EP1260776B1 - Wärmetauscher für Klimaanlage - Google Patents

Wärmetauscher für Klimaanlage Download PDF

Info

Publication number
EP1260776B1
EP1260776B1 EP01112491A EP01112491A EP1260776B1 EP 1260776 B1 EP1260776 B1 EP 1260776B1 EP 01112491 A EP01112491 A EP 01112491A EP 01112491 A EP01112491 A EP 01112491A EP 1260776 B1 EP1260776 B1 EP 1260776B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
pathway
flow
bypass
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01112491A
Other languages
English (en)
French (fr)
Other versions
EP1260776A1 (de
Inventor
Thomas Tiedemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Zexel Valeo Climate Control Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corp filed Critical Zexel Valeo Climate Control Corp
Priority to DE60125146T priority Critical patent/DE60125146T2/de
Priority to EP01112491A priority patent/EP1260776B1/de
Publication of EP1260776A1 publication Critical patent/EP1260776A1/de
Application granted granted Critical
Publication of EP1260776B1 publication Critical patent/EP1260776B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to a heat exchanger for an air conditioning system and in particular for a CO 2 air conditioning system for use in an automotive vehicle.
  • CO 2 carbon dioxide
  • R134a tetrafluoroethane
  • Fig. 1 is a diagram of a conventional cold-vapour refrigeration cycle wherein a refrigerant is circulated in a closed circuit made up of a compressor 1, a first heat exchanger in the form of a condenser 2, an expansion valve 3 and a second heat exchanger in the form of an evaporator 4.
  • the refrigerant which is under low pressure is evaporated into a gaseous phase in the evaporator 4, which typically comprising a coiled pipe.
  • the evaporation lowers the temperature of the air passing over the evaporator 4, for example for use in a vehicle air conditioning system, such air being that which is blown into the passenger compartment of the vehicle.
  • the compressor 2 draws away the refrigerant from the evaporator 4, compresses it and passes it to the condenser 2, where the refrigerant gives up its heat to the environment, and as a result of its increased pressure and loss of heat condenses back to a liquid phase. It may even become supercooled. Finally, the liquid refrigerant is expanded to a lower vaporizing pressure via the expansion valve 3 and returned to the evaporator 4.
  • the refrigeration cycle in this device comprises a compressor 10, a gas cooler 11, a counter-current heat exchanger 12, an expansion valve 13, an evaporator 14, a combination liquid separator and accumulator 16, and a return flow through the internal counter-current hear exchanger 12 to the compressor 10.
  • the internal counter-current heat exchanger 12 improves the process efficiency and substantially increases the available refrigerating capacity, particularly at high ambient temperatures. It operates by transferring heat from the relatively warm refrigerant discharged from the condenser 11 to the colder refrigerant discharged from the evaporator 14 or the accumulator 16. The refrigerant temperature is thereby lowered prior to expansion via the valve 13 so that the wet vapour content after expansion is decreased and the available refrigerating capacity is thereby increased. However, the heat transfer causes the refrigerant temperature at the inlet to the compressor 10 to increase, which results in a proportional increase in the refrigerant temperature leaving the compressor.
  • the design of the heat exchanger is a compromise between the following two requirements.
  • Documents EP 1 043 550, EP 0 915 306, EP 0 779 481 and US 5,479,789 are directed toward refrigeration cycles, or heat pumps Each document discloses the use of a heat exchanger within the coolant circuitry.
  • Document EP-A-1 043 550 discloses a heat exchanger, a refrigeration system and a method of regulating thermal flow in a refrigeration system according to the preamble of claims 1, 6 and 8 respectively. None of the documents, however, discloses the use of a valve positioned at either the inlet or the outlet to a bypass provided on the paths through the heat exchanger. Such positioning of the valves, allows that the coolant flow can be fully controlled and ultimately stopped from passing through the heat exchanger.
  • the object of the present invention is to provide an internal heat exchanger for use in a vehicle air conditioning system in which the thermal flow is substantially maximized under all operating conditions of the air conditioning system whilst the final compression temperature is maintained within permitted limits.
  • the present invention is detailed in claim 1, with further embodiments given in dependent claims thereof.
  • the heat exchanger for use in a refrigeration system of a vehicle air conditioning system according to claim 1 defines a first refrigerant pathway through which refrigerant can flow from a gas cooler of the system to an expansion valve of the system.
  • a second refrigerant pathway through which the refrigerant can flow from an evaporator or accumulator of the system to a compressor of the system is also given.
  • the two pathways are arranged so that a thermal flow can occur between the refrigerant flowing in the first and second pathways.
  • a first and/or second bypass are provided through which at least a portion of the refrigerant can flow instead of flowing through at least one of the first pathway, the second pathway.
  • a control valve is provided at a branch-off point in the first or second pathway at an inlet or an outlet to the first or second bypass respectively, whereby refrigerant flow through both the first or second bypass and the first or second pathway provided with the first of second bypass can be controlled, and the flow through either the first or second pathway can be stopped.
  • a heat exchanger 12 for use in a refrigeration cycle of a vehicle air conditioning system as described above with reference to Fig. 2 comprises a first refrigerant pathway 20 through which high-pressure refrigerant can flow from the condenser 11 of the refrigeration system to the expansion valve 13 and a second refrigerant pathway 21 through which low-pressure refrigerant can flow from the evaporator 14 or the accumulator 16 to the compressor 10.
  • the two pathways 20, 21 are arranged in a conventional manner so that a thermal flow can occur between the refrigerant flowing in them.
  • the pathways 20, 21 are arranged in a manner which would maximize the thermal flow.
  • a bypass 22 is provided through which refrigerant can flow instead of flowing through at least one of the pathways 20, 21.
  • the first pathway 20 is provided with the bypass but a similar bypass 23 could be provided for the second pathway, as shown in Fig. 4, in addition to or in place of the bypass 22.
  • a control valve V1 is provided in order to control the flow of refrigerant through the bypass 22 or the bypass 23. As shown in Fig. 3, when the control valve V1 closes the bypass 22, all of the refrigerant flows through the pathway 20 and in this case the thermal flow between the pathways 20 and 21 is maximized.
  • control valve V1 When the thermal flow is to be reduced, the control valve V1 is operated to reduce the high-pressure side flow of refrigerant through the pathway 20 by permitting flow through the bypass 22. In extreme cases the flow through the pathway 20 can be completely stopped so that the refrigerant flows solely through the bypass 22. In this case the refrigeration cycle operates in a manner as described with reference to Fig. 1 where no internal heat exchanger is present.
  • the control valve V1 can be installed in a variety of positions as shown in Fig. 4. If the control valve is located at a position V1 or V2 on the high-pressure side of the exchanger in the first pathway 20 at the branch-off points for the bypass 22, or similarly at a position V3 or V4 on the low-pressure side of the exchanger in the second pathway 21 at the branch-off points for the bypass 23, then flow of refrigerant through the pathways 20 and 21 as well as through the bypasses 22 and 23 can be directly controlled.
  • the control valve could be located at positions V5 and V6 at intermediate positions within in the bypasses 22 and 23 respectively. This valve arrangement does not fall under the scope of the claims.
  • bypasses 22 and 23 can be directly controlled and, owing to the lower pressures losses of the bypasses 22, 23 as compared to the pathways 20 and 21, nearly the full flow through the heat exchanger may be diverted to the bypasses 22, 23.
  • the advantage of positioning the control valve at positions V5 and V6 is that it permits a less complex valve to be used than would be the case for the other positions.
  • FIG. 5 A modification of a heat exchanger 12 for use in a refrigeration cycle of a vehicle air conditioning system as described above with reference to Fig. 2 is shown in Fig. 5.
  • the heat exchanger comprises a bypass 22 for the first pathway 20 and a plurality of conduits 24 are provided between the bypass 22 and the pathway 20 at spaced intervals along the length of the pathway 20.
  • three such conduits 24a, 24b, 24c are provided, each of which is provided with a control valve Z1, Z2, Z3 respectively to control independently the refrigerant flow therethrough.
  • a further control valve Z4 is provided in the inlet to the bypass 22. This valve arrangement does not fall under the scope of the claims.
  • a first control valve Z1 can be opened to permit refrigerant flow through the conduit 24a so that a major portion of the refrigerant is diverted from the pathway 20 into the bypass 22 through the conduit 24a due to the lower pressure losses, the minor portion of the refrigerant continuing to flow through the pathway 20.
  • the valves Z2 and Z3 may be opened in succession to permit flow through the conduits 24b and 24C thus diverting refrigerant from the pathway 20 at successively earlier stages of the refrigerants travel through the heat exchanger 12. By opening the valve z4, the refrigerant will flow wholly through the bypass 22 and the pathway 20 is then completely bypassed.
  • the variable which is used to control operation of the control valves V1-V6 and Z1-Z4 is the temperature of the refrigerant subsequent to its compression in the compressor 10. If this temperature exceeds a predetermined level, then the control valves V1-V6 and Z1-Z4 are set to operate to increase the flow of refrigerant through the bypass 22, 23 so that the thermal flow between the pathways 20 and 21 is reduced. The final compression temperature is thereby also reduced. However, owing to the interrelationship between the temperature of the refrigerant both before and after compression, it is also possible to use the temperature of the refrigerant prior to compression as the control variable.
  • valves V1 to V4 in Fig. 4 may be arranged to correspond with the controller of the cooling water circuit of the vehicle as in both cases a mass flow of fluid is distributed to two circuits dependent on the operating temperature.
  • valves V5 and V6 and of the valves Z1 to Z4 is simpler because only one mass flow of fluid is controlled dependent on the operating temperature.
  • Conventional thermostatic expansion valves as used in air-conditioning and refrigerating engineering, or valves of this type, can be used for these valves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Claims (8)

  1. Wärmetauscher (12) zur Verwendung in einem Kühlsystem für eine Fahrzeugklimaanlage, das einen ersten Kühlmitteldurchgang (20) bildet, durch welchen Kühlmittel von einem Gaskühler (11) des Systems zu einem Expansionsventil (13) des Systems fließen kann; und
    einen zweiten Kühlmitteldurchgang (21), durch welchen das Kühlmittel von einem Verdampfer (14) oder einem Druckspeicher (16) des Systems zu einem Kompressor (10) des Systems fließen kann, wobei die beiden Durchgänge (20, 21) so eingerichtet sind, dass ein Wärmefluss zwischen dem im ersten und zweiten Durchgang (20, 21) fließenden Kühlmittel stattfinden kann, und
    eine erste und/oder zweite Umleitung (22, 23) vorgesehen ist/sind, durch welche zumindest ein Teil des Kühlmittels fließen kann, anstatt durch den ersten Durchgang (20) und/oder zweiten Durchgang (21) zu fließen,
    dadurch gekennzeichnet, dass
    ein Steuerventil (V1 - V4) an einem Abzweigungspunkt im ersten oder zweiten Durchgang (20, 21) an einem Einlass oder einem Auslass zur ersten bzw. zweiten Umleitung (22, 23) vorgesehen ist, wodurch ein Kühlmittelfluss sowohl durch die erste oder zweite Umleitung (22, 23) als auch den ersten oder zweiten Durchgang (20, 21), die mit der ersten oder zweiten Umleitung (22, 23) versehen sind, gesteuert werden kann, und der Fluss durch entweder den ersten oder zweiten Durchgang (20, 21) angehalten werden kann.
  2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass die erste Umleitung (22) für den ersten Durchgang (20) vorgesehen ist.
  3. Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zweite Umleitung (23)für den zweiten Durchgang (21) vorgesehen ist.
  4. Wärmetauscher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die erste und zweite Umleitung (22, 23) für den ersten bzw. zweiten Durchgang (20, 21) vorgesehen sind.
  5. Wärmetauscher nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass ein Steuergerät vorgesehen ist, welches das Öffnen und Schließen des Steuerventils (V1, V2, V3, V4) steuert.
  6. Kühlsystem für eine Fahrzeugklimaanlage mit einem Kompressor (10), einem Gaskühler (11), einem Expansionsventil (13), einem Verdampfer (14) und einem Innenwärmetauscher (12), die in Reihe angeschlossen sind, um einen integralen geschlossenen Kreislauf zu bilden, wobei der Innenwärmetauscher (12) einen ersten Kühlmitteldurchgang (20), durch welchen Kühlmittel vom Gaskühler (11) zum Expansionsventil (13) fließen kann, und einen zweiten Kühlmitteldurchgang (21) bildet, durch welchen das Kühlmittel vom Verdampfer (14) zum Kompressor (10) fließen kann, wobei die beiden Durchgänge (20, 21) so eingerichtet sind, dass ein Wärmefluss zwischen dem in den Durchgängen (20, 21) fließenden Kühlmittel stattfinden kann, und
    eine erste und/oder zweite Umleitung (22, 23) vorgesehen ist/sind, durch welche Kühlmittel fließen kann, anstatt durch den ersten Durchgang (20) und/oder zweiten Durchgang (21) zu fließen,
    dadurch gekennzeichnet, dass
    ein Steuerventil (V1 - V4) an einem Abzweigungspunkt im ersten oder zweiten Durchgang (20, 21) an einem Einlass oder einem Auslass zur ersten bzw. zweiten Umleitung (22, 23) vorgesehen ist, wodurch ein Kühlmittelfluss sowohl durch die erste oder zweite Umleitung (22, 23) als auch den ersten oder zweiten Durchgang (20, 21), die mit der ersten oder zweiten Umleitung (22, 23) versehen sind, gesteuert werden kann, und der Fluss durch entweder den ersten oder zweiten Durchgang (20, 21) angehalten werden kann.
  7. System nach Anspruch 6, dadurch gekennzeichnet, dass es sich bei dem Kühlmittel um Kohlendioxid handelt.
  8. Verfahren zum Regeln eines Wärmeflusses in einem Kühlsystem für eine Fahrzeugklimaanlage, das die Schritte umfasst, ein Kühlmittel in einem Verdampfer (14) in eine Gasphase zu verdampfen und es zu einem Kompressor (10) weiterzuleiten;
    gasförmiges Kühlmittel im Kompressor (10) zu verdichten;
    das gasförmige Kühlmittel an einen Gaskühler (11) weiterzuleiten, wo das Kühlmittel seine Wärme an die Umgebung abgeben darf, wodurch das Kühlmittel über ein Expansionsventil (13) auf einen niedrigeren Dampfdruck dekomprimiert wird;
    das Kühlmittel zum Verdampfer (14) zurückzuleiten; und
    das gasförmige Kühlmittel durch einen Innenwärmetauscher (12) zu leiten, damit ein Wärmefluss zwischen dem in einem zwischen dem Gaskühler (11) und dem Expansionsventil (13) befindlichen ersten Durchgang (20) fließenden Kühlmittel und dem in einem zwischen dem Verdampfer (14) und dem Kompressor (10) befindlichen zweiten Durchgang (21) fließenden Kühlmittel stattfinden kann; wobei
    eine erste und/oder zweite Umleitung (22, 23) vorgesehen ist/sind, durch welche Kühlmittel fließen kann, anstatt durch den ersten Durchgang (20) und/oder zweiten Durchgang (21) zu fließen,
    dadurch gekennzeichnet, dass
    der Kühlmittelfluss durch sowohl die erste/zweite Umleitung (22, 23) als auch den ersten/zweiten Durchgang (20, 21), die mit der Umleitung versehen sind, durch ein Steuerventil (V1, V2, V3, V4) gesteuert wird, das an einem Abzweigungspunkt im ersten/zweiten Durchgang (20, 21) vorgesehen ist, die mit der ersten/zweiten Umleitung (22, 23) versehen sind, und der Fluss durch den ersten/zweiten Durchgang (20, 21) angehalten werden kann.
EP01112491A 2001-05-22 2001-05-22 Wärmetauscher für Klimaanlage Expired - Lifetime EP1260776B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE60125146T DE60125146T2 (de) 2001-05-22 2001-05-22 Wärmetauscher für Klimaanlage
EP01112491A EP1260776B1 (de) 2001-05-22 2001-05-22 Wärmetauscher für Klimaanlage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01112491A EP1260776B1 (de) 2001-05-22 2001-05-22 Wärmetauscher für Klimaanlage

Publications (2)

Publication Number Publication Date
EP1260776A1 EP1260776A1 (de) 2002-11-27
EP1260776B1 true EP1260776B1 (de) 2006-12-13

Family

ID=8177512

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01112491A Expired - Lifetime EP1260776B1 (de) 2001-05-22 2001-05-22 Wärmetauscher für Klimaanlage

Country Status (2)

Country Link
EP (1) EP1260776B1 (de)
DE (1) DE60125146T2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7114349B2 (en) 2004-12-10 2006-10-03 Carrier Corporation Refrigerant system with common economizer and liquid-suction heat exchanger
CN103851853A (zh) * 2014-03-28 2014-06-11 合肥华凌股份有限公司 一种换热器及使用该换热器的冰箱
CN116222043A (zh) * 2021-12-03 2023-06-06 青岛海尔特种电冰柜有限公司 制冷装置的控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479789A (en) * 1994-12-29 1996-01-02 Aire Solutions, Inc. Heat exchanger for a heat pump
JP3538492B2 (ja) * 1995-12-15 2004-06-14 昭和電工株式会社 冷凍サイクル装置
US6105386A (en) * 1997-11-06 2000-08-22 Denso Corporation Supercritical refrigerating apparatus
JPH11193967A (ja) * 1997-12-26 1999-07-21 Zexel:Kk 冷凍サイクル
JP2000346472A (ja) * 1999-06-08 2000-12-15 Mitsubishi Heavy Ind Ltd 超臨界蒸気圧縮サイクル
DE19944951B4 (de) * 1999-09-20 2010-06-10 Behr Gmbh & Co. Kg Klimaanlage mit innerem Wärmeübertrager

Also Published As

Publication number Publication date
DE60125146T2 (de) 2007-04-12
DE60125146D1 (de) 2007-01-25
EP1260776A1 (de) 2002-11-27

Similar Documents

Publication Publication Date Title
US6931880B2 (en) Method and arrangement for defrosting a vapor compression system
US7003975B2 (en) Heating/cooling circuit for an air-conditioning system of a motor vehicle, air-conditioning system and a method for controlling the same
US7080520B2 (en) Air conditioning system
JP4321095B2 (ja) 冷凍サイクル装置
US9156333B2 (en) System for the heating, ventilation, and/or air conditioning of a vehicle, comprising at least one heat exchanger through which a heat-transfer fluid flows
US20070074536A1 (en) Refrigeration system with bypass subcooling and component size de-optimization
AU2002301711B2 (en) Ejector circuit
AU2001286333A1 (en) Method and arrangement for defrosting a vapor compression system
JP2000346472A (ja) 超臨界蒸気圧縮サイクル
KR101474808B1 (ko) 차량용 히트 펌프 시스템
GB2379972A (en) Integrated heat pump and vehicle coolant circuit
KR20180078074A (ko) 자동차용 히트펌프
EP1315940B1 (de) Kaskadenkälteanlage
US20220049886A1 (en) Methods and systems for controlling working fluid in hvacr systems
KR20210126361A (ko) 베이퍼 인젝션 히트펌프 시스템
JP2003130481A (ja) 自動車用空調装置の蒸気圧縮式冷凍サイクル
JP2011225174A (ja) 車両用空調装置
JPH11344263A (ja) バイパス管路付冷凍サイクル
EP1260776B1 (de) Wärmetauscher für Klimaanlage
KR101146477B1 (ko) 자동차용 히트펌프 시스템
JP2000292016A (ja) 冷凍サイクル
JP4835296B2 (ja) エジェクタ式冷凍サイクル
JP3304866B2 (ja) 蓄熱式空気調和機
JPH1053022A (ja) 車両用空気調和装置
WO2024053334A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030108

AKX Designation fees paid

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 20040517

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 60125146

Country of ref document: DE

Date of ref document: 20070125

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080730

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080530

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201