EP1246973B1 - Mobile arbeitsmaschine mit vorrichtung zur lageregelung von arbeitseinrichtungen und verfahren zur lageregelung - Google Patents

Mobile arbeitsmaschine mit vorrichtung zur lageregelung von arbeitseinrichtungen und verfahren zur lageregelung Download PDF

Info

Publication number
EP1246973B1
EP1246973B1 EP00991646A EP00991646A EP1246973B1 EP 1246973 B1 EP1246973 B1 EP 1246973B1 EP 00991646 A EP00991646 A EP 00991646A EP 00991646 A EP00991646 A EP 00991646A EP 1246973 B1 EP1246973 B1 EP 1246973B1
Authority
EP
European Patent Office
Prior art keywords
angle
mechanical equipment
mobile mechanical
plane
gravitational force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00991646A
Other languages
English (en)
French (fr)
Other versions
EP1246973A1 (de
Inventor
Reinhard Vonnoe
Michael Brand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brueninghaus Hydromatik GmbH
Original Assignee
Brueninghaus Hydromatik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brueninghaus Hydromatik GmbH filed Critical Brueninghaus Hydromatik GmbH
Publication of EP1246973A1 publication Critical patent/EP1246973A1/de
Application granted granted Critical
Publication of EP1246973B1 publication Critical patent/EP1246973B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • E02F3/432Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like for keeping the bucket in a predetermined position or attitude
    • E02F3/433Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like for keeping the bucket in a predetermined position or attitude horizontal, e.g. self-levelling
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • E02F3/432Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like for keeping the bucket in a predetermined position or attitude

Definitions

  • the invention relates to a mobile machine with a device for position control Work equipment of the mobile work machine and a Position control method for mobile work equipment Working machine.
  • DE 197 52 439 A1 describes a micromechanical device Tilt sensor, especially for motor vehicles, as such known, which has a support plate, the inclination is determined to the horizontal. Furthermore, there are at least two pressure sensor units integrated on the carrier plate Determination of one on the carrier plate at the respective Dots applied pressure provided. A ground plate is with the carrier plate over the pressure sensor units connected. From those produced by the pressure sensor units An evaluation unit determines the inclination of the data Carrier plate to the horizontal. The mass plate exercises here after tilting the device into which the tilt sensor built-in, a different force on the respective pressure sensor unit. To measure the Tilt angle must be at least two pressure sensors be provided. These are described in DE 197 52 439 A1 Piezoresistive pressure transducers.
  • the Device for position control includes a measuring device Position sensors for measuring an angle, which between one by the location of the work facility certain plane and the direction of gravitational force is formed, an angle encoder for specifying an angle, which between one by the location of the work facility certain plane and the direction of gravitational force is formed, and a control device for controlling the Angle between the plane of the work equipment and the Direction of gravity so that the measured angle with is brought into line with the predetermined angle.
  • a device for level control in a harbor crane is known from DE 39 38 766 A1.
  • Control valve with one in its position by gravity fixed pendulum as an actuator in mechanical control connection is known from DE 39 38 766 A1.
  • DE 39 38 766 A1 uses this measure Loading and unloading crane, which is particularly suitable for loading and unloading Unloading of ships is appropriate, so oriented that Raising and lowering the crane boom is a find located on it Discharge device in a fixed position relative remains for the rest of the construction.
  • a disadvantage of the known from DE 39 38 766 A1 Level control is particularly one-dimensional Execution.
  • the device preferably for The device is sufficient for ships, for mobile Working machines such as B. earthmoving machines, which preferably on construction sites and therefore on uneven Moving underground is a one-dimensional position correction however not sufficient.
  • the object of the present invention is therefore a mobile work machine with a contraption for position control of work equipment of the mobile work machine and a method for position control for Work equipment of the mobile work machine to create, making the work facilities both in in several directions as well as on the traffic surface reliable according to the position of the machine can be adjusted without being in uneven terrain Charge loss occurs.
  • the invention is based on the knowledge that the Alignment of a mobile work facility Work machine not alone or immobile when shooting material, but especially when Transport of the picked up material to the site Avoiding charge loss is important. Accordingly, a device designed for this purpose is suitable for alignment with respect to Gravitational force defined plane and in a allow a satisfactorily short time.
  • the Mobile work machine according to the invention with the Device or the corresponding The method provides an arrangement which Position correction with respect to gravitational force and possibly allows inverse acceleration force vertical plane.
  • the arrangement is simple to manufacture and easy to use commercially available sensors.
  • the arrangement is both for execution in one Suitable for spatial direction as well as in two spatial directions.
  • Position correction in the longitudinal and transverse directions advantageous. at In a particularly preferred embodiment, the through the normal runtime induced natural vibrations and their multiples eliminated.
  • the predetermined angle is particularly preferred in this way set that by the location of the work facility defined plane perpendicular to the resultant Gravitational force and inverse acceleration force stands.
  • the circuit comprises a first sensor 1, which measures a first angle in a first spatial direction, hereinafter referred to as x. This first angle is referred to below as ⁇ x .
  • a second sensor 2 accordingly measures a second angle in a second spatial direction y. The second angle is referred to below as ⁇ y.
  • the measured angles ⁇ X and ⁇ Y are obtained via a first comparator 3 and a second comparator 4 with an angle ⁇ x 'for the spatial direction x and ⁇ y ' for the spatial direction y, which angle can be determined by an angle transmitter 5 and which can be 90 °, for example , compared.
  • the comparators 3 and 4 form a comparison device 6.
  • the angle transmitter 5 can either provide a fixed predetermined angle or an angle ⁇ x 'or ⁇ y ' which can be adjusted manually using a manual control transmitter 5a.
  • the signal in the x-direction passes through a first bandstopper 7 after the first comparator 3, the signal in the y-direction after the second comparator 4 passes through a second bandstopper 8.
  • the bandstopper 7 and 8 have the purpose that ⁇ in the system due to the control run Eliminate the natural vibration f R and, if necessary, their multiples 2 f R , 3 f R , ..., so that the dynamic behavior of the system remains controllable and no resonances occur.
  • the signal After passing through the bandstop 7, the signal is in the x direction amplified by a first amplifier 9 so as to to be able to control a first electromagnet 10.
  • the first electromagnet 10 is used to actuate a first Control valve 11 required, which in turn a first hydraulic control element 12 for position correction in the controls first spatial direction x. Accordingly it will Signal in the y direction after passing through the bandstop 8 a second amplifier 13 amplified by a second Electromagnet 14 and thus a second control valve 15 head for.
  • the second control valve 15 actuates a second one hydraulic actuator 16. This will Work facility in the second spatial direction y aligned.
  • the position control is carried out until the comparators 3 and 4 determine no difference between the measured angle ⁇ x or ⁇ Y and the preset angle a x 'or a y '.
  • the differences ⁇ x '- ⁇ x and ⁇ y ' - ⁇ y become almost zero in terms of amount or are at least below a value that can still be tolerated for an angular deviation ⁇ , for example ⁇ 3 °.
  • Fig. 2 shows a second embodiment of a Device for position control for Work equipment of the mobile work machine according to the invention.
  • Components that have already been described in Fig. 1 are the same Reference numerals and are not in the following described again. While in Fig. 1 it is a Embodiment is in analog technology, that is in Fig. 2 illustrated embodiment in digital technology executed.
  • the device shown in Fig. 2 differs of the device shown in Fig. 1 mainly by using a digital control unit 34, which both the function of the band locks? and 8 as well that of the comparison device 6 takes over.
  • the comparison device 6 is accordingly constructed as follows:
  • the angle ⁇ x output by the sensor 1 is preamplified by a first preamplifier 30 and then by a first analog-digital converter 32 from an analog measured angle value to a digital one which can be processed by a digital control unit 34 Value converted -
  • the angle ⁇ y is amplified by a second pre-amplifier 31 and converted into a digital value by a second analog-digital converter 33.
  • the predetermined angle ⁇ x 'or ⁇ y ' is determined by the angle transmitter 5 by a third analog -Digital converter 35 also implemented and supplied to the digital control unit 34, which can be designed as a microprocessor.
  • the digital control unit 34 is besides comparing the Angle values are also responsible for filtering the signals.
  • the filter unit as a digital filter with Bandstop characteristic executed.
  • the Band-stop characteristic corresponds to that in FIG. 1 illustrated embodiment, for example, that in Fig. 3A and 3B illustrated second order diqital band-stop filter and is supported by an appropriate program in the Control unit 34 provided.
  • the digital control unit 34 has a memory 36 which, for. B. the Possibility offers, the measured and compared data to save and for later external processing to provide.
  • the balanced signals from sensors 1 and 2 are shown by a first digital-to-analog converter 37 and a second Digital-to-analog converter 38 to analog signals reconverted.
  • the analog signals are through Amplifiers 9 and 13 amplified and the electromagnet 10 and 14 fed.
  • the pump 18 and the tank 17 are analogous to the first Exemplary embodiment hydraulic actuators 12 and 16 driven. These then ensure the correct position of the Work facility 41.
  • FIG. 3A shows a digital filter which, by means of various delay elements for delaying the sampling values (denoted by z -1 in FIG. 3A) and coefficient elements a 0 , a 1 and a 2 for changing the amplitude of the sampling values, has a bandstop filter with that in FIG. 3B shown resonance frequency f R generated.
  • a further digital filter can be provided to filter out the double resonance frequency 2f R.
  • FIG. 4A illustrates the prior art.
  • the excavator bucket 41 In the lower position of the excavator bucket 41 (left in Image), the excavator bucket 41 is aligned so that a imaginary level 42, which through the overhead opening of the Excavator bucket 41 is placed, always parallel to Surface of the earth.
  • Common machines 40 have thereby a lifting mechanism for the work device 41 on which is designed so that the excavator bucket 41 so The level 42 is raised through the opening the excavator bucket 41 is always set remains parallel to the ground.
  • a different reference plane 42 ' is proposed for the alignment of the excavator bucket 41.
  • an imaginary plane 42 ′ is also defined on the working device 41 of the working machine 40 shown in FIG. 4B through the opening of the excavator bucket 41 located at the top. This is now no longer necessarily parallel to the ground, but always approximately perpendicular to the direction of the gravitational force, marked with the vector g in FIG. 4B. This can be achieved both in the lower and in the upper position of the excavator bucket 41.
  • the one-dimensional correction of the Location of the excavator bucket 41 can easily in two directions perpendicular to one another, for example lengthways and transverse to the direction of movement.
  • FIG. 5 shows a schematic excavator bucket 41 for this purpose shown in perspective.
  • Excavator bucket 41 both transverse to the direction of travel and in Direction of travel can be swung up and down. So at Driving forward on uneven terrain be avoided to the side from the excavator bucket 41.
  • FIG. 6 schematically shows a working machine 40 according to the invention when driving through uneven terrain, the position of the working device 41 also being regulated here by its relative position with respect to the gravitational force g .
  • the position of the working device 41 also being regulated here by its relative position with respect to the gravitational force g .
  • it makes sense to assume a limit value for the angle deviation ⁇ for the angle ⁇ between the plane 42 defined by the excavator bucket 41 and the direction of the gravitational force g , from which point the position control can be omitted.
  • a reasonable middle ground is found between an uninterrupted position correction, which requires a lot of energy and can be unfavorable due to the control delay, and charge loss due to a lack of position correction.
  • the described filter suppresses resonance peaks that can occur when the control excitation caused by the uneven ground coincides with the resonance frequency f R of the system.
  • the plane 42 defined by the orientation of the excavator bucket 41 is oriented perpendicular to the direction of the gravitational force g
  • the excavator bucket 41 is shown enlarged in FIG. 7. It is assumed that the mobile work machine 40 is subject to a deceleration due to a braking operation. The decelerating acceleration force b therefore acts on the excavator bucket 41.
  • an inverse acceleration force b ' acts in relation to the reference system of the excavator bucket 41 due to the inertia force b' in the inverse direction of the acceleration force b decelerating the excavator bucket 41, ie the acceleration force b ' acting on the bulk material in the reference system of the excavator bucket 41 however, the same amount as the acceleration force b acting on the excavator bucket 41 in the deceleration direction is rotated by 180 °.
  • the resultant r from the gravitational force g and the inverse acceleration force b ' therefore acts on the bulk material located in the excavator bucket 41. It is therefore advantageous to regulate the plane 42 by the position control according to the invention so that the plane 42 is perpendicular to the resultant r .
  • a further measuring device 29 is provided for measuring the acceleration or deceleration of the mobile working machine 40. The acceleration and deceleration can also be measured separately in the dimensions x and y. While in the embodiment shown in FIG.
  • the measuring device 29 for measuring the acceleration is directly connected to the angle transmitter 5 and the angle ⁇ x ′ given by the angle transmitter 5, in the x direction and the angle ⁇ given in the y direction y , overridden, the measuring device 29 for measuring the acceleration in the exemplary embodiment shown in FIG. 2 is connected in digital technology to the control unit 34 via an analog-digital converter 28, which performs a computational correction of the predetermined angles ⁇ x 'and ⁇ y ' depending on the measured acceleration.
  • This training ensures that Position control of the excavator bucket or generally Working device 41 is carried out so that bulk goods also a stronger acceleration or deceleration of the mobile Work machine 40 is not lost.
  • the invention is not shown on the Embodiments limited, but can also using any work machines different sensors or filter devices be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Description

Die Erfindung betrifft eine mobile Arbeitsmaschine mit einer Vorrichtung zur Lageregelung für Arbeitseinrichtungen der mobilen Arbeitsmaschine und ein Verfahren zur Lageregelung für Arbeitseinrichtungen der mobilen Arbeitsmaschine.
Aus der DE 197 52 439 A1 ist ein mikromechanischer Neigungssensor, insbesondere für Kraftfahrzeuge, als solches bekannt, welcher eine Trägerplatte aufweist, deren Neigung zur Horizontalen bestimmt wird. Ferner sind mindestens zwei auf die Trägerplatte integrierte Drucksensoreinheiten zur Bestimmung eines auf die Trägerplatte an den jeweiligen Punkten aufgebrachten Drucks vorgesehen. Eine Masseplatte ist mit der Trägerplatte über die Drucksensoreinheiten verbunden. Aus den von den Drucksensoreinheiten produzierten Daten ermittelt eine Auswertungseinheit die Neigung der Trägerplatte zur Horizontalen. Die Masseplatte übt dabei je nach Neigung des Gerätes, in welches der Neigungssensor eingebaut ist, eine unterschiedlich starke Kraft auf die jeweilige Drucksensoreinheit aus. Zur Messung des Neigungswinkels müssen mindestens zwei Drucksensoren vorgesehen sein. Diese sind in der DE 197 52 439 A1 als piezoresistive Druckaufnehmer ausgebildet.
Aus der DE 40 30 954 A1 und der US 5,257,177 A ist eine mobile Arbeitsmaschine bekannt, welche eine Vorrichtung zur Lageregelung für Arbeitseinrichtungen aufweist. Die Vorrichtung zur Lageregelung umfaßt eine Meßeinrichtung mit Positionssensoren zur Messung eines Winkels, welcher zwischen einer durch die Lage der Arbeitseinrichtung bestimmten Ebene und der Richtung der Gravitationskraft gebildet ist, einen Winkelgeber zur Vorgabe eines Winkels, welcher zwischen einer durch die Lage der Arbeitseinrichtung bestimmten Ebene und der Richtung der Gravitationskraft gebildet ist, und eine Regeleinrichtung zum Regeln des Winkels zwischen der Ebene der Arbeitseinrichtung und der Richtung der Schwerkraft, so daß der gemessene Winkel mit dem vorgegebenen Winkel in Übereinstimmung gebracht wird.
Eine Vorrichtung zur Niveauregelung bei einem Hafenkran ist aus der DE 39 38 766 A1 bekannt. Hier wird eine Niveauregelung unter Verwendung eines hydraulischen Steuerventils zum Ansteuern eines oder mehrerer hydraulischer Stellorgane für ein ein bestimmtes Niveau beizubehaltendes Teil vorgeschlagen, wobei das Teil mit einem anderen seine Lage beliebig veränderbaren Teil gekoppelt ist. Um eine hohe Betriebssicherheit ohne Verwendung teuerer Elektronik zu gewährleisten, steht das Steuerventil mit einem in seiner Lage durch die Schwerkraft festgelegten Pendel als Betätigungseinrichtung in mechanischer Stellverbindung.
Bei einer Neigung der Vorrichtung erfolgt ein gedämpfter Pendelausschlag in einer festgelegten Raumrichtung, der über das Steuerventil auf das hydraulische Stellglied übertragen wind. In der DE 39 38 766 A1 wird durch diese Maßnahme ein Be- und Entladekran, welcher insbesondere zum Be- und Entladen von Schiffen geeignet ist, so ausgerichtet, daß bei Heben und Senken des Kranbaumes eine daran befindliche Beund Entladungseinrichtung in einer festgelegten Lage relativ zum restlichen Aufbau verbleibt.
Nachteilig an der aus der DE 39 38 766 A1 bekannten Niveauregelung ist insbesondere die eindimensionale Ausführung. Für das in der oben genannten Offenlegungsschrift offenbarte Ausführungsbeispiel der Niveauregelung an einem Be- und Entladekran vorzugsweise für Schiffe ist die Vorrichtung durchaus ausreichend, für mobile Arbeitsmaschinen wie z. B. Erdbewegungsmaschinen, welche sich vorzugsweise auf Baustellen und demnach auf unebenem Untergrund bewegen, ist eine eindimensionale Lagekorrektur jedoch nicht ausreichend.
Die Aufgabe der vorliegenden Erfindung ist somit, eine mobile Arbeitsmaschine mit einer Vorrichtung zur Lageregelung von Arbeitseinrichtungen der mobilen Arbeitsmaschine und ein Verfahren zur Lageregelung für Arbeitseinrichtungen der mobilen Arbeitsmaschine zu schaffen, wodurch die Arbeitseinrichtungen sowohl in mehreren Richtungen als auch auf dem befahrenen Untergrund gemäß der jeweiligen Lage der Arbeitsmaschine zuverlässig angepaßt werden kann, ohne daß in unebenem Terrain Ladungsverlust auftritt.
Die Aufgabe wird bezüglich der Arbeitsmaschine durch die Merkmale der Anspruchs 1 und bezüglich des Verfahrens durch die Merkmale des Anspruchs 10 gelöst.
Der Erfindung liegt die Erkenntnis zugrunde, daß die Ausrichtung einer Arbeitseinrichtung einer mobilen Arbeitsmaschine nicht allein in unbeweglichem Zustand oder bei der Aufnahme von Material, sondern insbesondere beim Transport des aüfgenommenen Materials im Gelände zur Vermeidung von Ladungsverlusten von Bedeutung ist. Dementsprechend muß eine Vorrichtung, die für diesen Zweck geeignet ist, eine Ausrichtung bezüglich einer zur Gravitationskraft definierten Ebene und in einer zufriedenstellend kurzen Zeit ermöglichen. Die erfindungsgemäße mobile Arbeitsmaschine mit der Vorrichtung bzw. das entsprechende Verfahren stellt eine Anordnung zur Verfügung, welche eine Lagekorrektur bezüglich einer zur Gravitationskraft und ggf. inversen Beschleunigungskraft senkrechten Ebene ermöglicht.
Die Unteransprüche 2 bis 9 beinhalten vorteilhafte Weiterbildungen der Erfindung.
Insbesondere die Möglichkeit, die Vergleichseinrichtung sowohl in herkömmlicher analoger Bauweise als auch in integrierter schaltungstechnik auszuführen, ist von Vorteil, da so den speziellen Anforderungen einzelner Arbeitsmaschinen genügt werden kann.
Die Anordnung ist einfach herzustellen und leicht mit handelsüblichen Sensoren auszustatten.
Die Anordnung ist sowohl zur Ausführung in einer Raumrichtung als auch in zwei Raumrichtungen geeignet. Insbesondere bei Erdbewegungsmaschinen ist eine Lagekorrektur in Längs- und Querrichtung vorteilhaft. Bei einer besonders bevorzugten Ausgestaltung werden die durch die Regellaufzeit hervorgerufenen Eigenschwingungen und deren Vielfache eliminiert.
Besonders bevorzugt wird der vorgegebene Winkel so eingestellt, daß die durch die Lage der Arbeitseinrichtung definierte Ebene senkrecht zu der Resultierenden aus Gravitationskraft und inverser Beschleunigungskraft steht.
Dadurch wird auch bei Beschleunigungen der Arbeitseinrichtung, z. B. durch Fahrbewegungen, die Arbeitseinrichtung so positioniert, daß Ladungsverlust vermieden wird. In der Zeichnung werden bevorzugte Ausführungsbeispiele der erfindungsgemäßen Arbeitsmaschine dargestellt und nachfolgend unter Bezugnahme auf die Zeichnung näher erläutert.
In der Zeichnung zeigen:
Fig. 1
in einem ersten Schaltbild ein erstes Ausführungsbeispiel der Vorrichtung der erfindungsgemäßen Arbeitsmaschine zur Regelung und Ansteuerung von hydraulischen Stellelementen zur Lageregelung beweglicher Arbeitseinrichtungen der mobilen Arbeitsmaschine;
Fig. 2
in einem zweiten Schaltbild ein zweites Ausführungsbeispiel der Vorrichtung der erfindungsgemäßen Arbeitmaschine;
Fig. 3A-3B
den prinzipiellen Aufbau einer als Bandsperre 2. Ordnung ausgelegten digitalen Filtereinheit sowie den zugehörigen Amplitudengang;
Fig. 4A-4B
in einer vereinfachten Darstellung die Bewegung einer mobilen Arbeitsmaschine im Gelände gemäß dem Stand der Technik sowie einer erfindungsgemäßen mobilen Arbeitsmaschine bei Bewegung im Gelände;
Fig. 5
in einer perspektivischen Darstellung ein Beispiel für eine Arbeitseinrichtung einer mobilen Arbeitsmaschine mit den möglichen Schwenkrichtungen;
Fig. 6
eine schematische erfindungsgemäße mobile Arbeitsmaschine mit der Vorrichtung zur Lageregelung in unebenem Gelände; und
Fig. 7
eine Skizze bezüglich einer die Beschleunigung berücksichtigenden Laderegelung.
In Fig. 1 ist in einem ersten Blockschaltbild ein erstes Ausführungsbeispiel der vorrichtung zur Lageregelung für Arbeitseinrichtungen der erfindungsgemäßen mobilen Arbeitsmaschine dargestellt. Die Schaltung umfaßt einen ersten Sensor 1, welcher einen ersten Winkel in einer ersten Raumrichtung, im Folgenden mit x bezeichnet, mißt. Dieser erste Winkel wird im Folgenden mit αx bezeichnet. Ein zweiter Sensor 2 mißt entsprechend einen zweiten Winkel in einer zweiten Raumrichtung y. Der zweite Winkel wird im Folgenden mit αy bezeichnet. Die gemessenen Winkel αX und αY werden über einen ersten Komparator 3 und einen zweiten Komparator 4 mit einem von einem Winkelgeber 5 festgelegten Winkel αx' für die Raumrichtung x und αy' für die Raumrichtung y, welcher beispielsweise jeweils 90° betragen kann, verglichen. Die Komparatoren 3 und 4 bilden eine Vergleichseinrichtung 6. Der Winkelgeber 5 kann dabei entweder einen fest vorgegebenen oder auch einen von Hand über einen Handsteuergeber 5a einstellbaren Winkel αx' bzw. αy' zur Verfügung stellen.
Das Signal in x-Richtung durchläuft nach dem ersten Komparator 3 eine erste Bandsperre 7, das Signal in y-Richtung nach dem zweiten Komparator 4 eine zweite Bandsperre 8. Die Bandsperren 7 und 8 haben den Zweck, die durch die Regellauf zeit τ im System hervorgerufene Eigenschwingung fR und gegebenenfalls deren Vielfache 2 fR, 3 fR, ... zu eliminieren, damit das dynamische Verhalten des Systems kontrollierbar bleibt und keine Resonanzen auftreten.
Nach Durchlaufen der Bandsperre 7 wird das Signal in x-Richtung durch einen ersten Verstärker 9 verstärkt, um damit einen ersten Elektromagneten 10 ansteuern zu können. Der erste Elektromagnet 10 wird zur Betätigung eines ersten Steuerventils 11 benötigt, welches wiederum ein erstes hydraulisches Stellelement 12 zur Lagekorrektur in der ersten Raumrichtung x ansteuert. Entsprechend wird das Signal in y-Richtung nach Durchlaufen der Bandsperre 8 durch einen zweiten Verstärker 13 verstärkt, um einen zweiten Elektromagneten 14 und damit ein zweites Steuerventil 15 anzusteuern. Das zweite Steuerventil 15 betätigt ein zweites hydraulisches Stellelement 16. Dadurch wird die Arbeitseinrichtung in der zweiten Raumrichtung y ausgerichtet.
Zur Betätigung der hydraulischen Stellglieder 12 und 16 wird eine in einem Tank 17 befindliche Hydraulikflüssigkeit durch eine Pumpe 18 in einen vorderen oder hinteren Zylinderraum eines ersten Zylinders 19 des ersten hydraulischen Stellelements 12 bzw. in der vorderen oder hinteren Zylinderraum eines zweiten Zylinders 20 des zweiten hydraulischen Stellelements 16 gedrückt. Dadurch erfährt ein erster Kolben 21 bzw. ein zweiter Kolben 22 eine Lageänderung, welche wiederum für die Lageregelung der Arbeitseinrichtung 41 sorgt.
Die Lageregelung erfolgt so lange, bis die Komparatoren 3 und 4 keinen Unterschied zwischen dem gemessenen Winkel αx bzw. αY und dem voreingestellten Winkel ax' bzw. ay' feststellen. Dabei werden die Differenzen αx'-αx bzw. αy'-α y betragsmäßig fast Null oder liegen zumindest unter einem Wert, welcher für eine Winkelabweichung Δα noch toleriert werden kann, beispielsweise ± 3°.
Ist dieser Zustand erreicht, erfolgt keine Signaländerung mehr an die Steuerventile 11 und 15, welche daraufhin in eine Mittelstellung zurückschalten, ohne dabei die Position der Stellglieder 12 und 16 weiter zu verändern. Das System bleibt in der Mittelstellung, bis wieder ein geändertes Signal von den Komparatoren 3 und 4 eingeht.
Fig. 2 zeigt ein zweites Ausführungsbeispiel einer Vorrinchtung zur Lageregelung für Arbeitseinrichtungen der erfindungsgemäßen mobilen Arbeitsmaschine. Bauteile, die bereits in Fig. 1 beschrieben wurden, sind mit gleichen Bezugszeichen versehen und werden im Folgenden nicht nochmals beschrieben. Während es sich in Fig. 1 um ein Ausführungsbeispiel in Analogtechnik handelt, ist das in Fig. 2 dargestellte Ausführungsbeispiel in Digitaltechnik ausgeführt.
Die in Fig. 2 dargestellte Vorrichtung unterscheidet sich von der in Fig. 1 dargestellten Vorrichtung hauptsächlich durch die Verwendung einer digitalen Steuereinheit 34, welche sowohl die Funktion der Bandsperren ? und 8 als auch die der Vergleichseinrichtung 6 übernimmt.
Die Vergleichseinrichtung 6 ist demnach folgendermaßen aufgebaut: Der von dem Sensor 1 ausgegebene Winkel αx wird durch einen ersten Vorverstärker 30 vorverstärkt und danach durch einen ersten Analog-Digital-Wandler 32 von einem analog gemessenen Winkelwert auf einen digitalen, von einer digitalen Steuereinheit 34 verarbeitbaren Wert umgesetzt-Ebenso wird der Winkel αy durch einen zweiten Vorwerstärker 31 verstärkt und durch einen zweiten Analog-Digital-Wandler 33 in einen digitalen Wert umgesetzt. Um den vorgegebenen Winkel αx' bzw. αy' mit den von den Sensoren 1 und 2 ermittelten Winkeln αx und αy vergleichen zu können, wird vom Winkelgeber 5 der vorgegebene Winkel αx' bzw. αy' durch einen dritten Analog-Digital-Wandler 35 ebenfalls umgesetzt und der digitalen Steuereinheit 34 zugeführt, die als Mikroprozessor ausgebildet sein kann.
Die digitale Steuereinheit 34 ist neben dem Vergleichen der Winkelwerte auch für das Filtern der Signale zuständig. Dazu ist die Filtereinheit als digitales Filter mit Bandsperrencharakteristik ausgeführt. Die Bandsperrencharakteristik entspricht wie in dem in Fig. 1 dargestellten Ausführungsbeispiel beispielsweise der in Fig. 3A und 3B dargestellten diqitalen Bandsperre zweiter Ordnung und wird durch ein entsprechendes Programm in der Steuereinheit 34 bereitgestellt. Die digitale Steuereinheit 34 weist einen Speicher 36 auf, welcher z. B. die Möglichkeit bietet, die gemessenen und abgeglichenen Daten zu speichern und für eine spätere externe Weiterverarbeitung zur Verfügung zu stellen.
Die abgeglichenen Signale der Sensoren 1 und 2 werden durch einen ersten Digital-Analog-Wandler 37 und einen zweiten Digital-Analog-Wandler 38 in analoge Signale zurückgewandelt. Die analogen Signale werden durch Verstärker 9 und 13 verstärkt und den Elektromagneten 10 und 14 zugeführt. Durch die Steuerventile 11 und 15, die Pumpe 18 und den Tank 17 werden analog zum ersten Ausführungsbeispiel hydraulische Stellglieder 12 und 16 angesteuert. Diese sorgen dann für die korrekte Lage der Arbeitseinrichtung 41.
In Fig. 3A ist ein digitales Bandpaßfilter zweiter Ordnung und in Fig. 3B der dazugehörige Frequenzgang prinzipiell erläutert. Fig. 3A zeigt ein digitales Filter, welches durch verschiedene Verzögerungsglieder zum Verzögern der Abstastwerte (in Fig. 3A mit z-1 bezeichnet) sowie Koeffizientenglieder a0, a1 und a2 zum Verändern der Amplitude der Abtastwerte eine Bandsperre mit der in Fig. 3B gezeigten Resonanzfrequenz fR erzeugt. Dies führt dazu, daß die Eigenschwingung fR des Systems, welche durch die Regellaufzeit τ hervorgerufen wird, sowie ihre ungeradzahligen Vielfachen (3fR, 5fR usw.) ausgefiltert werden. Dies verhindert ein Aufschaukeln des Systems. Dadurch kann eine einerseits hochdynamische und andererseits äußerst präzise Funktion der erfindungsgemäßen Vorrichtung erreicht werden. Zum Ausfiltern der doppelten Resonanzfrequenz 2fR kann ein weiters digitales Filter vorgesehen sein.
In Fig. 4 wird anhand einer schematisch dargestellten Arbeitsmaschine 40 mit einer Baggerschaufel als Arbeitseinrichtung 41 eine Anwendung der Erfindung in einer Dimension näher erläutert.
Fig. 4A verdeutlicht dabei den bisherigen Stand der Technik. In der unteren Stellung der Baggerschaufel 41 (links im Bild) ist die Baggerschaufel 41 so ausgerichtet, daß eine gedachte Ebene 42, welche durch die obenliegende Öffnung der Baggerschaufel 41 gelegt ist, sich stets parallel zur Erdoberfläche befindet. Gängige Arbeitsmaschinen 40 weisen dabei einen Hebemechanismus für die Arbeitseinrichtung 41 auf, welcher so konzipiert ist, daß die Baggerschaufel 41 so angehoben wird, daß die Ebene 42, welche durch die öffnung der Baggerschaufel 41 festgelegt ist, weiterhin stets parallel zum Erdboden bleibt.
Solange sich die Arbeitsmaschine 40 auf ebener Strecke bewegt, ist damit auch kein Problem verbunden. Sobald sich jedoch die Arbeitsmaschine 40 eine Steigung hinauf oder wie in Fig. 4A rechts dargestellt hinunter bewegt, geht Material 43 verloren, da sich die durch die Baggerschaufel 41 festgelegte Ebene 42 nach wie vor parallel zum Erdboden befindet und daher ab einer bestimmten Steigung das in der Baggerschaufel 41 transportierte Material 43 herausrutscht. Der Steigungswinkel, ab welchem mit Ladungsverlust zu rechnen ist, ist dabei hauptsächlich von der Form der Baggerschaufel 41 und der Befüllung bestimmt.
Erfindungsgemäß wird, wie in Fig. 4B dargestellt, eine andere Bezugsebene 42' für die Ausrichtung der Baggerschaufel 41 vorgeschlagen. Wie in Fig. 4A wird auch an der Arbeitseinrichtung 41 der in Fig. 4B dargestellten Arbeitsmaschine 40 eine gedachte Ebene 42' durch die obenliegende Öffnung der Baggerschaufel 41 definiert. Diese ist nun nicht mehr zwingend parallel zum Erdboden, sondern stets annähernd senkrecht zur Richtung der Erdanziehungskraft, in Fig. 4B mit dem Vektor g gekennzeichnet, gerichtet. Dies läßt sich sowohl in der unteren wie auch in der oberen Stellung der Baggerschaufel 41 realisieren. Dies bietet den Vorteil, daß die Baggerschaufel 41 erfindungsgemäß bei Bergauf- oder Bergabfahrten wie auch bei Fahrten in unebenem Gelände so nachreguliert wird, daß die durch die Baggerschaufel 41 verlaufende Ebene 42 stets senkrecht zur Richtung der Erdbeschleunigung g ausgerichtet wird. Dadurch werden Transportverluste aus der Baggerschaufel 41 vermieden.
Die in Fig. 4 dargestellte, eindimensionale Korrektur der Lage der Baggerschaufel 41 kann problemlos auch in zwei zueinander senkrechten Richtungen, beispielsweise längs und quer zur Bewegungsrichtung, erfolgen.
In Fig. 5 ist hierzu eine schematische Baggerschaufel 41 perspektivisch dargestellt. Durch die zur Bewegungsrichtung parallelen und senkrechten Achsen A und B kann die Baggerschaufel 41 sowohl quer zur Fahrtrichtung als auch in Fahrtrichtung auf- und abgeschwenkt werden. So können bei Fahrten in unebenem Gelände Ladungsverlusten nach vorne oder zur Seite aus der Baggerschaufel 41 vermieden werden.
In Fig. 6 ist schematisch eine erfindungsgemäße Arbeitsmaschine 40 bei der Fahrt durch unebenes Gelände dargestellt, wobei auch hier die Lage der Arbeitseinrichtung 41 durch ihre relative Lage bezüglich der Erdanziehungskraft g geregelt wird. Es ist in diesem Zusammenhang sinnvoll, für den Winkel α zwischen der durch die Baggerschaufel 41 definierten Ebene 42 und der Richtung der Erdanziehungskraft g einen Grenzwert für die Winkelabweichung Δα anzunehmen, ab welchem die Lageregelung entfallen kann. Dadurch wird ein sinnvoller Mittelweg zwischen einer ununterbrochenen Lagekorrektur, welche viel Energie fordert und aufgrund der Regelverzögerung ungünstig sein kann, und Ladungsverlust aufgrund fehlender Lagekorrektur gefunden. Resonanzüberhöhungen, die Auftreten können, wenn die durch die Bodenunebenheit hervorgerufene Regelungsanregung mit der Resonanzfrequenz fR des Systems zusammenfällt, werden durch das beschriebene Filter unterdrückt.
Während bei dem in Fig. 6 dargestellten Ausführungsbeispiel die durch die Ausrichtung der Baggerschaufel 41 definierte Ebene 42 senkrecht zur Richtung der Gravitationskraft g ausgerichtet ist, besteht weiter eine verbesserte Lagekorrektur darin, die durch die Baggerschaufel 41 definierte Ebene 42 nicht senkrecht zu der Gravitationskraft g, sondern senkrecht zu der Resultierenden r aus der Gravitationskraft g und der Inversen b' der Beschleunigungskraft b auszurichten. In Fig. 7 ist die Baggerschaufel 41 vergrößert dargestellt. Es sei angenommen, daß die mobile Arbeitsmaschine 40 einer Verzögerung bedingt durch einen Abbremsvorgang unterworfen ist. Auf die Baggerschaufel 41 wirkt deshalb die verzögernde Beschleunigungskraft b. Auf das in die Baggerschaufel 41 eingebrachte Schüttgut wirkt bezogen auf das Bezugssystem der Baggerschaufel 41 aufgrund der Massenträgheitskraft eine inverse Beschleunigungskraft b' in inverser Richtung zur die Baggerschaufel 41 verzögernden Beschleunigungskraft b, d. h. die auf das Schüttgut im Bezugssystem der Baggerschaufel 41 einwirkende Beschleunigungskraft b' hat den gleichen Betrag, wie die auf die Baggerschaufel 41 in Verzögerungsrichtung einwirkende Beschleunigungskraft b, ist jedoch um 180° gedreht.
Auf das in der Baggerschaufel 41 befindliche Schüttgut wirkt deshalb die Resultierende r aus der Gravitationskraft g und der inversen Beschleunigungskraft b'. Es ist deshalb vorteilhaft, die Ebene 42 durch die erfindungsgemäße Lageregelung so einzuregeln, daß die Ebene 42 senkrecht zu der Resultierenden r steht. Dazu ist bei den in den Figuren 1 und 2 dargestellten Ausführungsbeispielen eine weitere Meßeinrichtung 29 zur Messung der Beschleunigung bzw. Verzögerung der mobilen Arbeitsmaschine 40 vorgesehen. Die Messung der Beschleunigung bzw. Verzögerung kann auch hier getrennt in den Dimensionen x und y erfolgen. Während bei dem in Fig. 1 dargestellten Ausführungsbeispiel in Analogtechnik die Meßeinrichtung 29 zur Messung der Beschleunigung unmittelbar mit dem Winkelgeber 5 verbunden ist und den von dem Winkelgeber 5 vorgegebenen Winkel αx', in x-Richtung und den in y-Richtung vorgegebenen Winkel αy , übersteuert, ist die Meßeinrichtung 29 zur Messung der Beschleunigung bei dem in Fig. 2 dargestellten Ausführungsbeispiel in Digitaltechnik über einen Analog-Digital-Wandler 28 mit der Steuereinheit 34 verbunden, die eine rechnerische Korrektur der vorgegebenen Winkel αx' und αy' in Abhängigkeit von der gemessenen Beschleunigung vornimmt.
Durch diese Weiterbildung ist sichergestellt, daß die Lageregelung der Baggerschaufel bzw. allgemein der Arbeitseinrichtung 41 so erfolgt, daß Schüttgut auch bei einem stärkeren Beschleunigen bzw. Verzögern der mobilen Arbeitsmaschine 40 nicht verloren geht.
Die Erfindung ist nicht auf die dargestellten Ausführungsbeispiele beschränkt, sondern kann auch bei beliebigen Arbeitsmaschinen unter Verwendung unterschiedlicher Sensoren oder Filtereinrichtungen angewandt werden.

Claims (10)

  1. Mobile Arbeitsmaschine (40) mit einer Vorrichtung zur Lageregelung von Arbeitseinrichtungen (41) der mobilen Arbeitsmaschine (40), mit einer Meßeinrichtung (1, 2) zur Messung eines Winkels (α), welcher zwischen einer durch die Lage der Arbeitseinrichtung (41) bestimmten Ebene (42) und der Richtung der Gravitatiönskraft (g) gebildet ist, einem Winkelgeber (5) zur Vorgabe eines Winkels (α'), welcher zwischen einer durch die Lage der Arbeitseinrichtung (41) bestimmten Ebene (42) und der Richtung der Gravitationskraft (g) gebildet ist, und einer Regeleinrichtung (3, 4, 6 - 16, 6, 34, 36, 9 - 16) zum Regeln des Winkels (α) zwischen der Ebene (42) der Arbeitseinrichtung (41) und der Richtung der Gravitationskraft (g), so daß der gemessene Winkel (α) mit dem vorgegebenen Winkel (α') in Übereinstimmung gebracht wird,
    dadurch gekennzeichnet, daß eine weitere Meßeinrichtung (29) zur Messung der Beschleunigung und/oder Verzögerung der mobilen Arbeitsmaschine (40) vorgesehen ist und
    daß der vorgegebene Winkel (α') so eingestellt wird, daß sich die durch die Lage der Arbeitseinrichtung (41) bestimmte Ebene (42) senkrecht zu der Resultierenden (r) aus der Gravitationskraft (g) und der gemessenen inversen Beschleunigungskraft (b') erstreckt.
  2. Mobile Arbeitsmaschine nach Anspruch 1,
    dadurch gekennzeichnet, daß die Regeleinrichtung (3, 4, 6 - 16; 6, 34, 36, 9 - 16) eine Vergleichseinrichtung (6) zum Vergleichen des gemessenen Winkels (α) mit dem vorgegebenen Winkel (α') und zumindest ein von der Vergleichseinrichtung (6) angesteuertes elektromagnetisches Steuerventil (11, 15), welches auf ein hydraulisches Stellelement (12, 16) einwirkt, aufweist.
  3. Mobile Arbeitsmaschine nach Anspruch 2,
    dadurch gekennzeichnet, daß die Vergleichseinrichtung (6) als Komparator (3, 4) ausgeführt ist.
  4. Mobile Arbeitsmaschine nach Anspruch 2,
    dadurch gekennzeichnet, daß die Vergleichseinrichtung (6) als digitale Steuereinheit (34, 36) ausgeführt ist.
  5. Mobile Arbeitsmaschine nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß die Regeleinrichtung (3, 4, 6 - 16; 6, 34, 36, 9 - 16) eine Filtereinheit (7, 8; 34, 36) umfaßt, welche eine durch die Regellaufzeit (τ) hervorgerufene Eigenschwingung (fR) eliminiert.
  6. Mobile Arbeitsmaschine nach Anspruch 5,
    dadurch gekennzeichnet, daß die Filtereinheit (7, 8; 34, 36) als Bandsperre (7, 8) für die Eigenschwingung (fR) und/oder deren Vielfache ausgeführt ist.
  7. Mobile Arbeitsmaschine nach Anspruch 6,
    dadurch gekennzeichnet, daß die Filtereinheit (7, 8; 34, 36) als digitales Filter (34, 36) mit Bandsperrencharakteristik ausgeführt ist.
  8. Mobile Arbeitsmaschine nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, daß die Vorrichtung zur Lageregelung für Arbeitseinrichtungen (41) der mobilen Arbeitsmaschine (40) eine Neigungskompensation längs und quer zur Bewegungsrichtung der Arbeitsmaschine (40) ausführt, wobei ein erstes Stellelement (12) zur Lagekorrektur in einer ersten Raumrichtung (x) und ein zweites Stellelement (16) zur Lagekorrektur in einer zweiten Raumrichtung (y) angesteuert werden.
  9. Mobile Arbeitsmaschine nach Anspruch 8,
    dadurch gekennzeichnet, daß eine Meßeinrichtung. (1) zur Messung des Winkels (αx) in der ersten Raumrichtung (x) und eine zweite Meßeinrichtung (2) zur Messung des Winkels (αy,) in der zweiten Raumrichtung (y) vorgesehen sind.
  10. Verfahren zur Lageregelung von Arbeitseinrichtungen (41) mobiler . Arbeitsmaschinen (40) mit folgenden Verfahrensschritten:
    Messen eines Winkels (α), welcher zwischen einer durch die Lage der Arbeitseinrichtung (41) bestimmten Ebene (42) und der Richtung der Gravitationskraft (g) gebildet ist,
    Vorgeben eines Winkels (α'), welcher zwischen einer durch die Lage der Arbeitseinrichtung (41) bestimmten Ebene (42) und der Richtung der Gravitationskraft (g) gebildet ist, und
    Regeln des Winkels (α) zwischen der Ebene (42) der Arbeitseinrichtung (41) und der Richtung der Gravitationskraft (g), so daß der gemessene Winkel (α) mit dem vorgegebenen Winkel (α') in Übereinstimmung gebracht wird,
    dadurch gekennzeichnet, daß der vorgegebene Winkel (α') so eingestellt wird, daß sich die durch die Lage der Arbeitseinrichtung (41) bestimmte Ebene (42) senkrecht zu der Resultierenden (r) aus der Gravitationskraft (g) und der inversen Beschleunigungskraft (b') erstreckt.
EP00991646A 2000-01-11 2000-12-28 Mobile arbeitsmaschine mit vorrichtung zur lageregelung von arbeitseinrichtungen und verfahren zur lageregelung Expired - Lifetime EP1246973B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10000771 2000-01-11
DE10000771A DE10000771C2 (de) 2000-01-11 2000-01-11 Vorrichtung und Verfahren zur Lageregelung für Arbeitseinrichtungen mobiler Arbeitsmaschinen
PCT/EP2000/013310 WO2001051717A1 (de) 2000-01-11 2000-12-28 Vorrichtung und verfahren zur lageregelung für arbeitseinrichtungen mobiler arbeitsmaschinen

Publications (2)

Publication Number Publication Date
EP1246973A1 EP1246973A1 (de) 2002-10-09
EP1246973B1 true EP1246973B1 (de) 2003-10-08

Family

ID=7627142

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00991646A Expired - Lifetime EP1246973B1 (de) 2000-01-11 2000-12-28 Mobile arbeitsmaschine mit vorrichtung zur lageregelung von arbeitseinrichtungen und verfahren zur lageregelung

Country Status (4)

Country Link
US (1) US6968241B2 (de)
EP (1) EP1246973B1 (de)
DE (2) DE10000771C2 (de)
WO (1) WO2001051717A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7222444B2 (en) * 2004-10-21 2007-05-29 Deere & Company Coordinated linkage system for a work vehicle
US7403826B2 (en) * 2004-12-01 2008-07-22 Canadian Space Agency Method and system for torque/force control of hydraulic actuators
DE102005024676A1 (de) * 2004-12-21 2006-07-06 Bosch Rexroth Aktiengesellschaft System zur Lageerfassung und -regelung für Arbeitsarme mobiler Arbeitsmaschinen
EP1896665A1 (de) * 2005-06-22 2008-03-12 Volvo Construction Equipment Holding Sweden AB System und verfahren zur steuerung der neigung eines lasttragenden geräts einer beweglichen arbeitsmaschine und bewegliche arbeitsmaschine
EP1954888A1 (de) * 2005-11-10 2008-08-13 Volvo Construction Equipment AB Lader
US7734398B2 (en) * 2006-07-31 2010-06-08 Caterpillar Inc. System for automated excavation contour control
US8200398B2 (en) * 2007-02-21 2012-06-12 Deere & Company Automated control of boom and attachment for work vehicle
US7748147B2 (en) * 2007-04-30 2010-07-06 Deere & Company Automated control of boom or attachment for work vehicle to a present position
US7752779B2 (en) * 2007-04-30 2010-07-13 Deere & Company Automated control of boom or attachment for work vehicle to a preset position
DE102007045846A1 (de) * 2007-09-26 2009-04-02 Deere & Company, Moline Landwirtschaftliche Maschine und Verfahren zur Positionsbestimmung
US7949449B2 (en) * 2007-12-19 2011-05-24 Caterpillar Inc. Constant work tool angle control
JP2009197425A (ja) * 2008-02-20 2009-09-03 Komatsu Ltd 建設機械
JP5037561B2 (ja) * 2009-05-13 2012-09-26 株式会社小松製作所 作業車両
US9464410B2 (en) 2011-05-19 2016-10-11 Deere & Company Collaborative vehicle control using both human operator and automated controller input
US8862340B2 (en) 2012-12-20 2014-10-14 Caterpillar Forest Products, Inc. Linkage end effecter tracking mechanism for slopes
GB2523155A (en) * 2014-02-14 2015-08-19 Bje Designs Ltd A load handling apparatus for a forklift
US10962360B2 (en) * 2018-06-11 2021-03-30 Deere & Company Smartphone calibration of a grade control system for a work machine
WO2022245953A1 (en) * 2021-05-18 2022-11-24 Clark Equipment Company Modulating operator input for work element actuator operation
US11873020B2 (en) * 2021-11-12 2024-01-16 Rehrig Pacific Company Delivery systems for ramps or stairs

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US525177A (en) * 1894-08-28 Apparatus for removing incrustation from boiler-tubes
FR2220630B1 (de) * 1973-03-09 1975-08-22 Poclain Sa
CA1012760A (en) * 1973-10-23 1977-06-28 Honeywell Inc. Slope control system
AR207132A1 (es) * 1974-01-21 1976-09-15 Caterpillar Tractor Co Estabilizador de la pala de una maquina trabajadora de la tierra
DE2923030A1 (de) * 1979-06-07 1980-12-18 Komatsu Mfg Co Ltd Automatische regeleinrichtung fuer ein erdbewegungsgeraet
US4514796A (en) * 1982-09-08 1985-04-30 Joy Manufacturing Company Method and apparatus for controlling the position of a hydraulic boom
JPS5980829A (ja) * 1982-10-29 1984-05-10 Kubota Ltd 整地スクレ−パ付きトラクタ
JPS61221424A (ja) 1985-03-25 1986-10-01 Kubota Ltd フロントロ−ダの作業具水平制御装置
US4677579A (en) * 1985-09-25 1987-06-30 Becor Western Inc. Suspended load measurement system
DE3604519A1 (de) * 1986-02-21 1987-08-20 Iseki Agricult Mach Einstellvorrichtung fuer bodenbearbeitungsgeraete
JPS6397729A (ja) 1986-10-14 1988-04-28 Kubota Ltd 作業具姿勢制御におけるブ−ム下降速度制御装置
JPH0791842B2 (ja) 1988-01-18 1995-10-09 株式会社小松製作所 バケットレベラ装置
DE3938766A1 (de) * 1989-11-23 1991-05-29 Rexroth Mannesmann Gmbh Niveauregelung
DE4030954C2 (de) 1990-09-29 1994-08-04 Danfoss As Verfahren zur Steuerung der Bewegung eines hydraulisch bewegbaren Arbeitsgeräts und Bahnsteuereinrichtung zur Durchführung des Verfahrens
DE19752439C2 (de) * 1997-11-26 2001-02-08 Siemens Ag Mikromechanischer Neigungssensor, insbesondere für Kraftfahrzeuge
US6898501B2 (en) * 1999-07-15 2005-05-24 Cnh America Llc Apparatus for facilitating reduction of vibration in a work vehicle having an active CAB suspension system

Also Published As

Publication number Publication date
DE10000771A1 (de) 2001-07-26
US6968241B2 (en) 2005-11-22
DE10000771C2 (de) 2003-06-12
US20020173900A1 (en) 2002-11-21
WO2001051717A1 (de) 2001-07-19
EP1246973A1 (de) 2002-10-09
DE50004035D1 (de) 2003-11-13

Similar Documents

Publication Publication Date Title
EP1246973B1 (de) Mobile arbeitsmaschine mit vorrichtung zur lageregelung von arbeitseinrichtungen und verfahren zur lageregelung
AT514115B1 (de) Elektrohydraulischer Steuerkreis
DE102007026527B4 (de) Steuerungssystem für einen Motor-Grader, Motor-Grader und Verfahren zum Steuern eines Motor-Graders
EP1675760B1 (de) Mobiles arbeitsgerät mit stützauslegern
EP2736833B1 (de) Steuervorrichtung
DE102008020592B4 (de) Verfahren zur Schwingungsdämpfung bei Flurförderzeugen
DE2509704C3 (de) Erregervorrichtung für geophysikalische Messungen
WO2002025036A1 (de) Grossmanipulator mit schwingungsdämpfer
DE202013012756U1 (de) Stabilisierung einer Forstarbeitseinheit
DE112012001013T5 (de) Aushubsteuersystem und Baumaschine
EP2186405A1 (de) Spritzgestänge und Verfahren zu dessen Steuerung
DE4119414A1 (de) Landwirtschaftlich nutzbare zugmaschine mit angelenktem hubwerk
EP2591657A1 (de) Fahrbare Vorrichtung zum Ausbringen von flüssigen und/oder festen Wirkstoffen und Verfahren zur Steuerung der Vorrichtung
AT514116A1 (de) Regelsystem und Verfahren zum Steuern der Orientierung eines Segments eines Manipulators
EP3592143B1 (de) Steuer- und/oder regelsystem, landwirtschaftliches nutzfahrzeug und verfahren zur steuerung und/oder regelung eines landwirtschaftlichen nutzfahrzeugs
DE102015104690A1 (de) Landwirtschaftliche Maschine und Sicherheitsverfahren
WO2017029349A1 (de) Aufhängung für ein verteilergestänge einer landwirtschaftliche maschine
DE1908266B2 (de) Vorrichtung zur Stabilisierung eines Körpers gegen eine Verdrehung bzw. schwingende Winkelverlagerung
DE60303303T2 (de) Fallgewichtverdichtung
DE4216780C2 (de) Vorrichtung zum Heben und Senken eines mit einer schwenkbaren Schaufel versehenen Auslegers einer fahrbaren Baumaschine
DE102008014140A1 (de) Raupenkran sowie Verfahren zur Einstellung einer Grund-Arbeitsposition eines derartigen Raupenkrans
DE69817571T2 (de) Steuereinrichtung
DE3619777C2 (de)
DE102020110187A1 (de) Verbesserte Hydraulikvorrichtung
DE102019114086A1 (de) Steuer- und/oder Regelsystem für ein landwirtschaftliches Gerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20021209

RTI1 Title (correction)

Free format text: MOBILE MACHINE WITH DEVICE FOR CONTROLLING THE POSITION OF WORKING DEVICES AND METHOD FOR CONTROLLING THE POSITION

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRAND, MICHAEL

Inventor name: VONNOE, REINHARD

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031008

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50004035

Country of ref document: DE

Date of ref document: 20031113

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20031008

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101221

Year of fee payment: 11

Ref country code: SE

Payment date: 20101221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120103

Year of fee payment: 12

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111229

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121228

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131219

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140221

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50004035

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141228