EP1252379B1 - Procede de fausse torsion de fil continu, et buse fausse-torsion en plusieurs parties - Google Patents

Procede de fausse torsion de fil continu, et buse fausse-torsion en plusieurs parties Download PDF

Info

Publication number
EP1252379B1
EP1252379B1 EP01900366A EP01900366A EP1252379B1 EP 1252379 B1 EP1252379 B1 EP 1252379B1 EP 01900366 A EP01900366 A EP 01900366A EP 01900366 A EP01900366 A EP 01900366A EP 1252379 B1 EP1252379 B1 EP 1252379B1
Authority
EP
European Patent Office
Prior art keywords
twist
yarn
channel
false twist
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01900366A
Other languages
German (de)
English (en)
Other versions
EP1252379A2 (fr
Inventor
Christian Simmen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heberlein AG
Original Assignee
Heberlein Fasertechnologie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heberlein Fasertechnologie AG filed Critical Heberlein Fasertechnologie AG
Publication of EP1252379A2 publication Critical patent/EP1252379A2/fr
Application granted granted Critical
Publication of EP1252379B1 publication Critical patent/EP1252379B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/16Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam
    • D02G1/161Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam yarn crimping air jets
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • D02G1/04Devices for imparting false twist
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/08Interlacing constituent filaments without breakage thereof, e.g. by use of turbulent air streams

Definitions

  • the invention relates to a method for false twist of filament yarn, the filament yarn being transported through a continuous twist channel of a false twist nozzle which is free on the inlet and outlet side, and a multi-part false twist nozzle for producing a false twist textured filament yarn with a continuous twist channel which is free on the inlet and outlet side and an insert with tangential compressed air entry into the yarn channel.
  • Twist production is as old as the entire textile industry. With bare fingers, hand spindles and spinning wheels, fibers or hair became a thread and e.g. by twisting a plurality of threads by means of a corresponding rotary movement to form a thread.
  • fibers or hair i.e. short, so-called stacked goods, are connected to a yarn by a real rotary movement with a high-speed rotary movement.
  • the false twist mostly has the function of imposing a strong mechanical twist on the filament for only a short time, which in a heating and cooling stage directly in front thermally changes the structure of the Filêts is fixed, so that after the twist ceases, a ripple effect occurs on the yarn and results in better cohesion for the filament yarn.
  • the typical characteristic of false twist is the free guidance of the filament yarn into the false twist nozzle and out of the false twist nozzle.
  • WO98 / 33964 shows another special use for the simultaneous stretch texturing of partially drawn yarn and the use of a multi-part, real false twist nozzle.
  • the inventor had discovered that, contrary to all previous expert opinions, a work area or a work window can be used with a supply pressure of the compressed air between about 14 and 80 bar.
  • a special nozzle concept was developed which, despite the relatively high pressure due to miniaturization of the nozzle body, hardly uses more air than an older type nozzle with a significantly lower pressure of the supply air.
  • Single-stage compressed air generators work in a pressure range up to approx. 12 bar. This means that the pressure range above 12 bar requires multi-stage compression, which limits the range of use for swirl generation according to the solution of WO98 / 33964 to companies with corresponding multi-stage compressed air systems.
  • air swirl nozzles in particular with a closed yarn channel, are rarely found in practice in a medium pressure range between approximately 4 and 14 bar.
  • the feed air is blown tangentially into the yarn channel approximately in the longitudinal center of the nozzle.
  • the air flows freely into the environment on both ends of the yarn channel and therefore does not interfere with the free yarn transport through the nozzle.
  • the invention was based on the object of developing an economically producible false twist nozzle concept, in particular with a closed yarn channel, which allows the specific advantages of air use, especially instead of the previously mechanically applied false twist generation on the yarn and possibly in other applications, eg can also be used for the medium pressure range.
  • the method according to the invention is characterized in that the compressed air in the false twist nozzle is first guided in the direction or along the yarn transport path, preferably parallel and then tangentially into the yarn channel, so that the false twist on the free-running filament yarn is generated by and through by a swirl flow in the yarn channel a previous heat treatment of the false twist effect can be thermally fixed and a crimped yarn can thereby be produced.
  • the false twist nozzle according to the invention is characterized in that it has at least one swirl insert plate with a compressed air hole running preferably parallel to the yarn channel axis and a continuous piece of yarn channel, furthermore a tangential channel opening into the yarn channel piece and at least one further element, each with the Twist insert plate has a corresponding thread channel piece or a compressed air hole.
  • the twisting movement can be used for various purposes, be it for better bonding of the filaments of a single yarn or for connecting several yarns.
  • the swirl flow is a dominant circular flow and is therefore not disturbed by the circular transitions.
  • the core piece namely the tangential or acceleration channel and the associated yarn channel piece, can now be designed more freely and can be produced in much higher quality and accuracy than was previously the case.
  • the shaping of an exposed plate can be done by a variety of manufacturing techniques, such as Eroding or laser technology.
  • the false twist and the immediately preceding thermal fixation are preferably carried out between two supply units LW1 and LW2.
  • the new invention allows a whole range of design options, which can be implemented particularly easily with eroding technology. Above all, this applies to detailed shapes that could not previously be produced. For this purpose, reference is made to claims 2 to 9 and 8 to 25.
  • the new solution should not be restricted in terms of yarn titer, even if the largest possible area of application is currently assumed in the medium titer range. As Rule of thumb applies: fine titer, fine drilling, rough titer, rough drilling. In practice, however, there is no definable boundary between the two areas.
  • fine titer, fine drilling, rough titer, rough drilling In practice, however, there is no definable boundary between the two areas.
  • the production of completely new duct shapes that can be optimized for the particular use opens up, which were previously not possible.
  • WO98 / 33964 a property right of the applicant, shows in Figures 6a to 6d a first approach in the direction of the new solution.
  • the main idea in the older application was the miniaturization of the entire air treatment nozzle and, accordingly, all the air channels in order to keep air consumption low at the pressure of over 14 bar, which is unusually high in textile practice.
  • a number of very thin slices were found to be the solution.
  • the duct design was still based on the traditional concept of "air supply drilling", that is to say with purely radial air supply, in the plane of the tangential or transverse duct.
  • test trials were very positive, the prototype production, but especially the assembly of the discs, required enormous effort.
  • Corresponding discs a few millimeters in diameter and e.g. A thickness of 0.2 millimeters belongs more in the watchmaking industry with millions of pieces and corresponding robot aids. In any case, the much lower numbers of air nozzles for a correspondingly small market niche in the textile area would question economic production in the introductory phase. However, as is well known, the introductory phase is the decisive period that decides whether a new product is successful or not. In contrast, the new invention opens up completely new possibilities, as will now be explained on the basis of some very advantageous embodiments.
  • the swirl insert plate has at least two channel openings, for the air supply channel on the one hand, and the yarn channel on the other hand, which are connected to generate the swirl flow with the tangential channel, designed as a short air acceleration channel in the manner of a functional pattern.
  • the swirl insert plate has a special, glasses-like character due to the two bores and the relatively narrow connection through the air acceleration channel, which is referred to as a functional model.
  • the concept of the functional pattern takes on a descriptive meaning in the sense of a print pattern on textiles in the case of two, but particularly in the case of a large number of identical patterns arranged next to one another.
  • a first level concerns the tangential channel. This is basically designed to be as short as possible, but above all according to the requirements of optimal application of the air flow laws. Accordingly, the two channel openings are moved as close as possible to one another.
  • the tangential channel preferably has a length in the region of the diameter of the two bores for the yarn channel piece and the compressed air bore.
  • the tangential channel is preferably designed in the manner of a Laval nozzle for a sonic flow or for a supersonic flow with the typical expansion in the exit region of the acceleration channel into the yarn channel. From a structural point of view, the term tangential duct is somewhat relativized from the point of view of the supersonic nozzle.
  • tangential refers to the effect, namely the generation of an optimal or maximum swirl flow.
  • the air acceleration channel for the air supply from the compressed air bore in the direction of the yarn channel is preferably narrowed.
  • the channel openings have a preferably uniform shape with the highest surface quality in the sense of a punched-out shape over the entire plate thickness.
  • the corresponding channel openings in the swirl insert plate are formed in a cylinder-like manner, the air-actuation channel connecting the two channel openings over the entire plate thickness.
  • a third level concerns the division of the swirl insert plate.
  • the division into two or more pieces opens up new degrees of freedom for a wide variety of applications.
  • the divided swirl insert plate creates, at least theoretically, the prerequisite for exposing the entire yarn channel for threading, but primarily for the production of any and also complex shapes, especially miniaturized shapes.
  • the division can be designed in such a way that the functional model is only formed by assembling two or more parts of the swirl insert plate.
  • the cut for the division can be made, for example, through the two channel openings for the yarn channel and above all also through the air acceleration channel and the air supply. It’s very interesting to divide the swirl insert plate in such a way that mutual anchoring points arise in such a way that the precision of the flow-active parts in the assembled state is forcibly ensured by the anchoring points.
  • kits consists of at least one swirl insert plate and at least one further element which is designed as a support block and has the air supply and a connection for a compressed air connection.
  • the kit preferably has additional elements which are designed as insert plates without an air acceleration channel, but with at least two channel openings for the air supply and the yarn channel, the corresponding channel openings forming a uniform flow channel in the assembled state.
  • At least one twist insert plate for S-twist and at least one twist insert plate for Z-twist, each with separate air supply, or a single twist insert plate can be combined with the two corresponding opposite functional patterns for parallel guidance of two threads.
  • a kit can also have insert spacers for the selection of the distance, at least between two twist action points.
  • the possibility of free choice with regard to the division proves to be very advantageous.
  • False twist nozzles have the enormous advantage that, in the case of parallel guidance of threads, the pitch and, accordingly, the space required is only millimeters or centimeters instead of decimeters. This allows to realize significantly more compact parallel runs, to shorten the process zone in the area of the previous spindles and as. big advantage is the corresponding construction of more compact machines.
  • FIG. 1a shows the controlled, alternating control of the air supply for two swirl insert plates connected in series for S or Z swirl.
  • Figure 1b is a simplified control scheme for the treatment of single threads.
  • Figure 1a is to be understood more schematically. It shows an example of a change control or alternately false twist, either for an S twist or a Z twist.
  • the air swirl nozzle 6 has two compressed air connections, 9 and 13, and correspondingly two air inlets, 11 and 12, via which compressed air can be fed alternately.
  • a switching valve 15 is switched by a control ST in a predetermined or preselectable rhythm, in seconds or milliseconds, and gives compressed air to one or the other side, so that an S or Z twist can be generated on the yarn at the moment.
  • Figure 1b shows an application to single threads, e.g. also for disposition according to Figures 2b, 2c, 2d.
  • the sensor can detect the tension or any qualitative parameter, also e.g. the swirl effect.
  • the exhaust air from the swirl nozzles can be used by suitable guidance to support the cooling device arranged in front of it.
  • the expansion of compressed air lowers the air temperature, which has a considerable potential for heat absorption.
  • the previously long cooling zone can be replaced using the exhaust air duct and the hot yarn from the heater can be cooled with the exhaust air.
  • FIG. 2a is an example of the prior art with four thread runs and the corresponding number of mechanical spindles 50, which each generate the desired S or Z twist.
  • the length of the process zones VMD which is required by the mechanical swirl generator 50 or its structural dimensions, is characteristic.
  • the first heater has a predetermined division T1.
  • the mechanical swirl generators require a larger division T2. The great advantage of the new solution is that there is no need to move the twist units in the direction of yarn travel, and the process zone can still be shortened.
  • the two basic process steps are highlighted on the left half of the figure in FIG. 2e. It involves torsion generation (tors.) And thermal fixation. Smooth yarn Gglatt is fed to the process via a supply plant (LW1) and after the supply plant LW 2 as yarn Gk Hurs. subtracted with crimp quality.
  • a mechanical swirl device e.g. a friction spindle or an air swirl nozzle.
  • the thermal fixation (therm. Fix.) Consists essentially of a heater (H) and a cooler (K).
  • the swirler works through the entire stage of thermal fixation. The effect is symbolized as a twisted thread Gtors.falsch. However, since it is a false twist, it is canceled after the twister.
  • the change in the molecular orientation generated by the treatment is shown on the right in FIG. 2d, on the one hand as an outer geometric configuration of the yarn thread and on the other hand as an inner orientation of the molecules.
  • the result of the known false twist texturing is a crimped yarn (Gk syndromes), due to a corresponding permanent internal structural change.
  • FIGS. 3a and 3b show the core components of a false twist nozzle according to the new solution.
  • FIGS. 3a and 3b show a preferably continuous operation, ie the compressed air supply is never switched off during operation.
  • the structural design can be designed, for example, according to FIG. 10c.
  • One possible practical application is folding, for example according to FIG. 10c.
  • the air pressure can be 14 to 40 bar.
  • the heart of the false twist nozzle is a swirl insert plate 1 with the characteristic dimensions of length L, height H and thickness D.
  • the height ranges between approximately 0.5 cm and 2 cm, the length from 2 to 10 cm and up to any length for a large number of parallel yarn runs.
  • the thickness of the plate can be between 0.5 millimeters and one centimeter, preferably between about 1 mm and 5 mm.
  • a typical plate character results from the preferred dimensions.
  • a functional pattern 2 consisting of a yarn duct piece 3 ', an air supply 4 and an acceleration duct 5. The entire air swirl nozzle 6 is drawn in an exploded view, with the individual components moved apart.
  • FIG. 1 To the left of the swirl insert plate 1 is another element 7 with an air supply bore 8, which corresponds on the one hand to the air supply 4 of the swirl insert plate 1 and on the other hand to a compressed air connection 9, via which the compressed air is supplied from a compressed air network (not shown), arrow 11.
  • a thread or yarn 10 is straight through the yarn channel piece 3 'and the yarn channel 3 of the element 7, further through the yarn channel 3 of an end plate 14.
  • the connecting means for the three parts, element 7, swirl insert plate 1 and the end plate 14 (dashed lines) are not shown.
  • the connection can be made by screws, clamps, etc. and must withstand the compressive forces and ensure tightness.
  • Figure 3b is designed analogously, with the exception of the twist direction.
  • FIG. 3c represents a possible combination of FIGS. 3a and 3b.
  • FIG. 3c corresponds to the solution according to FIG. 1a and is designed for alternating operation. Only either an S or a Z twist is generated.
  • the compressed air can be 2 to 25 bar. Tests with 14 to 22 bar gave consistently very good results. If very short changeover times are required, for example in the millisecond range, a higher pressure of 30 to 40 bar can be disadvantageous depending on the valve design due to the inertia of the system.
  • the two functional patterns are aligned with the same yarn channel 3, but are switched in succession.
  • a changeover valve 15 which supplies the compressed air in a time-controlled manner to one side or the other. So that the compressed air is supplied to the swirl insert plate 1, the swirl insert plate 1 x additionally has one Air supply hole 4 x , which feeds the compressed air from the compressed air connection 9 to the air supply 4.
  • the change of the swirl flow from S to Z swirl and vice versa can be controlled in any cycle sequence and the individual swirl type as long as is required by the special application.
  • the changeover can even take place in the range of milliseconds with miniaturized diaphragm valves.
  • two further insert spacers 17 and 18 are indicated. This means that regardless of the thickness D of the swirl insert plates, the length of the yarn channel can be varied as desired locally and across the entire air swirl nozzle.
  • Figures 4a to 4f show a number of different functional models for swirl insert plates.
  • LD is the diameter of the air supply 4 and Gd the diameter of the yarn channel 3 in the area of the yarn channel pieces 3 '.
  • the yarn channel 3 has, seen in cross section, advantageously a circular shape or at least approximately a circular shape.
  • the cross-sectional shape of the air supply 4, however, can be chosen arbitrarily and even rectangular.
  • A denotes the entry zone into the acceleration channel 5 and C denotes the exit zone from the acceleration channel 5 or the entry into the yarn channel piece 3 ′.
  • BL is the length of the acceleration channel and B is the channel width seen in the image plane. In a preferred form, the acceleration channel 5 has a resp.
  • FIGS. 4c, 4d, 4e and 4f show solutions with an enlarged outlet zone for a supersonic flow.
  • flow optimization there is also the possibility of choosing a slight deviation from the tangent instead of a purely tangential air introduction into the yarn duct piece 3 ', which is indicated by X + or X - (FIGS.
  • a section III-III is drawn directly above in FIG. 4c. This is intended to express that, depending on the selected design optimization, only a part of the cross section of the swirl insert plate or the plate thickness D can be used for the formation of the acceleration channel.
  • FIG. 5a schematically shows the generation of an S or Z twist on the same yarn by appropriately controlling the supply of compressed air.
  • the two twist directions are each shown on a swirl insert plate and in FIG. 5e with two threads 10 running in parallel.
  • FIG. 5d shows the arbitrary multiplication of the functional pattern for a corresponding number of threads running in parallel.
  • the direction of swirl shown in Figure 5e is always the same. However, this can also be changed as required.
  • FIGS. 6a to 6c Some configurations of the plates or elements are shown in FIGS. 6a to 6c.
  • FIG. 6a shows a simple example of an insert spacer plate 20.
  • FIG. 6c shows an example of two swirl insert plates with the thickness D. and an insert insert plate with the length EDis inserted between them. With an appropriate construction of intermediate plates and any free outflow points LA, an S and Z swirl can be generated.
  • FIG. 6b shows a possibility of dividing a plate with two dovetail connections 21, at the top in the assembled state and at the bottom before the assembled state.
  • the dovetail connection 21 ensures the exact joining of two or more parts. This ensures the accuracy of the shape, particularly the functional pattern of the swirl insert.
  • FIG. 6d shows a nozzle block in section through the yarn channel.
  • a swirl insert plate 1 On each side there is an insert spacer plate 20 and an element 7, 7 'as end blocks for the mechanical hold and the air supply.
  • the yarn channel 3 is continuous and has a conical insertion on both ends.
  • FIGS. 7a and 7b show a very particularly advantageous embodiment of a swirl insert plate for a family of threads.
  • the swirl insert plate is divided in two in a special way with foot-like anchors.
  • the upper plate part 30 has a foot 32 as a positive form and the lower plate part 31 has a foot 33 as a negative form. Both feet 32, 33 not only fit exactly into one another (FIG. 7b). They also ensure the corresponding functional model.
  • the three flow forms only form after the joining: the yarn duct piece 3 ', the acceleration duct 5 and the air supply 4.
  • the particular advantage of the solution with a division in the middle of the functional pattern, above all through the acceleration duct, lies primarily on the production side and, if necessary, post-processing, for example by fine sanding, which can be decisive when using the ceramic material.
  • FIG. 7b shows a swirl insert plate with an upper plate part 30 and a lower plate part 31 in the installed state. Since the swirl insert plate must be made of a particularly wear-resistant material, an entire housing shape is made of steel and, if necessary, several swirl insert plates T1, T2, etc. are used.
  • an assembled nozzle bar 34 has a base plate 35, a rear support plate 36 and a front support plate 37, which each hold a rear end plate 38 and a front end plate 38 ', via which the compressed air is supplied. Between the two end plates 38 and 38 'is a shaped plate 39 into which the swirl insert plate 30, 31 can be inserted. Since very high pressures are used in the example shown, the entire kit is connected with the necessary number of screws 40.
  • Figures 8a, 8b and 8c show the main elements of an assembly 45 for a multi-part false twist nozzle.
  • the main elements are a support block 40, a clamping plate 41, a swirl insert plate 1 and two insert spacer plates 20.
  • Three dowel pins 42, 43 and 44 are firmly anchored in the clamping plate, only two dowel pins being recognizable in FIG. 8c, since the lower dowel pins are outside of the Image plane. All three dowel pins are visible in FIGS. 9 and 10a.
  • the dowel pins 42, 43 and 44 serve for exact positioning of the twist insert plates 1 and the insert spacer plates 20, so that at least with regard to the yarn channel after the assembly of all parts of the assembly 45, these fit exactly, so that the cylindrical wall surface of the entire yarn channel does not have any transitions and has no protruding joints.
  • a first insert spacer plate 20, a swirl insert plate 1 and a second insert spacer plate 20 are successively inserted into the space between the dowel pins 42, 43, 44. Then the clamping plate 41 with the other plates is pushed according to arrow 46 onto the support block 40.
  • a fitting hole 47 is provided in the support block 40, so that after the support block 40 is screwed to the clamping plate 41 by means of a screw 48, all the parts of the assembly mentioned are precisely mounted (FIG. 10b).
  • the new multi-part false twist nozzle is at least as high in quality as a corresponding false twist nozzle made from a full nozzle body.
  • the screw 48 engages in a threaded blind hole 49 of the clamping plate.
  • the yarn channel 3 passes through all parts of the multi-part false twist nozzle, in the sense of a single bore with a center line 50.
  • the yarn channel 3 has an inlet cone 51 on the inlet side and, analogously, an outlet cone 52 in the clamping plate 41, that is to say the yarn outlet side.
  • an inlet cone 51 and an outlet cone 52 instead of an inlet cone 51 and an outlet cone 52, a stepped bore 59 is shown.
  • each assembly additionally has an air filter 53, which consists, for example, of porous insert filter plates. The assembly is clamped together without play. As will be explained with reference to the following figures, the entire assembly can be designed to be displaceable with respect to the plane Z-Z, as indicated by an arrow.
  • the compressed air supply from bore 11/12 can either be brought into line with the through bore 55 of an intermediate plate 56 or be offset. Depending on the supply of compressed air is released or closed.
  • the support block 40 is firmly connected to the intermediate plate 56 by means of two strong screws 57 (FIG. 10c), a sealing ring 58 sealing the two elements against one another.
  • a single swirl insert plate 1 is shown again on a larger scale in FIG. This is a split plate, which is joined to form a plate with maximum precision via three dovetail connections 21.
  • the butt line 60 between the upper plate half 61 and the lower plate half 62 is mainly formed by the three dovetail connections 21, with the exception of the area of the yarn channel piece 3, the tangential channel 5 and the compressed air hole 4.
  • the swirl insert plate 1 is only made for a single yarn run.
  • FIG. 10b is a section through FIG. 10a through an assembly with two false twist nozzles on the level of the compressed air supply. Correspondingly, the through bore 55 and a compressed air supply duct 70 can be seen.
  • Figure 10b is a section Xb - Xb of Figure 10a.
  • FIG. 10a shows a section Xa-Xa of FIG. 10b on the left. The three dowel pins 42, 43 and 44 are clearly visible.
  • the right assembly is a view according to arrow 71.
  • FIG. 10c shows a very advantageous use of two assemblies.
  • Two assemblies or false twist nozzles 100 are mounted on an intermediate plate 56. One is screwed on the intermediate plate by 180 ° relative to the other. The result is that, depending on the assembly, one S-twist and one Z-twist are generated with the same assembly or false twist nozzle 100.
  • FIG. 11 shows another very interesting example of the use of the new solution according to FIGS. 2b and 2c in the sense of an entire battery.
  • a pressure distributor 80 On a pressure distributor 80 are two false twist nozzle blocks 81, 82 and only through that Connections indicated by a third block 83.
  • the compressed air distributor 80 has a compressed air supply channel, not shown, with compressed air supply channels 11/12 over the entire length, which open or close the air supply depending on the position of a shift lever 84, 84 '. "On” means that compressed air is supplied and “Off” means that the air supply is blocked.
  • the VWmax dimension represents the maximum displacement and VWo between the open position and the infeed for the air supply.
  • FIG. 12a is a view of an entire battery of multi-part false twist nozzles with a plurality of assemblies 45 arranged in blocks. Two false twist nozzles are twins with a switching lever 84 for switching the air on and off.
  • Figures 12b and 1 2c show on a larger scale again the two possible positions for the compressed air supply "on” or “off".
  • the compressed air distributor is designed as a solid tube with a compressed air distribution channel 90 (Dr. Heil).

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Nozzles (AREA)

Claims (26)

  1. Procédé de fausse torsion de fil continu, le fil continu étant transporté via un canal de filière d'un seul tenant d'une buse fausse-torsion, libre du côté entrée et sortie, caractérisé en ce que l'air comprimé dans la buse fausse-torsion est conduit vers et/ou le long d'une course de fil, puis de manière tangentielle dans le canal de filière, de telle sorte qu'une fausse torsion soit produite sur le fil continu libre d'un bout à l'autre par un flux de torsion dans le canal de filière de la buse fausse-torsion et puisse être fixée de manière thermique par un traitement thermique précédent de l'effet fausse-torsion et une qualité de frisure du fil est permise.
  2. Procédé selon la revendication 1, caractérisé en ce que de l'air comprimé avec une plage de pression de préférence de 2 à 14 bars est utilisé.
  3. Procédé selon la revendication 1, caractérisé en ce que de l'air comprimé de 2 à 22 bars est utilisé.
  4. Procédé selon la revendication 1, caractérisé en ce que de l'air comprimé de 14 à 40 bars est utilisé.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la fausse torsion ainsi que la fixation thermique effectuée immédiatement avant ont lieu entre deux dispositifs d'alimentation LW1 et LW2.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la buse fausse-torsion est mobile de manière parallèle au sens de transport du fil et/ou relative à sa position de fixation, sachant que, via le déplacement, l'alimentation en air comprimé est activée ou désactivée par contrainte.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que deux ou plusieurs buses fausse-torsion ou plaques d'insertion de torsion pour un nombre correspondant de courses de fil sont montées en parallèle et qu'une torsion S et/ou Z est produite sur les courses de fil individuelles par une alimentation en air continue.
  8. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que deux ou trois buses fausse-torsion pour une course de fil sont montées les unes après les autres pour la production de torsion Z et S sur le même fil continu.
  9. Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'au moins une buse fausse-torsion S et une buse fausse-torsion Z pour une course de fil sont montées l'une après l'autre avec une alimentation en air alternant pour la production chronologiquement successive, ou d'une torsion Z ou d'une torsion S sur le même fil.
  10. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que deux ou trois buses fausse-torsion ou plaques d'insertion de torsion pour une course de fil sont montées les unes après les autres et qu'une torsion S et/ou Z est produite via une alimentation en air alternant, contrôlée à la seconde ou au millième de seconde.
  11. Buse fausse-torsion en plusieurs parties pour la production d'un fil continu (10) texturé en fausse torsion avec un canal de filière (3) d'un seul tenant libre du côté entrée et sortie ainsi qu'une insertion avec une entrée d'air comprimé tangentielle dans le canal de filière (3), caractérisée en ce qu'elle comprend au moins une plaque d'insertion de torsion (1, 1', 1x) avec un orifice pour air comprimé aligné en direction de l'axe du canal de filière et un morceau de canal de filière (3') d'un seul tenant, et comprend en outre un canal tangentiel débouchant dans le morceau de canal de filière par l'orifice pour air comprimé et au moins un autre élément (7) comportant chacun un morceau de canal de filière correspondant à la plaque d'insertion de torsion (1, 1', 1x) et/ou un orifice pour air comprimé.
  12. Buse fausse-torsion en plusieurs parties selon la revendication 11, caractérisée en ce que la plaque d'insertion de torsion (1, 1', 1x) comprend deux ou plusieurs brèches de canal, pour le canal tangentiel d'une part, ainsi que d'autre part pour le canal de filière (3), lesquelles sont reliées, pour la production du flux de torsion, au canal tangentiel conçu comme un canal d'accélération d'air (5) court pour le cas de deux ou plusieurs canaux de filière (3) parallèles à la manière d'un modèle de fonctionnement maintes fois utilisé.
  13. Buse fausse-torsion en plusieurs parties selon l'une des revendications 11 ou 12, caractérisée en ce que le canal tangentiel (5) de l'orifice d'air comprimé est conçu de manière rétrécie en direction du canal de filière (3) et/ou de manière élargie à l'extrémité de sortie (C) dans la zone d'entrée (A) dans le canal de filière (3), le canal d'accélération (5) comprenant une coupe transversale approximativement à angle droit le traversant.
  14. Buse fausse-torsion en plusieurs parties selon l'une des revendications 11 à 13, caractérisée en ce que le canal de filière ainsi que l'orifice d'air comprimé sont conçus de manière cylindrique et que le canal tangentiel (5) relie les deux par l'intégralité de l'épaisseur de la plaque et ont de préférence une forme homogène, dans le sens d'une forme matricée, sur l'intégralité de l'épaisseur de la plaque.
  15. Buse fausse-torsion en plusieurs parties selon l'une des revendications 11 à 14, caractérisée en ce que les plaques d'insertion de torsion (1, 1', 1x) sont, par rapport aux plaques d'insertion (14) supplémentaires, fabriquées avec des matériaux possédant une plus grande résistance à l'usure, en particulier en céramique par exemple.
  16. Buse fausse-torsion en plusieurs parties selon l'une des revendications 11 à 15, caractérisé en ce que les plaques d'insertion de torsion (1, 1', 1x) sont conçues de manière séparée et comprennent de préférence des positions d'ancrage (21) opposées, de telle sorte que la précision des parties efficaces pour l'écoulement est assurée par contrainte à l'état monté.
  17. Buse fausse-torsion en plusieurs parties selon l'une des revendications 11 à 16, caractérisée en ce qu'elle est conçue comme un jeu de pièces détachées et qu'au moins un élément est conçu comme bloc de soutien (7, 7') avec l'alimentation en air (4, 4') ainsi qu'un raccordement pour un débit d'air comprimé (9).
  18. Buse fausse-torsion en plusieurs parties selon l'une des revendications 11 à 17, caractérisée en ce qu'elle comprend des éléments supplémentaires (20), qui sont conçus comme des plaques d'insertion sans canal d'accélération d'air, cependant avec au moins deux brèches de canal (3, 4) pour l'alimentation en air (4) et le canal de filière (3), les brèches de canal (3, 4) correspondantes formant un canal d'écoulement homogène à l'état monté.
  19. Buse fausse-torsion en plusieurs parties selon l'une des revendications 11 à 18, caractérisée en ce qu'une plaque d'insertion de torsion (1, 1', 1x) comprend deux ou plusieurs canaux de filière, placés parallèlement, chacun avec sa propre alimentation en air.
  20. Buse fausse-torsion en plusieurs parties selon la revendication 19, caractérisée en ce qu'une pluralité de canaux de filière (3) sont disposés (figures 7 à 9) sur une plaque d'insertion de torsion (30, 31) avec la séparation la plus petite possible, de préférence sur une ligne médiane commune.
  21. Buse fausse-torsion en plusieurs parties selon la revendication 19 ou 20, caractérisée en ce qu'une plaque d'insertion de torsion (30, 31) comprend (figure 5b), pour une pluralité de canaux de filière dans la zone des brèches de canal, un point de rupture pour deux ou plusieurs parties.
  22. Buse fausse-torsion en plusieurs parties selon l'une des revendications 11 à 21, caractérisée en ce qu'elle comprend (figure 2) au moins une plaque d'insertion de torsion (1, 1x) pour torsion S et au moins une plaque d'insertion de torsion (1, 1x) pour torsion Z, chacune avec sa propre alimentation en air, de préférence avec une alimentation en air pouvant être commutée.
  23. Buse fausse-torsion en plusieurs parties selon l'une des revendications 11 à 22, caractérisée en ce qu'elle comprend des plaques d'entretoise (EDis), permettant de sélectionner la distance, au moins entre deux positions d'effet de torsion (D) (figure 5c).
  24. Buse fausse-torsion en plusieurs parties selon l'une des revendications 1 à 23, caractérisée en ce qu'une ou plusieurs buses à torsion pneumatique est et/ou sont disposée(s) de manière mobile par rapport à un distributeur d'air comprimé, de telle sorte que l'alimentation en air comprimé peut être activée et désactivée via le déplacement.
  25. Buse fausse-torsion en plusieurs parties selon la revendication 24, caractérisée en ce que les buses à torsion pneumatique sont disposées de manière mobile sur un distributeur d'air comprimé bloc par bloc.
  26. Buse fausse-torsion en plusieurs parties selon l'une des revendications 1 à 25, caractérisée en ce qu'un filtre à air est disposé entre le distributeur d'air comprimé et/ou l'alimentation en air comprimé et les buses à torsion pneumatique.
EP01900366A 2000-01-26 2001-01-24 Procede de fausse torsion de fil continu, et buse fausse-torsion en plusieurs parties Expired - Lifetime EP1252379B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10003216A DE10003216C1 (de) 2000-01-26 2000-01-26 Luftdralldüse
DE10003216 2000-01-26
PCT/CH2001/000054 WO2001055488A2 (fr) 2000-01-26 2001-01-24 Procede de fausse torsion de fil continu, et buse fausse-torsion en plusieurs parties

Publications (2)

Publication Number Publication Date
EP1252379A2 EP1252379A2 (fr) 2002-10-30
EP1252379B1 true EP1252379B1 (fr) 2004-04-28

Family

ID=7628728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01900366A Expired - Lifetime EP1252379B1 (fr) 2000-01-26 2001-01-24 Procede de fausse torsion de fil continu, et buse fausse-torsion en plusieurs parties

Country Status (11)

Country Link
US (1) US20030110754A1 (fr)
EP (1) EP1252379B1 (fr)
JP (1) JP2003520908A (fr)
KR (1) KR20020070522A (fr)
CN (1) CN1396966A (fr)
AT (1) ATE265563T1 (fr)
AU (1) AU2001224982A1 (fr)
DE (2) DE10003216C1 (fr)
RU (1) RU2225467C1 (fr)
TW (1) TW533250B (fr)
WO (1) WO2001055488A2 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004032099A1 (de) * 2004-07-01 2006-01-26 Coltène/Whaledent GmbH + Co. KG Retraktionsfaden mit verbesserter Saugfähigkeit
US7406818B2 (en) 2004-11-10 2008-08-05 Columbia Insurance Company Yarn manufacturing apparatus and method
FR2963028B1 (fr) * 2010-07-26 2013-05-03 Superba Sa Procede et dispositif de texturation de fils pour tapis ou moquette, en amont d'une unite de traitement thermique
US9528199B2 (en) * 2012-02-20 2016-12-27 Teijin Aramid B.V. Method and apparatus for entangling yarns
SI3337920T1 (sl) * 2015-06-30 2019-11-29 Heberlein Ag Oblikovani del za jedro šobe, stiskalna naprava za jedro šobe za stiskanje, razširitveni komplet, blokirna naprava in nastavitveni element, vključno z njihovim postopkom
US11280030B2 (en) * 2018-05-29 2022-03-22 Nicolas Charles Sear Textile interlacing jet with smooth yarn channel
JP7398323B2 (ja) 2020-04-06 2023-12-14 Tmtマシナリー株式会社 仮撚加工機
CN115478346A (zh) * 2021-06-15 2022-12-16 富源磁器股份有限公司 花色变化纱制造装置及其方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758698A (fr) * 1969-11-10 1971-05-10 Uniroyal Inc Appareil de texturisation d'un fil synthetique
FR2116958A5 (fr) * 1970-12-10 1972-07-21 Rhodiaceta
CH596342A5 (en) * 1975-05-26 1978-03-15 Kriophor Ag Multifilament synthetic yarn having S and Z twist imparted
IT1093498B (it) * 1977-03-30 1985-07-19 Toray Industries Metodo ed apparecchio per intreociare un filo a molti filamenti
DE3301652A1 (de) * 1982-01-20 1983-07-28 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho, Kariya, Aichi Falschdraht-luftduese
JP2865860B2 (ja) * 1989-09-05 1999-03-08 ヘーベルライン ファーザーテヒノロギー アクチエンゲゼルシャフト 少なくとも1本のマルチフィラメント糸をブローテクスチャード加工するための装置
DE4026993A1 (de) * 1990-08-25 1992-02-27 Schlafhorst & Co W Luftduese zum einwirken von druckluft auf fasermaterial
CH681989A5 (fr) * 1990-11-06 1993-06-30 Heberlein & Co Ag
US5157819A (en) * 1991-03-29 1992-10-27 Basf Corporation Modular yarn interlacer
DE59207236D1 (de) * 1991-09-12 1996-10-31 Heberlein & Co Ag Blasdüse sowie Verfahren zum Verringern oder Beseitigen des Torsionsmomentes eines falschdralltexturierten Garnes
US6438934B1 (en) * 1994-05-24 2002-08-27 University Of Manchester Institute Of Science And Technology Apparatus and method for fabrication of textiles
US5557915A (en) * 1994-11-14 1996-09-24 E. I. Du Pont De Nemours And Company Method and apparatus for making alternate twist plied yarn and product
US5619848A (en) * 1995-08-09 1997-04-15 Prospin Industries, Inc. Method and apparatus for automatically removing an imperfection from spun filament yarn and staple fibers
TW344003B (en) * 1996-06-07 1998-11-01 Fibreguide Ltd Yarn processing method and apparatus
DE19703924C2 (de) * 1997-02-03 1999-11-18 Heberlein Fasertech Ag Verfahren, Düse und Anlage zum Luftbehandeln von Filamentgarn
US6052983A (en) * 1998-06-24 2000-04-25 Belmont Textile Machinery Co., Inc. Fluid-jet twist-inserting apparatus and method

Also Published As

Publication number Publication date
DE50102125D1 (de) 2004-06-03
CN1396966A (zh) 2003-02-12
ATE265563T1 (de) 2004-05-15
RU2225467C1 (ru) 2004-03-10
US20030110754A1 (en) 2003-06-19
KR20020070522A (ko) 2002-09-09
WO2001055488A2 (fr) 2001-08-02
AU2001224982A1 (en) 2001-08-07
WO2001055488A3 (fr) 2001-12-27
RU2002122753A (ru) 2004-01-20
JP2003520908A (ja) 2003-07-08
DE10003216C1 (de) 2001-09-06
TW533250B (en) 2003-05-21
EP1252379A2 (fr) 2002-10-30

Similar Documents

Publication Publication Date Title
EP1761664B1 (fr) Dispositif et procede pour traiter un fil continu et fil noueux, fil migre et fil a fausse torsion
EP1060302B9 (fr) Dispositif de traitement des fils et son utilisation
EP1252379B1 (fr) Procede de fausse torsion de fil continu, et buse fausse-torsion en plusieurs parties
WO2000052240A1 (fr) Procede et dispositif pour le traitement d'un fil continu, et utilisation de ce dispositif
DE19523704A1 (de) Vorrichtung zur geregelten mechanischen Behandlung von hochkonsistentem Faserstoff
EP0216951B1 (fr) Dispositif pour tourbillonner des fils multifilaments
EP0625600B1 (fr) Dispositif pour le traitement d'un moins un fil multifilament
EP1634982B1 (fr) Buse en céramique et dispositif de frisage par boîte de bourrage d'un fil synthétique multifilamentaire
DE4213707A1 (de) Stoffauflaufeinrichtung für eine Papiermaschine
DE19809600C1 (de) Garnbehandlungseinrichtung
DE19703572C2 (de) Verfahren und Einrichtung zur Erzeugung von Verwirbelungsknoten
EP1116806B1 (fr) Tuyère de texturation
EP1090175B1 (fr) Procede pour produire un fil continu presentant en alternance des torsions s et des torsions z
DE2826790C2 (de) Spinnkopf zur Herstellung von Mehrkomponentenfäden
EP0026253B1 (fr) Raccordement de structures de fibres, procédé pour la fabrication de ce raccordement et dispositif pour la réalisation de ce procédé
EP3564421A1 (fr) Procédé et dispositif destinés au traitement des fibres
EP0633334A1 (fr) Dispositif pour l'entrelacement des filaments
EP0434601A1 (fr) Procédé et dispositif pour la fabrication d'un fil non-retordu, composé d'au moins deux faisceaux de filaments ayant une disposition relative l'un par rapport à l'autre, constante
EP0620872B1 (fr) Procede et dispositif a texturer des fils thermoplastiques
EP0282815A1 (fr) Buse de texturation pour fils multifilamentaires
DE4026993A1 (de) Luftduese zum einwirken von druckluft auf fasermaterial
DE3313874C2 (fr)
DE102005004550A1 (de) Plattenförmiges Stützelement
DE3915778A1 (de) Gasduese
DE1127764B (de) Pfeife zur Schall- oder Ultraschallerzeugung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020515

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040428

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50102125

Country of ref document: DE

Date of ref document: 20040603

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DIPL.-ING. ERNST ACKERMANN PATENTANWALT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040728

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040728

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040808

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040428

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040428

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050124

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed

Effective date: 20050131

BERE Be: lapsed

Owner name: *HEBERLEIN FIBERTECHNOLOGY INC.

Effective date: 20050131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050802

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: *HEBERLEIN FIBERTECHNOLOGY INC.

Effective date: 20050131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040928