EP1265198B1 - Vorrichtung und Verfahren zur Untersuchung von Dokumenten - Google Patents

Vorrichtung und Verfahren zur Untersuchung von Dokumenten Download PDF

Info

Publication number
EP1265198B1
EP1265198B1 EP02008257.4A EP02008257A EP1265198B1 EP 1265198 B1 EP1265198 B1 EP 1265198B1 EP 02008257 A EP02008257 A EP 02008257A EP 1265198 B1 EP1265198 B1 EP 1265198B1
Authority
EP
European Patent Office
Prior art keywords
detector
luminescence light
light
document
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02008257.4A
Other languages
English (en)
French (fr)
Other versions
EP1265198A2 (de
EP1265198A3 (de
Inventor
Thomas Dr. Giering
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient Currency Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient Currency Technology GmbH filed Critical Giesecke and Devrient Currency Technology GmbH
Publication of EP1265198A2 publication Critical patent/EP1265198A2/de
Publication of EP1265198A3 publication Critical patent/EP1265198A3/de
Application granted granted Critical
Publication of EP1265198B1 publication Critical patent/EP1265198B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties

Definitions

  • the invention relates to a device for examining documents, in particular value, identity or security documents, with at least one excitation device for excitation of luminescent light in or on a document to be examined and at least two detector units for detecting at least a portion of the emitted from the document luminescence.
  • the invention also relates to a corresponding method.
  • identity, security or value documents such as Banknotes
  • suitable security inks containing luminescent substances are substances which are e.g. be excited by light, electric fields, radiation or sound to emit light.
  • the documents to be checked are usually irradiated with light of a specific spectral range and the luminescent light emitted by the luminescent substances of the document is detected. Based on the intensity and / or spectral characteristics of the emitted luminescent light can then be determined whether the document is genuine or fake.
  • the reliability of statements about the authenticity of the tested documents is particularly dependent on the accuracy with which the spectral characteristic, ie the color of the luminescence is analyzed.
  • Such an analysis can be done for example by spectrometers, which, however, require a relatively high technical complexity and high production costs.
  • a simpler solution therefore represent individual detector units, such as photodiodes or photomultipliers, with different spectral sensitivity. Depending on the spectral characteristics of the luminescence, the detector units provide different Detector signals, which can then be used for the spectral analysis of the luminescence.
  • a detector is known in which the detection beam path is guided by means of beam splitters on three detectors with different spectral sensitivity, which is achieved by different color filters.
  • devices of this type have the disadvantage that the luminescence light respectively detected by the individual detector units generally does not originate from exactly the same spatial subarea of the document due to parallax errors. This makes it impossible to reliably assess the color properties of the luminescent light emanating from a subregion of the document. This is disadvantageous in particular if partial regions with small dimensions are to be examined for their luminescence properties, since even slight parallax errors can lead to particularly great inaccuracies in the spectral analysis of the luminescent light.
  • a photodetector in which various detector units are integrated on the same substrate and arranged one behind the other, the spectral sensitivity of which is based on different levels of penetration of the light as a function of its wavelength.
  • the disadvantage here is that the position of the pn junctions must be selected at a certain depth in the substrate and that one is spectrally limited to the sensitivity range of a single semiconductor material (silicon).
  • WO01 / 61654 A2 a device for the examination of value documents known in which two photodiodes with different Absorbent edge can be used to detect remission or transmission light of a value document. These photodiodes of different absorption edge are arranged one behind the other but not integrated on the same component.
  • the invention is based on the idea that the detector units are arranged one behind another with respect to the direction of the luminescent light emitted by the document and striking the detector units. As a result, the luminescence light strikes one after the other on the successively arranged detector units and is thereby detected by them.
  • the inventive arrangement of the detector units ensures that all detector units arranged directly behind one another can detect the luminescence light emitted by a common spatial subarea of the document. Any parallax errors that would occur in a laterally staggered arrangement of detector units are greatly reduced by the inventive arrangement of the detector units in a row. Statements about the luminescence properties of the document can then be derived with high reliability from the spectral components of the luminescence light detected by the individual detector units.
  • At least one first detector unit is permeable to that spectral subregion of the luminescence light which is to be detected by at least one second detector unit arranged behind the first detector unit.
  • a first spectral subregion of the luminescent light is then detected by the first detector unit, while a second spectral subregion of the luminescence light can pass through the first detector unit and is detected by the second detector unit arranged behind it.
  • the first detector unit acts as an optical filter in front of the second detector unit located behind it. For certain applications, therefore, it is usually possible to dispense with additional optical filters.
  • the detector units are preferably photodiodes, which are arranged one above the other in layers and in this case form a so-called sandwich diode. As a result, a very compact arrangement of the detector units is achieved.
  • the detector units may also be elements which emit light by means of other physical detection principles, e.g. can detect by means of avalanche effect.
  • the individual detector units are integrated on a common component, in particular a semiconductor component, which comprises at least two photosensitive layers, in particular pn junctions, wherein each layer, in particular each pn junction, each corresponds to a detector unit. Due to the small distance between the detector units, a particularly strong reduction of parallax errors is achieved in this embodiment.
  • the photodiodes or pn junctions preferably have different absorption edges, wherein the absorption edge of at least one first photodiode or of a first pn junction lies at smaller wavelengths than the absorption edge of at least one second photodiode arranged behind the first photodiode or one behind the first pn junction. Transition arranged second pn junction.
  • a particularly simple and reliable derivation of statements about the spectral properties of the detected luminescence light from the detector signals generated by the individual detector units can be carried out on the basis of a division of two detector signals and / or the difference of two logarithmic detector signals.
  • Fig. 1 shows a preferred construction of the device according to the invention.
  • a document to be examined in the example shown a banknote 10, is transported past the sensor system 7 by means of a transport device indicated by transport rollers 40 and transport belts 41.
  • the banknote 10 is irradiated with the excitation light 15 of the light sources 12.
  • the light sources 12 are, for example, fluorescent tubes, incandescent lamps, lasers or LEDs which in each case emit light which is suitable for exciting luminescent light in or on the banknote 10.
  • the excitation light 15 is ultraviolet (UV) light.
  • UV ultraviolet
  • filters can be arranged in front of the light sources 12.
  • the excitation of luminescent light 16 in or on the document is effected by the light 15 of the light sources 12.
  • a corresponding luminescence phenomenon is therefore referred to as photoluminescence.
  • other types of luminescence phenomena such as electromagnetic or electric fields, radiation or sound, may also be used.
  • Electro-, radio- or sonoluminescence are excited in or on the document.
  • the excitation is effected by appropriate excitation means, e.g. electrical contacts or field plates, radiation sources for cathode, ion or X-rays, ultrasound sources or antennas.
  • the excitation light 15 emitted by the respective light sources 12 lies at different wavelengths or wavelength ranges.
  • the luminescent light 16 excited at different wavelengths or wavelength ranges permits even more precise statements about the luminescence properties of the banknote 10.
  • the FIG. 1 initially illuminated with only one light source 12, then detect the two detector units 1 and 2, a first intensity value pair. Upon subsequent illumination with the other light source 12, a second intensity value pair is generated. With simultaneous illumination with both light sources 12, a third intensity value pair is finally obtained.
  • a particularly accurate investigation of the luminescence properties of the banknote 10 under investigation is achieved.
  • the device or the method according to the invention is equally suitable for the examination of phosphorescence and fluorescent light.
  • the luminescent light 16 excited in or on the banknote 10 is emitted by the banknote 10 and impinges on two detector units 1 and 2, which according to the invention are arranged one behind the other in such a way that the luminescent light 16 emanating from the banknote 10 is successively applied to the individual detector units 1 and 2, respectively meets and can be detected by them.
  • the two detector units 1 and 2 each have different spectral sensitivities, so that in each case a different spectral component of the luminescent light 16 is detected. Accordingly, the detector signals S generated by the detector units 1 and 2 differ, which are supplied to an evaluation device 9 for evaluation and analysis.
  • an optical device 13 which directs the luminescent light 16 emitted by the banknote 10 onto the detector units 1 and 2, in particular focused.
  • This is preferably an imaging optic which images a subarea 11 of the banknote 10 onto the detector units 1 and 2.
  • Self-focusing lenses so-called Selfoc lenses, are preferably used for this purpose.
  • Self-focusing lenses are cylindrical optical elements made of a material which has a refractive index decreasing from the optical axis of the cylinder towards its cladding.
  • a filter 14 is arranged in this example, which filter is permeable to those spectral subregions of the luminescent light 16 which are to be detected by the detection units 1 and 2.
  • a first embodiment of the inventively arranged detector units is shown.
  • the individual detector units are formed as photodiodes 1 and 2, respectively, and arranged one behind the other with respect to the direction of the luminescent light 16 emitted by the document.
  • the individual photodiodes 1 and 2 each have a pn junction 3/4 or 5/6 between in each case a p-doped 3 or 5 and an n-doped 4 or 6 semiconductor layer.
  • the doping profile is here shown greatly simplified and generally does not reflect the actual size ratios of the layer thicknesses.
  • Spacers 8 are provided between the photodiodes 1 and 2 in order to avoid electrical short circuits.
  • the height of the spacers 8 should not be too large and be about the same order of magnitude as the height of the photodiodes 1 and 2.
  • a filter 14 may be arranged in front of the photodiode 1.
  • FIG. 3a shows a device 20 on which the detector units 1 and 2 are integrated together, wherein the device 20 has two PN junctions 22/21 and 23/21, respectively, which correspond to a detector unit 1 and 2 respectively.
  • the n-doped semiconductor layer 21 forms the substrate on which the two pn junctions 22/21 and 23/21 are applied in layers.
  • the doping profile is here also shown greatly simplified and generally does not reflect the actual size ratios of the layer thicknesses.
  • voltages are tapped with suitable terminals 17 and forwarded as detector signals S to an evaluation unit (not shown).
  • FIG. 3b shows a variant of the second embodiment of the inventive arrangement.
  • the illustrated device 30 comprises two layered pn junctions 32/33 and 34/33, which are applied to a common substrate 31.
  • the substrate 31 itself may be a semiconductor or ceramic substrate.
  • the explanations apply to FIG. 3a analogous.
  • Detector units 1 and 2 shown are selected so that the first detector unit 1 is permeable to that spectral portion of the luminescent light 16, which is to be detected with the disposed behind the first detector unit 1 second detector unit 2.
  • the detector units 1 and 2 designed in particular as photodiodes or pn junctions in this case have different absorption edges, wherein the absorption edge of the first photodiode 1 or the first pn junction 3/4, 32/33 and 22/21 at smaller wavelengths lies as the second absorption edge of the arranged behind the first photodiode 1 and the first pn junction 3 / 4,32 / 33 and 22/21 second photodiode 2 and the second pn junction 5/6, 34/33 and 23rd / 21st
  • the respective pn junctions 3/4 or 5/6 are preferably realized on different semiconductor materials.
  • a photodiode based on silicon (Si) is used for the first detector unit 1 and a photodiode based on germanium (Ge) is used for the second detector unit 2.
  • Si silicon
  • Ge germanium
  • Wavelengths below about one micrometer can then be detected by the silicon-based photodiode 1, while wavelengths above about one micrometer can pass through this photodiode 1 and be detected by the germanium-based photodiode 2 located behind it.
  • photodiodes based on silicon and indium gallium arsenide (InGaAs) or silicon and lead sulfide (PbS) can be combined to detect the luminescent light 16 in two different spectral subregions.
  • InGaAs indium gallium arsenide
  • PbS lead sulfide
  • the combination of several corresponding photodiodes is possible, for.
  • silicon indium gallium arsenide and lead sulfide.
  • the different permeability or sensitivity of the detector units 1 and 2 is achieved by the selection of suitable semiconductor materials and / or a corresponding doping of the respective material.
  • a corresponding component 20 or 30 can be realized for example on the basis of silicon, wherein the first pn junction 22/21 or 32/33 by a lower penetration depth for short-wave Light is particularly sensitive.
  • long-wave light can penetrate deeper into the layer system and be detected by the second pn junction 23/21 or 34/33, which is more sensitive in the long-wave spectral range.
  • FIG. 4 shows an example of different spectral sensitivities E in the FIGS. 2 and 3
  • the spectral sensitivity E1 of the first detector unit 1 is greatest in the region of short wavelengths ⁇
  • the spectral sensitivity E2 of the second detector unit 2 arranged behind the first detector unit 1 at longer wavelengths ⁇ reached its maximum.
  • the respective spectral transmittances of the detector units 1 and 2 are complementary thereto.
  • the spectral transmittance of the detector unit 1 is therefore greatest at higher wavelengths ⁇ , so that the luminescent light can penetrate the detector unit 1 in this subregion of the spectrum and finally from the detector unit 2 can be detected.
  • FIG. 5 shows a circuit diagram in the FIGS. 3a or 3b illustrated second embodiments.
  • the detector units 1 and 2, ie the corresponding pn junctions 22/21 and 23/21 and 32/33 and 34/33, of the device 20 and 30 are shown as oppositely connected in series photodiodes whose cathodes at a common potential 18 lie.
  • the signals S1 and S2 are fed to an evaluation device 9 via the anode outputs 19 of the photodiodes.
  • the signals S1 and S2 are logarithmically amplified in each case in a logarithmic amplifier 28 and then applied to a differential amplifier 29.
  • the output voltage Ua of the differential amplifier 29 is proportional to the logarithm of the quotient of the two detector signals S2 / S1 and thus independent of the absolute intensity of the luminescence light 16. Statements can then be made from the output voltage Ua via the spectral properties, in particular the color, of the detected luminescent light 16 are derived with particularly high reliability.
  • the spectral properties of the luminescent light 16, in particular the wavelength, e.g. the central wavelength, and / or the wavelength range and / or the color, according to the invention not only in the visible spectral range, but also in invisible spectral ranges, such. in the infrared or ultraviolet, can be detected and analyzed.

Description

  • Die Erfindung betrifft eine Vorrichtung zur Untersuchung von Dokumenten, insbesondere Wert-, Ausweis- oder Sicherheitsdokumenten, mit mindestens einer Anregungseinrichtung zur Anregung von Lumineszenzlicht in oder auf einem zu untersuchenden Dokument und mindestens zwei Detektoreinheiten zur Erfassung zumindest eines Teils des von dem Dokument emittierten Lumineszenzlichts. Die Erfindung betrifft darüber hinaus ein entsprechendes Verfahren.
  • Zur Erhöhung der Fälschungssicherheit werden Ausweis-, Sicherheits- oder Wertdokumente, wie z.B. Banknoten, mit Merkmalen versehen oder mit geeigneten Sicherheitsdruckfarben bedruckt, welche lumineszierende Substanzen enthalten. Dies sind Substanzen, die z.B. durch Licht, elektrische Felder, Strahlung oder Schall zur Emission von Licht angeregt werden können. Bei der Echtheitsprüfung werden die zu überprüfenden Dokumente meist mit Licht eines bestimmten Spektralbereichs bestrahlt und das von den lumineszierenden Substanzen des Dokuments emittierte Lumineszenzlicht detektiert. Anhand der Intensität und/oder spektralen Charakteristik des emittierten Lumineszenzlichts kann dann festgestellt werden, ob das Dokument echt oder gefälscht ist.
  • Die Zuverlässigkeit von Aussagen über die Echtheit der geprüften Dokumente ist hierbei im besonderen Maße von der Genauigkeit abhängig, mit welcher die spektrale Charakteristik, d.h. die Farbe, des Lumineszenzlichts analysiert wird. Eine solche Analyse kann beispielsweise durch Spektrometer erfolgen, welche jedoch einen relativ hohen technischen Aufwand sowie hohe Herstellungskosten erfordern. Eine einfachere Lösung stellen daher einzelne Detektoreinheiten, wie z.B. Photodioden oder Photomultiplier, mit unterschiedlicher spektraler Empfindlichkeit dar. Je nach spektraler Charakteristik des Lumineszenzlichts liefern die Detektoreinheiten unterschiedliche Detektorsignale, welche dann für die spektrale Analyse des Lumineszenzlicht herangezogen werden können.
  • Aus der EP0083062 A2 ist ein Detektor bekannt, bei der Detektionsstrahlengang mit Hilfe von Strahlteilern auf drei Detektoren mit verschiedener spektraler Empfindlichkeit geleitet wird, die durch unterschiedliche Farbfilter erreicht wird.
  • Vorrichtungen dieser Art haben jedoch den Nachteil, daß das von den einzelnen Detektoreinheiten jeweils erfaßte Lumineszenzlicht aufgrund von Parallaxenfehlern im allgemeinen nicht von exakt demselben räumlichen Teilbereich des Dokuments stammt. Hierdurch wird eine zuverlässige Beurteilung der Farbeigenschaften des von einem Teilbereich des Dokuments ausgehenden Lumineszenzlichts unmöglich. Dies ist insbesondere dann von Nachteil, wenn Teilbereiche mit kleinen Ausdehnungen auf ihre Lumineszenzeigenschaften hin untersucht werden sollen, da hier bereits geringfügige Parallaxenfehler zu besonders großen Ungenauigkeiten bei der spektralen Analyse des Lumineszenzlichts führen können.
  • Desweiteren ist aus der US5965875 A ein Photodetektor bekannt, bei dem verschiedene Detektoreinheiten auf demselben Substrat integriert sind und hintereinander angeordnet sind, wobei deren spektrale Empfindlichkeit durch verschieden große Eindringtiefe des Lichts in Abhängigkeit von dessen Wellenlänge beruht. Nachteilig ist dabei, dass Lage der p-n-Übergänge in einer bestimmten Tiefe im Substrat gewählt werden muss und dass man spektral auf den Empfindlichkeitsbereich eines einzigen Halbleitermaterials (Silizium) beschränkt ist.
  • Ferner ist aus der WO01/61654 A2 eine Vorrichtung zur Untersuchung von Wertdokumenten bekannt, bei dem zwei Photodioden mit unterschiedlicher Absorptionskante zur Detektion von Remissions- oder Transmissionslicht eines Wertdokuments verwendet werden. Diese Photodioden unterschiedlicher Absorptionskante sind hintereinander angeordnet, aber nicht auf demselben Bauelement integriert.
  • Es ist Aufgabe der Erfindung, eine Vorrichtung sowie ein entsprechendes Verfahren anzugeben, welche bei einfachem Aufbau eine höhere Zuverlässigkeit bei der Untersuchung der Lumineszenzeigenschaften von Dokumenten, insbesondere Wert-, Ausweis- oder Sicherheitsdokumenten, erlauben.
  • Diese Aufgabe wird durch die Vorrichtung gemäß Anspruch 1 sowie das Verfahren gemäß Anspruch 16 gelöst. Die Erfindung basiert auf dem Gedanken, daß die Detektoreinheiten bezogen auf die Richtung des von dem Dokument emittierten und auf die Detektoreinheiten treffenden Lumineszenzlichts hintereinander angeordnet sind. Hierdurch trifft das Lumineszenzlicht nacheinander auf die hintereinander angeordneten Detektoreinheiten und wird hierbei von diesen erfaßt.
  • Durch die erfindungsgemäße Anordnung der Detektoreinheiten wird erreicht, daß alle direkt hintereinander angeordneten Detektoreinheiten das von einem gemeinsamen räumlichen Teilbereich des Dokuments emittierte Lumineszenzlicht erfassen können. Etwaige Parallaxenfehler, die bei einer seitlich versetzten Anordnung von Detektoreinheiten auftreten würden, werden durch die erfindungsgemäße Anordnung der Detektoreinheiten hintereinander stark reduziert. Aus den von den einzelnen Detektoreinheiten erfaßten spektralen Anteilen des Lumineszenzlichts können dann Aussagen über die Lumineszenzeigenschaften des Dokumentes mit hoher Zuverlässigkeit abgeleitet werden.
  • In einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, daß mindestens eine erste Detektoreinheit für denjenigen spektralen Teilbereich des Lumineszenzlichts durchlässig ist, welcher mit mindestens einer hinter der ersten Detektoreinheit angeordneten zweiten Detektoreinheit erfaßt werden soll. Von der ersten Detektoreinheit wird dann ein erster spektraler Teilbereich des Lumineszenzlichts erfaßt, während ein zweiter spektraler Teilbereich des Lumineszenzlichts die erste Detektoreinheit durchlaufen kann und von der dahinter angeordneten zweiten Detektoreinheit erfaßt wird. Die erste Detektoreinheit wirkt hierbei wie ein optisches Filter vor der dahinter liegenden zweiten Detektoreinheit. Bei bestimmten Anwendungen kann daher meist auf zusätzliche optische Filter verzichtet werden.
  • Bei den Detektoreinheiten handelt es sich vorzugsweise um Photodioden, welche schichtweise übereinander angeordnet sind und hierbei eine sog. Sandwich-Diode bilden. Hierdurch wird eine sehr kompakte Anordnung der Detektoreinheiten erreicht.
  • Prinzipiell kann es sich bei den Detektoreinheiten auch um Elemente handeln, welche Licht mittels anderer physikalischer Detektionsprinzipien, z.B. mittels Avalanche-Effekt, detektieren können.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, daß die einzelnen Detektoreinheiten auf einem gemeinsamen Bauelement, insbesondere Halbleiter-Bauelement, integriert sind, welches mindestens zwei photoempfindliche Schichten, insbesondere p-n-Übergänge, umfaßt, wobei jeder Schicht, insbesondere jedem p-n-Übergang, jeweils eine Detektoreinheit entspricht. Durch den geringen Abstand zwischen den Detektoreinheiten wird bei dieser Ausführungsform eine besonders starke Reduzierung von Parallaxenfehlern erreicht.
  • Die Photodioden bzw. p-n-Übergänge besitzen vorzugsweise unterschiedliche Absorptionskanten, wobei die Absorptionskante mindestens einer ersten Photodiode bzw. eines ersten p-n-Übergangs bei kleineren Wellenlängen liegt als die Absorptionskante mindestens einer hinter der ersten Photodiode angeordneten zweiten Photodiode bzw. eines hinter dem ersten p-n-Übergang angeordneten zweiten p-n-Übergangs.
  • Eine besonders einfache und zuverlässige Ableitung von Aussagen über die spektralen Eigenschaften des erfaßten Lumineszenzlichts aus den von den einzelnen Detektoreinheiten erzeugten Detektorsignalen kann auf der Basis einer Division von zwei Detektorsignalen und/oder der Differenz von zwei logarithmierten Detektorsignalen erfolgen.
  • Die Erfindung wird nachfolgend anhand von in Figuren dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
  • Fig. 1
    einen bevorzugten Aufbau der erfindungsgemäßen Vorrichtung;
    Fig. 2
    eine erste Ausführungsform der erfindungsgemäß angeordneten Detektoreinheiten;
    Fig. 3
    a) und b) jeweils eine zweite Ausführungsform der erfindungsgemäß angeordneten Detektoreinheiten;
    Fig. 4
    Beispiele für spektrale Empfindlichkeiten der in Fig. 2 bzw. Fig. 3 dargestellten Detektoreinheiten; und
    Fig. 5
    ein Schaltbild der in Fig. 3 dargestellten zweiten Ausführungsform der erfindungsgemäß angeordneten Detektoreinheiten.
  • Fig. 1 zeigt einen bevorzugten Aufbau der erfindungsgemäßen Vorrichtung. Ein zu untersuchendes Dokument, im gezeigten Beispiel eine Banknote 10, wird mittels einer durch Transportrollen 40 und Transportriemen 41 angedeuteten Transporteinrichtung am Sensorsystem 7 vorbei transportiert. Hierbei wird die Banknote 10 mit dem Anregungslicht 15 der Lichtquellen 12 bestrahlt. Bei den Lichtquellen 12 handelt es sich beispielsweise um Leuchtstoffröhren, Glühlampen, Laser oder LEDs, welche jeweils Licht emittieren, das zur Anregung von Lumineszenzlicht in oder auf der Banknote 10 geeignet ist. Vorzugsweise handelt es sich bei dem Anregungslicht 15 um ultraviolettes (UV) Licht. Zur Eliminierung von spektralen Anteilen bei höheren Wellenlängen, d.h. beispielsweise im sichtbaren oder infraroten Spektralbereich, können entsprechende Filter (nicht dargestellt) vor den Lichtquellen 12 angeordnet werden.
  • Im dargestellten Beispiel erfolgt die Anregung von Lumineszenzlicht 16 in oder auf dem Dokument durch das Licht 15 der Lichtquellen 12. Eine entsprechende Lumineszenzerscheinung wird daher als Photolumineszenz bezeichnet. Alternativ oder zusätzlich können auch durch elektromagnetische oder elektrische Felder, Strahlung oder Schall andere Arten von Lumineszenzerscheinungen, wie z.B. Elektro-, Radio- bzw. Sonolumineszenz, in oder auf dem Dokument angeregt werden. Die Anregung erfolgt durch entsprechende Anregungseinrichtungen, wie z.B. elektrische Kontakte oder Feldplatten, Strahlungsquellen für Kathoden-, Ionen- oder Röntgenstrahlen, Ultraschallquellen oder Antennen.
  • In einer alternativen Ausgestaltung der Erfindung ist vorgesehen, daß das von den jeweiligen Lichtquellen 12 emittierte Anregungslicht 15 bei unterschiedlichen Wellenlängen oder Wellenlängenbereichen liegt. Das bei unterschiedlichen Wellenlängen bzw. Wellenlängenbereichen angeregte Lumineszenzlicht 16 läßt noch genauere Aussagen über die Lumineszenzeigenschaften der Banknote 10 zu. Hierbei kann insbesondere vorgesehen sein, daß die Lichtquellen 12 die Banknote 10 entweder einzeln oder kombiniert beleuchten und das jeweils bei einzeln bzw. kombiniert beleuchteter Banknote 10 erfaßte Lumineszenzlicht 16 ausgewertet wird. Wird im dargestellten Beispiel der Figur 1 zunächst mit nur einer Lichtquelle 12 beleuchtet, dann detektieren die beiden Detektoreinheiten 1 und 2 ein erstes Intensitätswertepaar. Bei anschließender Beleuchtung mit der anderen Lichtquelle 12 wird ein zweites Intensitätswertepaar erzeugt. Bei gleichzeitiger Beleuchtung mit beiden Lichtquellen 12 wird schließlich ein drittes Intensitätswertepaar erhalten. Durch Vergleich und/oder rechnerische Verknüpfung der hierbei erhaltenen, i.a. unterschiedlichen, Intensitätswerte wird eine besonders genaue Untersuchung der Lumineszenzeigenschaften der untersuchten Banknote 10 erreicht.
  • Je nach zeitlichem Abklingverhalten kann bei Lumineszenzlicht zwischen Phosphoreszenz- oder Fluoreszenzlicht unterschieden werden. Die erfindungsgemäße Vorrichtung bzw. das Verfahren eignet sich zur Untersuchung von Phosphoreszenz- und Fluoreszenzlicht gleichermaßen.
  • Das in oder auf der Banknote 10 angeregte Lumineszenzlicht 16 wird von der Banknote 10 emittiert und trifft auf zwei Detektoreinheiten 1 und 2, welche erfindungsgemäß derart hintereinander angeordnet sind, daß das von der Banknote 10 ausgehende Lumineszenzlicht 16 nacheinander auf die einzelnen Detektoreinheiten 1 bzw. 2 trifft und dabei von diesen erfaßt werden kann. Die beiden Detektoreinheiten 1 und 2 weisen jeweils unterschiedliche spektrale Empfindlichkeiten auf, so daß jeweils ein anderer spektraler Anteil des Lumineszenzlichts 16 erfaßt wird. Dementsprechend unterscheiden sich die von den Detektoreinheiten 1 bzw. 2 erzeugten Detektorsignale S, welche zur Auswertung und Analyse einer Auswerteeinrichtung 9 zugeführt werden.
  • Zwischen der Banknote 10 und den Detektoreinrichtungen 1 und 2 ist in dem dargestellten Beispiel eine optische Einrichtung 13 vorgesehen, welche das von der Banknote 10 emittierte Lumineszenzlicht 16 auf die Detektoreinheiten 1 und 2 lenkt, insbesondere fokussiert. Vorzugsweise handelt es sich hierbei um eine abbildende Optik, welche einen Teilbereich 11 der Banknote 10 auf die Detektoreinheiten 1 und 2 abbildet. Vorzugsweise werden hierzu selbstfokusierende Linsen, sog. Selfoc-Linsen, eingesetzt. Bei selbstfokusierenden Linsen handelt es sich um zylinderförmige optische Elemente aus einem Material, welches einen von der optischen Achse des Zylinders zu dessen Mantel hin abnehmenden Brechungsindex aufweist. Durch Verwendung von Selfoc-Linsen wird eine vom Abstand zwischen der Banknote 10 und den Detektoreinheiten 1 und 2 unabhängige und justierfreie 1:1-Abbildung des zu untersuchenden Teilbereiches 11 der Banknote 10 auf die Detektoreinheiten 1 und 2 erreicht.
  • Vor den Detektoreinheiten 1 und 2 ist in diesem Beispiel ein Filter 14 angeordnet, welches für diejenigen spektralen Teilbereiche des Lumineszenzlichts 16 durchlässig ist, welche mit den Detektionseinheiten 1 und 2 erfaßt werden sollen.
  • In Fig. 2 ist eine erste Ausführungsform der erfindungsgemäß angeordneten Detektoreinheiten dargestellt. Die einzelnen Detektoreinheiten sind als Photodioden 1 bzw. 2 ausgebildet und bezogen auf die Richtung des von dem Dokument emittierten Lumineszenzlichts 16 hintereinander angeordnet. Die einzelnen Photodioden 1 und 2 weisen jeweils einen p-n-Übergang 3/4 bzw. 5/6 zwischen jeweils einer p-dotierten 3 bzw. 5 und einer n-dotierten 4 bzw. 6 Halbleiterschicht auf. Das Dotierungsprofil ist hierbei stark vereinfacht dargestellt und gibt i.a. nicht die tatsächlichen Größenverhältnisse der Schichtdicken wieder. Zwischen den Photodioden 1 und 2 sind Abstandshalter 8 vorgesehen, um elektrische Kurzschlüsse zu vermeiden. Um etwaige Parallaxenfehler möglichst gering zu halten, sollte die Höhe der Abstandshalter 8 nicht zu groß gewählt werden und etwa in der Größenordnung der Höhe der Photodioden 1 bzw. 2 liegen. Optional kann, ebenfalls mit entsprechenden Abstandshaltern 8 beabstandet, vor der Photodiode 1 ein Filter 14 angeordnet sein. Darüber hinaus ist es auch möglich, ein entsprechendes Filter (nicht dargestellt) zwischen den einzelnen Photodioden 1 bzw. 2 vorzusehen. Mit den elektrischen Anschlüssen 17 werden Spannungen zwischen den unterschiedlich dotierten Halbleiterschichten 3/4 bzw. 5/6 abgegriffen und als Detektorsignale S an eine Auswerteeinheit (nicht dargestellt) weitergeleitet.
  • In den Figuren 3a und 3b ist jeweils eine zweite Ausführungsform der erfindungsgemäßen Anordnung dargestellt. Figur 3a zeigt ein Bauelement 20, auf welchem die Detektoreinheiten 1 und 2 gemeinsam integriert sind, wobei das Bauelement 20 zwei p-n-Übergänge 22/21 bzw. 23/21 aufweist, welche jeweils einer Detektoreinheit 1 bzw. 2 entsprechen. Die n-dotierte Halbleiterschicht 21 bildet hierbei das Substrat, auf welchem die beiden p-n-Übergänge 22/21 bzw. 23/21 schichtartig aufgebracht sind. Das Dotierungsprofil ist hierbei ebenfalls stark vereinfacht dargestellt und gibt i.a. nicht die tatsächlichen Größenverhältnisse der Schichtdicken wieder. Analog zu dem in Figur 2 dargestellten Beispiel werden auch hier Spannungen mit geeigneten Anschlüssen 17 abgegriffen und als Detektorsignale S an eine Auswerteeinheit (nicht dargestellt) weitergeleitet.
  • Figur 3b zeigt eine Variante der zweiten Ausführungsform der erfindungsgemäßen Anordnung. Das dargestellte Bauelement 30 umfaßt zwei schichtartig ausgebildete p-n-Übergänge 32/33 bzw. 34/33, welche auf einem gemeinsamen Substrat 31 aufgebracht sind. Das Substrat 31 selbst kann ein Halbleiter- oder Keramik-Substrat sein. Hinsichtlich der Funktionsweise dieser Ausführungsform gelten die Erläuterungen zu Figur 3a analog.
  • Die in den Figuren 2, 3a und 3b dargestellten Detektoreinheiten 1 und 2 sind so gewählt, daß die erste Detektoreinheit 1 für denjenigen spektralen Teilbereich des Lumineszenzlichts 16 durchlässig ist, welcher mit der hinter der ersten Detektoreinheit 1 angeordneten zweiten Detektoreinheit 2 erfaßt werden soll. Die insbesondere als Photodioden bzw. p-n-Übergänge ausgebildeten Detektoreinheiten 1 und 2 weisen hierbei unterschiedliche Absorptionskanten auf, wobei die Absorptionskante der ersten Photodiode 1 bzw. des ersten p-n-Übergangs 3/4, 32/33 bzw. 22/21 bei kleineren Wellenlängen liegt als die zweite Absorptionskante der hinter der ersten Photodiode 1 bzw. dem ersten p-n-Übergang 3/4,32/33 bzw. 22/21 angeordneten zweiten Photodiode 2 bzw. zweiten p-n-Übergangs 5/6, 34/33 bzw. 23/21.
  • In der in Figur 2 dargestellten sandwich-artigen Anordnung der einzelnen Detektoreinheiten 1 und 2 übereinander werden die jeweiligen p-n-Übergänge 3/4 bzw. 5/6 bevorzugterweise auf unterschiedlichen Halbleitermaterialien realisiert. So wird beispielsweise für die erste Detektoreinheit 1 eine Photodiode auf der Basis von Silicium (Si) und für die zweite Detektoreinheit 2 eine Photodiode auf der Basis von Germanium (Ge) eingesetzt. Wellenlängen unterhalb von etwa einem Mikrometer können dann von der Photodiode 1 auf der Basis von Silicium nachgewiesen werden, während Wellenlängen oberhalb von etwa einem Mikrometer diese Photodiode 1 durchdringen und von der dahinter angeordneten Photodiode 2 auf der Basis von Germanium nachgewiesen werden können. In analoger Weise können Photodioden auf der Basis von Silicium und Indium-Gallium-Arsenid (InGaAs) oder Silicium und Bleisulfid (PbS) kombiniert werden, um das Lumineszenzlicht 16 in zwei unterschiedlichen spektralen Teilbereichen zu detektieren. Darüber hinaus ist selbstverständlich auch die Kombination von mehreren entsprechenden Photodioden möglich, z. B. aus Silicium, Indium-Gallium-Arsenid und Bleisulfid.
  • Bei den in den Figuren 3a und 3b dargestellten Ausführungsformen der erfindungsgemäßen Anordnung wird die unterschiedliche Durchlässigkeit bzw. Empfindlichkeit der Detektoreinheiten 1 und 2 durch die Auswahl geeigneter Halbleitermaterialien und/oder eine entsprechende Dotierung des jeweiligen Materials erreicht. Ein entsprechendes Bauelement 20 bzw. 30 läßt sich beispielsweise auf der Basis von Silicium realisieren, wobei der erste p-n-Übergang 22/21 bzw. 32/33 durch eine geringere Eindringtiefe für kurzwelliges Licht besonders empfindlich ist. Langwelliges Licht kann dagegen tiefer in das Schichtsystem eindringen und von dem stärker im langwelligen Spektralbereich empfindlichen zweiten p-n-Übergang 23/21 bzw. 34/33 erfaßt werden.
  • Prinzipiell ist es auch möglich, einzelne Bauelemente 20 bzw. 30 entsprechend dem in Fig. 2 dargestellten Ausführungsbeispiel hintereinander anzuordnen. Bei geeigneter Auswahl der verwendeten Halbleitermaterialien läßt sich hiermit das Lumineszenzlicht 16 in mehr als zwei spektralen Teilbereichen auf einfache Weise erfassen.
  • Figur 4 zeigt ein Beispiel für unterschiedliche spektrale Empfindlichkeiten E der in den Figuren 2 und 3 dargestellten Detektoreinheiten 1 und 2. Wie aus dem Diagramm zu entnehmen ist, ist die spektrale Empfindlichkeit E1 der ersten Detektoreinheit 1 im Bereich kurzer Wellenlängen λ am größten, während die spektrale Empfindlichkeit E2 der hinter der ersten Detektoreinheit 1 angeordneten zweiten Detektoreinheit 2 bei höheren Wellenlängen λ ihren Höchstwert erreicht. Hierzu komplementär verhalten sich die jeweiligen spektralen Durchlässigkeiten der Detektoreinheiten 1 bzw. 2. Die spektrale Durchlässigkeit der Detetektoreinheit 1 ist demnach bei höheren Wellenlängen λ am größten, so daß das Lumineszenzlicht in diesem Teilbereich des Spektrums die Detektoreinheit 1 durchdringen kann und schließlich von der Detektoreinheit 2 erfaßt werden kann.
  • Figur 5 zeigt ein Schaltbild der in den Figuren 3a bzw. 3b dargestellten zweiten Ausführungsformen. Die Detektoreinheiten 1 und 2, d.h. die entsprechenden p-n-Übergänge 22/21 und 23/21 bzw. 32/33 und 34/33, des Bauelements 20 bzw. 30 sind als entgegengesetzt in Reihe geschaltete Photodioden dargestellt, deren Kathoden auf einem gemeinsamen Potential 18 liegen. Über die Anodenausgänge 19 der Photodioden werden die Signale S1 und S2 einer Auswerteeinrichtung 9 zugeführt. In der Auswerteeinrichtung 9 werden die Signale S1 und S2 in jeweils einem logarithmischen Verstärker 28 logarithmisch verstärkt und anschließend auf einen Differenzverstärker 29 gelegt. Da die Differenz zweier logarithmierter Werte dem Logarithmus des Quotienten beider Werte entspricht, ist die Ausgangsspannung Ua des Differenzverstärkers 29 proportional zum Logarithmus des Quotienten der beiden Detektorsignale S2/S1 und damit unabhängig von der absoluten Intensität des Lumineszenzlichts 16. Aus der Ausgangsspannung Ua können dann Aussagen über die spektralen Eigenschaften, insbesondere über die Farbe, des erfaßten Lumineszenzlichts 16 mit besonders hoher Zuverlässigkeit abgeleitet werden.
  • Die spektralen Eigenschaften des Lunimeszenzlichts 16, insbesondere die Wellenlänge, wie z.B. die Zentralwellenlänge, und/oder der Wellenlängenbereich und/oder die Farbe, können erfindungsgemäß nicht nur im sichtbaren Spektralbereich, sondern auch in unsichtbaren Spektralbereichen, wie z.B. im Infraroten oder Ultravioletten, erfaßt und analysiert werden.
  • Alternativ oder zusätzlich zu der beschriebenen analogen Auswertung ist es auch möglich, die Detektorsignale S1 und S2 erst zu digitalisieren und anschließend in einer digitalen, insbesondere computergestützten, Auswertung aus den digitalisierten Signalen Aussagen über das Lumineszenzlicht abzuleiten.

Claims (21)

  1. Vorrichtung zur Untersuchung von Dokumenten, insbesondere Wert-, Ausweis- oder Sicherheitsdokumenten, mit
    - mindestens einer Anregungseinrichtung zur Anregung von Lumineszenzlicht (16) in oder auf einem zu untersuchenden Dokument (10) und
    - mindestens zwei Detektoreinheiten (1, 2), die als Photodioden ausgebildet sind, zur Erfassung zumindest eines Teils des von dem Dokument (10) emittierten Lumineszenzlichts (16),
    wobei die Detektoreinheiten (1, 2) bezogen auf das von dem Dokument (10) emittierte Lumineszenzlicht (16) hintereinander angeordnet sind, dadurch gekennzeichnet,
    - dass die Photodioden unterschiedliche Absorptionskanten aufweisen und auf einem gemeinsamen Bauelement (20, 30) integriert sind, wobei das Bauelement (20, 30) mindestens zwei p-n-Übergänge (22/21, 23/21, 32/33, 34/33) umfasst, wobei jedem p-n-Übergang (22/21, 23/21, 32/33, 34/33) jeweils eine Detektoreinheit (1, 2) entspricht, und
    - dass für die erste Detektoreinheit eine Photodiode auf der Basis von Silicium und für die zweite Detektoreinheit eine Photodiode auf der Basis von Germanium eingesetzt wird oder dass Photodioden auf der Basis von Silicium und Indium-Gallium-Arsenid (InGaAs) oder von Silicium und Bleisulfid (PbS) kombiniert werden, um das Lumineszenzlicht in zwei unterschiedlichen spektralen Teilbereichen zu detektieren.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Anregungseinrichtung mindestens eine Lichtquelle (12) zur Beleuchtung des Dokuments (10) mit Anregungslicht (15), welches zur Anregung von Lumineszenzlicht (16) in oder auf dem Dokument (10) geeignet ist, umfasst.
  3. Vorrichtung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Detektoreinheiten (1, 2) unterschiedliche spektrale Empfindlichkeiten (E1, E2) aufweisen.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens eine erste Detektoreinheit (1) für mindestens einen spektralen Teilbereich des Lumineszenzlichts (16) durchlässig ist, welcher mit mindestens einer hinter der ersten Detektoreinheit (1) angeordneten zweiten Detektoreinheit (2) erfasst werden kann.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zumindest zwischen zwei Photodioden mindestens ein optisches Filter angeordnet ist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die p-n-Übergänge (22/21, 23/21, 32/33, 34/33), schichtartig ausgebildet und auf einem gemeinsamen Substrat (21, 31), insbesondere einem Halbleiter- oder Keramiksubstrat, aufgebracht sind.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die p-n-Übergänge (22/21, 23/21, 32/33, 34/33), bezogen auf das von dem Dokument (10) emittierte Lumineszenzlicht (16) schichtweise übereinander angeordnet sind.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die erste Absorptionskante mindestens einer ersten Photodiode bzw. mindestens eines ersten p-n-Übergangs (22/21,32/33) bei kleineren Wellenlängen (λ) liegt als die zweite Absorptionskante mindestens einer hinter der ersten Photodiode angeordneten zweiten Photodiode bzw. mindestens eines hinter dem ersten p-n-Übergang (22/21, 32/33) angeordneten zweiten p-n-Übergangs (23/21, 34/33).
  9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass eine optische Einrichtung (13) zur Lenkung des von dem Dokument (10) ausgehenden Lumineszenzlichts (16) auf die Detektoreinheiten (1, 2) vorgesehen ist.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die optische Einrichtung (13) mindestens eine Linse, insbesondere eine selbstfokussierende Linse, zur Fokussierung des von dem Dokument (10) ausgehenden Lumineszenzlichts (16) auf die Detektoreinheiten (1, 2) umfasst.
  11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass eine Auswerteeinrichtung (9) vorgesehen ist zur Ableitung von Aussagen über die spektralen Eigenschaften, insbesondere über die Wellenlänge, wie z.B. die Zentralwellenlänge, und/oder den Wellenlängenbereich und/oder die Farbe, des erfassten Lumineszenzlichts (16) aus von den Detektoreinheiten (1, 2) erzeugten Detektorsignalen (S, S1, S2).
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Auswerteeinrichtung (9) einen logarithmischen Verstärker (28) zur Logarithmierung einzelner Detektorsignale (S, S1, S2) umfasst.
  13. Vorrichtung nach einem der Ansprüche 11 bis 12, dadurch gekennzeichnet, dass die Auswerteeinrichtung (9) einen Differenzverstärker (29) zur Bildung der Differenz zwischen zwei Detektorsignalen (S, S1, S2) oder zwischen zwei logarithmierten Detektorsignalen (S, S1, S2) umfasst.
  14. Vorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Auswerteeinrichtung (9) zur Ableitung von Aussagen über die spektralen Eigenschaften, insbesondere über die Wellenlänge, wie z.B. die Zentralwellenlänge, und/oder den Wellenlängenbereich und/oder die Farbe, des erfassten Lumineszenzlichts (16) auf der Basis
    - der Division von zwei Detektorsignalen (S, S1, S2) und/oder
    - der Differenz von zwei logarithmierten Detektorsignalen (S, S1, S2) ausgebildet ist.
  15. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß mindestens zwei Lichtquellen (12) vorgesehen sind, wobei das Anregungslicht (15) der jeweiligen Lichtquellen (12) bei unterschiedlichen Wellenlängen oder in unterschiedlichen Wellenlängenbereichen liegt.
  16. Verfahren zur Untersuchung von Dokumenten, insbesondere Wert-, Ausweis- oder Sicherheitsdokumenten, bei welchem
    - ein zu untersuchendes Dokument (10) zur Emission von Lumineszenzlicht (16) angeregt wird und
    - zumindest ein Teil des von dem Dokument (10) emittierten Lumineszenzlichts (16) von mindestens zwei Detektoreinheiten (1, 2) erfaßt wird, die als Photodioden ausgebildet sind, bezogen auf das von dem Dokument (10) emittierte Lumineszenzlicht (16) hintereinander angeordnet sind und unterschiedliche Absorptionskanten aufweisen und auf einem gemeinsamen Bauelement (20, 30) integriert sind, wobei das Bauelement (20, 30) mindestens zwei p-n-Übergänge (22/21, 23/21, 32/33, 34/33) umfasst, wobei jedem p-n-Übergang (22/21, 23/21, 32/33, 34/33) jeweils eine Detektoreinheit (1, 2) entspricht, wobei für die erste Detektoreinheit eine Photodiode auf der Basis von Silicium und für die zweite Detektoreinheit eine Photodiode auf der Basis von Germanium eingesetzt wird oder Photodioden auf der Basis von Silicium und Indium-Gallium-Arsenid (InGaAs) oder von Silicium und Bleisulfid (PbS) kombiniert werden, um das Lumineszenzlicht in zwei unterschiedlichen spektralen Teilbereichen zu detektieren, wobei das Lumineszenzlicht (16) nacheinander auf die hintereinander angeordneten Detektoreinheiten (1, 2) trifft und dabei von diesen erfaßt wird, und
    wobei die Detektoreinheiten (1, 2) Detektorsignale (S, S1, S2) erzeugen und aus den Detektorsignalen (S, S1, S2) Aussagen über die spektralen Eigenschaften des erfaßten Lumineszenzlichts (16) abgeleitet werden.
  17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß das Dokument (10) mit Anregungslicht (15), welches zur Anregung von Lumineszenzlicht (16) in oder auf dem Dokument (10) geeignet ist, beleuchtet wird.
  18. Verfahren nach einem der Ansprüche 16 bis 17, dadurch gekennzeichnet, daß das Lumineszenzlicht (16) von Detektoreinheiten (1, 2) mit unterschiedlichen spektralen Empfindlichkeiten (E1, E2) erfaßt wird.
  19. Verfahren nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß mindestens ein spektraler Teilbereich des Lumineszenzlichts (16) mindestens eine erste Detektoreinheit (1) durchläuft und von mindestens einer hinter der ersten Detektoreinheit (1) angeordneten zweiten Detektoreinheit (2) erfaßt wird.
  20. Verfahren nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß aus den Detektorsignalen (S, S1, S2) Aussagen über die Wellenlänge, wie z.B. die Zentralwellenlänge, und/oder den Wellenlängenbereich und/oder die Farbe des erfaßten Lumineszenzlichts (16) abgeleitet werden.
  21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß die Ableitung von Aussagen über die spektralen Eigenschaften, insbesondere über die Wellenlänge, wie z.B. die Zentralwellenlänge, und/oder den Wellenlängenbereich und/oder die Farbe, des erfaßten Lumineszenzlichts (16) auf der Basis
    - der Division von zwei Detektorsignalen (S, S1, S2) und/oder
    - der Differenz von zwei logarithmierten Detektorsignalen (S, S1, S2) erfolgt.
EP02008257.4A 2001-06-08 2002-04-19 Vorrichtung und Verfahren zur Untersuchung von Dokumenten Expired - Lifetime EP1265198B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10127837A DE10127837A1 (de) 2001-06-08 2001-06-08 Vorrichtung und Verfahren zur Untersuchung von Dokumenten
DE10127837 2001-06-08

Publications (3)

Publication Number Publication Date
EP1265198A2 EP1265198A2 (de) 2002-12-11
EP1265198A3 EP1265198A3 (de) 2005-01-12
EP1265198B1 true EP1265198B1 (de) 2019-10-30

Family

ID=7687623

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02008257.4A Expired - Lifetime EP1265198B1 (de) 2001-06-08 2002-04-19 Vorrichtung und Verfahren zur Untersuchung von Dokumenten

Country Status (3)

Country Link
US (1) US6777704B2 (de)
EP (1) EP1265198B1 (de)
DE (1) DE10127837A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10323410A1 (de) * 2003-05-23 2004-12-09 Giesecke & Devrient Gmbh Vorrichtung zur Prüfung von Banknoten
DE102004035494A1 (de) 2004-07-22 2006-02-09 Giesecke & Devrient Gmbh Vorrichtung und Verfahren zur Prüfung von Wertdokumenten
AU2012203003B2 (en) * 2004-07-22 2013-04-11 Giesecke+Devrient Currency Technology Gmbh Device and method for verifying value documents
DE102004039049A1 (de) * 2004-08-11 2006-02-23 Giesecke & Devrient Gmbh Verfahren und Vorrichtung zum Messen von Blattgut
US8263948B2 (en) * 2009-11-23 2012-09-11 Honeywell International Inc. Authentication apparatus for moving value documents
WO2011087802A2 (en) * 2009-12-22 2011-07-21 Miao Zhang Illumination methods and systems for improving image resolution of imaging systems
DE102010047061A1 (de) * 2010-09-30 2012-04-05 Carl Zeiss Microlmaging Gmbh Optisches Weitbereichsspektrometer
WO2012167894A1 (en) * 2011-06-06 2012-12-13 Sicpa Holding Sa In-line decay-time scanner
DE102011106523A1 (de) * 2011-07-04 2013-01-10 Giesecke & Devrient Gmbh Prüfgerät und Verfahren zur Kalibrierung eines Prüfgeräts
US10452908B1 (en) 2016-12-23 2019-10-22 Wells Fargo Bank, N.A. Document fraud detection
US11467087B2 (en) 2017-03-27 2022-10-11 Glory Ltd. Optical sensor, light detection apparatus, sheet processing apparatus, light detection method, and phosphorescence detection apparatus
DE102018109141A1 (de) * 2018-04-17 2019-10-17 Bundesdruckerei Gmbh Smartphone verifizierbares, leuchtstoffbasiertes Sicherheitsmerkmal und Anordnung zur VerifizierungSmartphone verifizierbares, leuchtstoffbasiertes Sicherheitsmerkmal und Anordnung zur Verifizierung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109989A (ja) * 1981-12-24 1983-06-30 株式会社東芝 印刷物の判別装置
US4677289A (en) * 1984-11-12 1987-06-30 Kabushiki Kaisha Toshiba Color sensor
US6865000B2 (en) * 1994-12-06 2005-03-08 Canon Kabushiki Kaisha Image reading apparatus for grouping sensors according to characteristics
GB9717194D0 (en) * 1997-08-13 1997-10-22 De La Rue Thomas & Co Ltd Detector methods and apparatus
US5965875A (en) * 1998-04-24 1999-10-12 Foveon, Inc. Color separation in an active pixel cell imaging array using a triple-well structure
EP1228537A1 (de) * 1999-06-14 2002-08-07 AUGUSTO, Carlos Jorge Ramiro Proenca Gestapelte wellenlängenselektive optoelektronische vorrichtung
DE10007887A1 (de) * 2000-02-21 2001-08-23 Giesecke & Devrient Gmbh Verfahren und Vorrichtung zur Echtheitsprüfung von bedruckten Objekten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP1265198A2 (de) 2002-12-11
US20020185615A1 (en) 2002-12-12
EP1265198A3 (de) 2005-01-12
US6777704B2 (en) 2004-08-17
DE10127837A1 (de) 2003-01-23

Similar Documents

Publication Publication Date Title
EP1245007B1 (de) Vorrichtung und verfahren zur echtheitsprüfung von banknoten
DE10127836A1 (de) Vorrichtung zur Untersuchung von Dokumenten
EP2156154B1 (de) Spektrometer mit festkörpersensoren und sekundärelektronenvervielfachern
EP2304696B1 (de) Sensoreinrichtung zur spektral aufgelösten erfassung von wertdokumenten und ein diese betreffendes verfahren
EP1265198B1 (de) Vorrichtung und Verfahren zur Untersuchung von Dokumenten
DE102004035494A1 (de) Vorrichtung und Verfahren zur Prüfung von Wertdokumenten
EP2011092B1 (de) Vorrichtung und verfahren zur optischen untersuchung von wertdokumenten
EP1244073A2 (de) Verfahren und Sensor für die Echtheitserkennung von Dokumenten
DE102008028689A1 (de) Sensoreinrichtung zur spektral aufgelösten Erfassung von Wertdokumenten und ein diese betreffendes Verfahren
WO2009109307A1 (de) Verfahren und anordnung zur zeitaufgelösten spektroskopie mit einem photonenmischdetektor
DE102014018726A1 (de) Vorrichtung und Verfahren zur Prüfung von Merkmalsstoffen
EP2377104B1 (de) Vorrichtung und verfahren zum nachweis von reflektiertem und/oder emittiertem licht eines gegenstandes
DE2320731A1 (de) Faelschungsgesichertes wertpapier und einrichtung zur echtheitspruefung derartiger wertpapiere
EP1821509B1 (de) Vorrichtung, Mikroskop mit Vorrichtung und Verfahren zum Kalibrieren eines Photosensor-Chips
EP1112555B1 (de) Verfahren und Vorrichtung zur Zustandsprüfung von Wertpapieren mittels einer Dunkelfeldmessung als auch einer Hellfeldmessung.
WO2001061654A2 (de) Verfahren und vorrichtungen zur echtheitsprüfung von bedruckten objekten
WO2006018283A2 (de) Vorrichtung zur untersuchung von dokumenten
DE102008047636A1 (de) Vorrichtung zur maschinellen Echtheitsüberprüfung von Wert- und Sicherheitsdokumenten
EP3400583B1 (de) Echtheitsprüfung von wertdokumenten
DE102006045624A1 (de) Vorrichtung und Verfahren zur optischen Untersuchung von Wertdokumenten
WO2021028175A1 (de) Verfahren und vorrichtung zur analyse einer mehrfachsolarzelle mit zumindest zwei sub-solarzellen mittels lumineszenzstrahlung
EP2988950B9 (de) Kalibrierverfahren und verfahren zur schnellen bestimmung der absoluten lumineszenzintensität
DE102018004884A1 (de) Verfahren und Sensor zur Prüfung von Dokumenten
DE102018131128A1 (de) Optischer Sensor
DE19909851A1 (de) Vorrichtung zur Münzerkennung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 04N 1/48 B

Ipc: 7H 01L 27/146 B

Ipc: 7G 07D 7/12 A

17P Request for examination filed

Effective date: 20050712

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190605

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1196974

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50216348

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200131

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200302

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50216348

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200419

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210430

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20210420

Year of fee payment: 20

Ref country code: CH

Payment date: 20210422

Year of fee payment: 20

Ref country code: GB

Payment date: 20210422

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50216348

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 1196974

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220418