EP1250705A1 - Systeme de detection d'image radiologique pour generateur de rayons x a balayage - Google Patents

Systeme de detection d'image radiologique pour generateur de rayons x a balayage

Info

Publication number
EP1250705A1
EP1250705A1 EP00993753A EP00993753A EP1250705A1 EP 1250705 A1 EP1250705 A1 EP 1250705A1 EP 00993753 A EP00993753 A EP 00993753A EP 00993753 A EP00993753 A EP 00993753A EP 1250705 A1 EP1250705 A1 EP 1250705A1
Authority
EP
European Patent Office
Prior art keywords
image
image sensor
detection system
scanning
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00993753A
Other languages
German (de)
English (en)
Other versions
EP1250705B1 (fr
Inventor
Paul Thomson-CSF Propriété IntellectuellE DE GROOT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Electron Devices SA
Original Assignee
Thales Electron Devices SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Electron Devices SA filed Critical Thales Electron Devices SA
Publication of EP1250705A1 publication Critical patent/EP1250705A1/fr
Application granted granted Critical
Publication of EP1250705B1 publication Critical patent/EP1250705B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/043Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers changing time structure of beams by mechanical means, e.g. choppers, spinning filter wheels

Definitions

  • the present invention relates to a radiological image detection system for a scanning X-ray generator capable of operating at high rate.
  • X-ray imaging systems grouping together a radiological image detection system associated with an X-ray generator are used in the medical field or in the field of non-destructive testing. In these types of application, it is sought to obtain images of very good quality and in particular well contrasted.
  • a conventional X-ray imaging system used in the medical field generally comprises an X-ray generator delivering X-radiation to which a patient is exposed and, opposite to the X-ray generator, a detection system which detects the radiation X having passed through the patient and who is then carrying a radiological image.
  • the X-ray generator and the patient are positioned relative to each other so that the X-ray irradiation field covers the entire imaging surface of the patient at a given time.
  • the stationary detection system then simultaneously detects the radiological image of the entire surface to be imaged.
  • an anti-scattering grid is generally placed between the patient and the detection system.
  • This grid absorbs a large part of the scattered X-rays but also absorbs part of the useful X-rays, and consequently requires a higher patient dose.
  • This grid is currently the only solution for eliminating the scattering in detection systems using an X-ray image intensifier tube, which are currently the most used for real-time radiological imaging.
  • Another solution to get rid of scattered X-rays without increasing the dose of X-rays is to use a scanning X-ray generator which irradiates the surface to be imaged in a progressive manner, the instant irradiated area being only a portion of the surface to be imaged.
  • the X-ray generator is associated with a mobile detection system which is synchronized with the scanning movement of the X-ray and in geometric correspondence with the instantaneous irradiated zone.
  • the detection system is generally formed of solid state sensor elements covered with a scintillating material and arranged in a bar, the dimensions of this bar are such that it receives only the image of the instantaneous irradiated zone. It therefore does not detect scattered X-rays which are deflected but only X-rays which have directly passed through the patient.
  • the dimensions of the bar are conditioned by those of the instantaneous irradiated zone. It is therefore not possible, without changing the strip, to want to optimize the compromise between the dimensions of the irradiated area and the X-ray flow rate. It is not easy to move the strip of sensor elements to the state solid to the rhythm of the scanning X-ray, especially if the required scanning speed is high, as in fluoroscopy examinations in which several tens of images per second must be taken.
  • the precision mechanics used to move the detection system represents an important item in the cost of such detection systems.
  • the present invention while continuing to eliminate the scattered radiological images, aims to overcome the aforementioned problems, in particular related to the doses to be administered to the patient, to movement mechanics of the image sensor or other parts such as slits in shutters on the detection side; it allows scanning speeds compatible with those required in fluoroscopy mode to be achieved.
  • the present invention provides a radiological image detection system capable of cooperating with a scanning X-ray generator intended to produce X-ray scanning a surface to be imaged, this X-ray irradiating portion after portion the surface to be imaged, the X-ray radiation from a portion carrying a radiological image of said portion.
  • the system comprises an image sensor which is stationary with respect to the scanning and which is dimensioned so as to be able to acquire an image of the entire surface to be imaged via the X-ray radiation coming from the portions, the detection system further comprising means for limiting electronically, at a given instant, the acquisition of the image sensor to that of the image of the irradiated portion at this instant, these electronic limitation means being in synchronism with the scanning and in geometric correspondence with the irradiated portion.
  • the electronic limitation means are purely static, unlike the rotating or scrolling mechanical limitation means of the prior art.
  • the means for limiting the acquisition of the image sensor can be means for partially occulting the image sensor with respect to the surface to be imaged, external to the image sensor.
  • a liquid crystal screen, the scanning of which is controlled in synchronism with the scanning of the X-ray beam, makes it possible to allow only a limited image area passing to a detection camera corresponding to that which is illuminated at this instant by the detector.
  • the image sensor can be a light image sensor and cooperate with means for converting the X-radiation from the portions into a light image.
  • the image sensor can be an electronic image sensor and cooperate with means for converting the X-ray radiation coming from the portions directly into an electronic image. Selenium sensors are able to do this direct conversion.
  • the means for limiting the acquisition of the image sensor can be integrated into the image sensor, the latter being organized to prevent any image acquisition outside the area which corresponds to an image portion illuminated at an instant by the X-ray beam.
  • the image sensor can be of the solid state type and in particular of the CCD type, of the CMOS type, with photosensitive diodes, with capacitive elements.
  • the image sensor can be a light image sensor formed from a plurality of photosensitive pixels in the solid state, the means for limiting the acquisition of the image sensor can control, just before a portion is irradiated, an erasure of the pixels of the sensor corresponding to the light image of said irradiated portion, and a reading of said pixels just after the irradiation of said portion.
  • the image sensor can be an electronic image sensor formed by a plurality of capacitive elements and the means for limiting the acquisition of the image sensor can control, just before a portion is irradiated, an update. zero of the charge of the capacitive elements corresponding to the electronic image of said irradiated portion and a reading of the charges stored in said capacitive elements just after the irradiation of said portion.
  • the light image sensor is of the photographic film or cinematographic film type; in this case, in principle, a liquid crystal screen will be used to perform the image limitation.
  • the means for converting the X-ray into a light image can be of the radiological image intensifier or scintillator type deposited on a photosensitive matrix in the solid state, while the means for converting the X-ray into an electronic image can be made on the basis of selenium.
  • the detection system may include means for processing the image captured by the image sensor so as to reconstruct a complete image of the radiological image of the surface to be imaged from images of the irradiated areas.
  • FIG. 1 a section of an example of image detection system associated with a scanning X-ray generator, in which the means of limitation of the acquisition of the image sensor are mechanical partial concealment means;
  • FIG. 2 a front view of the means limiting the acquisition of the image sensor used in the image detection system of Figure 1;
  • - Figure 3 a section of a second example of image detection system associated with a scanning X-ray generator, in which the means for limiting the acquisition of the image sensor are means for partial occlusion mechanical;
  • Figure 4 a front view of the means limiting the acquisition of the image sensor used in the image detection system of Figure 3;
  • - Figure 5 a section of a third example of an image detection system associated with a scanning X-ray generator, in which the means for limiting the acquisition of the image sensor are means for partial occlusion mechanical;
  • - Figure 6 a section of a fourth example of an image detection system according to the invention associated with a scanning X-ray generator, in which the means for limiting the acquisition of the image sensor are means partial electronic and external concealment of the image sensor;
  • - Figure 7 a front view of the partial concealment means used in the image detection system of Figure 6;
  • FIG. 1 represents an image detection system 20.
  • This image detection system is used in medical imaging equipment comprising a scanning X-ray generator 10 which delivers a X-ray 1 scanning a surface to be imaged 2 of a patient 3 to be examined.
  • the X-ray radiation 1 irradiates only a portion 2 ′ of the surface to be imaged 2.
  • the scanning X-ray generator 10 can be with a scanning slot, that is to say with a slot which moves in front of an X-ray source or be with a fixed slot as described for example in the French patent application FR A- 2 795 864. In this case, it is by acting on the variable orientation of the electron beam relative to a target that the angle of incidence of the X beam on the body to be irradiated is varied: the speed sweep can be high, in the absence of movements of mechanical parts.
  • the detection system 20 On the other side of the patient 3, that is to say opposite to the scanning X-ray generator 10 is the detection system 20. It detects the X-ray 1 having passed through the patient, this X-ray being carrier of a radiological image.
  • the image detection system 20 comprises an image sensor 22 intended to acquire, via the X-ray radiation coming from the portions, an image of the surface to be imaged.
  • This image sensor 22 is stationary with respect to the scanning and it has dimensions allowing it to acquire an image of the entire surface to be imaged 2. (I is not set in motion nor limited in dimensions to those of the Irradiated portion. By eliminating the means for setting the sensor in motion since it is stationary, this eliminates in particular the mechanical problems encountered with a sensor displaceable at the rate of the scanning radiation.
  • the image detection system 20 also comprises means
  • a dotted link illustrates the synchronism between the scanning X-ray 1 and the means 24 limiting the acquisition of the image sensor 22.
  • the image sensor 22 is a light image sensor and it cooperates with means 21 for converting the X-radiation carrying the radiological image into a light image received by the light image sensor 22 .
  • the detection system 20 comprises as conversion means a radiological image intensifier tube 21 known by the acronym IIR, followed by the light image sensor 22.
  • the means 24 limiting the acquisition of the light image sensor 22 are mechanical means for partially obscuring the light image sensor 22.
  • These partial concealment means 24 are external to the light image sensor 22, they partially mask the image sensor 22 so that it only captures, at a given instant, the light image of the irradiated portion 2 'by scanning X-ray 1.
  • the IIR tube 21 conventionally comprises a vacuum-tight enclosure 200 closed at one end by an inlet window 201 through which the scanning X-ray 1 penetrating through the patient 3 penetrates.
  • the X-ray scanning 1 then meets an input screen 202 whose function is to translate the intensity of the X-ray into a quantity of electrons.
  • This entry screen 202 is dimensioned so that it can be struck by X-ray radiation 1 regardless of the place of impact on the entry window 201.
  • the entry screen 202 generally comprises a scintillator 203 associated with a photocathode 204.
  • the scintillator 203 converts the scanning X-ray 1 into visible photons which are themselves converted into electrons by the photocathode 204.
  • a set of electrodes 205 accelerates the electrons and focuses them on a cathodoluminescent output screen 206.
  • the luminescent output screen 206 is arranged near an output window 207 located opposite to the input window 201
  • the impact of the electrons on the luminescent screen 206 makes it possible to reconstruct the light image which has formed on the photocathode 204.
  • This light image translates at a given moment the radiological image of the irradiated portion 2 ′.
  • This bright image has the faults mentioned above because with only the scanning X-ray, scattered X-rays strike the photocathode 204 and their effect is visible on the output screen 206.
  • the image displayed by the output screen 206 is then transmitted to the light image sensor 22.
  • This light image sensor 22 is generally a CCD type sensor (for Charge-Coupled Device in English or charge-coupled device) included in a video camera 220, a cinematographic film placed in a cinematographic camera or a photographic film included in a camera.
  • the CCD sensor can advantageously be replaced by a CMOS type sensor which functions in a very similar manner.
  • the transmission of the light image displayed by the output screen 206 to the light image sensor 22 is generally done by means of an optical coupling device 209, placed outside the IIR tube 21 and centered on a longitudinal axis XX ′ of the tube IIR, an axis around which the outlet screen 206. is also centered.
  • This optical coupling device 209 may comprise lenses and / or optical fibers.
  • the light image sensor 22 is dimensioned to receive the entire image of the surface to be imaged 2, as is the case in conventional image detection systems with stationary X-ray beam.
  • partial concealment means 24 synchronized with the scanning movement of the scanning X-ray radiation 1 and in geometric correspondence with the irradiated portion 2 ′ of the surface to be imaged.
  • the light image sensor 22 can only capture the light image of the portion irradiated 2 ′ by the scanning X 1 radiation.
  • These concealment means 24 prevent the light image sensor 22 from capturing the trace of X-rays scattered in the patient 3.
  • the image detection system 20 may include a signal acquisition and processing device 23 which processes and stores signals relating to the image delivered to it by the light image sensor 22. After appropriate processing, these signals can be observed on a display device 25.
  • the light image sensor 22 is stationary with respect to the scanning while the partial concealment means 24 are mobile and more particularly rotary relative to the light image sensor 22. They are placed between the output screen 206 and the light image sensor 22.
  • This window 241 can simply be an opening in the disc which lets the light image of the irradiated portion 2 ′ pass.
  • the disc 240 is rotated so that its window 241 moves in synchronism with the X-ray radiation 1 scanning the surface to be imaged 2.
  • the window 241 has excursed the light image sensor and the latter has captured the entire radiological image of the surface to be imaged 2 converted into a light image, from a plurality of light images corresponding to the different irradiated portions 2 ′ during scanning.
  • the speed of rotation of the disc 240 is synchronized with that of the scanning X-ray beam 1. It is assumed that the scanning of the scanning X-ray 1 is carried out on the surface to be imaged 2 from top to bottom as shown in FIG. 1.
  • the X-ray scanning 1 emerges from a slit 4 whose length, perpendicular to the scanning direction, corresponds to the dimension of the surface to be imaged 2 also located perpendicular to the scanning direction, to an enlargement coefficient. This factor is a function of the distance separating the patient 3 from the X-ray generator 10.
  • the width of the slot 4 located in the scanning direction is very small compared to the other dimension of the surface to be imaged 2 also located in the scanning direction. scanning.
  • the slot 4 may be driven in a back-and-forth movement in translation, but one can envisage, to overcome this back-and-forth movement which is always difficult to achieve at high speed, use a rotating disc with one or more slots. In the case, the scanning is unidirectional.
  • the dimensions of the irradiated portion 2 ′ at a given instant are modeled on those of the slot 4 to the nearest enlargement coefficient.
  • the windows 241 are radial slots whose dimensions are modeled on those of the irradiated portion
  • These slots 241 are located at the periphery of the disc 240. It is preferable to distribute the windows 241 over the entire periphery of the disc, especially if the rate of the radiological images to be taken is high.
  • the disc 240 will have a large radius in front of the length of the windows 241 so that the displacement of a slot in front of the light image sensor 22 is comparable to a translation.
  • the disc 240 will have a large radius in front of the length of the windows 241 so that the displacement of a slot in front of the light image sensor 22 is comparable to a translation.
  • the partial concealment means 24 can take the form of an opaque ribbon 242 provided with one or more windows 243 transparent to the light of the exit screen 206.
  • This ribbon 242 can be configured in a loop and driven by rollers 244 as illustrated in FIG. 3. When it faces the light image sensor 22, it moves in translation. Its windows 243 are slits transverse to the direction of movement of the ribbon 242. Reference is made to FIG. 4. If the scanning movement is a two-way movement back and forth, the emission of X-rays may be stopped for a period of time. of the two paths if the partial concealment means are driven in a unidirectional movement in rotation or in translation.
  • the partial concealment means 24 are arranged between the output screen 206 and the light image sensor 22.
  • the partial concealment means 24 can be either between the output screen 206 and the optical device of coupling 209 as in FIG. 1, or between the optical coupling device 209 and the light image sensor 22 as in FIG. 3.
  • the partial concealment means 24 are placed between the patient 3 and the conversion means 21 and that they are directly exposed to X-ray radiation.
  • the image sensor could be a d electronic image.
  • the image sensor is a light image sensor and the conversion means 21 are materialized by an IIR tube.
  • the partial concealment means 24 take the form of a disc which forms the opaque part 247 and that this disc is provided with windows 248 in the form of slots which allow the radiological image of the portion to pass through. irradiated 2 '.
  • These partial concealment means 24 having to be partially opaque to X-rays are made from lead and require more powerful means to be moved and more expensive than in the previous variants.
  • the previous examples illustrate the principles of matching a body part, irradiated at a given time by the X-ray beam which scans the body, with a corresponding light image part and with an electronic image part. corresponding, or directly with a corresponding electronic image part when the system directly converts X-rays into an electronic image without passing through a bright image.
  • a liquid crystal screen is inserted between the bright image and an image sensor.
  • This image sensor is preferably electronic (such as the CCD or CMOS matrix sensor of an electronic camera) but it can also be envisaged that it is a simple photographic film which will be exposed zone by zone as and as the X-ray scans, the areas of film not corresponding to the area irradiated at a given time being masked at that time.
  • the liquid crystal screen is made opaque everywhere except in an area (in principle a matrix line if the scanning allows line-by-line irradiation) corresponding to the image effectively irradiated by the X beam.
  • the light image sensor if it is electronic, does not collect a signal, except in this zone. X-rays which may have been scattered in scattered directions and which may have produced a light image not limited to the irradiated portion, will not influence the electronic sensor because it will only observe an area truly corresponding to the portion irradiated.
  • the electronic integration means which convert the light image photons or the X image photons into electrons are organized to prevent the integration or the reading of charges outside the image zone which corresponds to the zone irradiated at a given time by the scanning X-ray.
  • FIGS. 6 and 7 illustrate the invention.
  • the partial concealment means 24 are produced by a networked shutter 245 with liquid crystals, the transmission of which is controlled by the position of the portion irradiated 2 ′ by scanning X-ray radiation 1. These partial concealment means 24 are used to stop the light from the output screen 206 of the radiological image intensifier tube 21.
  • This shutter 245 can comprise a thin layer 31 of liquid crystals (for example of the nematic helical type) sandwiched between two transparent blades 32, 33 sealed together, themselves placed between two crossed polarizers 36.
  • liquid crystals for example of the nematic helical type
  • Such a shutter 245 operates in the following manner. At least one of the transparent plates is provided with an array of electrodes, making it possible to apply an electric field to portions of the layer of liquid crystals. This is why the shutter 245 is said to be networked.
  • the shutter 245 By subjecting part of the liquid crystal layer to an electric field, it becomes opaque and stops the light coming from the output screen 206. This light can no longer reach the light image sensor 22. In the absence of an electric field, this part is transparent and lets the light coming from the output screen 206. This light can thus reach the light image sensor 22.
  • each transparent strip 32, 33 a network 34, 35 of parallel transparent electrodes E1, E2 oriented transversely to the direction of scanning of the X-ray radiation 1.
  • a electrode E1 of a network 34 is paired with an electrode E2 of the other network 35 and two paired electrodes are opposite.
  • Each network 34, 35 is connected to a control device 37, 38 respectively making it possible to apply to its electrodes E1, E2 an appropriate potential and therefore to subject the portion of liquid crystals located between two paired electrodes to an appropriate electric field. make it opaque.
  • the control of the potentials to be applied to the electrodes produced in synchronism with the scanning makes it possible, at all times, to include in the shutter 245 made opaque a transparent area 246 whose dimensions are such that the light image sensor 22 does not pick up than the radiological image of the irradiated portion 2 '.
  • the dimensions of the transparent zone 246 are modeled on those of the irradiated portion 2 ′ to the nearest coefficient of proportionality.
  • the electrode patterns described in FIG. 7 are only nonlimiting examples and others are of course conceivable to delimit what must remain opaque and what must become transparent.
  • a pattern conventional matrix can be used, provided that the control means, in principle line by line, are organized so as to correspond with the nature of the scanning X used.
  • a significant advantage of the means for limiting the acquisition of the image sensor associated with an X-ray image intensifier tube, in the configuration where they are located between the output screen and the image sensor is that these means limitation not only eliminate the light from the X-ray scattered in the patient but also the scattered light and the X-rays scattered over the entire path between them and the patient. In their absence, this light or this X-ray would be captured by the image sensor and the contrast would be degraded. The best gains in contrast are obtained by placing the limiting means as close as possible to the light image sensor.
  • the means for limiting its acquisition can be integrated therein.
  • the electronic image sensor which collects only one useful image area at a given instant. These variants are illustrated in FIGS. 8a, 8b, 9a to 9c and 10 with solid state image sensors.
  • the scanning X-ray generator 10 which delivers the X-ray radiation 1 scanning the surface to be imaged 2 of a patient 3 to be examined.
  • the detection system 20 On the other side of the patient 3 is the detection system 20 according to the invention with a light image sensor 22. It includes means 21 for converting the X-ray radiation coming from the portions 2 ′ into a light image of the IIR tube type. associated with the light image sensor 22.
  • the light image sensor 22 is an electronic sensor of the CMOS type included for example in a video camera 220.
  • the means 240 for limiting the acquisition of the light image sensor are integrated into the bright image sensor.
  • CMOS type sensors of recent design are starting to be used. They are very promising because they consume much less than CCD sensors, are much less bulky, offer new possibilities in the acquisition of portions of images, can operate at speeds higher than those of CCD sensors and are of lower costs.
  • each pixel does not only include a photosensor element, for example a photodiode, but also a CMOS transistor circuit with a reading amplifier function, making it possible to quickly read the quantity of charges stored at the level of each pixel which has been exposed to a light signal.
  • a photosensor element for example a photodiode
  • CMOS transistor circuit with a reading amplifier function, making it possible to quickly read the quantity of charges stored at the level of each pixel which has been exposed to a light signal.
  • On the same substrate there are also means for digitizing the signals stored by the pixels and used during reading.
  • the light image sensor 22 is formed of a plurality of photosensitive sensitive points or pixels P1 to P9 arranged in a matrix and connected between a column conductor Y1 to Y3 and a line conductor X1 to X3. These pixels are symbolized by a square. Only nine have been shown so as not to overload the figure.
  • the pixels P1 to P3 connected to the same line conductor X1 are addressed at the same time by an addressing device 400 connected to the line conductors X1 to X3, the amount of light they have received is read at each pixel, the data read for each pixel being transferred by the column conductors Y1 to Y3 in an analog-digital conversion device 401 operating in parallel to be digitized there.
  • the means 240 limiting the acquisition of the image sensor 22, in a first phase, just before a portion 2 'is irradiated, control the reset to zero, that is to say the erasure of the pixels P4 to P6 of the sensor corresponding to the light image of said portion, and in a second phase, just after the portion 2 ′ has been irradiated, control the reading of the pixels P4 to P6 corresponding to this light image.
  • control the reset to zero that is to say the erasure of the pixels P4 to P6 of the sensor corresponding to the light image of said portion
  • a second phase just after the portion 2 ′ has been irradiated
  • FIGS. 9a to 9c are used to describe the operation of the limiting means 240. It is assumed that the scanning of the X-ray radiation 1 takes place linearly as in FIG. 1 and that a line of pixels corresponds to a 2 'irradiated portion. The arrow entering the block 240 symbolizing the limitation means indicates that these means are synchronized with the scanning movement of the X-ray.
  • the line conductor X2 to which the pixels P4 to P6 are connected carries an arrow coming from the addressing device 400, which symbolizes that they have just been erased or set to zero. They have been cleared of all traces of previous exposure.
  • the pixels P1 to P3 are exposed and are shown grayed out while the pixels P7 to P9 are read, which is symbolized by arrows on the column conductors Y1 to Y3 originating from the pixels P7 to P9 and directed towards the conversion device analog-digital 401.
  • the pixels P4 to P6 are grayed out, which means that they have just been exposed to an illumination delivered by the radiological image intensifier tube.
  • the pixels P1 to P3 are read, which is symbolized by arrows on the column conductors Y1 to Y3 coming from the pixels P1 to P3 and directed towards the analog-digital conversion device 401.
  • the pixels P7 to P9 are erased which is symbolized by the arrow, coming from the addressing device 400, and carried by the line conductor X3 to which the pixels P7 to P9 are connected.
  • FIG. 9c we wanted to illustrate the fact that the pixels P4 to P6 are read at this instant while the pixels P1 to P3 are erased and that the pixels P7 to P9 are exposed. The same symbols as before were used. In this way, the signals read do not include a broadcast.
  • the scanning X-ray generator 10 which delivers the X-ray radiation 1 scanning the surface to be imaged 2 of a patient 3 to be examined.
  • the detection system 20 On the other side of the patient 3 is the detection system 20 according to the invention.
  • the sensor cooperates with means 21, 51 for converting the X-ray radiation coming from the portions 2 ′ either into a light image or into an electronic image. If it is a conversion into a light image, the conversion means 21 are of the scintillator type which cover the light image sensor 22.
  • the conversion means 51 are made from selenium which covers the electronic image sensor 52.
  • the conversion means 21, 51 are directly facing the X-radiation which has passed through the patient.
  • the light image sensor 22 can be a sensor whose pixels are formed formed of a photosensitive diode cooperating with a switch. This type of sensor is well known in digital radiology.
  • the electronic image sensor 52 can be as shown in FIG. 10.
  • the means 240 for limiting the acquisition of the image sensor are integrated into the image sensor 22, 52 and entirely comparable to what has has been described in FIG. 8a.
  • the sensitive elements of the sensor are subjected to a succession of states: erasure or reset, exposure, reading.
  • the electronic image sensor 52 is formed by a plurality of points 53 sensitive to electronic charges, each formed by a capacitive element 54 associated with a switching element 55 for example a TFT transistor (for the Anglo-Saxon name Thin Film Transistor) activated in particular during reading, arranged in a network in the manner of the representations in Figures 9.
  • These sensitive points are produced in particular using the technique of depositing thin films of semi-material conductors such as amorphous silicon.
  • This electronic image sensor 52 cooperates with means for converting radiological image-electronic image based on selenium for example.
  • the sensitive points are covered with a layer 51 based on selenium.
  • the X-ray radiation is directly converted into electronic charges (symbolized by an arrow).
  • These electronic charges are stored on the capacitive elements 54.
  • the means for limiting the acquisition of the electronic image sensor operate in a manner comparable to what has been described in FIGS. 8a and 8b.
  • the charges stored diligenton the capacitive elements 54 are read sequentially line by line.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Il s'agit d'un système de détection d'image radiologique apte à coopérer avec un générateur de rayons X (10) à balayage destiné à produire un rayonnement X (1) balayant une surface à imager (2). Le rayonnement X balayant (1) irradie portion (2') après portion la surface à imager (2). Le rayonnement X issu d'une portion (2') est porteur d'une image radiologique de ladite portion. Le systeème de détection comporte un capteur d'image (22, 52) qui est stationnaire vis-à-vis du balayage et qui est dimensionné pour pouvoir acquérir une image de toute la surface à imager (2) via le rayonnement X issu des portions (2'). Il comporte de plus des moyens (24, 240) pour limiter, à un instant donné, l'acquisition du capteur d'image (22, 52) à celle de l'image de la portion irradiée (2') à cet instant, ces moyens de limitation étant en synchronisme avec le balayage et en correspondance géométrique avec la portion irradiée (2').

Description

SYSTEME DE DETECTION D'IMAGE RADIOLOGIQUE POUR GENERATEUR DE RAYONS X A BALAYAGE
La présente invention est relative à un système de détection d'image radiologique pour générateur de rayons X à balayage apte à fonctionner à cadence élevée.
Les systèmes d'imagerie à rayons X regroupant un système de détection d'image radiologique associé à un générateur de rayons X sont Utilisés dans le domaine médical ou dans le domaine du contrôle non destructif. Dans ces types d'application, on cherche à obtenir des images de très bonne qualité et notamment bien contrastées.
Un système d'imagerie à rayons X classique utilisé dans le domaine médical comporte généralement un générateur de rayons X délivrant un rayonnement X auquel est exposé un patient et, à l'opposé du générateur de rayons X, un système de détection qui détecte le rayonnement X ayant traversé le patient et qui est alors porteur d'une image radiologique. Le générateur de rayons X et le patient sont positionnés l'un par rapport à l'autre de manière que le champ d'irradiation du rayonnement X couvre à un instant donné toute la surface à imager du patient. Le système de détection stationnaire détecte alors simultanément l'image radiologique de toute la surface à imager.
Or une partie importante des rayons X qui traverse le patient est diffusée, c'est-à-dire qu'elle est déviée de sa trajectoire rectiligne initiale. Les rayons déviés ou diffusés sont quand même détectés par le système de détection et l'image détectée est détériorée par rapport à celle qui serait fournie uniquement par les rayons X utiles, c'est-à-dire ceux qui n'ont pas été déviés. Cette détérioration se traduit par une dégradation du contraste.
Pour s'affranchir des rayons X diffusés, on place généralement une grille anti-diffusante entre le patient et le système de détection. Cette grille absorbe une grande partie des rayons X diffusés mais absorbe aussi une partie des rayons X utiles, et nécessite en conséquence une dose patient plus élevée. Cette grille est actuellement la seule solution pour éliminer le diffusé dans les systèmes de détection à tube intensificateur d'image radiologique qui sont actuellement les plus utilisés pour faire de l'imagerie radiologique en temps réel. Une autre solution pour s'affranchir des rayons X diffusés sans augmenter la dose de rayons X consiste à utiliser un générateur de rayons X à balayage qui irradie la surface à imager de manière progressive, la zone irradiée instantanée n'étant qu'une portion de la surface à imager. Dans ce cas, le générateur de rayons X est associé un système de détection mobile qui est synchronisé avec le mouvement de balayage du rayonnement X et en correspondance géométrique avec la zone irradiée instantanée. Le système de détection est généralement formé d'éléments capteurs à l'état solide recouverts d'un matériau scintillateur et arrangés en barrette, les dimensions de cette barrette sont telles qu'elle ne reçoit que l'image de la zone irradiée instantanée. Elle ne détecte donc pas les rayons X diffusés qui sont déviés mais que des rayons X ayant traversé directement le patient.
Or la mise en œuvre de tels systèmes de détection nécessite des dispositifs mécaniques compliqués.
Les dimensions de la barrette sont conditionnées par celles de la zone irradiée instantanée. Il n'est donc pas possible, sans changer de barrette, de vouloir optimiser le compromis entre les dimensions de la zone irradiée et le débit de rayons X. II n'est pas aisé de déplacer la barrette d'éléments capteurs à l'état solide au rythme du rayonnement X balayant, surtout si la vitesse de balayage requise est élevée, comme dans les examens de fluoroscopie dans lesquels plusieurs dizaines d'images par secondes doivent être réalisées.
La mécanique de précision utilisée pour mouvoir le système de détection représente un poste important dans le coût de tels systèmes de détection.
On a également proposé des systèmes de détection dans lesquels une fente dans un obturateur mécanique se déplace au niveau du détecteur, en synchronisme avec le balayage exécuté par le faisceau de rayons X. Ces systèmes mécaniques ne permettent pas une grande cadence de balayage et sont lourds et coûteux. Le brevet EP 0 083 465 en donne un exemple.
La présente invention, tout en continuant à éliminer le diffusé des images radiologiques, vise à s'affranchir des problèmes sus mentionnés, notamment liés aux doses à administrer au patient, au mouvement mécanique du capteur d'image ou d'autres pièces telles que des fentes dans des obturateurs du côté de la détection ; elle permet d'atteindre des vitesses de balayage compatibles avec celles requises en mode fluoroscopie.
Pour y parvenir la présente invention propose un système de détection d'image radiologique apte à coopérer avec un générateur de rayons X à balayage destiné à produire un rayonnement X balayant une surface à imager, ce rayonnement X irradiant portion après portion la surface à imager, le rayonnement X issu d'une portion étant porteur d'une image radiologique de ladite portion. Le système comporte un capteur d'image qui est stationnaire vis à vis du balayage et qui est dimensionné pour pouvoir acquérir une image de toute la surface à imager via le rayonnement X issu des portions, le système de détection comportant de plus des moyens pour limiter électroniquement, à un instant donné, l'acquisition du capteur d'image à celle de l'image de la portion irradiée à cet instant, ces moyens de limitation électronique étant en synchronisme avec le balayage et en correspondance géométrique avec la portion irradiée.
Les moyens de limitation électronique sont purement statiques contrairement aux moyens de limitation mécaniques tournants ou défilants de l'art antérieur. Dans une première configuration, les moyens pour limiter l'acquisition du capteur d'image peuvent être des moyens d'occultation partielle du capteur d'image vis à vis de la surface à imager, externes au capteur d'image. Un écran à cristaux liquides dont le balayage est commandé en synchronisme avec le balayage du faisceau de rayons X, permet de ne laisser passer vers une caméra de détection qu'une zone d'image limitée correspondant à celle qui est illuminée à cet instant par le détecteur.
Le capteur d'image peut être un capteur d'image lumineuse et coopérer avec des moyens pour convertir le rayonnement X issu des portions en image lumineuse. Dans un autre mode de réalisation, le capteur d'image peut être un capteur d'image électronique et coopérer avec des moyens pour convertir le rayonnement X issu des portions directement en image électronique. Les capteurs au sélénium sont aptes à faire cette conversion directe.
Dans les deux cas, les moyens pour limiter l'acquisition du capteur d'image peuvent être intégrés au capteur d'image, celui-ci étant organisé pour empêcher toute acquisition d'image hors de la zone qui correspond à une portion d'image éclairée à un instant par le faisceau de rayons X.
Le capteur d'image peut être de type état solide et notamment de type CCD, de type CMOS, à diodes photosensibles, à éléments capacitifs. Le capteur d'image peut être un capteur d'image lumineuse formé d'une pluralité de pixels photosensibles à l'état solide, les moyens pour limiter l'acquisition du capteur d'image peuvent commander, juste avant qu'une portion ne soit irradiée, un effacement des pixels du capteur correspondants à l'image lumineuse de ladite portion irradiée, et une lecture desdits pixels juste après l'irradiation de la dite portion.
Le capteur d'image peut être un capteur d'image électronique formé d'une pluralité d'éléments capacitifs et les moyens pour limiter l'acquisition du capteur d'image peuvent commander juste avant qu'une portion ne soit irradiée, une mise à zéro de la charge des éléments capacitifs correspondant à l'image électronique de ladite portion irradiée et une lecture des charges stockées dans lesdits éléments capacitifs juste après l'irradiation de la dite portion .
Il est aussi possible que le capteur d'image lumineuse soit de type film photographique ou film cinématographique ; dans ce cas on utilisera en principe un écran à cristaux liquides pour effectuer la limitation d'image.
Les moyens pour convertir le rayonnement X en image lumineuse peuvent être de type intensificateur d'image radiologique ou scintillateur déposé sur une matrice photosensible à l'état solide, tandis que les moyens pour convertir le rayonnement X en image électronique peuvent être réalisés à base de sélénium.
Le système de détection peut comporter des moyens de traitement de l'image captée par le capteur d'image de manière à reconstruire une image complète de l'image radiologique de la surface à imager à partir des images des zones irradiées.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit illustrée par les figures annexées qui représentent :
- la figure 1 une coupe d'un exemple de système de détection d'image associé à un générateur de rayons X à balayage, dans lequel les moyens de limitation de l'acquisition du capteur d'image sont des moyens d'occultation partielle mécaniques ;
- la figure 2 une vue de face des moyens limitant l'acquisition du capteur d'image utilisés dans le système de détection d'image de la figure 1 ; - la figure 3 une coupe d'un second exemple de système de détection d'image associé à un générateur de rayons X à balayage, dans lequel les moyens de limitation de l'acquisition du capteur d'image sont des moyens d'occultation partielle mécaniques ;
- la figure 4 une vue de face des moyens limitant l'acquisition du capteur d'image utilisés dans le système de détection d'image de la figure 3 ;
- la figure 5 une coupe d'un troisième exemple de système de détection d'image associé à un générateur de rayons X à balayage, dans lequel les moyens de limitation de l'acquisition du capteur d'image sont des moyens d'occultation partielle mécaniques ; - la figure 6 une coupe d'un quatrième exemple de système de détection d'image selon l'invention associé à un générateur de rayons X à balayage, dans lequel les moyens de limitation de l'acquisition du capteur d'image sont des moyens d'occultation partielle électroniques et externes au capteur d'image ; - la figure 7 une vue de face des moyens d'occultation partielle utilisés dans le système de détection d'image de la figure 6 ;
- les figures 8a, 8b, en coupe, deux nouveaux exemples de système de détection d'image selon l'invention dans lesquels les moyens limitant l'acquisition du capteur d'image sont intégrés au capteur d'image ; - les figures 9a, 9b, 9c trois vues de face du capteur d'image de la figure 8a, à des instants différents, permettant de comprendre le fonctionnement des moyens limitant son acquisition ;
- la figure 10, en coupe partielle un capteur d'image électronique pouvant être intégré dans un système de détection d'image selon l'invention.
Sur ces figures les mêmes éléments portent la même référence et les échelles ne sont pas respectées dans un souci de clarté.
La figure 1 représente un système de détection d'image 20. Ce système de détection d'image est utilisé dans un équipement d'imagerie médicale comportant un générateur 10 de rayons X à balayage qui délivre un rayonnement X 1 balayant une surface à imager 2 d'un patient 3 à examiner. A un instant donné, le rayonnement X 1 n'irradie qu'une portion 2' de la surface à imager 2. A l'issue d'un balayage complet, toute la surface à imager 2 a été irradiée portion par portion. Le générateur 10 de rayons X à balayage peut être à balayage de fente, c'est à dire avec une fente qui se déplace devant une source de rayons X ou être à fente fixe comme décrit par exemple dans la demande de brevet française FR A- 2 795 864. Dans ce cas, c'est en agissant sur l'orientation variable du faisceau d'électrons par rapport à une cible qu'on fait varier l'angle d'incidence du faisceau X sur le corps à irradier : la vitesse de balayage peut être élevée, en l'absence de mouvements de pièces mécaniques.
De l'autre côte du patient 3, c'est à dire à l'opposé du générateur 10 de rayons X à balayage se trouve le système de détection 20. Il détecte le rayonnement X 1 ayant traversé le patient, ce rayonnement X étant porteur d'une image radiologique.
Le système de détection 20 d'image comporte un capteur d'image 22 destiné à acquérir via le rayonnement X issu des portions, une image de la surface à imager. Ce capteur d'image 22 est stationnaire vis à vis du balayage et il possède des dimensions lui permettant d'acquérir une image de toute la surface à imager 2. (I n'est pas mis en mouvement ni limité en dimensions à celles de la portion irradiée. En supprimant les moyens pour mettre en mouvement le capteur puisqu'il est stationnaire, on s'affranchit notamment des problèmes mécaniques rencontrés avec un capteur déplaçable au rythme du rayonnement balayant. Le système de détection d'image 20 comporte également des moyens
24 pour limiter, à un instant donné, l'acquisition du capteur d'image 22 essentiellement à celle de l'image de la portion 2' irradiée à cet instant, ces moyens étant en synchronisme avec le balayage et en correspondance, géométrique avec la portion irradiée 2'. Une liaison en pointillés illustre le synchronisme entre le rayonnement X 1 balayant et les moyens 24 limitant l'acquisition du capteur d'image 22.
Dans l'exemple décrit, le capteur d'image 22 est un capteur d'image lumineuse et il coopère avec des moyens 21 pour convertir le rayonnement X porteur de l'image radiologique en une image lumineuse reçue par le capteur d'image 22 lumineuse. On pourrait envisager d'utiliser un capteur d'image électronique à la place du capteur d'image lumineuse comme le montre la figure 10 décrite ultérieurement. Ce capteur est destiné à capter des charges électroniques et il coopère avec des moyens pour convertir directement le rayonnement X porteur de l'image radiologique en une image électronique.
Dans l'exemple décrit à la figure 1 , le système de détection 20 comporte en tant que moyens de conversion un tube intensificateur d'image radiologique 21 connu sous le sigle IIR, suivi du capteur d'image 22 lumineuse. Les moyens 24 limitant l'acquisition du capteur d'image 22 lumineuse sont des moyens mécaniques d'occultation partielle du capteur d'image 22 lumineuse. Ces moyens 24 d'occultation partielle sont externes au capteur d'image 22 lumineuse, ils masquent partiellement le capteur d'image 22 de manière à ce qu'il ne capte, à un instant donné, que l'image lumineuse de la portion irradiée 2' par le rayonnement X 1 balayant.
On va voir maintenant plus en détails le système de détection d'image dans sa réalisation de la figure 1.
Le tube IIR 21 comporte de manière classique une enceinte 200 étanche au vide fermée à une extrémité par une fenêtre d'entrée 201 par laquelle pénètre le rayonnement X balayant 1 ayant traversé le patient 3.
Le rayonnement X balayant 1 rencontre ensuite un écran d'entrée 202 dont la fonction est de traduire l'intensité du rayonnement X en une quantité d'électrons. Cet écran d'entrée 202 est dimensionné de manière à pouvoir être frappé par le rayonnement X 1 quel que soit le lieu d'impact sur la fenêtre d'entrée 201. L'écran d'entrée 202 comprend généralement un scintillateur 203 associé à une photocathode 204. Le scintillateur 203 convertit le rayonnement X 1 balayant en photons visibles qui sont eux- mêmes convertis en électrons par la photocathode 204.
Un jeu d'électrodes 205 accélère les électrons et les focalise sur un écran de sortie cathodoluminescent 206. L'écran de sortie 206 luminescent est disposé à proximité d'une fenêtre de sortie 207 située à l'opposé de la fenêtre d'entrée 201. L'impact des électrons sur l'écran luminescent 206 permet de reconstituer l'image lumineuse qui s'est formée sur la photocathode 204. Cette image lumineuse traduit à un instant donné l'image radiologique de la portion irradiée 2'. Cette image lumineuse comporte les défauts évoqués plus haut car avec uniquement le rayonnement X balayant, des rayons X diffusés percutent la photocathode 204 et leur effet est visible sur l'écran de sortie 206. L'image affichée par l'écran de sortie 206 est alors transmise vers le capteur d'image 22 lumineuse. Ce capteur d'image 22 lumineuse est généralement un capteur de type CCD (pour Charge-Coupled Device en langue anglaise ou dispositif à couplage de charges) inclus dans une caméra vidéo 220, un film cinématographique placé dans une caméra cinématographique ou un film photographique inclus dans un appareil photographique. Le capteur CCD peut être remplacé avantageusement par un capteur de type CMOS qui fonctionne de manière très semblable.
La transmission de l'image lumineuse affichée par l'écran de sortie 206 vers le capteur d'image 22 lumineuse se fait généralement par l'intermédiaire d'un dispositif optique de couplage 209, disposé à l'extérieur du tube IIR 21 et centré sur un axe XX' longitudinal du tube IIR, axe autour duquel est également centré l'écran de sortie 206. Ce dispositif optique de couplage 209 peut comporter des lentilles et/ou des fibres optiques....
Le capteur d'image 22 lumineuse est dimensionné pour recevoir en totalité l'image de la surface à imager 2, comme c'est le cas dans les systèmes de détection d'image classiques à faisceau de rayons X stationnaire.
Il est associé à des moyens d'occultation 24 partielle synchronisés avec le mouvement de balayage du rayonnement X 1 balayant et en correspondance géométrique avec la portion 2' irradiée de la surface à imager. En étant masqué partiellement, le capteur d'image 22 lumineuse ne peut capter que l'image lumineuse de la portion irradiée 2' par le rayonnement X 1 balayant. Ces moyens d'occultation 24 empêchent que le capteur d'image 22 lumineuse ne capte la trace de rayons X diffusés dans le patient 3.
Le système de détection d'image 20 peut comporter un dispositif d'acquisition et de traitement de signaux 23 qui traite et stocke des signaux relatifs à l'image que lui délivre le capteur d'image 22 lumineuse. Après traitement approprié, ces signaux peuvent être observés sur un dispositif de visualisation 25. Dans l'exemple de la figure 1 , le capteur d'image 22 lumineuse est stationnaire vis à vis du balayage tandis que les moyens d'occultation partielle 24 sont mobiles et plus particulièrement rotatifs par rapport au capteur d'image 22 lumineuse. Ils sont placés entre l'écran de sortie 206 et le capteur d'image 22 lumineuse.
Ils prennent la forme d'un disque 240 opaque à la lumière provenant de l'écran de sortie 206, et doté d'au moins une fenêtre 241 laissant passer la lumière. Cette fenêtre 241 peut être tout simplement une ouverture dans le disque qui laisse passer l'image lumineuse de la portion irradiée 2'.
Le disque 240 est entraîné en rotation de manière que sa fenêtre 241 se déplace en synchronisme avec le rayonnement X 1 balayant la surface à imager 2. Lorsque le rayonnement X 1 balayant a excursionné totalement la surface à imager 2, la fenêtre 241 a excursionné le capteur d'image lumineuse et ce dernier à capté la totalité de l'image radiologique de la surface à imager 2 convertie en image lumineuse, à partir d'une pluralité d'images lumineuses correspondant aux différentes portions irradiées 2' pendant la balayage. La vitesse de rotation du disque 240 est synchronisée avec celle du faisceau de rayons X balayant 1. On suppose que le balayage du rayonnement X 1 balayant s'effectue sur la surface à imager 2 de haut en bas comme le montre la figure 1. Le rayonnement X balayant 1 émerge d'une fente 4 dont la longueur, perpendiculaire à la direction du balayage, correspond à la dimension de là surface à imager 2 située également perpendiculairement à la direction de balayage, à un coefficient d'agrandissement près. Ce facteur est fonction de la distance séparant le patient 3 du générateur de rayons X 10. La largeur de la fente 4 située dans le sens du balayage est très petite devant l'autre dimension de la surface à imager 2 située également dans le sens du balayage. La fente 4 peut-être animée d'un mouvement de va-et- vient en translation, mais on peut envisager, pour s'affranchir de ce mouvement de va-et-vient qui est toujours difficile à réaliser à grande vitesse, d'utiliser un disque animé d'un mouvement de rotation et doté d'une ou plusieurs fentes. Dans cas le balayage est unidirectionnel.
Les dimensions de la portion irradiée 2' à un instant donné sont calquées sur celles de la fente 4 au coefficient d'agrandissement près. Sur l'exemple de la figure 1, les fenêtres 241 sont des fentes radiales dont les dimensions sont calquées sur celles de la portion irradiée
2', à un coefficient de proportionnalité près, fonction des positions relatives et des effets des différents éléments se trouvant entre le patient 3 et les moyens d'occultation 24.
Ces fentes 241 sont situées à la périphérie du disque 240. Il est préférable de répartir les fenêtres 241 sur toute la périphérie du disque surtout si la cadence des images radiologiques à prendre est élevée.
Dans le cas où le balayage se fait en translation, le disque 240 aura un rayon grand devant la longueur des fenêtres 241 de sorte que le déplacement d'une fente devant le capteur d'image 22 lumineuse soit assimilable à une translation. On se réfère à la figure 2.
Les moyens d'occultation 24 partielle peuvent prendre la forme d'un ruban opaque 242 doté d'une ou plusieurs fenêtres 243 transparentes à la lumière de l'écran de sortie 206. Ce ruban 242 peut être configuré en boucle et entraîné par des galets 244 comme l'illustre la figure 3. Lorsqu'il est face au capteur d'image 22 lumineuse, il se déplace en translation. Ses fenêtres 243 sont des fentes transversales à la direction de déplacement du ruban 242. On se réfère à la figure 4. Si le mouvement de balayage est un mouvement de va et vient bidirectionnel, l'émission des rayons X peut-être arrêtée pendant un des deux trajets si les moyens d'occultation partielle sont animés d'un mouvement unidirectionnel en rotation ou en translation.
Dans les deux configurations décrites, les moyens d'occultation 24 partielle sont disposés entre l'écran de sortie 206 et le capteur d'image 22 lumineuse. Dans le cas où un dispositif optique de couplage 209 est interposé entre l'écran de sortie 206 et le capteur d'image 22 lumineuse, les moyens d'occultation 24 partielle peuvent se trouver soit entre l'écran de sortie 206 et le dispositif optique de couplage 209 comme sur la figure 1 , soit entre le dispositif optique de couplage 209 et le capteur d'image 22 lumineuse comme sur la figure 3.
On pourrait aussi envisager que les moyens d'occultation 24 partielle soient placés entre le patient 3 et les moyens de conversion 21 et qu'ils soient directement exposés au rayonnement X.. Dans cette variante, le capteur d'image pourrait être un capteur d'image électronique. Dans l'exemple illustré à la figure 5, le capteur d'image est un capteur d'image lumineuse et les moyens de conversion 21 sont matérialisés par un tube IIR. Les différences avec les configurations décrites précédemment sont que maintenant les moyens d'occultation partielle 24 sont exposés directement au rayonnement X 1 ayant traversé le patient 3 et comportent une partie opaque 247 au rayonnement X et une ou plusieurs parties 248 qui le laisse passer. On suppose sur cette figure 5 que les moyens d'occultation partielle 24 prennent la forme d'un disque qui forme la partie opaque 247 et que ce disque est doté de fenêtres 248 sous forme de fentes qui laissent passer l'image radiologique de la portion irradiée 2'. Ces moyens d'occultation partielle 24 devant être partiellement opaques au rayonnement X sont réalisés à base de plomb et nécessitent des moyens plus puissants pour être déplacés et plus onéreux que dans les variantes précédentes. Les exemples précédents font comprendre les principes de mise en correspondance d'une partie de corps, irradiée à un instant donné par le faisceau de rayons X qui balaye le corps, avec une partie d'image lumineuse correspondante et avec une partie d'image électronique correspondante, ou bien directement avec une partie d'image électronique correspondante lorsque le système convertit directement les rayons X en image électronique sans passer par une image lumineuse. Mais ces exemples montrent aussi que cette mise en correspondance est faite par des moyens mécaniques, essentiellement sous forme de fentes qui se déplacent en synchronisme avec le balayage du faisceau X. La présente invention propose d'utiliser des moyens électroniques, synchronisés avec le mouvement de balayage du faisceau X, pour ne produire une image électronique que dans une zone qui, à un moment donné, correspondant à la zone irradiée , par le faisceau X en mouvement de balayage. Ces moyens sont statiques et remplacent avantageusement les moyens mécaniques décrits ci-dessus, dans les différentes configurations envisagées.
Deux réalisations principales sont prévues. Dans la première, qui est applicable lorsqu'une partie de la chaîne de conversion des rayons X en image électronique passe par une image lumineuse, on intercale un écran à cristaux liquides entre l'image lumineuse et un capteur d'image. Ce capteur d'image est de préférence électronique (tel que le capteur matriciel CCD ou CMOS d'une caméra électronique) mais on peut également envisager qu'il s'agisse d'un simple film photographique qui sera exposé zone par zone au fur et à mesure du balayage de rayons X, les zones de film ne correspondant pas à la zone irradiée à un moment donné étant masquées à ce moment. L'écran à cristaux liquides est rendu opaque partout sauf dans une zone (en principe une ligne de matrice si le balayage permet une irradiation ligne par ligne) correspondant à l'image effectivement irradiée par le faisceau X. Le capteur d'image lumineuse, s'il est électronique, ne recueille pas de signal, sauf dans cette zone. Les rayons X qui ont pu être diffusés dans des directions éparpillées et qui ont pu produire une image lumineuse non limitée à la portion irradiée, ne vont pas influencer le capteur électronique car celui-ci n'observera qu'une zone correspondant véritablement à la portion irradiée. Dans la deuxième grande variante de réalisation, applicable qu'il y ait conversion en image lumineuse avant que l'image ne soit recueillie par un capteur électronique d'image lumineuse ou qu'il y ait conversion directe des rayons X en image électronique, on prévoit que les moyens d'intégration électronique qui convertissent les photons d'image lumineuse ou les photons d'image X en électrons sont organisés pour empêcher l'intégration ou la lecture de charges en dehors de la zone d'image qui correspond à la zone irradiée à un instant donné par le faisceau X balayant.
Typiquement, si une ligne (ou éventuellement quelques lignes) de capteur d'image lumineuse ou électronique est irradiée à un instant donné, on s'arrange pour vider les charges de ces lignes juste avant que ne commence l'irradiation (vidant ainsi les charges issus des rayonnements diffusés indésirables), on intègre les charges résultant uniquement de l'irradiation de la zone irradiée, et on lit ces charges .immédiatement après le temps d'irradiation. On se réfère d'abord aux figures 6 et 7 qui illustrent l'invention.
Les moyens d'occultation partielle 24 sont réalisés par un obturateur 245 à cristaux liquides en réseau dont la transmission est asservie à la position de la portion irradiée 2' par le rayonnement X 1 balayant. Ces moyens d'occultation partielle 24 sont utilisés pour arrêter la lumière provenant de l'écran de sortie 206 du tube intensificateur d'image radiologique 21.
Cet obturateur 245 peut comprendre une fine couche 31 de cristaux liquides (par exemple de type nématique en hélice) prise en sandwich entre deux lames transparentes 32, 33 scellées entre elles, elles mêmes placées entre deux polariseurs croisés 36.
Un tel obturateur 245 fonctionne de la manière suivante. Au moins une des lames transparentes est pourvue d'un réseau d'électrodes, permettant d'appliquer un champ électrique à des portions de la couche de cristaux liquides. C'est pourquoi l'obturateur 245 est dit en réseau. En soumettant une partie de la couche de cristaux liquides à un champ électrique, elle devient opaque et arrête la lumière provenant de l'écran de sortie 206. Cette lumière ne peut plus atteindre le capteur d'image 22 lumineuse. En l'absence de champ électrique, cette partie est transparente et laisse passer la lumière provenant de l'écran de sortie 206. Cette lumière peut ainsi atteindre le capteur d'image 22 lumineuse.
Dans l'exemple décrit et représenté en détails sur la figure 7, on a représenté sur chaque lame 32, 33 transparente un réseau 34, 35 d'électrodes E1 , E2 transparentes parallèles orientées transversalement à la direction du balayage du rayonnement X 1. Une électrode E1 d'un réseau 34 est appariée à une électrode E2 de l'autre réseau 35 et deux électrodes appariées sont en vis à vis. Chaque réseau 34, 35 est relié à un dispositif de commande respectivement 37, 38 permettant d'appliquer à ses électrodes E1 , E2 un potentiel approprié et donc de soumettre à un champ électrique approprié la portion de cristaux liquides située entre deux électrodes appariées afin de la rendre opaque. La commande des potentiels à appliquer aux électrodes réalisé en synchronisme avec le balayage, permet, à chaque instant, d'inclure dans l'obturateur 245 rendu opaque une zone transparente 246 dont les dimensions sont telles que le capteur d'image 22 lumineuse ne capte que l'image radiologique de la portion irradiée 2'. Les dimensions de la zone transparente 246 sont calquées sur celles de la portion irradiée 2' au coefficient de proportionnalité près.
Les motifs d'électrodes décrits sur la figure 7 ne sont que des exemples non limitatifs et d'autres sont bien sûr envisageables pour délimiter ce qui doit rester opaque et ce qui doit devenir transparent. Un motif classique matriciel peut être utilisé, pourvu que les moyens de commande, en principe ligne par ligne, soient organisés de manière à correspondre avec la nature du balayage X utilisée.
Un avantage non négligeable des moyens pour limiter l'acquisition du capteur d'image associés à un tube intensificateur d'image radiologique, dans la configuration où ils sont localisés entre l'écran de sortie et le capteur d'image est que ces moyens de limitation n'éliminent pas seulement la lumière provenant du rayonnement X diffusé dans le patient mais également la lumière diffusée et les rayons X diffusés sur tout le trajet compris entre eux et le patient. En leur absence, cette lumière ou ce rayonnement X seraient captés par le capteur d'image et le contraste serait dégradé. Les meilleurs gains en contraste sont obtenus en plaçant les moyens de limitation le plus près possible du capteur d'image lumineuse.
Au lieu d'être externes au capteur d'image, les moyens de limitation de son acquisition peuvent lui être intégrés. Dans cette deuxième solution, c'est le capteur électronique d'image qui ne recueille qu'une zone d'image utile à un instant donné. Ces variantes sont illustrées aux figures 8a, 8b, 9a à 9c et 10 avec des capteurs d'images à l'état solide.
On se réfère à la figure 8a. On retrouve comme sur la figure 1 , le générateur 10 de rayons X à balayage qui délivre le rayonnement X 1 balayant la surface à imager 2 d'un patient 3 à examiner. De l'autre côté du patient 3 se trouve le système de détection 20 selon l'invention avec un capteur d'image lumineuse 22. Il comporte des moyens 21 pour convertir le rayonnement X issu des portions 2' en image lumineuse de type tube IIR associés au capteur d'image lumineuse 22. Maintenant le capteur d'image 22 lumineuse est un capteur électronique de type CMOS inclus par exemple dans une caméra vidéo 220. Les moyens 240 pour limiter l'acquisition du capteur d'image lumineuse sont intégrés au capteur d'image lumineuse. Ils peuvent soit empêcher l'acquisition d'image en dehors d'une zone déterminée (correspondant à la zone irradiée par le faisceau X) soit efectuer une remise à zéro de l'image acquise dans une zone déterminée (une ligne de capteur par exemple ou quelques lignes) juste avant de recueillir une image désirée dans cette zone, et là encore en synchronisme avec le balayage du faisceau X. Les capteurs de type CMOS de conception récente commencent être utilisés. Ils sont très prometteurs car ils consomment beaucoup moins que les capteurs CCD, sont beaucoup moins encombrants, offrent de nouvelles possibilités dans l'acquisition de portions d'images, peuvent opérer à des vitesses supérieures à celles des capteurs CCD et sont de coûts moindres. Dans un tel capteur chaque pixel ne comporte pas seulement un élément photocapteur, par exemple une photodiode, mais aussi un circuit à transistor CMOS à fonction d'amplificateur de lecture permettant de pouvoir lire rapidement la quantité de charges stockée au niveau de chaque pixel qui a été exposé à un signal lumineux. Sur le même substrat se trouve aussi des moyens pour numériser les signaux stockés par les pixels et utilisés lors de la lecture.
Dans la configuration de la figure 8a et des figures 9a à 9c, le capteur d'image 22 lumineuse est formé d'une pluralité de points sensibles ou pixels P1 à P9 photosensibles arrangés en matrice et connectés entre un conducteur de colonne Y1 à Y3 et un conducteur de ligne X1 à X3. Ces pixels sont symbolisés par un carré. On en a représenté seulement neuf pour ne pas surcharger la figure. Après une exposition à un signal lumineux, les pixels P1 à P3 reliés à un même conducteur de ligne X1 sont adressés en même temps par un dispositif d'adressage 400 relié aux conducteurs de ligne X1 à X3, la quantité de lumière qu'ils ont reçue est lue au niveau de chaque pixel, les données lues pour chaque pixel étant transférées par les conducteurs de colonne Y1 à Y3 dans un dispositif de conversion analogique-numérique 401 fonctionnant en parallèle pour y être numérisées. Les moyens 240 limitant l'acquisition du capteur d'image 22, dans une première phase, juste avant qu'une portion 2' ne soit irradiée, commandent la remise à zéro c'est à dire l'effacement des pixels P4 à P6 du capteur correspondant à l'image lumineuse de ladite portion, et dans une seconde phase, juste après que la portion 2' ait été irradiée, commandent la lecture des pixels P4 à P6 correspondant à cette image lumineuse. Pour acquérir l'image lumineuse de la surface à imager 2 tous les pixels sont soumis à cette succession d'états effacement, exposition, lecture.
Les figures 9a à 9c servent à décrire le fonctionnement des moyens de limitation 240. On suppose que le balayage du rayonnement X 1 se fait linéairement comme sur la figure 1 et qu'une ligne de pixels correspond à une portion irradiée 2'. La flèche entrant dans le bloc 240 symbolisant les moyens de limitation indique que ces moyens sont synchronisés avec le mouvement de balayage du rayonnement X .
Sur la figure 9a, le conducteur de ligne X2 auxquels sont reliés les pixels P4 à P6 porte une flèche issue du dispositif d'adressage 400, ce qui symbolise qu'ils viennent d'être effacés ou mis à zéro. Ils ont été vidés de toute trace d'exposition antérieure. Les pixels P1 à P3 sont eux exposés et sont représentés grisés tandis que les pixels P7 à P9 sont lus, ce qui est symbolisé par des flèches sur les conducteurs de colonne Y1 à Y3 issues des pixels P7 à P9 et dirigées vers le dispositif de conversion analogique- numérique 401.
Sur la figure 9b, les pixels P4 à P6 sont grisés ce qui signifie qu'ils viennent d'être exposés à un éclairement délivré par le tube intensificateur d'image radiologique. Les pixels P1 à P3 sont lus, ce qui est symbolisé par des flèches sur les conducteurs de colonne Y1 à Y3 issues des pixels P1 à P3 et dirigées vers le dispositif de conversion analogique-numérique 401. Les pixels P7 à P9 sont effacés ce qui est symbolisé par la flèche, issue du dispositif d'adressage 400, et portée par le conducteur de ligne X3 auxquels sont reliés les pixels P7 à P9. Sur la figure 9c, on a voulu illustrer le fait que les pixels P4 à P6 sont lus à cet instant tandis que les pixels P1 à P3 sont effacés et que les pixels P7 à P9 sont exposés. Les mêmes symboles que précédemment ont été utilisés. De cette manière, les signaux lus ne comportent pas de diffusé.
•Sur la figure 8b, on retrouve comme sur la figure 1, le générateur 10 de rayons X à balayage qui délivre le rayonnement X 1 balayant la surface à imager 2 d'un patient 3 à examiner. De l'autre côté du patient 3 se trouve le système de détection 20 selon l'invention. Il n'y a pas de tube IIR. Il comporte un capteur d'image 22, 52 à l'état solide qui peut être soit de type capteur d'image lumineuse 22, soit de type capteur d'image électronique 52. Ses dimensions sont sensiblement celles de la surface à imager 2. Le capteur coopère avec des moyens de conversion 21, 51 du rayonnement X issu des portions 2' soit en image lumineuse, soit en image électronique. S'il s'agit d'une conversion en image lumineuse, les moyens de conversion 21 sont de type scintillateur qui recouvrent le capteur d'image 22 lumineuse. S'il s'agit d'une conversion en image électronique, les moyens de conversion 51 sont réalisés à base de sélénium qui recouvre le capteur d'image 52 électronique. Les moyens de conversion 21 , 51 sont directement face au rayonnement X qui a traversé le patient. Le capteur d'image 22 lumineuse peut être un capteur dont les pixels sont formés formé d'une diode photosensible coopérant avec un interrupteur. Ce type de capteur est bien connu en radiologie numérique. Le capteur d'image électronique 52 peut être conforme à ce que montre la figure 10. Les moyens 240 pour limiter l'acquisition du capteur d'image sont intégrés au capteur d'image 22, 52 et tout à fait comparables à ce qui a été décrit à la figure 8a Les éléments sensibles du capteur sont soumis à une succession d'états : effacement ou remise à zéro, exposition, lecture.
On se réfère à la figure 10, le capteur d'image électronique 52 est formé d'une pluralité de points 53 sensibles aux charges électroniques, formés chacun d'un élément capacitif 54 associé à un élément de commutation 55 par exemple un transistor TFT (pour la dénomination anglo- saxonne Thin Film Transistor) activé notamment lors de la lecture, arrangés en réseau à la manière des représentations des figures 9. Ces points sensibles sont réalisés notamment à l'aide de technique de dépôt en films minces de matériaux semi-conducteurs tels que le silicium amorphe. Ce capteur d'image électronique 52 coopère avec des moyens de conversion 51 image radiologique- image électronique à base de sélénium par exemple. Les points sensibles sont recouverts d'une couche 51 à base de sélénium. En traversant la couche 51 à base de sélénium le rayonnement X est directement converti en charges électroniques (symbolisées par une flèche). Ces charges électroniques sont stockées sur les éléments capacitifs 54. Les moyens pour limiter l'acquisition du capteur d'image électronique fonctionnent de manière comparable à ce qui a été décrit aux figures 8a et 8b. Les charges stockées „ sur les éléments capacitifs 54 sont lues séquentiellement ligne par ligne. En effectuant une opération de remise à zéro des éléments capacitifs 54 d'une ligne juste avant qu'ils ne reçoivent des charges électroniques et une opération de lecture des charges stockées dans ces éléments capacitifs juste après qu'ils aient reçu des charges, on parvient à éliminer le signal lié aux rayons X diffusés dans l'acquisition de l'image radiologique. Au lieu de remettre à zéro une ligne avant de la soumettre à une irradiation lumineuse ou une irradiation de rayons X, on pourrait envisager d'empêcher l'intégration des charges photogenérees en dehors d'une ligne déterminée et de ne l'autoriser que dans la ligne sélectionnée. Enfin, il faut signaler que, notamment dans le domaine médical, on tend à remplacer les intensifîcateurs d'image radiologiques (tubes à vides) par des détecteurs à l'état solide, éventuellement de larges dimensions, et que l'on peut par conséquent adapter directement cette solution de limitation de l'observation à une zone déterminée en correspondance et en synchronisme avec une balayage de faisceau X.
Les exemples décrits ne sont pas limitatifs en ce qui concerne les choix d'association entre le capteur d'image, les moyens de conversion et les moyens limitant l'acquisition du capteur d'image, d'autres combinaisons sont possibles sans sortir du cadre de l'invention.

Claims

REVENDICATIONS
1. Système de détection d'image radiologique apte à coopérer avec un générateur de rayons X (10) à balayage destiné à produire un rayonnement X (1) balayant une surface à imager (2), ce rayonnement X (1) irradiant portion (2') après portion la surface à imager (2), le rayonnement X issu d'une portion (2') étant porteur d'une image radiologique de ladite portion, caractérisé en ce qu'il comporte un capteur d'image (22, 52) qui est stationnaire vis à vis du balayage et qui est dimensionné pour pouvoir acquérir une image de toute la surface à imager (2) via le rayonnement X issu des portions (2'), le système de détection comportant de plus des moyens électroniques pour limiter, à un instant donné, l'acquisition du capteur d'image (22,52) à une zone correspondant à la portion irradiée (2') à cet instant, ces moyens de limitation agissant en synchronisme avec le balayage et en correspondance géométrique avec la portion irradiée (2').
2. Système de détection d'image selon la revendication 1 , caractérisé en ce que le capteur d'image est un capteur (22) d'image lumineuse et en ce qu'il coopère avec des moyens pour convertir le rayonnement X issu des portions (2') en image lumineuse.
3. Système de détection d'image selon la revendication 2, caractérisé en ce que les moyens (24) pour limiter l'acquisition sont réalisés par un obturateur (245) à cristaux liquides en réseau, fixe par rapport au capteur d'image (22) lumineuse et intercalé entre les moyens pour convertir le rayonnement X en image lumineuse et le capteur d'image lumineuse.
4. Système de détection d'image selon l'une des revendications 1 et 2 caractérisé en ce que les moyens (240) pour limiter l'acquisition du capteur d'image (22) sont intégrés au capteur d'image.
5. Système de détection d'image selon la revendication 4, dans lequel le capteur d'image (22) est formé d'une pluralité de pixels photosensibles à l'état solide, caractérisé en ce que les moyens (240) pour limiter l'acquisition du capteur d'image (22) commandent juste avant qu'une portion ne soit irradiée, un effacement des pixels du capteur correspondants à l'image lumineuse de ladite portion irradiée, et une lecture desdits pixels juste après l'irradiation de la dite portion.
6. Système de détection d'image selon la revendication 4, dans lequel le capteur d'image électronique est formé d'une pluralité d'éléments capacitifs (54), caractérisé en ce que les moyens (240) pour limiter l'acquisition du capteur d'image (52) commandent, juste avant qu'une portion (2') ne soit irradiée une mise à zéro des éléments capacitifs (54) correspondant à l'image électronique de ladite portion irradiée et une lecture des charges stockées dans lesdits éléments capacitifs (54) juste après l'irradiation de la dite portion (2').
7. Système de détection selon l'une des revendications 1 à 4, caractérisé en ce que le capteur d'image (22, 52) est de type état solide et notamment de type CCD, de type CMOS, à diodes photosensibles, à éléments capacitifs.
8. Système de détection selon la revendication 2, caractérisé en ce que les moyens (21) pour convertir le rayonnement X en image lumineuse sont de type intensificateur d'image radiologique ou scintillateur.
9. Système de détection d'image selon la revendication 1 , caractérisé en ce que le capteur d'image (52) est un capteur d'image électronique et en ce qu'il coopère avec des moyens (51) pour convertir directement le rayonnement X issu des portions (2') en image électronique.
10. Système de détection selon la revendication 9, caractérisé en ce que les moyens (51) pour convertir le rayonnement X en image électronique sont réalisés à base de sélénium.
11. Système de détection selon l'une des revendications 1 à 10, caractérisé en ce qu'il comporte des moyens (23) de traitement de l'image captée par le capteur d'image (22) de manière à reconstruire une image complète de l'image radiologique de la surface à imager à partir des images des zones irradiées.
12. Système de détection selon l'une des revendications 1 à 3, caractérisé en ce que le capteur d'image lumineuse est de type film photographique ou film cinématographique.
EP00993753A 1999-12-30 2000-12-28 Systeme de detection d'image radiologique pour generateur de rayons x a balayage Expired - Lifetime EP1250705B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9916778 1999-12-30
FR9916778A FR2803394B1 (fr) 1999-12-30 1999-12-30 Systeme de detection d'image radiologique pour generateur de rayons x a balayage
PCT/FR2000/003723 WO2001050481A1 (fr) 1999-12-30 2000-12-28 Systeme de detection d'image radiologique pour generateur de rayons x a balayage

Publications (2)

Publication Number Publication Date
EP1250705A1 true EP1250705A1 (fr) 2002-10-23
EP1250705B1 EP1250705B1 (fr) 2004-05-06

Family

ID=9554086

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00993753A Expired - Lifetime EP1250705B1 (fr) 1999-12-30 2000-12-28 Systeme de detection d'image radiologique pour generateur de rayons x a balayage

Country Status (5)

Country Link
US (2) US6934360B2 (fr)
EP (1) EP1250705B1 (fr)
DE (1) DE60010521T2 (fr)
FR (1) FR2803394B1 (fr)
WO (1) WO2001050481A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2879183B1 (fr) * 2004-12-15 2007-04-27 Atmel Grenoble Soc Par Actions Procede de fabrication collective de microstructures a elements superposes
FR2906400B1 (fr) 2006-09-26 2008-11-14 Thales Sa Correction de distorsion d'un tube electronique intensificateur d'image.
EP1916696B1 (fr) * 2006-10-25 2017-04-19 ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Détecteur pour particules chargées, appareil des particules chargées et méthode de formation d'une image
EP2380015A4 (fr) 2008-12-30 2016-10-26 Sikorsky Aircraft Corp Procédé d'inspection non destructive avec une évaluation objective
US8440978B2 (en) * 2010-10-22 2013-05-14 Varian Medical Systems International Ag Method and apparatus for multi-layered high efficiency mega-voltage imager
FR2975213B1 (fr) 2011-05-10 2013-05-10 Trixell Sas Dispositif d'adressage de lignes d'un circuit de commande pour matrice active de detection
FR2978566B1 (fr) * 2011-07-25 2016-10-28 Commissariat Energie Atomique Systeme d'imagerie pour l'imagerie d'objets a mouvement rapide
US9666419B2 (en) * 2012-08-28 2017-05-30 Kla-Tencor Corporation Image intensifier tube design for aberration correction and ion damage reduction

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0073543A3 (fr) 1981-08-28 1984-02-22 Jacques Piquerez Système de transmission d'informations entre un appareil de téléphone et une personne éloignée de son appareil
US4404591A (en) * 1982-01-04 1983-09-13 North American Philips Corporation Slit radiography
US4649559A (en) * 1983-10-31 1987-03-10 Xonics Imaging, Inc. Digital radiography device
DE8714009U1 (fr) * 1987-10-19 1989-02-16 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
JPH0318352A (ja) * 1989-06-16 1991-01-25 Toshiba Corp X線診断装置
JP2670632B2 (ja) * 1990-01-12 1997-10-29 富士写真フイルム株式会社 光走査装置
US5434418A (en) * 1992-10-16 1995-07-18 Schick; David Intra-oral sensor for computer aided radiography
WO1994030004A1 (fr) * 1993-06-16 1994-12-22 Cambridge Imaging Limited Systeme de prise d'images perfectionne
DE69833128T2 (de) * 1997-12-10 2006-08-24 Koninklijke Philips Electronics N.V. Bildung eines zusammengesetzten bildes aus aufeinanderfolgenden röntgenbildern
JP3447947B2 (ja) * 1998-03-20 2003-09-16 株式会社東芝 X線撮像装置
FR2777112B1 (fr) 1998-04-07 2000-06-16 Thomson Tubes Electroniques Dispositif de conversion d'une image
CA2241779C (fr) * 1998-06-26 2010-02-09 Ftni Inc. Detecteur d'image radiologique indirecte pour utilisation avec la radiologie
JP3513136B2 (ja) * 2000-04-06 2004-03-31 浜松ホトニクス株式会社 X線検査システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0150481A1 *

Also Published As

Publication number Publication date
DE60010521T2 (de) 2005-05-12
US7082187B2 (en) 2006-07-25
FR2803394B1 (fr) 2003-04-25
US6934360B2 (en) 2005-08-23
US20020172327A1 (en) 2002-11-21
FR2803394A1 (fr) 2001-07-06
EP1250705B1 (fr) 2004-05-06
US20050201518A1 (en) 2005-09-15
WO2001050481A1 (fr) 2001-07-12
DE60010521D1 (de) 2004-06-09

Similar Documents

Publication Publication Date Title
FR2471178A1 (fr) Appareil de radiographie
EP0425333B1 (fr) Dispositif de localisation en temps réel de sources de rayonnement
US7687792B2 (en) X-ray light valve based digital radiographic imaging systems
JP4790863B2 (ja) 部分的に透明なシンチレータ基板を有する検出器、検査装置及びその製造方法
US7082187B2 (en) Radiological image detection system for a scanning X-ray generator
FR2877829A1 (fr) Configuration de balayage a fentes reposant sur un detecteur a panneau plat.
US5847499A (en) Apparatus for generating multiple X-ray images of an object from a single X-ray exposure
JPS6122841A (ja) 写像方法ならびに装置
FR2819136A1 (fr) Procede et dispositif de correction automatique de decalage dans des systemes de prise d'images en rayons x fluoroscopiques numeriques
FR2914463A1 (fr) Procede de correction de charges remanentes dans un detecteur a panneau plat a rayons x.
EP0983521B1 (fr) Detecteur d'image a l'etat solide soumis a un rayonnement ionisant et equipe d'un dispositif de mesure
EP0240384A1 (fr) Système de visualisation à mémoire
EP4189373A1 (fr) Dispositif d'imagerie par photons x retrodiffuses
FR2698184A1 (fr) Procédé et dispositif capteur d'images par rayons X utilisant la post-luminiscence d'un scintillateur.
EP0604302B1 (fr) Procédé et dispositif d'analyse, par radiograhpie, d'objects en défilement
WO2012066771A1 (fr) Capteur radiologique, procédé d'essai du capteur radiologique et dispositif de diagnostic radiographique équipé du capteur radiologique
EP0506559A1 (fr) Système permettant d'obtenir des images radiologiques notamment dentaires
FR2967495A1 (fr) Dispositif d'imagerie de fluorescence x
Haugh et al. Flat field anomalies in an x-ray charge coupled device camera measured using a Manson x-ray source
RU2140092C1 (ru) Устройство для регистрации формы и пространственного положения источников ионизирующего излучения
FR2641179A1 (fr) Appareil de reconstitution d'image radiologique
FR2625332A1 (fr) Capteur pour gamma camera, scanner et radiologie numerique
EP0112204A1 (fr) Dispositif d'acquisition d'images de rayonnement en temps réel
WO1995012133A1 (fr) Systeme et capteur pour numerisation par balayage des images en rayons x
FR2795864A1 (fr) Generateur de rayons x a balayage pour systeme d'imagerie susceptible de fonctionner a grande vitesse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DE GROOT,PAULTHOMSON-CSF PROPRIETE INTELLECTUELLE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DE GROOT,PAULTHOMSON-CSF PROPRIETE INTELLECTUELLE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60010521

Country of ref document: DE

Date of ref document: 20040609

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040916

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040506

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131224

Year of fee payment: 14

Ref country code: GB

Payment date: 20131227

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20131210

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60010521

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150701

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181127

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231