EP1252284A2 - Duftstofftabletten - Google Patents

Duftstofftabletten

Info

Publication number
EP1252284A2
EP1252284A2 EP01902355A EP01902355A EP1252284A2 EP 1252284 A2 EP1252284 A2 EP 1252284A2 EP 01902355 A EP01902355 A EP 01902355A EP 01902355 A EP01902355 A EP 01902355A EP 1252284 A2 EP1252284 A2 EP 1252284A2
Authority
EP
European Patent Office
Prior art keywords
weight
alcohol
tablets
acid
contain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01902355A
Other languages
English (en)
French (fr)
Inventor
Ditmar Kischkel
Manfred Weuthen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Personal Care and Nutrition GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP1252284A2 publication Critical patent/EP1252284A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0052Gas evolving or heat producing compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes

Definitions

  • the invention is in the field of solid detergents and relates to new fragrance tablets.
  • Solid detergents in tablet form are increasingly being used for textile cleaning in the household sector.
  • Different forms of application have established themselves on the market (e.g. use in the dispenser, use in the washing machine drum together with application aids).
  • the detergent tablets currently on the market all contain perfume oil, whereby the perfume oils have three main functions:
  • the object of the present invention was therefore to provide a simple and, above all, attractive solution from the commercial point of view for the problem described. Description of the invention
  • the invention relates to fragrance tablets consisting of
  • fragrance tablet With the use of the fragrance tablet, it is up to the consumer whether he wants to use it together with perfume-free detergent or not. The degree of scenting can also be set via the amount. Finally, there is the possibility of making tablets with different fragrances available to the consumer, so that even when using one and the same detergent, the fragrance of the laundry can always be different depending on the season or taste, without the detergent manufacturer having to keep a large number of different detergent tablets ,
  • a special application form is, for example, to combine certain fragrance notes with certain colors of the fragrance tablets. For example, a “green” fragrance note could be accommodated in a green or green-white tablet, while a yellow or yellow-white tablet would be characteristic of a citrus note.
  • Such tablets with different fragrance notes could be offered separately or as a collection, ie as a mixture of different fragrance tablets from which the consumer can then choose.
  • Another advantage is that the scenting of the laundry can be achieved particularly easily because, unlike the detergent tablet, the fragrance tablet can be dosed into the rinse cycle comparable effect of the fragrance compared to the detergent tablet has already been achieved with considerably smaller amounts (about 5 to 90% by weight), and the concept also allows the use of possibly particularly inexpensive fragrances which are no longer compared to the bl calibration and alkalis must be resistant.
  • the new fragrance tablets contain disintegrants or disintegrants as component (a).
  • These substances increase their volume when water enters, whereby On the one hand, the volume increases (swelling), on the other hand, a pressure can be generated by the release of gases, which causes the tablet to disintegrate into smaller particles.
  • Disintegration aids are, for example, carbonate / citric acid systems, although other organic acids can also be used
  • Disintegration aids are, for example, synthetic polymers such as optionally crosslinked polyvinylpyrrolidone (PVP) or natural polymers or modified natural substances such as cellulose and starch and their derivatives, in particular carboxymethyl celluloses and starches and their salts, alginates, casein derivatives or chitosans of the present invention
  • PVP polyvinylpyrrolidone
  • Suitable celluloses consist of approximately 500 to 5000 glucose units and consequently have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrants which can be used in the context of the present invention are also cellulose derivatives which can be obtained from cellulose by polymer-analogous reactions.
  • Such chemically modified celluloses include, for example, products from esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • celluloses in which the hydroxyl groups have been replaced by functional groups which are not bound via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali celluloses, carboxymethyl cellulose (CMC), cellulose esters and ethers and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as a cellulose-based disintegrant, but are used in a mixture with cellulose.
  • the content of these mixtures of cellulose derivatives is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrant.
  • Pure cellulose which is free from cellulose derivatives is particularly preferably used as the disintegrant based on cellulose.
  • Microcrystalline cellulose can be used as a further cellulose-based disintegrant or as a component of this component. This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which only attack and completely dissolve the amorphous areas (approx. 30% of the total cellulose mass) of the celluloses, but leave the crystalline areas (approx. 70%) undamaged.
  • a subsequent disaggregation of the microfine celluloses produced by the hydrolysis provides the microcrystalline celluloses, which have primary particle sizes of approximately 5 ⁇ m and can be compacted, for example, into granules with an average particle size of 200 ⁇ m.
  • the disintegrants can be macroscopically homogeneously distributed in the shaped body, but microscopically they form zones of increased concentration due to the manufacturing process.
  • fragrance compounds e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type are used. Fragrance compounds of the ester type are e.g.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes e.g.
  • the linear alkanals with 8-18 C atoms citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones e.g. the ionones, ⁇ -isomethyl ionone and methyl cedryl ketone, the alcohols anethole, citronellol, eugenol, geraniol, linolool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • perfume oils can also contain natural fragrance mixtures as are available from plant sources, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are muscatel, sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil.
  • the fragrance tablets according to the invention can furthermore contain, as optional component (c), inorganic and organic builder and co-builder substances, the inorganic builder substances mainly being zeolites, crystalline phyllosilicates, amorphous silicates and - where permissible - also phosphates, such as tripolyphosphate, for example ,
  • the fine-crystalline, synthetic and bound water-containing zeolite which is frequently used as a detergent builder is preferably zeolite A and / or P.
  • zeolite P for example, zeolite MAP ⁇ R > (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P and Y are also suitable.
  • zeolite A and zeolite X which as VEGOBOND AX® (commercial product from Condea Augusta SpA) is commercially available.
  • VEGOBOND AX® commercial product from Condea Augusta SpA
  • the zeolite can be used as a spray-dried powder or as an dried stabilized suspension that is still moist from its manufacture.
  • the zeolite may contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated Ci2-Ci8 fatty alcohols with 2 to 5 ethylene oxide groups, Ci2 -Ci4 fatty alcohols with 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Suitable substitutes or partial substitutes for phosphates and zeolites are crystalline, layered sodium silicates of the general formula NaMSix ⁇ 2x + ryH2 ⁇ , where M is sodium or hydrogen, x is a number from 1, 9 to 4 and y is a number from 0 to 20 and preferred values for x is 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP 0164514 A1.
  • Preferred crystalline phyllosilicates of the formula given are those in which M is sodium and x is 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicate Na ⁇ S ' ⁇ Os-yH ⁇ O are preferred, wherein ⁇ -sodium disilicate can be obtained, for example, by the method described in international patent application WO 91/08171.
  • Further suitable layered silicates are known, for example, from patent applications DE 2334899 A1, EP 0026529 A1 and DE 3526405 A1. Their usability is not limited to a special composition or structural formula.
  • smectites in particular bentonites, are preferred here.
  • Suitable sheet silicates, which belong to the group of water-swellable smectites, are, for example, those of the general formulas
  • the layered silicates can contain hydrogen, alkali, alkaline earth ions, in particular Na and Ca 2+ .
  • the amount of water of hydration is usually in the range of 8 to 20% by weight and depends on the swelling condition or the type of processing.
  • Useful layer silicates are known, for example, from US 3,966,629, US 4,062,647, EP 0026529 A1 and EP 0028432 A1.
  • Layer silicates are preferably used which are largely free of calcium ions and strongly coloring iron ions due to an alkali treatment.
  • the preferred builder substances also include amorphous sodium silicates with a modulus Na :O: SiÜ2 from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6 , which before delayed release and have secondary washing properties.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles deliver washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE 4400024 A1. Compressed / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates are particularly preferred.
  • phosphates As builders, provided that such use should not be avoided for ecological reasons.
  • the sodium salts of orthophosphates, pyrophosphates and in particular tripolyphosphates are particularly suitable. Their content is generally not more than 25% by weight, preferably not more than 20% by weight, in each case based on the finished composition. In some cases, it has been shown that tripolyphosphates in particular, even in small amounts up to a maximum of 10% by weight, based on the finished agent, in combination with other builder substances lead to a synergistic improvement in the secondary washing ability.
  • Usable organic builders that come into question as co-builders are, for example, the polycarboxylic acids that can be used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), provided that such use is used for ecological reasons is not objectionable, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these. The acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH value of detergents or cleaning agents.
  • Citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures thereof can be mentioned in particular.
  • Other suitable organic builder substances are dextrins, for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary processes, for example acid-catalyzed or enzyme-catalyzed. They are preferably hydrolysis products with average molecular weights in the range from 400 to 500,000.
  • DE dextrose equivalent
  • Both maltodextrins with a DE between 3 and 20 and dry glucose syrups with a DE between 20 and 37 as well as so-called yellow dextrins and white dextrins with higher molar masses in the range from 2,000 to 30,000 can be used.
  • a preferred dextrin is described in British patent application GB 9419091 A1 ,
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their preparation are known, for example, from European patent applications EP 0232202 A1, EP 0427349 A1, EP 0472042 A1 and EP 0542496 A1 as well as from international patent applications WO 92/18542, WO 93/08251, WO 93/16110, WO 94 / 28030, WO 95/07303, WO 95/12619 and WO 95/20608 are known.
  • An oxidized oligosaccharide according to German patent application DE 19600018 AI is also suitable.
  • a product oxidized to C ⁇ of the saccharide ring can be particularly advantageous.
  • Suitable cobuilders are oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate.
  • glycerol disuccinates and glycerol trisuccinates are also particularly preferred, as are described, for example, in US Pat. Nos. 4,524,009, 4,639,325, European Patent Application EP 0150930 A1 and Japanese Patent Application JP 93/339896.
  • Suitable amounts for use in zeolite-containing and / or silicate-containing formulations are 3 to 15% by weight.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or salts thereof, which may also be in lactone form and which have at least 4 carbon atoms and at least one hydroxyl group and a maximum contain two acid groups.
  • Such cobuilders are described, for example, in international patent application WO 95/20029.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (based on acid and measured in each case against polystyrene sulfonic acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid have been found to be particularly suitable Maleic acid proven to contain 50 to 90 wt .-% acrylic acid and 50 to 10 wt .-% maleic acid.
  • the relative molecular weight, based on free acids, is generally 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000 (measured in each case against polystyrene sulfonic acid).
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution, with 20 to 55% by weight aqueous solutions being preferred.
  • Granular polymers are usually subsequently mixed into one or more basic granules.
  • biodegradable polymers composed of more than two different monomer units, for example those which, according to DE 4300772 A1, as salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives or as DE 4221381 C2 as monomer salts of acrylic acid and the 2-alkylallylsulfonic acid and sugar derivatives.
  • Further preferred copolymers are those which are described in German patent applications DE 4303320 A1 and DE 4417734 A1 and which preferably contain acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • polymeric aminodicarboxylic acids their salts or their precursor substances. Polyaspartic acids or their salts and derivatives are particularly preferred.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP 0280223 A1.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • Anionic, nonionic, cationic, amphoteric and / or zwitterionic surfactants may also be present as additional optional components (component d) in the fragrance tablets, but preferably anionic surfactants or combinations of anionic and nonionic surfactants are present, which act as emulsifiers for the fragrances .
  • anionic surfactants are soaps, alkylbenzene sulfonates, alkane sulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, hydroxymixed ether sulfates, fatty (amide) sulfate, monoglyl sulfate, monoglyl sulf
  • anionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty klarepolyglycolester, fatty acid amide, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers and mixed formals, alk (en) yl oligoglycosides, fatty acid N-alkylglucamides, protein hydrolysates (in particular vegetable products based on wheat), polyol, Zuckerester , Sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of cationic surfactants are, in particular, tetraalkylammonium compounds, such as, for example, dimethyldistearylammonium chloride or hydroxyethyl hydroxycetyldimmonium chloride (Dehyquart® E) or esterquats.
  • suitable amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amido betaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines.
  • Alkyl sulfates or alk (en) yl oligoglucosides are preferably used.
  • Alkyl and / or alkenyl sulfates which are also frequently referred to as fatty alcohol sulfates, are to be understood as meaning the sulfation products of primary and / or secondary alcohols, which preferably follow the formula (I)
  • R 1 represents a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms and X represents an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • alkyl sulfates which can be used in the context of the invention are the sulfation products of capron alcohol, caprylic alcohol, capric alcohol, 2-ethylhexyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, arylselyl alcohol, elaidyl alcohol alcohol, gadoleyl alcohol, behenyl alcohol and erucyl alcohol and their technical mixtures, which are obtained by high pressure hydrogenation of technical methyl ester fractions or aldehydes from Roelen's oxosynthesis.
  • the sulfation products can preferably be used in the form of their alkali metal salts and in particular their sodium salts.
  • Alkyl sulfates based on Cie ⁇ tallow fatty alcohols or vegetable fatty alcohols of comparable carbon chain distribution in the form of their sodium salts are particularly preferred.
  • these are oxo alcohols, as are obtainable, for example, by converting carbon monoxide and hydrogen to alpha-olefins using the shop process.
  • Such alcohol mixtures are commercially available under the trade names Dobanol® or Neodol®. Suitable alcohol mixtures are Dobanol 91®, 23®, 25®, 45®.
  • oxo alcohols such as those obtained by the classic Enichema or Condea oxoprocess by the addition of carbon monoxide and hydrogen to olefins become.
  • These alcohol mixtures are a mixture of strongly branched alcohols.
  • Such alcohol mixtures are commercially available under the trade name Lial®.
  • Suitable alcohol mixtures are Lial 91®, 111®, 123®, 125®, 145®.
  • Alkyl and alkenyl oligoglycosides usually follow the formula (II),
  • R 2 is an alkyl and / or alkenyl radical having 4 to 22 carbon atoms
  • G is a sugar radical having 5 or 6 carbon atoms
  • p is a number from 1 to 10. They can be obtained according to the relevant procedures in preparative organic chemistry.
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.4.
  • the alkyl or alkenyl radical R 2 can be derived from primary alcohols having 4 to 11, preferably 8 to 10, carbon atoms. Typical examples are butanol, capronalcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the course of the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • the alkyl or alkenyl radical R 2 can also be derived from primary alcohols having 12 to 22, preferably 12 to 14, carbon atoms.
  • Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol and the technical mixtures described above.
  • Alkyl oligoglucosides based on hydrogenated Ci ⁇ / u coconut alcohol with a DP of 1 to 3 are preferred. tableting
  • the new fragrance tablets are usually manufactured by press agglomeration.
  • the particulate press agglomerates obtained can either be used directly as detergents or aftertreated and / or prepared beforehand by customary methods.
  • the usual aftertreatments include, for example, powdering with finely divided ingredients from detergents or cleaning agents, preferably Buildem or Talcum Aerosilen, which generally further increases the bulk density.
  • a preferred aftertreatment is also the procedure according to German patent applications DE 19524287 A1 and DE 19547457 A1, dust-like or at least fine-particle ingredients (the so-called fine particles) being adhered to the particulate process end products produced according to the invention, which serve as the core, and thus Means are created which have these so-called fines as an outer shell.
  • the perfume tablets have rounded corners and edges for storage and transport reasons.
  • the base of these tablets can be circular or rectangular, for example.
  • Multi-layer tablets, in particular tablets with 2 or 3 layers, which can also have different colors, are particularly preferred. Blue-white or green-white or blue-green-white tablets are particularly preferred.
  • the tablets can also contain pressed and unpressed parts.
  • Shaped articles with a particularly advantageous dissolution rate are obtained if the granular constituents, prior to pressing, have a proportion of particles which have a diameter outside the range from 0.02 to 6 mm of less than 20, preferably less than 10,% by weight.
  • a particle size distribution in the range from 0.05 to 2.0 and particularly preferably from 0.2 to 1.0 mm is preferred.
  • Table 1 below shows a number of example formulations for the production of fragrance tablets.

Abstract

Vorgeschlagen werden Duftstofftabletten bestehend aus a) 69 bis 99 Gew.-% Sprengmitteln, b) 1 bis 31 Gew.-% Duftstoffen, c) 0 bis 10 Gew.-% Buildern und d) 0 bis 10 Gew.-% Tensiden, mit der Massgabe, dass sich die Mengenangaben zu 100 Gew.-% ergänzen.

Description

Duftstofftabletten
Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der festen Waschmittel und betrifft neue Duftstofftabletten.
Stand der Technik
Zur textilen Reinigung im Haushaltsbereich werden in steigendem Maße feste Waschmittel in Tablettenform eingesetzt. Im Markt haben sich unterschiedliche Anwendungsformen etabliert (z.B. Einsatz in der Einspülkammer, Einsatz in der Waschmaschinentrommel zusammen mit Applikationshilfen). Die derzeit im Markt befindlichen Waschmitteltabletten sind alle parfümölhaltig, wobei den Parfümölen im wesentlichen drei Funktionen zukommen:
> Geruchsgebung für die Tablette,
> Beduftung der Waschküche während des Wasch prozesses und
> Geruchsgebung der Wäsche nach dem Reinigungsprozeß.
Aus naheliegenden Gründen kommt dem letzten Aspekt die höchste Bedeutung zu. Für eine Vielzahl von Verbrauchern führt die Mitverwendung von Parfümstoffen jedoch zu Problemen, da sie die Beduftung entweder als unangenehm empfinden oder sogar ihr gegenüber allergisch reagieren. Als Alternative böte sich natürlich an, ähnlich wie bei Waschpulvern parfümhaltige und parfümfreie Waschmitteltabletten anzubieten. Während dem Parfümallergiker damit natürlich sofort gedient wäre, würde das Problem einer zu intensiven oder zu schwachen Beduftung der Wäsche jedoch ungelöst bleiben.
Die Aufgabe der vorliegenden Erfindung hat somit darin bestanden, für das geschilderte Problem eine einfache und vor allem auch unter kommerziellen Gesichtspunkten attraktive Lösung zur Verfügung zu stellen. Beschreibung der Erfindung
Gegenstand der Erfindung sind Duftstofftabletten bestehend aus
(a) 69 bis 99, vorzugsweise 75 bis 90 Gew.-% Sprengmitteln,
(b) 1 bis 31 , vorzugsweise 4 bis 8 Gew.-% Duftstoffen,
(c) 0 bis 10, vorzugsweise 3 bis 7 Gew.-% Buildem und
(d) 0 bis 10, vorzugsweise 3 bis 10 Gew.-% Tensiden,
mit der Maßgabe, daß sich die Mengenangaben zu 100 Gew.-% ergänzen.
Mit dem Einsatz der Duftstofftablette bleibt es dem Verbraucher selbst überlassen, ob er diese zusammen mit parfümfreien Waschmittel einsetzen will oder nicht. Über die Menge läßt sich zudem der Grad der Beduftung einstellen. Schließlich besteht die Möglichkeit, dem Verbraucher Tabletten mit unterschiedlichen Duftstoffen zur Verfügung zu stellen, so daß auch bei Verwendung ein und desselben Waschmittels die Beduftung der Wäsche je nach Jahreszeit oder Geschmack stets anders sein kann, ohne daß der Waschmittelhersteller eine Vielzahl von verschiedenen Waschmitteltabletten bereithalten muß. Eine besondere Anwendungsform besteht beispielsweise darin, bestimmte Duftnoten mit bestimmten Farben der Duftstofftabletten zu kombinieren. So könnte beispielsweise eine „grüne" Duftnote in einer grünen oder grün-weißen Tablette untergebracht sein, während eine gelbe oder gelb-weiße Tablette charakteristisch für eine Citrusnote wäre. Solche Tabletten mit unterschiedlichen Duftnoten könnten separat angeboten werden oder aber als Kollektion, d.h. als Mischung von verschiedenen Duftstofftabletten, unter denen der Verbraucher dann auswählen kann. Ein weiterer Vorteil liegt darin, daß die Beduftung der Wäsche besonders einfach erreicht werden kann, weil man die Duftstofftablette - anders als die Waschmitteltablette - in den Spülgang eindosieren kann. Auf diesem Wege wird eine vergleichbare Wirkung des Duftstoffes gegenüber der Waschmitteltablette schon mit erheblich geringeren Mengen (etwa 5 bis 90 Gew.-%) erzielt. Im übrigen erlaubt das Konzept auch die Verwendung von gegebenenfalls besonders preisgünstigen Duftstoffen, die nicht länger gegenüber den in den Waschmitteltabletten obligatorisch enthaltenen Bleichmitteln und Alkalien resistent sein müssen.
Sprenqmittel
Die neuen Duftstofftabletten enthalten als Komponente (a) Spreng- oder Desintegrationsmittel. Hierunter sind Stoffe zu verstehen, die den Formkörpern zugegeben werden, um deren Zerfall beim Inkon- taktbringen mit Wasser zu beschleunigen. Übersichten hierzu finden sich z.B. in J.Pharm.Sci. 61 (1972), Römpp Chemilexikon, 9. Auflage, Band 6, S. 4440 sowie und Voigt „Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184). Diese Stoffe vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie gegebenenfalls quervernetztes Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, insbesondere Carboxymethylcellulosen und -stärken sowie deren Salze, Alginate, Casein- Derivate oder Chitosane. Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt. Reine Cellulose weist die formale Bruttozusammensetzung (C6Hιoθ5)n auf und stellt formal betrachtet ein ß-1 ,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxylgruppen gegen funktioneile Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulosederivate einsetzen. In die Gruppe der Cellulosederivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Sprengmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosedehvaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederi- vaten ist. Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kompaktierbar sind. Die Sprengmittel können im Formkörper makroskopisch betrachtet homogen verteilt vorliegen, mikroskopisch gesehen bilden sie jedoch herstellungsbedingt Zonen erhöhter Konzentration. Sprengmittel, die im Sinne der Erfindung zugegen sein können, wie z.B. Kollidon, Alginsäure und deren Alkalisalze, amorphe oder auch teilweise kristalline Schichtsilicate (Bentonite), Polyacrylate, Polyethylenglycole sind beispielsweise den Druckschriften WO 98/40462 (Rettenmaier), WO 98/55583 und WO 98/55590 (Unilever) und WO 98/40463, DE 19709991 und DE 19710254 (Henkel) zu entnehmen. Auf die Lehre dieser Schriften wird ausdrücklich Bezug genommen. Duftstoffe
Als Parfümöle bzw. Duftstoffe, die die Komponente (b) bilden, können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α- Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Lina- lool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpe- ne wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Ka- millenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Oliba- numöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Builder
Die erfindungsgemäßen Duftstofftabletten können des weiteren als fakultative Komponente (c) anorganische und organische Builder- und Co-Buildersubstanzen enthalten, wobei als anorganische Builder- substanzen hauptsächlich Zeolithe kristalline Schichtsilicate, amorphe Siiicate und - soweit zulässig - auch Phosphate, wie z.B. Tripolyphosphat zum Einsatz kommen. Der als Waschmittelbuilder häufig eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP<R> (Handelsprodukt der Firma Cros- field) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P wie auch Y. Von besonderem Interesse ist auch ein cokristallisiertes Natrium/Kalium-Aluminiumsilicat aus Zeolith A und Zeolith X, welches als VEGOBOND AX® (Handelsprodukt der Firma Condea Augusta S.p.A.) im Handel erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als unge- trocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten Ci2-Ci8-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, Ci2-Ci4-Fettalkoholen mit 4 bis 5 Ethylen- oxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Geeignete Substitute bzw. Teilsubstitute für Phosphate und Zeolithe sind kristalline, schichtförmige Natriumsilicate der allgemeinen Formel NaMSixθ2x+ryH2θ, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP 0164514 A1 beschrieben. Bevorzugte kristalline Schichtsilicate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilicate Na∑S'^Os-yH∑O bevorzugt, wobei ß-Natriumdisilicat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrieben ist. Weitere geeignete Schichtsilicate sind beispielsweise aus den Patentanmeldungen DE 2334899 A1, EP 0026529 A1 und DE 3526405 A1 bekannt. Ihre Verwendbarkeit ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbesondere Bentonite. Geeignete Schichtsilicate, die zur Gruppe der mit Wasser quellfähigen Smectite zählen, sind z.B. solche der allgemeinen Formeln
(OH)4Si8-yAly(MgxAI4-x)02o Montmorrilonit (OH)4Si8-yAly(Mg6-zLiz)θ2o Hectorit (OH)4Si8-yAly(Mg6-z Alz)02o Saponit
mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsilicate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilicate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkaliionen, insbesondere Na- und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Brauchbare Schichtsilicate sind beispielsweise aus US 3,966,629, US 4,062,647, EP 0026529 A1 und EP 0028432 A1 bekannt. Vorzugsweise werden Schichtsilicate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Cal- ciumionen und stark färbenden Eisenionen sind.
Zu den bevorzugten Buildersubstanzen gehören auch amorphe Natriumsilicate mit einem Modul Na∑O : SiÜ2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, wel- ehe löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilicaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "rönt- genamorph" verstanden. Dies heißt, daß die Silicate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Builder- eigenschaften führen, wenn die Silicatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silicate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE 4400024 A1 beschrieben. Insbesondere bevorzugt sind ver- dichtete/kompaktierte amorphe Silicate, compoundierte amorphe Silicate und übertrocknete röntgenamorphe Silicate.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Ihr Gehalt beträgt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung des Sekundärwaschvermögens führen.
Brauchbare organische Gerüstsubstanzen, die als Co-Builder in Frage kommen, sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen. Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500 000. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2 000 bis 30 000. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung GB 9419091 A1 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP 0232202 A1, EP 0427349 A1, EP 0472042 A1 und EP 0542496 A1 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251 , WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE 19600018 AI Ein an Cβ des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat. Besonders bevorzugt sind in diesem Zusammenhang auch Glyce- rindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patentschriften US 4,524,009, US 4,639,325, in der europäischen Patentanmeldung EP 0150930 A1 und der japanischen Patentanmeldung JP 93/339896 beschrieben werden. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150 000 (auf Säure bezogen und jeweils gemessen gegen Polystyrolsulfonsäure). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5 000 bis 200 000, vorzugsweise 10 000 bis 120 000 und insbesondere 50 000 bis 100 000 (jeweils gemessen gegen Po- lystyrolsulfonsäure). Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden, wobei 20 bis 55 Gew.-%ige wäßrige Lösungen bevorzugt sind. Granuläre Polymere werden zumeist nachträglich zu einem oder mehreren Basisgranulaten zugemischt. Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die gemäß der DE 4300772 A1 als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE 4221381 C2 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten. Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE 4303320 A1 und DE 4417734 A1 beschrieben werden und als Monomere vorzugsweise Acrolein und Acryl- säure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen. Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP 0280223 A1 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalalde- hyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäu- re erhalten.
Tenside
Als weitere fakultative Bestandteile (Komponente d) können in den Duftstofftabletten des weiteren anionische, nichtionische, kationische, amphotere und/oder zwitterionische Tenside, vorzugsweise sind jedoch anionische Tenside bzw. Kombinationen von anionischen und nichtionischen Tensiden zugegen sein, die als Emulgatoren für die Duftstoffe fungieren. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfo- nate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfa- te, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dial- kylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäu- ren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylamino- säuren wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligogluco- sidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und AI- kyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fett- säurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, Alk(en)yloligoglykoside, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind insbesondere Tetraalkylammoniumverbindungen, wie beispielsweise Dimethyldistearylammoniumchlorid oder Hydroxyethyl Hydroxycetyl Dimmonium Chloride (Dehyquart® E) oder aber Esterquats. Beispiele für geeignete amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Vorzugsweise werden Alkylsulfate bzw. Alk(en)yloligoglucoside eingesetzt.
Unter Alkyl- und/oder Alkenylsulfaten, die auch häufig als Fettalkoholsulfate bezeichnet werden, sind die Sulfatierungsprodukte primärer und/oder sekundärer Alkohole zu verstehen, die vorzugsweise der Formel (I) folgen,
R1O-SO3X (I)
in der R1 für einen linearen oder verzweigten, aliphatischen Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele für Alkylsulfate, die im Sinne der Erfindung Anwendung finden können, sind die Sulfatierungsprodukte von Capronalkohol, Caprylalkohol, Caprinalkohol, 2-Ethylhexylalkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmo- leylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachyl- alkohol, Gadoleylalkohol, Behenylalkohol und Erucylalkohol sowie deren technischen Gemischen, die durch Hochdruckhydrierung technischer Methylesterfraktionen oder Aldehyden aus der Roelenschen Oxosynthese erhalten werden. Die Sulfatierungsprodukte können vorzugsweise in Form ihrer Alkalisalze und insbesondere ihrer Natriumsalze eingesetzt werden. Besonders bevorzugt sind Alkylsulfate auf Basis von Cieπβ-Talg-Fettalkoholen bzw. pflanzliche Fettalkohole vergleichbarer C-Kettenverteilung in Form ihrer Natriumsalze. Im Falle von verzweigten primären Alkoholen handelt es sich um Oxoalko- hole, wie sie z.B. durch Umsetzung von Kohlenmonoxid und Wasserstoff an alpha-ständige Olefine nach dem Shop- Verfahren zugänglich sind. Solche Alkoholmischungen sind im Handel unter dem Handelsnamen Dobanol® oder Neodol® erhältlich. Geeignete Alkoholmischungen sind Dobanol 91®, 23®, 25®, 45®. Eine weitere Möglichkeit sind Oxoalkohole, wie sie nach dem klassischen Oxoprozeß der Enichema bzw. der Condea durch Anlagerung von Kohlenmonoxid und Wasserstoff an Olefine erhalten werden. Bei diesen Alkoholmischungen handelt es sich um eine Mischung aus stark verzweigten Alkoholen. Solche Alkoholmischungen sind im Handel unter dem Handelsnamen Lial® erhältlich. Geeignete Alkoholmischungen sind Lial 91®, 111®, 123®, 125®, 145®.
Alkyl- und Alkenyloligoglykoside folgen üblicherweise der Formel (II),
R20-[G]P (II)
in der R2 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Schriften EP 0301298 A1 und WO 90/03977 verwiesen. Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (II) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligo- glykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1 ,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1 ,7 ist und insbesondere zwischen 1 ,2 und 1 ,4 liegt. Der Alkyl- bzw. Alkenylrest R2 kann sich von primären Alkoholen mit 4 bis 11 , vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Ca- prylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloli- goglucoside der Kettenlänge Cβ-Cιo (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem Cβ-Cis-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12- Alkohol verunreinigt sein können sowie Alkyloligoglucos.de auf Basis technischer C9/n-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R2 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, My- ristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylal- kohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylal- kohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem Ci∑/u-Kokosalkohol mit einem DP von 1 bis 3. Tablettierung
Die Herstellung der neuen Duftstofftabletten erfolgt in der Regel durch Preßagglomerierung. Die erhaltenen teilchenförmigen Preßagglomerate können entweder direkt als Waschmittel eingesetzt oder zuvor nach üblichen Methoden nachbehandelt und/oder aufbereitet werden. Zu den üblichen Nachbehandlungen zählen beispielsweise Abpuderungen mit feinteiligen Inhaltsstoffen von Wasch- oder Reinigungsmitteln, vorzugsweise Buildem oder Talcum Aerosilen, wodurch das Schüttgewicht im allgemeinen weiter erhöht wird. Eine bevorzugte Nachbehandlung stellt jedoch auch die Verfahrensweise gemäß den deutschen Patentanmeldungen DE 19524287 A1 und DE 19547457 A1 dar, wobei staubför- mige oder zumindest feinteilige Inhaltsstoffe (die sogenannten Feinanteile) an die erfindungsgemäß hergestellten teilchenförmigen Verfahrensendprodukte, welche als Kern dienen, angeklebt werden und somit Mittel entstehen, welche diese sogenannten Feinanteile als Außenhülle aufweisen. Vorteilhafterweise geschieht dies wiederum durch eine Schmelzagglomeration. Zur Schmelzagglomerierung der Feinanteile an wird ausdrücklich auf die Offenbarung in den deutschen Patentanmeldungen DE 19524287 A1 und DE 19547457 A1 verwiesen. In der bevorzugten Ausführungsform der Erfindung weisen die Duftstofftabletten aus lager- und transporttechnischen Gründen vor abgerundete Ecken und Kanten aufweisen. Die Grundfläche dieser Tabletten kann beispielsweise kreisförmig oder rechteckig sein. Mehrschichtentabletten, insbesondere Tabletten mit 2 oder 3 Schichten, welche auch farblich verschieden sein können, sind vor allem bevorzugt. Blau-weiße oder grün-weiße oder blau-grün-weiße Tabletten sind dabei besonders bevorzugt. Die Tabletten können dabei auch gepreßte und ungepreßte Anteile enthalten. Formkörper mit besonders vorteilhafter Auflösegeschwindigkeit werden erhalten, wenn die granulären Bestandteile vor dem Verpressen einen Anteil an Teilchen, die einen Durchmesser außerhalb des Bereiches von 0,02 bis 6 mm besitzen, von weniger als 20, vorzugsweise weniger als 10 Gew.-% aufweisen. Bevorzugt ist eine Teilchengrößenverteilung im Bereich von 0,05 bis 2,0 und besonders bevorzugt von 0,2 bis 1 ,0 mm.
Beispiele
In der nachfolgenden Tabelle 1 sind eine Reihe von Beispielrezepturen zur Herstellung von Duftstofftabletten angegeben.
Tabelle 1
Duftstofftabletten (Mengenangabe als Gew.-%)

Claims

Patentansprüche
1. Duftstofftabletten bestehend aus
(a) 69 bis 99 Gew.-% Sprengmitteln,
(b) 1 bis 31 Gew.-% Duftstoffen,
(c) 0 bis 15 Gew.-% Buildern und
(d) 0 bis 15 Gew.-% Tensiden,
mit der Maßgabe, daß sich die Mengenangaben zu 100 Gew.-% ergänzen.
2. Tabletten nach Anspruch 1 , dadurch gekennzeichnet, daß sie aus
(a) 75 bis 90 Gew.-% Sprengmitteln,
(b) 4 bis 8 Gew.-% Duftstoffen,
(c) 3 bis 7 Gew.-% Buildern und
(d) 3 bis 10 Gew.-% Tensiden,
bestehen, mit der Maßgabe, daß sich die Mengenangaben zu 100 Gew.-% addieren.
3. Tabletten nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, daß sie als Komponente (a) Sprengmittel enthalten, welche ausgewählt sind aus der Gruppe, die gebildet wird von gegebenenfalls quervernetzten Polyvinylpyrrolidonen, Cellulosen, Carboxymethylcellulosen, Carboxyme- thylstärken, und Chitosanen.
4. Tabletten nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie als Komponente (b) Duftstoffe enthalten, welche ausgewählt sind aus der Gruppe, die gebildet wird von Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethyl- benzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat, Benzylsalicylat, Citral, Citronellal, Citronellyloxyacetal- dehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial, Bourgeonal, α-lsomethylionon, Methylcedryl- keton, Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol, Terpineol, Unionen und Pinen.
5. Tabletten nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie als Komponente (c) Builder enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Zeo- lithen, kristallinen Schichtsilicaten, amorphen Silicaten und Phosphaten.
6. Tabletten nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie als Komponente (d) Tenside enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Alkyl- und/oder Alkenylsulfaten sowie Alkyl- und/oder Alkenylglykosiden.
EP01902355A 2000-02-04 2001-01-26 Duftstofftabletten Withdrawn EP1252284A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10005017 2000-02-04
DE10005017A DE10005017A1 (de) 2000-02-04 2000-02-04 Duftstofftabletten
PCT/EP2001/000875 WO2001057167A2 (de) 2000-02-04 2001-01-26 Duftstofftabletten

Publications (1)

Publication Number Publication Date
EP1252284A2 true EP1252284A2 (de) 2002-10-30

Family

ID=7629883

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01902355A Withdrawn EP1252284A2 (de) 2000-02-04 2001-01-26 Duftstofftabletten

Country Status (4)

Country Link
US (1) US20030032575A1 (de)
EP (1) EP1252284A2 (de)
DE (1) DE10005017A1 (de)
WO (1) WO2001057167A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586386B2 (en) * 2001-10-26 2003-07-01 Isp Investments Inc. Tablet of compacted particulate cleaning composition
KR101378321B1 (ko) 2007-05-25 2014-03-28 (주)아모레퍼시픽 해당화의 향취를 재현한 향료 조성물
KR100927969B1 (ko) 2007-10-31 2009-11-24 주식회사 코리아나화장품 천연 백합향을 이용하여 백합의 향취를 재현한 향료 조성물

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA734721B (en) * 1972-07-14 1974-03-27 Procter & Gamble Detergent compositions
GB1455873A (en) * 1973-08-24 1976-11-17 Procter & Gamble Textile-softening detergent compositions
DE3104371A1 (de) * 1981-02-07 1982-11-11 Henkel KGaA, 4000 Düsseldorf "reinigungsmitteltablette"
US4524009A (en) * 1984-01-31 1985-06-18 A. E. Staley Manufacturing Company Detergent builder
DE3413571A1 (de) * 1984-04-11 1985-10-24 Hoechst Ag, 6230 Frankfurt Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung
US4639325A (en) * 1984-10-24 1987-01-27 A. E. Staley Manufacturing Company Detergent builder
DE3526405A1 (de) * 1985-07-24 1987-02-05 Henkel Kgaa Schichtsilikate mit beschraenktem quellvermoegen, verfahren zu ihrer herstellung und ihre verwendung in wasch- und reinigungsmitteln
FR2597473B1 (fr) * 1986-01-30 1988-08-12 Roquette Freres Procede d'oxydation de di-, tri-, oligo- et polysaccharides en acides polyhydroxycarboxyliques, catalyseur mis en oeuvre et produits ainsi obtenus.
DE3706036A1 (de) * 1987-02-25 1988-09-08 Basf Ag Polyacetale, verfahren zu deren herstellung aus dialdehyden und polyolcarbonsaeuren und verwendung der polyacetale
DE3723826A1 (de) * 1987-07-18 1989-01-26 Henkel Kgaa Verfahren zur herstellung von alkylglykosiden
US5576425A (en) * 1988-10-05 1996-11-19 Henkel Kommanditgesellschaft Auf Aktien Process for the direct production of alkyl glycosides
YU221490A (sh) * 1989-12-02 1993-10-20 Henkel Kg. Postupak za hidrotermalnu izradu kristalnog natrijum disilikata
DE4133862C2 (de) * 1991-10-12 2003-07-17 Freytag Von Loringhoven Andrea Duftstoffe enthaltende Tablette
DE4134914A1 (de) * 1991-10-23 1993-04-29 Henkel Kgaa Wasch- und reinigungsmittel mit ausgewaehlten builder-systemen
DE4221381C1 (de) * 1992-07-02 1994-02-10 Stockhausen Chem Fab Gmbh Pfropf-Copolymerisate von ungesättigten Monomeren und Zuckern, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4203923A1 (de) * 1992-02-11 1993-08-12 Henkel Kgaa Verfahren zur herstellung von polycarboxylaten auf polysaccharid-basis
DE4300772C2 (de) * 1993-01-14 1997-03-27 Stockhausen Chem Fab Gmbh Wasserlösliche, biologisch abbaubare Copolymere auf Basis von ungesättigten Mono- und Dicarbonsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4303320C2 (de) * 1993-02-05 1995-12-21 Degussa Waschmittelzusammensetzung mit verbessertem Schmutztragevermögen, Verfahren zu dessen Herstellung und Verwendung eines geeigneten Polycarboxylats hierfür
DE4317519A1 (de) * 1993-05-26 1994-12-01 Henkel Kgaa Herstellung von Polycarboxylaten auf Polysaccharid-Basis
DE4400024A1 (de) * 1994-01-03 1995-07-06 Henkel Kgaa Silikatische Builder und ihre Verwendung in Wasch- und Reinigungsmitteln sowie Mehrstoffgemische für den Einsatz auf diesem Sachgebiet
DE4402851A1 (de) * 1994-01-31 1995-08-03 Henkel Kgaa Wirbelschicht-Oxidationsverfahren zur Herstellung von Polycarboxylaten auf Polysaccharid-Basis
ES2079327B1 (es) * 1994-12-13 1996-08-01 Lilly Sa Formulaciones farmaceuticas de cefaclor.
DE19600018A1 (de) * 1996-01-03 1997-07-10 Henkel Kgaa Waschmittel mit bestimmten oxidierten Oligosacchariden
DE19628617A1 (de) * 1996-07-16 1998-01-22 Basf Ag Direkttablettierhilfsmittel
DE19757059A1 (de) * 1997-12-20 1999-07-01 Merz & Co Gmbh & Co Balneologische Brausetablette, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19901064A1 (de) * 1999-01-14 2000-07-20 Henkel Kgaa Hilfsmittelgranulat für wasch- und reinigungsaktive Formkörper

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0157167A2 *

Also Published As

Publication number Publication date
DE10005017A1 (de) 2001-08-09
WO2001057167A2 (de) 2001-08-09
US20030032575A1 (en) 2003-02-13
WO2001057167A3 (de) 2002-02-14

Similar Documents

Publication Publication Date Title
EP1240290B1 (de) Tensidgranulate mit verbesserter auflösegeschwindigkeit
EP1232242B1 (de) Tensidgranulate mit verbesserter auflösegeschwindigkeit
DE60313899T2 (de) Verbessertes waschmittel
EP1257627A1 (de) Tensidmischung mit fettalkoholalkoxylaten aus pflanzlichen rohstoffen
DE10044473A1 (de) Waschmitteltabletten
EP1214389B1 (de) Tensidmischungen
EP1252284A2 (de) Duftstofftabletten
WO2001027238A1 (de) Waschmitteltabletten
EP1188819A1 (de) Waschmitteltabletten
WO2000044873A1 (de) Mehrphasige waschmitteltabletten
WO2001018164A1 (de) Waschmittel
WO2001048134A1 (de) Wasch- und reinigungsmittelformkörper mit verbesserten zerfallseigenschaften
DE10126706B4 (de) Handgeschirrspülmittelformkörper mit hohem Tensidgehalt
WO2001046375A1 (de) Verfahren zur herstellung von zuckertensidgranulaten
WO2000071654A1 (de) Verfahren zur herstellung von tensidgranulaten
EP1249489A1 (de) Wasch- und Reinigungsmittelformkörper mit verbesserten Zerfallseigenschaften
EP1212401A1 (de) Waschmitteltabletten
DE19939806A1 (de) Schaumkontrollierte feste Waschmittel
WO2001027237A1 (de) Waschmitteltabletten
WO2001014508A1 (de) Schaumkontrollierte feste wachmittel
DE19928923A1 (de) Schaumkontrollierte feste Waschmittel
EP1207193A1 (de) Verwendung von Tensidgemischen zur Herstellung von Wasch- und Reinigungsmitteln
EP1375633A1 (de) Waschmittel mit Polymeren
WO2001027231A1 (de) Waschmittel
EP1090982A1 (de) Formkörper mit verbesserter Wasserlöslichkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020726

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040302

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040713