbon 3
  • Figures 2 to 8 show that the inductor 6 and the capacitor 7, 7 'are connected in parallel Under these conditions, it will be understood that the value of each of these components will be chosen so that the resonant circuit has a resonant frequency f r substantially equal to the high operating frequency f h of the antenna Indeed, as already mentioned in the preamble to this description, the impedance of the resonant circuit then has a maximum during resonance and if the resonant circuit is tuned to the high frequency f h , it will represent as a plug or a barrier not letting pass said high frequency As the first radiant element 3 has a length granted to this high frequency, the antenna will be limited to this first radiant element or first ribbon 3 if the high frequency is active Unlike this, if it is the low frequency which is active to send or receive messages, the resonant circuit t 5 will present at this frequency a minimum impedance, allowing said low frequency to pass As the sum of the lengths L1 and L2 of the strips 3 and 4 is given to the
  • FIG. 2 illustrates a first embodiment of the invention
  • the first and second ribbons 3 and 4 are self-supporting and therefore do not rest on any substrate, although fixing means 9 are provided for attaching the antenna to the instrument in which it is implanted This naturally assumes that the ribbons have a certain thickness to ensure a certain mechanical rigidity in the whole assembly.
  • the inductor 6 is a substantially straight narrow strip connected by its first end 8 to the first ribbon 3 and by its second end 8 'to the second ribbon 4
  • the inductor 6 is formed integrally with the two ribbons 3 and 4
  • the capacitor 7 on the other hand is a discrete component, executed separately from the ribbons constituting the antenna and having first and second terminals 10 and 10 'welded respectively to the first and second strips 3 and 4
  • the antenna is supplied by a wire (not shown) welded in a passage 2 practical in the first strip 3
  • FIG. 3 illustrates a second embodiment of The invention
  • first and second ribbons 3 and 4 which are self-supporting and are separated by an inductor 5 and a discrete component forming the capacitor 7
  • the antenna is wound around a box 26 housing the electronic circuits necessary for the functioning of the instrument
  • FIG. 4 shows a third embodiment of the invention Compared with the first and second modes, this third mode is characterized in that the first and second tapes 3 and 4 rest on an insulating substrate 11, for example Kapton (registered trademark) to form a printed circuit Inductance 6 is a narrow track printed on the substrate 1 It is connected by its first end 8 to the first ribbon 3 and by its second end 8 'to the second ribbon 4 It therefore forms an integral part ribbons 3 and 4 To form the resonant circuit 5, the capacitor 7, 7 'associated with the inductor 6 can take different forms
  • FIG. 4 A first form of capacitor is illustrated in FIG. 4
  • This capacitor actually comprises two capacitors 7 and 7 'located on either side of the inductor 6 These two capacitors are connected in parallel and give symmetry to the whole of the resonant circuit This symmetry is generally desirable and will be preferred to a non-symmetrical mounting as can be seen in FIG. 2
  • the capacitor 7, 7 'comprises a first frame 12, 12' printed on the substrate 11 and connected to the first ribbon 3 II further comprises a second frame 13, 13 ′ also printed on the substrate 1 1 and connected to the second ribbon 4 As FIG.
  • each of these first and second frames has the shape of a comb whose teeth interpenetrate without touching The capacity is created here in the space existing between the teeth We will also speak of an interdigitated capacity
  • the first ribbon 3 is supplied by a conductor ur (not shown) welded to the feed point 2
  • This third embodiment illustrated by FIG. 4 shows how, according to the invention, a dual-frequency antenna can be produced simply and above all economically This antenna is in fact entirely produced in a single printed circuit, the well-known chemical etching producing all at once the ribbons 3 and 4, the inductor 6 and the capacitor 7, 7 'This antenna can therefore be produced at an extremely low cost since no discrete component is necessary to create the resonant circuit 5
  • FIG. 5 A second form of capacitor associated with a printed inductor 6 is shown in Figures 5 and 6, Figure 5 being a plan view of the antenna and Figure 6 a section along the line Vl-Vi of Figure 5
  • Figures 5 and 6 explain a fourth embodiment of the invention
  • the capacitor comprises the placing in parallel of two capacitors 7 and 7 'situated on either side of the inductor 6 and each formed of a discrete component having a first terminal 14 and 14 ' soldered on the first ribbon 3 and a second terminal 15 and 15 'soldered on the second ribbon 4.
  • This fourth embodiment has another feature which will be discussed below
  • FIGS. 7 and 8 A third form of capacitor associated with a printed inductor is shown in FIGS. 7 and 8, FIG. 7 being a plan view of the antenna and FIG. 8 a section along line VIII-VIII of FIG. 7
  • the capacitor comprises the paralleling of two capacitors 7 and 7 'located on either side of the inductor 6
  • the capacitor 7 in turn comprises the placing in series of first and second capacitors 16 and 17 each comprising a common frame 18 printed under the insulating substrate 1 1, this frame 18 extending partially, on the one hand under the first strip 3 to form the first capacitor 16 and on the other hand under the second ribbon 4 to form the second capacitor 17
  • the capacitor 7 ' also includes the placing in series of first and second capacitors 16' and 17 'each comprising a common frame 18' printed under the insulating substrate 11, this frame 18 'extending partially, on the one hand under the first ribbon 3 to form the first capacitor 16' and on the other hand under the second ribbon 4 to form the second capacitor 18 '.
  • the substrate 11 serves as a dielectric for each of the capacitors mentioned.
  • This fifth embodiment is almost as economical as that described in connection with FIG. 4, since the entire antenna 1 and the resonant circuit 5 can be made by chemical etching of a double-sided printed circuit and this without adding discrete welded components on the ribbons
  • the first and second ribbons 3 and 4 are arranged at a determined distance A from a ground plane 19, that the initial part 20 of the first ribbon 3 is short-circuited in this plane by a bridge 27 and that the final part 21 of the second ribbon 4 is left free
  • the ground plane 19 is assimilated to the housing 26 which is metallic As shown in FIGS.
  • the antenna is supplied by a coaxial cable 28 which includes a internal conductor 29 isolated from the ground plane 19 and connected to the supply point 2 of the first ribbon 3, this supply point being distant from the bridge 27 short-circuiting said first ribbon 3 and said ground plane 19
  • the coaxial cable further comprises a conductor or shielding 30 connected to the ground plane 19
  • the distance A between the ribbons 3 and 4 and the ground plane 19 is maintained by the fact that the ribbons are self-supporting and therefore sufficiently rigid to ensure this distance
  • the distance A is maintained by a foam 31 bonded to the substrate 11 and to the ground plane 19
  • An antenna as shown in FIG. 6, but being adapted to only one frequency and consequently having only one conductive tape is known by the Anglo-Saxon name "Planar Inverted-F Antenna” or PIFA
  • This variant was the subject of a European patent application No.
  • the multifrequency antenna of the present invention can be applied both to a PIFA antenna and to an antenna located without reference to an immediate ground plane, as illustrated in FIG. 2 or in FIG. 4 for example
  • FIG. 9 shows a sixth embodiment of the invention This mode is part of the second category of antenna, mentioned above where the inductor 6 and the capacitor 7 are connected in series. It will be understood that the value of each of these components will be chosen to have a resonance frequency f r substantially equal to the low frequency f b of the antenna operating.
  • the resonant circuit 5 HERE has a minimum impedance at resonance II follows that when the low frequency f b is active, the resonant circuit 5 does not oppose any resistance to this frequency
  • the length of the ribbon 4 is then added to the length of the ribbon 3 and the antenna is adapted to the low frequency f 0
  • the resonant circuit has a very high impedance preventing the propagation of f h beyond the first ribbon 3
  • FIG. 9 shows a practical example of construction of the antenna with a resonant circuit 5 comprising the placing in series of an inductance 6 and a capacitor 7
  • the first and second strips 3 and 4 rest on an insulating substrate 11 to form a printed circuit
  • the inductor 6 is a narrow track printed on the substrate and connected by its first end 8 to the first ribbon 3
  • the second end 8 'of the inductor 6 is connected to a first armature 12 of a capacitor 7 while '' a second armature 13 of the same capacitor 7 is - y -
  • first and second frames 12 and 13 have the shape of a comb, the teeth of which interpenetrate without touching.
  • the same remark can be made HERE as that expressed in connection with FIG. 4
  • the ribbons 3 and 4 as well as the resonant circuit 5 are printed on a substrate 11 without the addition of external components. We are therefore dealing with a very inexpensive antenna produced by simple chemical attack on a printed circuit.
  • FIGS. 10 and 11 are plan views of the antenna according to the invention drawn over a length X of ⁇ 50 mm and a width Y of ⁇ 10 mm These figures show the contour lines, expressed in dB, of the electrical component Ez of the electromagnetic field perpendicular to the plane of the antenna and measured close to this plane
  • the resonant circuit 5 is an oscillating circuit comprising the placing in parallel of an inductance 6 and a capacitor 7 as has been described more top II resonates at the high frequency f h
  • Figure 10 shows the behavior of the antenna 1 when the low frequency f b is active
  • the antenna is used over a large part of its length and ignores the presence of the resonant circuit whose impedance is very low
  • Figure 11 shows the behavior of the antenna 1 when the high frequency f h is used
  • the antenna is used on its left part,
  • All the embodiments of the antenna described above are suitable for a dual-frequency antenna. It is clear that the invention is not limited to the use of two frequencies. For example, if a third additional frequency, even lower than that designated above by f b , must be radiated by the antenna, it will be understood that it suffices to have, after the second ribbon 4, a third ribbon and a second resonant circuit between the second and the third ribbon The length of this third ribbon will be chosen so that added to the length of the first two, the total length of the antenna is tuned to the new lower frequency In this case, the resonance frequency of the second resonant circuit will be chosen af b

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The invention concerns an antenna (1) consisting of a first strip (3) whereof the length (L1) is tuned at a high frequency (fh) and a second strip (4), extending the first of length (L2). The sum of lengths L1 and L2 results into an antenna whereof the length L3 is tuned at a low frequency (fb). A resonant circuit (5) comprising an inductance (6), connected in parallel on a capacitor (7) is located between the first and second strips (3, 4). The values of said components are selected so as to cause the resonant circuit to resonate on the high frequency (fh). When the high frequency is active, the length of the antenna is reduced to that (L1) of the first strip. When the low frequency is active, the length of the antenna extends to the sum (L3) of the lengths provided by the first and second strips. The inductance (6) is a narrow strip substantially rectilinear formed integrally with at least (3) one of said strips linked to said strip (8) by one of its ends.

Description

ANTEN NE U LTI FREQUENCE POUR I NSTRU MENT DE PETIT VOLU ME ANTEN NE U LTI FREQUENCY FOR I NSTRU MENT OF SMALL VOLU ME
La présente invention est relative à une antenne de forme allongée pour instrument de petit volume, notamment une montre-téléphone, susceptible de recevoir et d'émettre des messages radiodiffusés sur au moins deux fréquences de valeurs haute et basse, cette antenne étant constituée, a partir d'un point d'alimentation, d'un premier élément radiant dont la longueur est accordée sur la fréquence haute et d'au moins un second élément radiant, faisant suite au premier, la longueur de ce second élément ajoutée à celle du premier présentant une longueur totale accordée sur la fréquence basse, les premier et second éléments radiants étant reliés ensemble par un circuit résonant dont la fréquence de résonance est choisie pour limiter la longueur de l'antenne à son premier élément quand la fréquence haute est active et pour utiliser la longueur totale de l'antenne quand la fréquence basse est activeThe present invention relates to an antenna of elongated shape for a small volume instrument, in particular a telephone watch, capable of receiving and transmitting radio messages on at least two frequencies of high and low values, this antenna being constituted, a starting from a power point, from a first radiant element whose length is tuned to the high frequency and from at least one second radiant element, following the first, the length of this second element added to that of the first having a total length tuned to the low frequency, the first and second radiant elements being connected together by a resonant circuit whose resonant frequency is chosen to limit the length of the antenna to its first element when the high frequency is active and for use the total length of the antenna when the low frequency is active
Une antenne repondant à la définition générique ci-dessus est connue de l'état de la technique Elle est décrite notamment à la page 17-6 de "ARRL Handbook, 1989" et illustrée à la figure 1 accompagnant la présente description Un autre exemple d'une telle antenne est par exemple décrit dans le brevet U S 2,282,292 II s'agit d'une antenne dipôle alimentée par un feeder 25 A partir du point d'alimentation 2, chaque brin de l'antenne comporte un premier élément radiant 3, puis un circuit résonant 5 et enfin un second élément radiant 4 L'antenne est prévue pour être accordée sur deux fréquences différentes, par exemple 28 et 21 MHz La longueur L1 du premier élément radiant 3 est adaptée à la fréquence de 28 MHz (ou plus exactement au quart de la longueur d'onde de cette fréquence) La longueur L2 du second élément radiant 4 ajoutée à la longueur L1 du premier élément conduit a un élément radiant de longueur L3 adapté a la fréquence de 21 MHz (ou comme plus haut au quart de la longueur d'onde de cette fréquence) Le circuit résonant 5 est un circuit oscillant comportant une bobine 6 et un condensateur 7 branchés en parallèle Les valeurs de ces composants sont choisis pour résonner à 28 MHz Comme l'impédance du circuit résonant est maximum à cette fréquence, ce circuit résonant va servir de bouchon à ladite fréquence et limiter ainsi la longueur du brin au premier élément radiant 3 Par contre à 21 MHz, le circuit résonant présente une très faible impédance, de sorte que la longueur totale du brin est utilisée Ainsi par des moyens relativement simples est-on parvenu à faire résonner un tronçon L1 ou l'ensemble L3 de l'antenneAn antenna meeting the generic definition above is known from the state of the art. It is described in particular on page 17-6 of "ARRL Handbook, 1989" and illustrated in FIG. 1 accompanying the present description. Another example of such an antenna is for example described in US Pat. No. 2,282,292 It is a dipole antenna supplied by a feeder 25 From the feed point 2, each strand of the antenna comprises a first radiant element 3, then a resonant circuit 5 and finally a second radiant element 4 The antenna is designed to be tuned on two different frequencies, for example 28 and 21 MHz The length L1 of the first radiant element 3 is adapted to the frequency of 28 MHz (or more exactly to the quarter of the wavelength of this frequency) The length L2 of the second radiant element 4 added to the length L1 of the first element leads to a radiant element of length L3 adapted to the frequency of 21 MHz (or as p read high at a quarter of the wavelength of this frequency) The resonant circuit 5 is an oscillating circuit comprising a coil 6 and a capacitor 7 connected in parallel The values of these components are chosen to resonate at 28 MHz As the impedance of the resonant circuit is maximum at this frequency, this resonant circuit will serve as a plug at said frequency and thus limit the length of the strand to the first radiant element 3 On the other hand at 21 MHz, the resonant circuit has a very low impedance, so that the length total of the strand is used Thus by relatively simple means has it been possible to resonate a section L1 or the whole L3 of the antenna
Aux fréquences considérées ci-dessus (domaine des ondes courtes) l'antenne est confectionnée au moyen de tubes formant les éléments radiants 3 et 4, ces tubes étant réunis par un manchon contenant le circuit résonant 5 réalisé au moyen de composants discrets soit une bobine ou inductance 6 et un condensateur 7At the frequencies considered above (shortwave domain) the antenna is made up by means of tubes forming the radiant elements 3 and 4, these tubes being joined by a sleeve containing the resonant circuit 5 produced by means of discrete components, either a coil or inductor 6 and a capacitor 7
Les fréquences mises en œuvre dans les instruments de petit volume, par exemple un téléphone mobile ou encore une montre-téléphone sont beaucoup plus élevées que celles évoquées ci-dessus Si le principe de l'adaptation de l'antenne à au moins deux fréquences différentes peut rester le même que celui décrit plus haut, la technique utilisée pour ces courtes longueurs d'onde devra être adaptée à l'antenne mise en œuvre Cette antenne doit pouvoir fonctionner au moins sur les fréquences officielles normalisées par exemple par le système GSM (Groupe Spécial Mobile) qui prévoit une fréquence haute fh égale a 1 ,9 GHz et une fréquence basse fb égale a 900 MHzThe frequencies used in small volume instruments, for example a mobile phone or even a phone watch are much higher than those mentioned above If the principle of adapting the antenna to at least two different frequencies may remain the same as described above, the technique used for these short wavelengths must be adapted to the antenna used This antenna must be able to operate at least on the official frequencies standardized for example by the GSM system (Group Special Mobile) which provides a high frequency f h equal to 1.9 GHz and a low frequency f b equal to 900 MHz
C'est l'idée de la présente invention de proposer une antenne susceptible de s'adapter au moins aux fréquences mentionnées Dans ce but, outre qu'elle satisfait a la définition donnée au premier paragraphe de cette description, l'antenne est caractérisée en ce que les premier et second éléments radiants présentent chacun un ruban conducteur de forme substantiellement rectangulaire et en ce que le circuit résonant comporte la combinaison d'une inductance et d'un condensateur, ladite inductance étant une bande étroite sensiblement rectiligne formée intégralement avec au moins un desdits rubans et liée à ce ruban par l'une de ses extrémités On notera que le document EP 0 470 797 décrite une antenne susceptible de s'adapter à plusieurs fréquences Toutes les réalisations envisagées dans ce document font néanmoins appel à des inductances formées de composants discrets qui doivent donc être soudées par leurs extrémités aux divers éléments radiants de l'antenne On notera en outre que le document WO 99/03168 décrit une antenne compacte susceptible de s'adapter au moins a une fréquence basse et une fréquence haute, cette antenne étant notamment destinée à équiper des appareils de téléphonie mobile Selon un mode de réalisation décrit en référence à la figure 1 de ce document, l'antenne présente deux éléments radiants relies ensemble par un circuit résonant pouvant être représenté schématiquement comme la mise en parallèle d un condensateur et d'une inductance II est proposé de réaliser ce circuit résonant et notamment l'inductance sous la forme d'un ruban imprimé relativement large ayant la forme d'un méandre La valeur de capacité du circuit résonant est déterminée ICI par la capacité parasite présente entre les « spires » ou méandres de l'inductance Un inconvénient de cette solution réside dans le fait que l'ajustement de la fréquence de résonance du circuit résonant est difficile à effectuer En effet, si l'on désire modifier la valeur d'inductance du circuit résonant, il est nécessaire de modifier la largeur et/ou la longueur du méandre En effectuant une telle opération, on affecte par la même occasion la valeur de la capacité parasite du circuit résonantIt is the idea of the present invention to provide an antenna capable of adapting at least to the frequencies mentioned. For this purpose, in addition to meeting the definition given in the first paragraph of this description, the antenna is characterized by that the first and second radiant elements each have a conductive tape of substantially rectangular shape and that the resonant circuit comprises the combination of an inductor and a capacitor, said inductor being a substantially straight narrow strip formed integrally with at least one of said ribbons and linked to this ribbon by one of its ends. It will be noted that document EP 0 470 797 describes an antenna capable of adapting to several frequencies. All the embodiments envisaged in this document nevertheless use inductors formed from discrete components which must therefore be welded at their ends to the various radiating elements of the antenna It will also be noted that the document WO 99/03168 describes a compact antenna capable of adapting at least to a low frequency and a high frequency, this antenna being in particular intended to equip mobile telephony devices According to an embodiment described in With reference to FIG. 1 of this document, the antenna has two radiant elements connected together by a resonant circuit which can be represented diagrammatically as the paralleling of a capacitor and an inductor. It is proposed to produce this resonant circuit and in particular the inductance in the form of a relatively wide printed ribbon in the form of a meander The capacity value of the resonant circuit is determined HERE by the parasitic capacity present between the “turns” or meanders of the inductance A drawback of this solution resides in the fact that the adjustment of the resonant frequency of the resonant circuit is difficult to effect Indeed , if you wish to modify the inductance value of the resonant circuit, it is necessary to modify the width and / or the length of the meander By carrying out such an operation, the value of the parasitic capacitance of the resonant circuit is affected at the same time
La solution selon la présente invention présente l'avantage de pouvoir ajuster aisément la fréquence de résonance du circuit résonant en agissant indépendamment sur la valeur de l'inductance ou sur la valeur du condensateur En particulier, l'inductance formée d'une piste étroite sensiblement rectiligne n'affecte sensiblement pas la valeur de capacité du circuit résonant En outre, une piste étroite pour l'inductance présente l'avantage d'une inductivité plus élevée à dimension égale par rapport à la solution envisagée dans le document WO 99/03168 Les caractéristiques et avantages de l'invention vont ressortir maintenant de la description qui va suivre, faite en regard du dessin annexé et donnant a titre explicatif mais nullement limitatif, plusieurs formes avantageuses de réalisation de l'invention, dessin dans lequelThe solution according to the present invention has the advantage of being able to easily adjust the resonant frequency of the resonant circuit by acting independently on the value of the inductance or on the value of the capacitor. In particular, the inductance formed by a narrow track substantially rectilinear does not appreciably affect the capacity value of the resonant circuit In addition, a narrow track for the inductance has the advantage of a higher inductance at equal size compared to the solution envisaged in document WO 99/03168 characteristics and advantages of the invention will now emerge from the description which follows, made with reference to the appended drawing and giving, by way of explanation but in no way limiting, several advantageous embodiments of the invention, drawing in which
- la figure 1 est un schéma explicitant une antenne bifrequence exécutée selon un art antérieur,FIG. 1 is a diagram explaining a dual-frequency antenna executed according to a prior art,
- la figure 2 montre un premier mode de réalisation de l'antenne selon l'invention, cette antenne étant autoporteuse,FIG. 2 shows a first embodiment of the antenna according to the invention, this antenna being self-supporting,
- la figure 3 illustre un deuxième mode de réalisation de l'antenne selon l'invention, cette antenne étant autoporteuse et intégrée par exemple a une montre- téléphone,FIG. 3 illustrates a second embodiment of the antenna according to the invention, this antenna being self-supporting and integrated for example into a telephone watch,
- la figure 4 montre un troisième mode de réalisation de l'antenne selon l'invention, cette antenne faisant partie intégrante d'un circuit imprimé, la figure 5 montre un quatrième mode de réalisation de l'antenne selon l'invention, - la figure 6 est une coupe selon la ligne VI-VI visible sur la figure 5,- Figure 4 shows a third embodiment of the antenna according to the invention, this antenna forming an integral part of a printed circuit, Figure 5 shows a fourth embodiment of the antenna according to the invention, - the FIG. 6 is a section along the line VI-VI visible in FIG. 5,
- la figure 7 montre un cinquième mode de réalisation de l'antenne selon l'invention, cette exécution étant une variante de l'antenne montée en figure 5,FIG. 7 shows a fifth embodiment of the antenna according to the invention, this embodiment being a variant of the antenna mounted in FIG. 5,
- la figure 8 et une coupe selon la ligne VIII-VIII visible sur la figure 7,FIG. 8 and a section along the line VIII-VIII visible in FIG. 7,
- la figure 9 montre un sixième mode de réalisation de l'antenne de l'invention, - la figure 10 est une vue en plan de l'antenne de l'invention, vue sur laquelle sont tracées les courbes de niveau de la composante électrique du champ électromagnétique quand l'antenne travaille à la fréquence basse fb, et- Figure 9 shows a sixth embodiment of the antenna of the invention, - Figure 10 is a plan view of the antenna of the invention, view on which are plotted the level curves of the electrical component of the electromagnetic field when the antenna works at the low frequency f b , and
- la figure 11 est une vue en plan de l'antenne de l'invention, vue sur laquelle sont tracées les courbes de niveau de la composante électrique du champ électromagnétique quand l'antenne travaille à la fréquence haute fh - Figure 11 is a plan view of the antenna of the invention, view on which are plotted the level curves of the electrical component of the electromagnetic field when the antenna works at the high frequency f h
Comme on peut le voir sur les figures 2 à 9, l'antenne 1 en question présente une forme allongée Elle est destinée a un instrument de petit volume, notamment a un téléphone logé dans une montre, ce téléphone étant susceptible de recevoir et d'émettre des messages radiodiffusés L'antenne 1 est en outre capable de travailler sur au moins deux fréquences de valeurs haute fh et basse fb et est constituée, a partir d'un point d'alimentation 2, d'un premier élément radiant 3 dont la longueur L1 est accordée sur la fréquence haute fh et d'au moins un second élément radiant 4 qui fait suite au premier, la longueur L2 de ce second élément 4 ajoutée a celle du premier présentant une longueur totale L3 accordée sur la fréquence basse fb Les mêmes figures 2 à 9 montrent que les premier et second éléments radiants 3 et 4 sont reliés ensemble par un circuit résonant 5 La fréquence de résonance fr de ce circuit résonant 5 est choisie pour limiter la longueur de l'antenne 1 a son premier élément radiant 3 quand la fréquence haute fh est active et pour utiliser la longueur totale L3 de l'antenne quand la fréquence basse fD est activeAs can be seen in Figures 2 to 9, the antenna 1 in question has an elongated shape. It is intended for an instrument of small volume, in particular for a telephone housed in a watch, this telephone being capable of receiving and transmitting radio messages The antenna 1 is also capable of working on at least two frequencies of values high f h and low f b and is constituted, from a supply point 2, a first radiant element 3 whose length L1 is tuned to the high frequency f h and at least one second radiant element 4 which follows the first, the length L2 of this second element 4 added to that of the first having a total length L3 tuned to the low frequency f b The same figures 2 to 9 show that the first and second radiant elements 3 and 4 are connected together by a resonant circuit 5 The resonance frequency f r of this resonant circuit 5 is chosen to limit the length of the antenna 1 to its first radiant element 3 when the high frequency f h is active and to use the total length L3 of the antenna when the low frequency e f D is active
Ceci étant, et comme le montrent encore les figures 2 a 9, l'invention est remarquable d'abord en ce que les premier et second éléments radiants 3 et 4 présentent chacun un ruban conducteur de forme sensiblement rectangulaire, ces rubans étant placés l'un à la suite de l'autre Ensuite l'invention est remarquable par le fait que le circuit résonant 5 comporte la combinaison d'une inductance 6 et d'un condensateur 7, 7' cette inductance 6 étant une bande étroite sensiblement rectiligne formée intégralement avec au moins l'un desdits rubans et liée à ce ruban par l'une de ses extrémités 8, 8' A ce sujet toutes les figures 2 a 9 montrent que l'extrémité 8 de l'inductance 6 est liée au ruban 3 et que l'inductance 6 est formée intégralement avec l'un des rubans, en l'occurrence avec le ruban 3This being so, and as again shown in FIGS. 2 to 9, the invention is remarkable first in that the first and second radiant elements 3 and 4 each have a conductive strip of substantially rectangular shape, these strips being placed one after the other Then the invention is remarkable in that the resonant circuit 5 comprises the combination of an inductor 6 and a capacitor 7, 7 'this inductor 6 being a substantially substantially narrow narrow strip formed integrally with at least one of said ribbons and linked to this ribbon by one of its ends 8, 8 'In this respect, all of Figures 2 to 9 show that the end 8 of the inductor 6 is linked to the ribbon 3 and that the inductor 6 is formed integrally with one of the ribbons, in this case with the ribbon 3
La base constituant l'invention ayant été exposée ci-dessus, on va passer en revue maintenant différents modes d'exécution en utilisant l'une après l'autre les figures annexées à cette descriptionThe basis constituting the invention having been explained above, we will now review different embodiments using one after the other the figures appended to this description
Les figures 2 à 8 montrent que l'inductance 6 et le condensateur 7, 7' sont connectés en parallèle Dans ces conditions, on comprendra que la valeur de chacun de ces composants sera choisie pour que le circuit résonant présente une fréquence de résonance fr substantiellement égale à la fréquence haute fh de fonctionnement de l'antenne En effet, comme déjà évoqué dans le préambule de cette description, l'impédance du circuit résonant présente alors un maximum lors de la résonance et si le circuit résonant est accordé a la fréquence haute fh, il représentera comme un bouchon ou une barrière ne laissant pas passer ladite fréquence haute Comme le premier élément radiant 3 comporte une longueur accordée à cette fréquence haute, l'antenne sera limitée à ce premier élément radiant ou premier ruban 3 si la fréquence haute est active Contrairement a cela, si c'est la fréquence basse qui est active pour émettre ou recevoir les messages, le circuit résonant 5 va présenter a cette fréquence une impédance minimum, laissant passer ladite fréquence basse Comme la somme des longueurs L1 et L2 des rubans 3 et 4 est accordée à la fréquence basse fb, l'antenne sera adaptée à cette fréquence sur la totalité de sa longueur L3Figures 2 to 8 show that the inductor 6 and the capacitor 7, 7 'are connected in parallel Under these conditions, it will be understood that the value of each of these components will be chosen so that the resonant circuit has a resonant frequency f r substantially equal to the high operating frequency f h of the antenna Indeed, as already mentioned in the preamble to this description, the impedance of the resonant circuit then has a maximum during resonance and if the resonant circuit is tuned to the high frequency f h , it will represent as a plug or a barrier not letting pass said high frequency As the first radiant element 3 has a length granted to this high frequency, the antenna will be limited to this first radiant element or first ribbon 3 if the high frequency is active Unlike this, if it is the low frequency which is active to send or receive messages, the resonant circuit t 5 will present at this frequency a minimum impedance, allowing said low frequency to pass As the sum of the lengths L1 and L2 of the strips 3 and 4 is given to the low frequency f b , the antenna will be adapted to this frequency over its entire length L3
La figure 2 illustre un premier mode d'exécution de l'invention Les premier et second rubans 3 et 4 sont autoporteurs et ne reposent donc sur aucun substrat, bien que des moyens de fixation 9 sont prévus pour attacher l'antenne à l'instrument dans lequel elle est implantée Ceci suppose naturellement que les rubans présentent une certaine épaisseur pour assurer une certaine rigidité mécanique à tout l'ensemble Dans ce mode d'exécution, l'inductance 6 est une bande étroite sensiblement rectiligne reliée par sa première extrémité 8 au premier ruban 3 et par sa seconde extrémité 8' au second ruban 4 Ici l'inductance 6 est formée intégralement avec les deux rubans 3 et 4 On comprendra que l'ensemble rubans 3 et 4 et inductance 6 peut être fabriqué en une seule opération par simple étampage ce qui simplifie énormément l'exécution de l'antenne Le condensateur 7 par contre est un composant discret, exécuté séparément des rubans constituant l'antenne et présentant des première et seconde bornes 10 et 10' soudées respectivement sur les premier et second rubans 3 et 4 L'antenne est alimentée par un fil (non représenté) soudé dans un passage 2 pratique dans le premier ruban 3FIG. 2 illustrates a first embodiment of the invention The first and second ribbons 3 and 4 are self-supporting and therefore do not rest on any substrate, although fixing means 9 are provided for attaching the antenna to the instrument in which it is implanted This naturally assumes that the ribbons have a certain thickness to ensure a certain mechanical rigidity in the whole assembly. In this embodiment, the inductor 6 is a substantially straight narrow strip connected by its first end 8 to the first ribbon 3 and by its second end 8 'to the second ribbon 4 Here the inductor 6 is formed integrally with the two ribbons 3 and 4 It will be understood that the assembly of ribbons 3 and 4 and inductor 6 can be manufactured in a single operation by simple stamping which greatly simplifies the execution of the antenna The capacitor 7 on the other hand is a discrete component, executed separately from the ribbons constituting the antenna and having first and second terminals 10 and 10 'welded respectively to the first and second strips 3 and 4 The antenna is supplied by a wire (not shown) welded in a passage 2 practical in the first strip 3
A propos de la figure 2, on peut donner les valeurs pratiques de construction suivantes au cas où f3 = 900 MHz et fh = 1 ,9 GHz La longueur L1 du premier ruban 3 est égale à 3,4 cm (équivalent au quart de la longueur d'onde de fh) La longueur L3 (correspondant au quart de la longueur d'onde de fb) est de 8,3 cm, d'où l'on déduit la longueur L2 = 4,9 cm On observera ICI que les valeurs données sont théoriques étant donné qu'elles sont influencées par certains facteurs, notamment par la largeur des rubans ainsi que par l'espace existant entre ces rubans Comme la position du circuit résonant 5 détermine fh, la longueur additionnelle L2 permet d'ajuster fb On peut donc assez facilement ajuster les deux fréquences individuellement Une fois fixée la position du circuit résonant 5, on peut ajuster finalement fh en réglant la valeur du condensateur 7 En ce qui concerne les valeurs à donner à l'inductance 6 et au condensateur 7, on appliquera la formule fh = l/lπ→^LC Pour fh = 1 ,9 MHZ, la formule est satisfaite siWith regard to FIG. 2, the following practical construction values can be given in the case where f 3 = 900 MHz and f h = 1.9 GHz The length L1 of the first strip 3 is equal to 3.4 cm (equivalent to a quarter of the wavelength of f h ) The length L3 (corresponding to a quarter of the wavelength of f b ) is 8.3 cm, from which we deduce the length L2 = 4.9 cm On will observe HERE that the values given are theoretical given that they are influenced by certain factors, in particular by the width of the ribbons as well as by the space existing between these ribbons As the position of the resonant circuit 5 determines f h , the additional length L2 allows to adjust f b We can therefore quite easily adjust the two frequencies individually Once the position of the resonant circuit 5 is fixed, we can finally adjust f h by adjusting the value of the capacitor 7 As regards the values to be given to the inductor 6 and the capacitor 7, apply the formula f h = l / lπ For LC ^ f = h 1, 9 MHZ, the formula is satisfied if
C = 0,7 pF et L = 10 nHy. L'inductance 6 est ici une bande étroite dont la valeur vaut environ 10 nHy par cm Dans l'exemple pris ici, l'espace entre les rubans 3 et 4 est donc de 1 cm La figure 3 illustre un deuxième mode d'exécution de l'invention On retrouve ici des premier et second rubans 3 et 4 qui sont autoporteurs et sont sépares par une inductance 5 et un composant discret formant le condensateur 7 Ici par contre l'antenne est enroulée autour d'un boîtier 26 abritant les circuits électroniques nécessaires au fonctionnement de l'instrument On reviendra plus bas sur cette exécution car elle comporte d'autres particularités utiles à signalerC = 0.7 pF and L = 10 nHy. Inductance 6 is here a narrow band whose value is approximately 10 nHy per cm. In the example taken here, the space between the ribbons 3 and 4 is therefore 1 cm. FIG. 3 illustrates a second embodiment of The invention Here we find first and second ribbons 3 and 4 which are self-supporting and are separated by an inductor 5 and a discrete component forming the capacitor 7 Here on the other hand the antenna is wound around a box 26 housing the electronic circuits necessary for the functioning of the instrument We will come back to this execution below because it includes other particularities useful to point out
La figure 4 montre un troisième mode d'exécution de l'invention Par rapport au premier et au deuxième mode, ce troisième mode est caractérisé en ce que les premier et second rubans 3 et 4 reposent sur un substrat isolant 11 , par exemple du Kapton (marque déposée) pour former un circuit imprimé L'inductance 6 est une piste étroite imprimée sur le substrat 1 Elle est reliée par sa première extrémité 8 au premier ruban 3 et par sa seconde extrémité 8' au second ruban 4 Elle fait donc partie intégrante des rubans 3 et 4 Pour constituer le circuit résonant 5, le condensateur 7, 7' associé à l'inductance 6 peut prendre différentes formesFIG. 4 shows a third embodiment of the invention Compared with the first and second modes, this third mode is characterized in that the first and second tapes 3 and 4 rest on an insulating substrate 11, for example Kapton (registered trademark) to form a printed circuit Inductance 6 is a narrow track printed on the substrate 1 It is connected by its first end 8 to the first ribbon 3 and by its second end 8 'to the second ribbon 4 It therefore forms an integral part ribbons 3 and 4 To form the resonant circuit 5, the capacitor 7, 7 'associated with the inductor 6 can take different forms
Une première forme de condensateur est illustrée à la figure 4 Ce condensateur comporte en réalité deux condensateurs 7 et 7' situés de part et d'autre de l'inductance 6 Ces deux condensateurs sont branches en parallèle et confèrent une symétrie à l'ensemble du circuit résonant Cette symétrie est généralement souhaitable et sera préférée à un montage non symétrique comme on peut le voir à la figure 2 Le condensateur 7, 7' comprend une première armature 12, 12' imprimée sur le substrat 11 et reliée au premier ruban 3 II comprend encore une seconde armature 13, 13' également imprimée sur le substrat 1 1 et reliée au second ruban 4 Comme la figure 4 le montre bien, chacune de ces première et seconde armatures présente la forme d'un peigne dont les dents s'interpénétrent sans se toucher La capacité est ici créée dans l'espace existant entre les dents On parlera aussi d'une capacité interdigitée Par ailleurs, le premier ruban 3 est alimente par un conducteur (non représenté) soudé au point d'alimentation 2 Ce troisième mode d'exécution illustré par la figure 4 montre comment, selon l'invention, une antenne bifréquence peut être réalisée simplement et surtout économiquement Cette antenne est en effet entièrement réalisée dans un seul circuit imprimé, le gravage chimique bien connu réalisant d'un seul coup les rubans 3 et 4, l'inductance 6 et le condensateur 7, 7' Cette antenne peut donc être produite à un coût extrêmement bas puisque aucun composant discret n'est nécessaire pour créer le circuit résonant 5A first form of capacitor is illustrated in FIG. 4 This capacitor actually comprises two capacitors 7 and 7 'located on either side of the inductor 6 These two capacitors are connected in parallel and give symmetry to the whole of the resonant circuit This symmetry is generally desirable and will be preferred to a non-symmetrical mounting as can be seen in FIG. 2 The capacitor 7, 7 'comprises a first frame 12, 12' printed on the substrate 11 and connected to the first ribbon 3 II further comprises a second frame 13, 13 ′ also printed on the substrate 1 1 and connected to the second ribbon 4 As FIG. 4 clearly shows, each of these first and second frames has the shape of a comb whose teeth interpenetrate without touching The capacity is created here in the space existing between the teeth We will also speak of an interdigitated capacity In addition, the first ribbon 3 is supplied by a conductor ur (not shown) welded to the feed point 2 This third embodiment illustrated by FIG. 4 shows how, according to the invention, a dual-frequency antenna can be produced simply and above all economically This antenna is in fact entirely produced in a single printed circuit, the well-known chemical etching producing all at once the ribbons 3 and 4, the inductor 6 and the capacitor 7, 7 'This antenna can therefore be produced at an extremely low cost since no discrete component is necessary to create the resonant circuit 5
Une deuxième forme de condensateur associé à une inductance imprimée 6 est montrée aux figures 5 et 6, la figure 5 étant une vue en plan de l'antenne et la figure 6 une coupe selon la ligne Vl-Vi de la figure 5 Ces figures 5 et 6 explicitent un quatrième mode d'exécution de l'invention Le condensateur comporte la mise en parallèle de deux condensateurs 7 et 7' situés de part et d'autre de l'inductance 6 et formés chacun d'un composant discret présentant une première borne 14 et 14' soudée sur le premier ruban 3 et une seconde borne 15 et 15' soudée sur le second ruban 4. Ce quatrième mode d'exécution présente une autre particularité dont il sera question plus basA second form of capacitor associated with a printed inductor 6 is shown in Figures 5 and 6, Figure 5 being a plan view of the antenna and Figure 6 a section along the line Vl-Vi of Figure 5 These Figures 5 and 6 explain a fourth embodiment of the invention The capacitor comprises the placing in parallel of two capacitors 7 and 7 'situated on either side of the inductor 6 and each formed of a discrete component having a first terminal 14 and 14 ' soldered on the first ribbon 3 and a second terminal 15 and 15 'soldered on the second ribbon 4. This fourth embodiment has another feature which will be discussed below
Une troisième forme de condensateur associé à une inductance imprimée est montrée aux figures 7 et 8, la figure 7 étant une vue en plan de l'antenne et la figure 8 une coupe selon la ligne VIII-VIII de la figure 7 Ces figures 7 et 8 explicitent un cinquième mode d'exécution de l'invention Le condensateur comporte la mise en parallèle de deux condensateurs 7 et 7' situés de part et d'autre de l'inductance 6 Le condensateur 7 comporte à son tour la mise en série de premier et second condensateurs 16 et 17 comprenant chacun une armature commune 18 imprimée sous le substrat isolant 1 1 , cette armature 18 s'étendant partiellement, d'une part sous le premier ruban 3 pour former le premier condensateur 16 et d'autre part sous le second ruban 4 pour former le second condensateur 17 Le condensateur 7' comporte également la mise en série de premier et second condensateurs 16' et 17' comprenant chacun une armature commune 18' imprimée sous le substrat isolant 11 , cette armature 18' s'étendant partiellement, d'une part sous le premier ruban 3 pour former le premier condensateur 16' et d'autre part sous le second ruban 4 pour former le second condensateur 18'. Dans cette exécution, on comprend que le substrat 11 sert de diélectrique à chacun des condensateurs mentionnés Ce cinquième mode d'exécution est presque aussi économique que celui décrit à propos de la figure 4, puisque toute l'antenne 1 et le circuit résonant 5 peuvent être réalisés par gravage chimique d'un circuit imprimé double face et cela sans apport de composants discrets soudes sur les rubansA third form of capacitor associated with a printed inductor is shown in FIGS. 7 and 8, FIG. 7 being a plan view of the antenna and FIG. 8 a section along line VIII-VIII of FIG. 7 These FIGS. 7 and 8 explain a fifth embodiment of the invention The capacitor comprises the paralleling of two capacitors 7 and 7 'located on either side of the inductor 6 The capacitor 7 in turn comprises the placing in series of first and second capacitors 16 and 17 each comprising a common frame 18 printed under the insulating substrate 1 1, this frame 18 extending partially, on the one hand under the first strip 3 to form the first capacitor 16 and on the other hand under the second ribbon 4 to form the second capacitor 17 The capacitor 7 'also includes the placing in series of first and second capacitors 16' and 17 'each comprising a common frame 18' printed under the insulating substrate 11, this frame 18 'extending partially, on the one hand under the first ribbon 3 to form the first capacitor 16' and on the other hand under the second ribbon 4 to form the second capacitor 18 '. In this embodiment, it is understood that the substrate 11 serves as a dielectric for each of the capacitors mentioned. This fifth embodiment is almost as economical as that described in connection with FIG. 4, since the entire antenna 1 and the resonant circuit 5 can be made by chemical etching of a double-sided printed circuit and this without adding discrete welded components on the ribbons
On a mentionné ci-dessus, à propos des deuxième (figure 3) et quatrième (figure 6) modes d'exécution, que ces modes présentent une particularité qu'il convient de décrire maintenant En effet, dans ces exécutions particulières, on voit que les premier et second rubans 3 et 4 sont disposés à une distance déterminée A d'un plan de masse 19, que la partie initiale 20 du premier ruban 3 est court-circuitée à ce plan par un pont 27 et que la partie finale 21 du second ruban 4 est laissée libre Dans la figure 3, le plan de masse 19 est assimilé au boîtier 26 qui est métallique Comme le montrent les figures 3 et 6, l'alimentation de l'antenne est assurée par un câble coaxial 28 qui comprend un conducteur interne 29 isolé du plan de masse 19 et connecté au point d'alimentation 2 du premier ruban 3, ce point d'alimentation étant distant du pont 27 court-circuitant ledit premier ruban 3 et ledit plan de masse 19 Le câble coaxial comporte encore un conducteur ou blindage 30 connecté au plan de masse 19 En figure 3, la distance A entre les rubans 3 et 4 et le plan de masse 19 est maintenue par le fait que les rubans sont autoporteurs et donc suffisamment rigides pour assurer cette distance En figure 6, la distance A est maintenue par une mousse 31 collée sur le substrat 1 1 et sur le plan de masse 19It was mentioned above, in connection with the second (FIG. 3) and fourth (FIG. 6) modes of execution, that these modes have a peculiarity which should be described now. the first and second ribbons 3 and 4 are arranged at a determined distance A from a ground plane 19, that the initial part 20 of the first ribbon 3 is short-circuited in this plane by a bridge 27 and that the final part 21 of the second ribbon 4 is left free In FIG. 3, the ground plane 19 is assimilated to the housing 26 which is metallic As shown in FIGS. 3 and 6, the antenna is supplied by a coaxial cable 28 which includes a internal conductor 29 isolated from the ground plane 19 and connected to the supply point 2 of the first ribbon 3, this supply point being distant from the bridge 27 short-circuiting said first ribbon 3 and said ground plane 19 The coaxial cable further comprises a conductor or shielding 30 connected to the ground plane 19 In FIG. 3, the distance A between the ribbons 3 and 4 and the ground plane 19 is maintained by the fact that the ribbons are self-supporting and therefore sufficiently rigid to ensure this distance In FIG. 6, the distance A is maintained by a foam 31 bonded to the substrate 11 and to the ground plane 19
Une antenne telle que montrée en figure 6, mais n'étant adaptée qu'à une seule fréquence et ne possédant en conséquence qu'un seul ruban conducteur est connue sous la dénomination anglo-saxonne "Planar Inverted-F Antenna" ou PIFA Une analyse détaillée de la structure PIFA peut être trouvée dans le document "Analysis, Design and Measurement of small and Low-Profile Antennas", Artech House, Norwood, MA, 1992, Ch 5, pages 161-180, Kazuhiro Hirasawa et Misao Haneishi L'antenne illustrée en figure 3 est une variante de l'antenne PIFA permettant l'adaptation de ladite antenne a un boîtier faisant partie intégrante du plan de masse, ce boîtier comprenant au moins un couvercle, un fond et une paroi latérale en regard de laquelle est disposé le ruban unique Cette variante a fait l'objet d'une demande de brevet européen No 99120230 0 déposée le 1 1 octobre 1999 au nom du même demandeur que celui de la présente invention Ce qui précède a été exposé pour montrer que l'antenne multifréquence de la présente invention peut être appliquée tant à une antenne PIFA qu'à une antenne se trouvant sans référence à un plan de masse immédiat, comme cela est illustré en figure 2 ou en figure 4 par exempleAn antenna as shown in FIG. 6, but being adapted to only one frequency and consequently having only one conductive tape is known by the Anglo-Saxon name "Planar Inverted-F Antenna" or PIFA An analysis Detailed description of the PIFA structure can be found in the document "Analysis, Design and Measurement of small and Low-Profile Antennas", Artech House, Norwood, MA, 1992, Ch 5, pages 161-180, Kazuhiro Hirasawa and Misao Haneishi L ' antenna illustrated in Figure 3 is a variant of the PIFA antenna allowing the adaptation of said antenna to a housing forming an integral part of the ground plane, this housing comprising at least one cover, a bottom and a side wall facing which is arranged the single ribbon This variant was the subject of a European patent application No. 99120230 0 filed October 1, 1999 in the name of the same applicant as that of the present invention The above has been stated to show that the The multifrequency antenna of the present invention can be applied both to a PIFA antenna and to an antenna located without reference to an immediate ground plane, as illustrated in FIG. 2 or in FIG. 4 for example
La figure 9 montre un sixième mode d'exécution de l'invention Ce mode fait partie de la seconde catégorie d'antenne, évoquée plus haut où l'inductance 6 et le condensateur 7 sont connectés en série. On comprendra que la valeur de chacun de ces composants sera choisie pour présenter une fréquence de résonance fr substantiellement égale à la fréquence basse fb de fonctionnement de l'antenne En effet, le circuit résonant 5 présente ICI une impédance minimum à la résonance II s'ensuit que lorsque la fréquence basse fb est active, le circuit résonant 5 n'oppose aucune résistance à cette fréquence La longueur du ruban 4 s'ajoute alors à la longueur du ruban 3 et l'antenne est adaptée à la fréquence basse f0 Par contre, si c'est la fréquence haute fh qui est active, seul le ruban 3, adapté à f-, sera utilisé puisqu'à la fréquence haute, le circuit résonant présente une très haute impédance empêchant la propagation de fh au-delà du premier ruban 3FIG. 9 shows a sixth embodiment of the invention This mode is part of the second category of antenna, mentioned above where the inductor 6 and the capacitor 7 are connected in series. It will be understood that the value of each of these components will be chosen to have a resonance frequency f r substantially equal to the low frequency f b of the antenna operating. Indeed, the resonant circuit 5 HERE has a minimum impedance at resonance II follows that when the low frequency f b is active, the resonant circuit 5 does not oppose any resistance to this frequency The length of the ribbon 4 is then added to the length of the ribbon 3 and the antenna is adapted to the low frequency f 0 On the other hand, if it is the high frequency f h which is active, only the ribbon 3, adapted to f-, will be used since at the high frequency, the resonant circuit has a very high impedance preventing the propagation of f h beyond the first ribbon 3
La figure 9 montre un exemple pratique de construction de l'antenne avec un circuit résonant 5 comportant la mise en série d'une inductance 6 et d'un condensateur 7 Les premier et second rubans 3 et 4 reposent sur un substrat isolant 11 pour former un circuit imprimé L'inductance 6 est une piste étroite imprimée sur le substrat et reliée par sa première extrémité 8 au premier ruban 3 La seconde extrémité 8' de l'inductance 6 est reliée à une première armature 12 d'un condensateur 7 alors qu'une seconde armature 13 du même condensateur 7 est - y -FIG. 9 shows a practical example of construction of the antenna with a resonant circuit 5 comprising the placing in series of an inductance 6 and a capacitor 7 The first and second strips 3 and 4 rest on an insulating substrate 11 to form a printed circuit The inductor 6 is a narrow track printed on the substrate and connected by its first end 8 to the first ribbon 3 The second end 8 'of the inductor 6 is connected to a first armature 12 of a capacitor 7 while '' a second armature 13 of the same capacitor 7 is - y -
reliée au second ruban 4 On voit que les première et seconde armatures 12 et 13 présentent la forme d'un peigne dont les dents s'interpénétrent sans se toucher La même remarque peut être faite ICI que celle exprimée à propos de la figure 4 En effet, les rubans 3 et 4 ainsi que le circuit résonant 5 sont imprimés sur un substrat 1 1 sans apport de composants extérieurs On a donc affaire à une antenne très bon marché réalisée par simple attaque chimique d'un circuit impriméconnected to the second ribbon 4 We see that the first and second frames 12 and 13 have the shape of a comb, the teeth of which interpenetrate without touching. The same remark can be made HERE as that expressed in connection with FIG. 4 Indeed , the ribbons 3 and 4 as well as the resonant circuit 5 are printed on a substrate 11 without the addition of external components. We are therefore dealing with a very inexpensive antenna produced by simple chemical attack on a printed circuit.
Les figures 10 et 11 sont des vues en plan de l'antenne selon l'invention dessinée sur une longueur X de ± 50 mm et sur une largeur Y de ± 10 mm Ces figures montrent les courbes de niveau, exprimées en dB, de la composante électrique Ez du champ électromagnétique perpendiculaire au plan de l'antenne et mesurée à proximité de ce plan Le circuit résonant 5 est un circuit oscillant comportant la mise en parallèle d'une inductance 6 et d'un condensateur 7 comme cela a été décrit plus haut II résonne a la fréquence haute fh L'antenne est composée du premier ruban 3 et du second ruban 4 Ces rubans étant séparés par le circuit résonant 5 placé à x = + 10 mm La figure 10 montre le comportement de l'antenne 1 quand la fréquence basse fb est active L'antenne est utilisée sur une grande partie de sa longueur et ignore la présence du circuit résonant dont l'impédance est très basse La figure 11 montre le comportement de l'antenne 1 quand la fréquence haute fh est utilisée L'antenne est utilisée sur sa partie gauche, qui est l'endroit du premier ruban 3 Le circuit résonant 5 bloque le passage du signal vers la droite ou ce signal apparaît comme très faible (de - 12 à - 24 dB)FIGS. 10 and 11 are plan views of the antenna according to the invention drawn over a length X of ± 50 mm and a width Y of ± 10 mm These figures show the contour lines, expressed in dB, of the electrical component Ez of the electromagnetic field perpendicular to the plane of the antenna and measured close to this plane The resonant circuit 5 is an oscillating circuit comprising the placing in parallel of an inductance 6 and a capacitor 7 as has been described more top II resonates at the high frequency f h The antenna consists of the first ribbon 3 and the second ribbon 4 These ribbons being separated by the resonant circuit 5 placed at x = + 10 mm Figure 10 shows the behavior of the antenna 1 when the low frequency f b is active The antenna is used over a large part of its length and ignores the presence of the resonant circuit whose impedance is very low Figure 11 shows the behavior of the antenna 1 when the high frequency f h is used The antenna is used on its left part, which is the place of the first ribbon 3 The resonant circuit 5 blocks the passage of the signal to the right or this signal appears as very weak (from - 12 to - 24 dB)
Tous les modes d'exécution de l'antenne décrits plus haut sont adaptés a une antenne bifréquence II est clair que l'invention n'est pas limitée à l'utilisation de deux fréquences Par exemple si une troisième fréquence supplémentaire, encore plus basse que celle désignée ci- dessus par fb, doit être rayonnée par l'antenne, on comprendra qu'il suffit de disposer, après le second ruban 4, un troisième ruban et un second circuit résonant entre le second et le troisième ruban La longueur de ce troisième ruban sera choisie pour qu'additionnée à la longueur des deux premiers, la longueur totale de l'antenne soit accordée à la nouvelle fréquence plus basse Dans ce cas, la fréquence de résonance du second circuit résonant sera choisie a fb All the embodiments of the antenna described above are suitable for a dual-frequency antenna. It is clear that the invention is not limited to the use of two frequencies. For example, if a third additional frequency, even lower than that designated above by f b , must be radiated by the antenna, it will be understood that it suffices to have, after the second ribbon 4, a third ribbon and a second resonant circuit between the second and the third ribbon The length of this third ribbon will be chosen so that added to the length of the first two, the total length of the antenna is tuned to the new lower frequency In this case, the resonance frequency of the second resonant circuit will be chosen af b

Claims

REVEND ICATIONSRESELL ICATIONS
1 Antenne (1) de forme allongée pour instrument de petit volume, notamment une montre-téléphone, susceptible de recevoir et d'émettre des messages radiodiffusés sur au moins deux fréquences de valeurs haute (fh) et basse (fb), cette antenne étant constituée, à partir d'un point d'alimentation (2), d'un premier élément radiant (3) dont la longueur (L1 ) est accordée sur la fréquence haute (fh) et d'au moins un second élément radiant (4), faisant suite au premier (3), la longueur (L2) de ce second élément ajoutée à celle du premier présentant une longueur (L3) totale accordée sur la fréquence basse (fb), les premier et second éléments radiants étant reliés ensemble par un circuit résonant (5) dont la fréquence de résonance (fr) est choisie pour limiter la longueur de l'antenne à son premier élément (3) quand la fréquence haute (fh) est active et pour utiliser la longueur totale (L3) de l'antenne quand la fréquence (fb) basse est active, caractérisée par le fait que les premier (3) et second (4) éléments radiants présentent chacun un ruban conducteur de forme sensiblement rectangulaire et que le circuit résonant (5) comporte la combinaison d'une inductance (6) et d'un condensateur (7, 7'), ladite inductance (6) étant une bande étroite sensiblement rectiligne formée intégralement avec au moins un desdits rubans et reliée à ce ruban par l'une de ses extrémités (8, 8')1 antenna (1) of elongated shape for a small volume instrument, in particular a telephone watch, capable of receiving and transmitting radio messages on at least two frequencies of high (f h ) and low (f b ) values, this antenna consisting of, from a feed point (2), a first radiant element (3) whose length (L1) is tuned to the high frequency (f h ) and at least a second element radiant (4), following the first (3), the length (L2) of this second element added to that of the first having a total length (L3) tuned to the low frequency (f b ), the first and second radiant elements being connected together by a resonant circuit (5) whose resonant frequency (f r ) is chosen to limit the length of the antenna to its first element (3) when the high frequency (f h ) is active and to use the total length (L3) of the antenna when the low frequency (f b ) is active, because activated by the fact that the first (3) and second (4) radiant elements each have a substantially rectangular conductive strip and that the resonant circuit (5) comprises the combination of an inductor (6) and a capacitor ( 7, 7 '), said inductor (6) being a substantially straight narrow band formed integrally with at least one of said ribbons and connected to this ribbon by one of its ends (8, 8')
2 Antenne selon la revendication 1 , caractérisée par le fait que l'inductance (6) et le condensateur (7, 7') sont connectés en parallèle, la valeur de chacun de ces composants étant choisie pour présenter une fréquence de résonance (fr) substantiellement égale à la fréquence haute (fh) de fonctionnement de l'antenne2 antenna according to claim 1, characterized in that the inductor (6) and the capacitor (7, 7 ') are connected in parallel, the value of each of these components being chosen to have a resonant frequency (f r ) substantially equal to the high operating frequency (f h ) of the antenna
3 Antenne selon la revendication 2, caractérisée par le fait que les premier (3) et second (4) rubans sont autoporteurs et maintenus dans l'instrument par des moyens de fixation (9), que l'inductance (6) est reliée par sa première extrémité (8) au premier ruban (3) et par sa seconde extrémité (8') au second ruban (4) et que le condensateur (7) est un composant discret présentant des première (10) et seconde (10') bornes soudées respectivement sur les premier (3) et second (4) rubans3 antenna according to claim 2, characterized in that the first (3) and second (4) ribbons are self-supporting and held in the instrument by fixing means (9), that the inductor (6) is connected by its first end (8) to the first ribbon (3) and by its second end (8 ') to the second ribbon (4) and that the capacitor (7) is a discrete component having first (10) and second (10') soldered terminals respectively on the first (3) and second (4) tapes
4. Antenne selon la revendication 2, caractérisée par le fait que les premier (3) et second (4) rubans reposent sur un substrat isolant (1 1 ) pour former un circuit imprimé et que l'inductance (6) est une piste étroite imprimée sur ledit substrat isolant (11 ) et reliée par sa première extrémité (8) au premier ruban (3) et par sa seconde extrémité (8') au second ruban (4).4. Antenna according to claim 2, characterized in that the first (3) and second (4) tapes rest on an insulating substrate (1 1) to form a printed circuit and that the inductance (6) is a narrow track printed on said insulating substrate (11) and connected by its first end (8) to the first ribbon (3) and by its second end (8 ') to the second ribbon (4).
5 Antenne selon la revendication 4, caractérisée par le fait que le condensateur (7, 7") comporte une première armature (12, 12') imprimée sur le substrat isolant (11 ) et reliée au premier ruban (3) et une seconde armature (13, 13') imprimée sur le substrat isolant (1 1 ) et reliée au second ruban (4), chacune de ces première et seconde armatures présentant la forme d'un peigne dont les dents s'interpénétrent sans se toucher 6 Antenne selon la revendication 4, caractérisée par le fait que le condensateur (7, 7') est un composant discret présentant des première (14, 14') et seconde (15, 15') bornes soudées respectivement sur les premier (3) et second (4) rubans5 antenna according to claim 4, characterized in that the capacitor (7, 7 ") has a first armature (12, 12 ') printed on the insulating substrate (11) and connected to the first tape (3) and a second frame (13, 13 ') printed on the insulating substrate (1 1) and connected to the second tape (4), each of these first and second frames having the shape of a comb, the teeth of which interpenetrate without touching each other 6 An antenna according to claim 4, characterized in that the capacitor (7, 7 ') is a discrete component having first (14, 14') and second ( 15, 15 ') terminals welded respectively on the first (3) and second (4) tapes
7 Antenne selon la revendication 4, caractérisée par le fait que le condensateur (7, 7') comporte la mise en série de premier (16, 6') et second (17, 17') condensateurs comprenant chacun une armature commune (18, 18') imprimée sous le substrat isolant (1 1 ), cette armature commune s'étendant partiellement, d'une part sous le premier ruban (3) pour former le premier condensateur (16, 16') et d'autre part sous le second ruban (4) pour former le second condensateur (17, 17'), ledit substrat isolant (1 1 ) servant de diélectrique à chacun desdits premier et second condensateurs7 antenna according to claim 4, characterized in that the capacitor (7, 7 ') comprises the placing in series of first (16, 6') and second (17, 17 ') capacitors each comprising a common frame (18, 18 ') printed under the insulating substrate (1 1), this common frame partially extending, on the one hand under the first ribbon (3) to form the first capacitor (16, 16') and on the other hand under the second strip (4) to form the second capacitor (17, 17 '), said insulating substrate (1 1) serving as a dielectric for each of said first and second capacitors
8 Antenne selon les revendications 3 ou 4, caractérisée par le fait que les premier (3) et second (4) rubans sont disposés à une distance déterminée (A) d'un plan (19) de masse, la partie initiale (20) du premier ruban (3) étant court-circuitée a ce plan de masse (19) et la partie finale (21 ) du second ruban (4) étant laissée libre8 antenna according to claims 3 or 4, characterized in that the first (3) and second (4) ribbons are arranged at a determined distance (A) from a ground plane (19), the initial part (20) of the first ribbon (3) being short-circuited to this ground plane (19) and the final part (21) of the second ribbon (4) being left free
9 Antenne selon la revendication 1 , caractérisée par le fait que l'inductance (6) et le condensateur (7) sont connectés en série, la valeur de chacun de ces composants étant choisie pour présenter une fréquence de résonance (fr) substantiellement égale à la fréquence basse (fb) de fonctionnement de l'antenne 10 Antenne selon la revendication 9, caractérisée par le fait que les premier9 antenna according to claim 1, characterized in that the inductor (6) and the capacitor (7) are connected in series, the value of each of these components being chosen to have a substantially equal resonance frequency (f r ) at the low operating frequency (f b ) of the antenna 10 Antenna according to claim 9, characterized in that the first
(3) et second (4) rubans reposent sur un substrat isolant (11 ) pour former un circuit imprimé et que l'inductance (6) est une piste étroite imprimée sur ledit substrat isolant (1 1 ) et reliée par sa première extrémité (8) au premier ruban (3) et par sa seconde extrémité (8') à une première armature (12) d'un condensateur (7) dont la seconde armature (13) est reliée au second ruban (4), chacune desdites premières et seconde armatures étant imprimée sur le substrat isolant, lesdites première et seconde armatures présentant la forme d'un peigne dont les dents s 'interpénètrent sans se toucher (3) and second (4) ribbons rest on an insulating substrate (11) to form a printed circuit and that the inductor (6) is a narrow track printed on said insulating substrate (1 1) and connected by its first end ( 8) to the first ribbon (3) and by its second end (8 ') to a first armature (12) of a capacitor (7) whose second armature (13) is connected to the second ribbon (4), each of said first and second frames being printed on the insulating substrate, said first and second frames having the shape of a comb whose teeth interpenetrate without touching
EP01905562A 2000-03-15 2001-02-23 Multifrequency antenna for instrument with small volume Expired - Lifetime EP1266425B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01905562A EP1266425B1 (en) 2000-03-15 2001-02-23 Multifrequency antenna for instrument with small volume

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00200934 2000-03-15
EP00200934 2000-03-15
EP01905562A EP1266425B1 (en) 2000-03-15 2001-02-23 Multifrequency antenna for instrument with small volume
PCT/CH2001/000119 WO2001069716A1 (en) 2000-03-15 2001-02-23 Multifrequency antenna for instrument with small volume

Publications (2)

Publication Number Publication Date
EP1266425A1 true EP1266425A1 (en) 2002-12-18
EP1266425B1 EP1266425B1 (en) 2003-12-03

Family

ID=8171202

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01905562A Expired - Lifetime EP1266425B1 (en) 2000-03-15 2001-02-23 Multifrequency antenna for instrument with small volume

Country Status (6)

Country Link
US (1) US6642895B2 (en)
EP (1) EP1266425B1 (en)
JP (1) JP2003527015A (en)
CN (1) CN1225057C (en)
DE (1) DE60101378T2 (en)
WO (1) WO2001069716A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046204B2 (en) 2002-10-09 2006-05-16 Matsushita Electric Industrial Co., Ltd. Communication terminal
US7158083B2 (en) 2002-10-09 2007-01-02 Matsushita Electric Industrial Co., Ltd. Communication terminal

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0104308D0 (en) * 2001-12-19 2001-12-19 Nikolai Roshchupkin Antenna for mobile phone and other radio equipment
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US9793523B2 (en) * 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US8404376B2 (en) * 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
AU2002952142A0 (en) * 2002-10-17 2002-10-31 Rf Industries Pty Ltd Broad band antenna
TW566680U (en) * 2003-05-27 2003-12-11 Quanta Comp Inc Ring and line combined antenna
JP2005252366A (en) * 2004-03-01 2005-09-15 Sony Corp Inverted-f antenna
DE102005008195A1 (en) * 2005-02-23 2006-08-24 Atmel Germany Gmbh RF arrangement
JP4815432B2 (en) * 2005-02-23 2011-11-16 パナソニック株式会社 Antenna device and portable radio
US20060202835A1 (en) * 2005-02-25 2006-09-14 Osborne Industries, Inc. Dual frequency identification device
KR100788676B1 (en) * 2005-12-21 2007-12-26 삼성전자주식회사 Antenna unit, method for controlling the same and mobile terminal including the same
US8839488B2 (en) * 2006-06-20 2014-09-23 Hardware Resources, Inc. Adjustable hinge
JP4661776B2 (en) * 2006-12-22 2011-03-30 株式会社村田製作所 Antenna structure and wireless communication apparatus including the same
EP2143171A1 (en) * 2007-03-23 2010-01-13 QUALCOMM Incorporated Antenna including first and second radiating elements having substantially the same characteristic features
US7653967B2 (en) * 2007-05-04 2010-02-02 Hardware Resources, Inc. Compact adjustable hinge
US8855343B2 (en) * 2007-11-27 2014-10-07 Personics Holdings, LLC. Method and device to maintain audio content level reproduction
KR20150128817A (en) 2007-12-21 2015-11-18 사푸라스트 리써치 엘엘씨 Method for sputter targets for electrolyte films
JP4613950B2 (en) * 2007-12-27 2011-01-19 カシオ計算機株式会社 Planar monopole antenna and electronic equipment
WO2009089417A1 (en) 2008-01-11 2009-07-16 Infinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
JP5595377B2 (en) 2008-04-02 2014-09-24 インフィニット パワー ソリューションズ, インコーポレイテッド Control and protection of passive over and under voltage for energy storage devices associated with energy intake
JP5135098B2 (en) * 2008-07-18 2013-01-30 パナソニック株式会社 Wireless communication device
CN102144334B (en) * 2008-08-05 2014-02-19 株式会社村田制作所 Antenna and wireless communication machine
JP2012500610A (en) 2008-08-11 2012-01-05 インフィニット パワー ソリューションズ, インコーポレイテッド Energy device with integrated collector surface and method for electromagnetic energy acquisition
JP5650646B2 (en) * 2008-09-12 2015-01-07 インフィニット パワー ソリューションズ, インコーポレイテッド Energy device with integral conductive surface for data communication via electromagnetic energy and method for data communication via electromagnetic energy
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
EP2345145B1 (en) * 2008-10-08 2016-05-25 Sapurast Research LLC Foot-powered footwear-embedded sensor-transceiver
US8416138B2 (en) * 2008-12-29 2013-04-09 Calamp Corp. Multiband antenna including antenna elements connected by a choking circuit
US20100207832A1 (en) * 2009-02-17 2010-08-19 Sony Ericsson Mobile Communications Ab Antenna arrangement, printed circuit board, portable electronic device & conversion kit
JP2012527737A (en) * 2009-05-20 2012-11-08 インフィニット パワー ソリューションズ, インコーポレイテッド Method for integrating an electrochemical device in and on a fixture
JP5492998B2 (en) 2009-09-01 2014-05-14 インフィニット パワー ソリューションズ, インコーポレイテッド Printed circuit board with built-in thin film battery
JP2013528912A (en) 2010-06-07 2013-07-11 インフィニット パワー ソリューションズ, インコーポレイテッド Rechargeable high density electrochemical device
JP5724313B2 (en) 2010-11-16 2015-05-27 セイコーエプソン株式会社 Wireless communication device
JP2014523163A (en) * 2011-06-23 2014-09-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Electrically small vertical split ring resonator antenna
US9786987B2 (en) * 2012-09-14 2017-10-10 Panasonic Intellectual Property Management Co., Ltd. Small antenna apparatus operable in multiple frequency bands
TW201526389A (en) * 2013-12-31 2015-07-01 Acer Inc Wireless communication device
US10693218B2 (en) 2014-07-01 2020-06-23 Microsoft Technology Licensing, Llc Structural tank integrated into an electronic device case
TWI553954B (en) * 2014-07-29 2016-10-11 鴻海精密工業股份有限公司 Portable electronic device
US9525201B2 (en) 2014-10-27 2016-12-20 Nokia Technologies Oy Hinge that serves as a radiator
WO2019123286A1 (en) * 2017-12-21 2019-06-27 Cochlear Limited Antenna for wireless communications integrated in electronic device
CN108400427B (en) * 2018-01-25 2020-12-22 瑞声科技(新加坡)有限公司 Antenna system
WO2019198666A1 (en) * 2018-04-12 2019-10-17 パナソニックIpマネジメント株式会社 Antenna device
CN112787061A (en) * 2020-12-31 2021-05-11 京信通信技术(广州)有限公司 Coupling structure, resonance structure, low-frequency radiation unit, antenna and electromagnetic boundary
TWI793867B (en) * 2021-11-19 2023-02-21 啓碁科技股份有限公司 Communication device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2282292A (en) 1937-07-10 1942-05-05 Ernest V Amy All wave radio receiving system
US5450091A (en) * 1988-08-05 1995-09-12 Seiko Epson Corporation Variable size antenna device having resonance frequency compensation
US5128686A (en) * 1989-01-23 1992-07-07 Motorola, Inc. Reactance buffered loop antenna and method for making the same
EP0470797A3 (en) * 1990-08-10 1992-05-13 Matsushita Electric Industrial Co., Ltd Antenna apparatus
US5280645A (en) * 1991-05-24 1994-01-18 Motorola, Inc. Adjustable wristband loop antenna
US5659325A (en) * 1994-12-02 1997-08-19 Harris Corporation Low impedance loop antenna and drive circuitry
FR2739200B1 (en) 1995-09-26 1997-10-31 Asulab Sa WATCHMAKING PIECE WITH AN ANTENNA
FI104662B (en) * 1997-04-11 2000-04-14 Nokia Mobile Phones Ltd Antenna arrangement for small radio communication devices
JPH11239020A (en) * 1997-04-18 1999-08-31 Murata Mfg Co Ltd Circular polarizing antenna and radio device using same
AU8365998A (en) * 1997-07-09 1999-02-08 Allgon Ab Trap microstrip pifa
US6304230B1 (en) * 1999-11-04 2001-10-16 Sigem Multiple coupled resonant loop antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0169716A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046204B2 (en) 2002-10-09 2006-05-16 Matsushita Electric Industrial Co., Ltd. Communication terminal
US7158083B2 (en) 2002-10-09 2007-01-02 Matsushita Electric Industrial Co., Ltd. Communication terminal

Also Published As

Publication number Publication date
WO2001069716A1 (en) 2001-09-20
CN1225057C (en) 2005-10-26
US6642895B2 (en) 2003-11-04
EP1266425B1 (en) 2003-12-03
DE60101378D1 (en) 2004-01-15
JP2003527015A (en) 2003-09-09
CN1418389A (en) 2003-05-14
DE60101378T2 (en) 2004-10-14
US20030030589A1 (en) 2003-02-13

Similar Documents

Publication Publication Date Title
EP1266425B1 (en) Multifrequency antenna for instrument with small volume
EP3669422B1 (en) Patch antenna having two different radiation modes with two separate working frequencies, device using such an antenna
EP0954055B1 (en) Dual-frequency radiocommunication antenna realised according to microstrip technique
FR2654554A1 (en) ANTENNA IN PROPELLER, QUADRIFILAIRE, RESONANT BICOUCHE.
FR2772517A1 (en) MULTI-FREQUENCY ANTENNA MADE ACCORDING TO MICRO-TAPE TECHNIQUE AND DEVICE INCLUDING THIS ANTENNA
WO2005036697A1 (en) Low volume internal antenna
EP0649181A1 (en) Antenna for portable radio apparatus, method for manufacturing the same and portable radio apparatus comprising the same
WO2004093250A1 (en) Radiating slit antenna system
EP1897170A1 (en) Electronic entity having a magnetic antenna
EP1589608A1 (en) Compact RF antenna
EP1241733A1 (en) PIFA antenna with slots
WO1995007557A1 (en) Monopolar wire-plate antenna
WO2002054538A1 (en) Multiband antenna for mobile appliances
WO2000014825A9 (en) Antenna
US20120154236A1 (en) Multiband whip antenna
EP2095465A1 (en) Mono- or multi-frequency antenna
EP2143168A1 (en) Mixed antenna
CH694625A5 (en) Multi-frequency antenna for portable instrument of small volume, particularly a telephone fitted in a watch capable of transmitting and receiving radio messages, has components capable of operating at high and low frequencies
EP3605734B1 (en) Antenna device comprising at least two antennas and electrical connection on a same substrate
FR2967537A1 (en) Antenna i.e. planar Inverted-F slot antenna, for e.g. mobile telephone to receive TV channels during live telecasting of sports events, has adaptation element realizing inductive impedance adaptation if antenna is capacitive type antenna
EP1667281A1 (en) Mobile communication terminal
EP0578561B1 (en) Receiver with internal ferrite antenna
FR2949611A1 (en) SELF-DIRECTIVE CIRCULAR POLARIZATION ANTENNA
FR2816114A1 (en) MULTIBAND ANTENNA
EP4203189A1 (en) Monopole plated wire antenna with expanded bandwidth

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZUERCHER, JEAN-FRANCOIS

Inventor name: SKRIVERVIK, ANJA

Inventor name: STAUB, OLIVIER

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20031203

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60101378

Country of ref document: DE

Date of ref document: 20040115

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040315

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20031203

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130408

Year of fee payment: 13

Ref country code: GB

Payment date: 20130129

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140122

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140223

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60101378

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901