EP1244908A1 - Dispositif et procede de traitement d'un echantillon par separation sur une phase stationnaire, sous flux force contr le - Google Patents

Dispositif et procede de traitement d'un echantillon par separation sur une phase stationnaire, sous flux force contr le

Info

Publication number
EP1244908A1
EP1244908A1 EP01903867A EP01903867A EP1244908A1 EP 1244908 A1 EP1244908 A1 EP 1244908A1 EP 01903867 A EP01903867 A EP 01903867A EP 01903867 A EP01903867 A EP 01903867A EP 1244908 A1 EP1244908 A1 EP 1244908A1
Authority
EP
European Patent Office
Prior art keywords
pressure
mobile phase
chamber
stationary phase
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01903867A
Other languages
German (de)
English (en)
Inventor
Emil Mincsovics
László KECSK S
Ernö TYIH K
Barnabás TAPA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bionisis SA
Original Assignee
Bionisis SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bionisis SA filed Critical Bionisis SA
Publication of EP1244908A1 publication Critical patent/EP1244908A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N2030/906Plate chromatography, e.g. thin layer or paper chromatography pressurised fluid phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation

Definitions

  • the invention relates to the field of separation on a stationary phase of the constituents of a so-called “complex” sample, using a forced flow.
  • Separation under forced flow is a technique used to separate the constituents of a sample, deposited in at least a first chosen location on a layer called " stationary phase ", using a carrier fluid, called" mobile phase ", undergoing external pressure. Trained by the mobile phase, the constituents migrate to the stationary phase in a known order depending on their retention.
  • certain treatment devices include a separation chamber, into which at least one stationary phase is introduced and which comprises external pressurization means, making it possible to apply an external pressure of selected intensity on an upper face of the phase stationary, distribution means, making it possible to deliver at least one mobile phase at at least one second chosen location of the stationary phase, at least one input for supplying these distribution means and at least one output allowing the evacuation of the mobile phase .
  • the mobile phase which is introduced into the separation chamber of this type of device, moves in the stationary phase according to a front called "alpha front".
  • the alpha front expels the air which is trapped in the stationary phase, the latter being initially dry.
  • part of the air remains trapped in an area known as the “alpha area” located immediately behind the alpha front and preceding a completely wet area known as the “total humidity area”.
  • the total humidity front is not linear, which affects the efficiency of the separation, the reproducibility of the results and the accuracy of the analyzes carried out simultaneously or consecutively. No known solution allows sufficiently precise control of the linearity of the fronts, and in particular that of the total humidity front.
  • the invention therefore aims to improve the situation.
  • mobile phase will be understood to mean any fluid making it possible to move the constituents of a sample over the stationary phase. It may therefore be a liquid, such as an eluent, or a gas, such as air, making it possible to expel a solvent previously introduced into the separation chamber.
  • These regulation means preferably comprise at least one valve placed downstream from the first mobile phase outlet and arranged to vary the flow rate of the mobile phase at the outlet of the chamber between a zero value and a maximum value.
  • the regulating means further comprise means making it possible to measure the pressure of the mobile phase upstream of the first inlet and / or downstream of the first outlet, as well as a module arranged to control the valve in function a comparison between the measured pressure and the limit pressure linked to the chosen external pressure (or more briefly, limit pressure), the valve being open to let out the mobile phase when the measured pressure becomes greater than or equal to the limit pressure.
  • This limit pressure is by definition lower than the external pressure.
  • control module jointly controls the valve, the supply means and the external pressurization means so that the supply in mobile phase is carried out for the entire duration of the separation by keeping the valve closed, that is until the measured pressure of the mobile phase reaches the limit pressure (or threshold pressure). Then, the mobile phase supply is interrupted, then the valve is opened and the external pressure is released.
  • the separate constituents on the stationary phase are identified and / or quantified using analyzers, on this stationary phase and / or online at the outlet of the bedroom. This will, for example, be analysis by ultraviolet or visible detection or else by mass spectrometry. In this case of online analysis, the separate constituents are eluted by the mobile phase which leaves the chamber.
  • control module also jointly controls the valve, the supply means and the external pressurization means so that the mobile phase supply takes place throughout the duration of the separation and analysis by keeping the valve closed as long as the measured pressure of the mobile phase is lower than the limit pressure, then keeping it open.
  • the sample can be placed on the stationary phase either before the mobile phase feed begins, or after the valve has been placed in the open position.
  • the device according to the invention may include other additional characteristics, taken separately or in combination, and in particular: -
  • the chamber can be arranged so as to receive an extractable cassette comprising the stationary phase;
  • the external pressurization means may include a flexible film housed opposite the upper face of the stationary phase and application means suitable for pressing the film against the stationary phase to apply the external pressure of selected intensity;
  • the application means may include a fluid reservoir intended to generate the external pressure (or more briefly “external pressurizing fluid”), coupled to a supply circuit; but, other means can be envisaged, such as pneumatic or mechanical means;
  • the external pressurization fluid reservoir and the mobile phase supply means can be housed in the same fluid supply unit;
  • the stationary phase may be provided with the sample to be treated before being introduced into the chamber, or else be provided with this sample once introduced into the chamber, via the same inlet or else via another inlet;
  • the control module can be arranged so as to order, before the introduction of the sample, on the one hand, the valve to be placed in a state preventing the evacuation of the mobile phase and, on the other hand , to the supply means for supplying the stationary phase with a selected mobile phase volume, preferably, so that this volume corresponds to a measured mobile phase pressure substantially equal to the limit pressure.
  • the invention also relates to a process for treating the constituents of at least one sample by separation under forced flow.
  • This process comprises the following steps: a) placing in a chamber at least one stationary phase suitable for receiving at least one first location chosen at least one sample to be treated, b) supplying in mobile phase at least one second location chosen from the phase stationary, while applying an external pressure of selected intensity to the upper face of this stationary phase and preventing the mobile phase from leaving the stationary phase, c) measure the pressure of the mobile phase upstream and / or downstream of the chamber, d) compare each pressure measured with a limit pressure, linked to the external pressure chosen, and, when the measured pressure becomes greater than or equal to the limit pressure, reduce the pressure of the mobile phase so that it remains less than or equal to this limit pressure.
  • FIG. 1 schematically illustrates an example of a device according to the invention suitable for separation in infusion and / or infusion-transfusion mode
  • FIG. 2 is a cross-sectional view of the separation chamber of FIG. 1,
  • FIG. 3 is a variant of FIG. 1 in which the external pressurization means are not hydraulic but, for example, mechanical,
  • FIGS. 4a and 4b are diagrams comparing the changes as a function of time of the alpha fronts and of total humidity and of the pressure measured for the modes of infusion (a) and infusion-transfusion (b), in the case of regulation on the pressure of the mobile phase measured upstream of the chamber,
  • Figures 5a to 5d are variants of the devices of Figures 1 and 3.
  • treatment of a sample is understood here to mean mainly the separation of the constituents which compose it, possibly coupled with one or more on-line and / or off-line analysis of these constituents.
  • the device illustrated in Figures 1 and 2 firstly comprises a separation chamber 1 adapted to receive a layer 2 (in English "sorbent layer") forming a stationary phase.
  • This layer 2 is for example made up of powder or particles of silicate gel, alumina, magnesium silicate, talc based on inorganic components, cellulose, synthetic resin, polyamides based on organic components, or else derivatives or mixtures of some of these components on a support plate comprising a layer 2 with one or two stationary separation phases.
  • the material used and its surface condition depend on the type of sample to be treated.
  • This layer 2 preferably rests on a rigid support 3 supported by the bottom of the lower part 4 of the chamber 1, and at a distance from it so that a cavity 12 is formed under the support 3. or the samples to be treated are placed in at least a first chosen location 6 on the upper face 5 of the layer 2, opposite the bottom 4. Furthermore, the mobile phase is introduced on this same upper face 5, in at least a second chosen location 7. As indicated above, the mobile phase is intended to cause the migration of the constituents of the sample.
  • location means both a localized location and an extended location of the straight line, curvilinear or circular type, or of any other chosen shape.
  • first 6 and second 7 places can be at least partially confused.
  • a person skilled in the art knows how to choose the first and second places according to the type of treatment he wishes to perform.
  • the separation can be unidirectional or bidirectional, or circular, or even anti-circular. But all of this is well known to those skilled in the art, and is not the subject of the present invention.
  • a flexible waterproof film 8 for example of Teflon.
  • this film 8 is intended to apply an external pressure, uniform or not, on the upper face 5 of the stationary phase 2.
  • the film 8 comprises, opposite at least part of the second location 7, a first opening 9 for the sealed passage of the end of a tube 10 intended to distribute the mobile phase at the second location 7.
  • layer 2 (or stationary phase) can be housed beforehand in a cassette arranged to be introduced into the chamber before treatment.
  • the upper wall of this cassette can optionally include the flexible external pressurization film.
  • it is preferable that the sample is implanted in the stationary phase 2, before introduction of the cassette into the chamber 1. But this is not compulsory, in particular when the cassette does not include a flexible film.
  • the film 8 comprises, opposite at least part of the first location 6, a second opening for the sealed passage of the end of a tube intended for the introduction of the sample at the first location 6.
  • a single opening may be sufficient for the introduction of the mobile phase and the sample.
  • the upper part of the chamber 1 is closed by a wall 11 placed, in the example illustrated in FIGS. 1 and 2, slightly above the film 8.
  • This upper wall 11 comprises a first inlet 13 for the sealed passage of the end of the tube 10 for distributing the mobile phase.
  • the lower wall 4 of the chamber comprises a second inlet 14 for the sealed passage of the end of a tube 15 for supplying external pressurization fluid.
  • This external pressurization fluid (or pressure transfer fluid) can be a gas or, as in the example described below, a liquid such as oil.
  • the external pressurization fluid preferably circulates in a closed circuit, the upstream supply part of which is formed by the tube 15 and the downstream part is formed by a tube 19 of which a first end 20 opens into the cavity 12 of the chamber 1 by a sealed opening 21 formed, for example, in its lower wall 4, while the opposite end 22 of this tube 19 opens into a reservoir of external pressurization fluid 27.
  • This reservoir 27 is coupled to a first micro-pump which is controlled by the control module 25 of the device and, preferably, housed in a unit 23 for supplying fluid.
  • the tube 15 for supplying external pressurization fluid is provided with a pressure sensor 32 which delivers its pressure measurement to the control module 25.
  • control module 25 can act on the first micro- pump to fix, as required, the flow rate of supply of external pressurizing fluid, and consequently the external pressure applied to the layer 2. It is also possible to provide on the tube 20, between the opening 21 and the reservoir 27, a valve 34.
  • the external pressurization fluid When the external pressurization fluid circulates, it exerts a substantially vertical external pressure on the underside of the support 3, which leads to lifting it and consequently pressing the film 8 and the stationary phase 2 against each other according to an external pressure of selected intensity.
  • the chamber comprises, at at least a third chosen location 16, localized or extended, a zone for collecting the mobile phase having served for the separation of the constituents of the sample.
  • This third location can be located on the stationary phase 2, as illustrated in FIG. 2, or else on the periphery thereof.
  • the film 8 comprises a second opening 17 for the sealed passage of the end of a tube 24 for collecting the mobile phase
  • the chamber 2 comprises a sealed outlet 18 allowing the passage of this end of the tube 24.
  • the second opening is not useful, and therefore only the outlet 18 is required.
  • the tube 10 which feeds layer 2 in mobile phase has one end
  • the second micro-pump is also housed in unit 23.
  • the fluid supply unit 23 is only used for mobile phase supply, and therefore it only has one micro-pump.
  • a pressure sensor 29 is provided upstream from the mobile phase inlet 13 of the chamber 1, or a pressure sensor 30 downstream from the mobile phase outlet 18 from this chamber 1.
  • first pressure sensor 29 upstream of the mobile phase inlet 13 of the chamber 1 and a second pressure sensor 30 downstream of the outlet of mobile phase 18 of this chamber 1.
  • the first sensor 29 is arranged so as to carry out its pressure measurement on the mobile phase which circulates in the supply tube 10
  • the second sensor 30 is arranged so as to carry out its pressure measurement on the mobile phase which circulates in the collection tube 24.
  • the first sensor 29 therefore delivers an upstream pressure measurement PI to the control module 25, while the second sensor 30 delivers a downstream pressure measurement PO to said control module 25.
  • the invention also provides a valve 31 arranged to control the flow of the mobile phase downstream of the mobile phase outlet 18.
  • This valve is therefore installed on the collection tube 24, preferably downstream of the second sensor. pressure 30 (when this is planned).
  • the operating state of the valve 31 is controlled by the control module 25 as a function of a first comparison between the first pressure PI measured by the first sensor 29 and a first pressure limit as PMI.U ⁇ I and a second comparison between the second pressure PO measured by the second sensor 30 and a second pressure limit that P o.um-
  • the PMi.Lim and / or the P o.um are chosen smaller than the external pressure applied Pex t .
  • the first PMI, L..T . and second PM O, L. _ T. limit pressures, as well as P ⁇ x t are stored in registers of a memory, preferably rewritable, so that the limit values can be adapted to the conditions of use for infusion or infusion-transfusion. The release of the external pressure comes after separation.
  • the flow rate of the mobile phase which feeds the chamber 1 and the external pressure applied to the layer 2 are also controlled by the control module 25 at the level of the feed micro-pumps.
  • the control module 25 therefore only has to carry out its comparison (s) to monitor whether the pressure or pressures measured are respectively higher or lower than the associated limit pressures.
  • the control module 25 acts on the valve 31, and possibly on at least one of the supply micro-pumps, so that the mobile phase can, or not, leave the chamber 1
  • the valve 31 has a variable flow rate (as opposed to binary operation of the "all or nothing" type)
  • the authorized collection (or evacuation) flow rate is determined as a function of the difference between the measured pressure and the pressure associated limit, during the period during which the partially wet zone leaves stationary phase 2 and chamber 1.
  • valve 31 is switched from the "closed” state to the "open” state, or the reverse depending on the result of comparisons.
  • the "closed” state corresponds to a flow of a zero value, while the "open” state corresponds to a flow of a maximum value.
  • the first mode corresponds to an operation of the “offline” or “infusion” type device, in which the processing in the device consists only in the separation of the constituents of the sample.
  • the analysis (determination and / or quantification) of these constituents is carried out in an external analyzer after separation of the constituents then extraction of the stationary phase 2. Any type of analysis known to those skilled in the art can be envisaged.
  • the sample can be placed before or after introduction of the stationary phase 2 into the chamber 1, it is preferably started from a stationary "dry" phase, that is to say before the phase stationary is powered in mobile phase.
  • the control module 25 orders the complete closure of the valve 31 and then the mobile phase supply.
  • the valve 31 is kept closed throughout the duration of separation, that is to say as long as the measured pressure PI of the upstream mobile phase remains below PMI, L. _ TI OR, as will be explained below with reference to FIG. 4b, to P M i.umo-
  • the valve 31 is open, which amounts to reducing the pressure of this mobile phase , for example at ambient pressure, and finally the external pressure is released.
  • the valve 31 operates in all or nothing mode, it is switched from the closed state to the open state.
  • the valve 31 is at variable flow, it is switched from the closed state to one of its open states at non-zero flow (strictly greater than zero and less than or equal to the maximum flow). This state is chosen by the control module according to a criterion depending on the separation conditions. It is based on the difference in viscosity between the air and the mobile phase.
  • the second mode corresponds to an operation of the “online” or “infusion-transfusion” type device.
  • the processing in the device consists in the separation of the constituents of the sample coupled to an online analysis of its constituents and / or to an external analysis.
  • the separate constituents are therefore identified and / or quantified on the stationary phase 2 and / or outside of this chamber by analysis of the mobile phase leaving this chamber, which comprises the separate constituents.
  • the constituents of the sample are separated under the joint action of a permanent supply in mobile phase and a management of the state of the valve 31.
  • the command 25 first orders complete closure of the valve 31 and then the mobile phase supply.
  • the valve 31 is kept closed as long as the measured pressure PI of the mobile phase upstream of the chamber remains below the limit pressure PMi.um or, as will be set out below with reference to FIG. 4b, at P i.umo-
  • the valve 31 when the limit PMI.U ⁇ I (or P i.um o) is reached or exceeded, the increase in the mobile phase is maintained and the valve 31 is open, which amounts to reducing the pressure of this mobile phase.
  • the valve 31 when the valve 31 operates in all or nothing mode, it is switched from the closed state to the open state authorizing a maximum discharge rate for the mobile phase (out of the chamber).
  • the valve 31 when the valve 31 is of variable flow, it is switched from the closed state to one of its open states authorizing a non-zero flow (strictly greater than zero and less than or equal to the maximum flow) for discharging the mobile phase (outside the room).
  • This state is chosen by the control module according to a criterion depending on the separation conditions.
  • a current or voltage supply module 33 can be provided for supplying electrodes housed in the chamber 1 for separation by electro-chromatography or electrophoresis. These electrodes are placed parallel or perpendicular to the flow, the electrophoresis being carried out either simultaneously or sequentially, relative to the separation by the mobile phase.
  • electro-chromatography can be carried out after a pre-wetting (or pre-wetting) infusion in the open state of the valve 31, using electrodes perpendicular to the flow.
  • the electro-chromatography and the chromatography can be carried out simultaneously or sequentially.
  • the chromatographic and electrophoretic separation can be carried out simultaneously or sequentially on the pre-wetted stationary phase, using electrodes parallel or perpendicular to the flow.
  • the electrophoresis is of course carried out in the wet (or wet) phase.
  • the stationary phase can also include several identical or different zones, each making it possible to carry out a particular treatment (separation and / or analysis).
  • the external pressurization means used in the different zones may possibly be different, or else they may be identical but provide different pressures.
  • rectangles designated by A, B, C and D illustrate, for four successive instants, the instantaneous profiles of the alpha (1) and total humidity (2) fronts.
  • M1 denotes the place of introduction of the mobile phase (or second place chosen 7), while MO denotes the place of collection of the mobile phase (or third place chosen 16).
  • Reference (6) designates the location of the sample between Ml and MO.
  • the reference (4) indicates the place and the instant when the alpha front (1) disappears.
  • the reference (5) indicates the place and the instant when the total humidity front (2) disappears. Otherwise :
  • - P IU ⁇ TI designates the limiting pressure of the mobile phase, linked to the external pressure, upstream of the inlet 13 of the chamber;
  • - PO designates the pressure measured downstream of the outlet 18 of the chamber
  • P ⁇ x t designates the external pressure applied to the stationary phase by the external pressurization means (P ⁇ x t is always strictly greater than P M i.um, typically PMi.um is chosen to be substantially equal to approximately 80% of Pgxt, for example; done, at the start of programming the external pressure is chosen and the control module automatically deduces the limit pressure);
  • - PMi.um o designates in the infusion-transfusion mode a limit pressure of the mobile phase, also linked to the external pressure, but chosen lower than the limit pressure P ⁇ y ⁇ , um- It is in fact a pressure of security.
  • this pressure is the actual limit pressure which is preferably used by the control module to make the comparison with the pressure PI measured upstream of the chamber. It therefore corresponds, at the moment when it is decided to open the valve 31, while maintaining the supply in mobile phase.
  • the control module directly calculates P M i.umo from PB ⁇ .
  • FIGS. 5a to 5d describe different variants of the devices illustrated in FIGS. 1 and 3.
  • all the elements substantially identical to those of FIGS. 1 and 3 bear identical references.
  • these variants are only a few examples of implementation among many others.
  • FIG. 5a illustrates a first variant in which a unit 35 is provided which makes it possible to supply the stationary phase both in mobile phase and in sample.
  • This unit 35 is therefore placed on the fluid supply tube 10, between the upstream pressure sensor 29 and the inlet 13 of the chamber 1, and it is connected to a tube 36 for injecting the sample which penetrates into the chamber by an inlet provided for this purpose and opens opposite the first location 6.
  • a single tube 10 could be provided for injecting both the mobile phase and the sample.
  • FIG. 5b illustrates a second variant in which a unit 37 is provided, making it possible to supply the stationary phase at two different and independent second locations for performing a bidirectional type separation, or else two separations of samples placed on two different stationary phases.
  • a tube 38 supplies the unit 37 in mobile phase, while two tubes 39 and 40 leave the unit 37 to each supply one of the two second places, after having entered the chamber by two inlets 41 and 42 and passed through the film 8 at two sealed openings 9 and 17 provided facing the two second places.
  • a substantially linear mobile phase line is produced between the two injection sites and the separation takes place substantially perpendicular to this line.
  • This unit 37 also has the function of directing the (or the different) mobile phase (s) to appropriate zones of the stationary phase (s).
  • This chamber therefore comprises two independent collection outlets 43 and 44 which supply two tubes 45 and 46 connected to the valve 31, which consequently has two inlets and one outlet.
  • FIG. 5c illustrates a third variant in which a unit 37 is provided allowing a parallel supply of the stationary phase in three second different and independent locations, possibly formed on the same stationary phase or on three different stationary phases.
  • a tube 38 feeds the unit 37 in mobile phase, while three tubes 47, 48 and 49 leave the unit 37 to feed each one of the three second places, after having entered the chamber by three inlets 50, 51 and 52 and passed through the film 8 at three sealed openings 9 provided opposite the three second locations.
  • This chamber therefore comprises three independent collection outlets 53, 54 and 55 which supply three tubes 56, 57 and 58 connected to the valve 31, which in this variant is a triple valve making it possible to let out separately and independently each of the three mobile phases collected.
  • FIG. 5d illustrates a fourth variant in which a unit 59 is provided making it possible to supply the stationary phase both in mobile phase and in sample.
  • the mobile phase supply can be carried out in parallel on three channels, as in FIG. 5c, just like the sample implantation which can be carried out in parallel on three channels.
  • This unit 59 is therefore connected, on the one hand, to three mobile phase supply tubes 60, 61 and 62 which enter the chamber by three fluid inlets 66, 67 and 68 and pass through the film 8 at three watertight openings 9 provided opposite three second places, and on the other hand, three sample injection tubes 63, 64 and 65 which enter the chamber through three sample inlets 69, 70 and 71 and pass through the film 8 at three watertight openings provided opposite three first places.
  • This chamber therefore comprises three independent collection outlets 72, 73 and 74 which supply three tubes 75, 76 and 77 connected to the valve 31, which in this variant is a triple valve allowing to let out separately and independently each of the three mobile phases collected.
  • the invention also relates to a method for processing a sample by forced flux separation (OPLC). This process includes the following steps.
  • OPLC forced flux separation
  • At least one stationary phase suitable for receiving is placed in a chamber, at least in a first chosen location, at least one sample to be treated.
  • the chamber can be arranged to receive several stationary phases in parallel or in series, or else stacked on top of each other, as is well known to those skilled in the art.
  • This stationary phase which is preferably a layer of the type presented in the description of the device according to the invention, is either directly placed in the chamber on a support provided for this purpose, or previously placed in a cassette which is then introduced in the bedroom.
  • the sample can be placed on the stationary phase intended to separate its constituents before the stationary phase is introduced into the chamber, or else implanted (or injected) once the stationary phase is introduced into the chamber.
  • At least one second selected location of the stationary phase is supplied with the mobile phase, while applying an external pressure of selected intensity to an upper face of the stationary phase and by preventing the mobile phase from leaving the phase. stationary.
  • This external pressure is not necessarily uniform.
  • the pressure of the mobile phase is measured upstream and / or downstream of the chamber.
  • the upstream and / or downstream pressures are compared which has just been measured at an upstream and / or downstream limit pressure (s). Then, when the pressure (s) measured is (are) greater than or equal (s) to the associated limit pressure (s) and the pressure mobile phase limit, linked to the external pressure (P ⁇ x t ), which is greater than the limit pressure (s), the pressure of the mobile phase is reduced so that it remains lower or equal to the limit pressure. In an all or nothing type of operating mode, this pressure reduction is not adaptable (in fact the mobile phase is placed at ambient pressure). On the other hand, in a “variable” type operating mode, the value of the pressure can be chosen as a function of the result of the comparison.
  • the method can be applied to the infusion mode (or “offline”) or to the infusion-transfusion mode (or “online”).
  • the supply of the stationary phase in the mobile phase is definitively interrupted when the measured upstream pressure becomes greater than or equal to the pressure P i.Lim- En fact, as illustrated in figure 4b, it is possible to decide to use PMi.Lim o as limit pressure being used for comparison, which is strictly lower than PMi.um.
  • the mobile phase is placed at ambient pressure, preferably, which amounts to reducing the pressure of this mobile phase, and finally the external pressure is released.
  • the mobile phase is prohibited from leaving the room, then the mobile phase is supplied.
  • the ban is maintained as long as the measured pressure of the mobile phase upstream of the chamber remains below the limit pressure.
  • the limit pressure PMI.UITI or PMi.um o (depending on the choice made at the start) is reached or exceeded, the mobile phase supply is maintained and the mobile phase is allowed to leave the chamber, which amounts to reducing the pressure of this mobile phase.
  • a flow regulation is carried out leaving the mobile phase so that the measured pressure (s) of this mobile phase remains (are) substantially between the associated limit pressure (s) ( s) and a minimum pressure, throughout the duration of the treatment.
  • the external pressure is applied to the stationary phase by a fluid means, preferably hydraulic. But of course, other modes of application can be envisaged, in particular by mechanical or pneumatic means.
  • the stationary phase with a mobile phase, before implanting the sample.
  • This supply consists of filling the stationary phase with a selected volume. Evacuation of the mobile phase from the chamber is therefore prohibited during this feeding phase.
  • the volume of mobile phase which is admitted into the chamber corresponds approximately to the total volume of the stationary phase when the pressure measured is substantially equal to the limit pressure.
  • the flow regulation means advantageously comprise a control module coupled to a valve as well as to means for measuring the pressure of the mobile phase upstream and / or downstream of the chamber.
  • the invention also relates to devices in which the flow regulation means only comprise a valve for regulating the flow rate of the mobile phase in the chamber, this valve being controlled either manually or by a programmable control module.
  • the chamber treated only one or more stationary phases placed next to each other on a same support.
  • the chamber can be adapted to receive several stationary phases stacked one on the other, with or without support, and used in series or in parallel, with or without interlayer.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

Un dispositif de traitement d'échantillon par séparation sous flux forcé comprend une chambre (1) logeant une phase stationnaire (2) pourvue en un premier endroit (6) d'un échantillon à traiter, des moyens de pressurisation externe (8) d'une face supérieure (5) de la phase stationnaire, des moyens de distribution (10) d'une phase mobile en un second endroit (7) de la phase stationnaire, une entrée (13) d'alimentation en phase mobile, et une sortie (18) d'évacuation de la phase mobile hors de la chambre. Le dispositif comprend en outre des moyens (23) d'alimentation de l'entrée (13) en phase mobile, un capteur (29) pour mesurer la pression de la phase mobile en amont de l'entrée, une vanne (31) placée en aval de la sortie pour faire varier le débit de la phase mobile en sortie de la chambre, et un module (25) pour commander la vanne en fonction d'une comparaison entre la pression mesurée et une pression limite choisie, la vanne (31) étant ouverte lorsque la pression mesurée est supérieure ou égale à la pression limite.

Description

Dispositif et procédé de traitement d'un échantillon par séparation sur une phase stationnaire. sous flux forcé contrôlé
L'invention concerne le domaine de la séparation sur une phase stationnaire des constituants d'un échantillon dit « complexe », à l'aide d'un flux forcé.
La séparation sous flux forcé (plus connue sous l'acronyme anglais OPLC pour OverPressured Layer Chromatography ou Optimum Performance Layer Chromatography) est une technique permettant de séparer les constituants d'un échantillon, déposé en au moins un premier endroit choisi sur une couche appelée "phase stationnaire", à l'aide d'un fluide porteur, appelé « phase mobile », subissant une pression externe. Entraînés par la phase mobile, les constituants migrent sur la phase stationnaire selon un ordre connu fonction de leur rétention.
Pour ce faire, certains dispositifs de traitement comprennent une chambre de séparation, dans laquelle est introduite au moins une phase stationnaire et qui comprend des moyens de pressurisation externe, permettant d'appliquer une pression externe d'intensité choisie sur une face supérieure de la phase stationnaire, des moyens de distribution, permettant de délivrer au moins une phase mobile en au moins un second endroit choisi de la phase stationnaire, au moins une entrée pour alimenter ces moyens de distribution et au moins une sortie permettant l'évacuation de la phase mobile.
La phase mobile, qui est introduite dans la chambre de séparation de ce type de dispositif, se déplace dans la phase stationnaire selon un front appelé « front alpha ». Sous l'effet de la pression appliquée, le front alpha chasse l'air qui se trouve piégé dans la phase stationnaire, celle-ci étant initialement sèche. Cependant, une partie de l'air demeure piégée dans une zone dite «zone alpha» située immédiatement derrière le front alpha et précédant une zone totalement mouillée dite «zone d'humidité totale ». Il en résulte que le front d'humidité totale n'est pas linéaire, ce qui nuit à l'efficacité de la séparation, à la reproductibilité des résultats et à la précision des analyses effectuées simultanément ou consécuti- vement. Aucune solution connue ne permet de contrôler de façon suffisamment précise la linéarité des fronts, et notamment celui du front d'humidité totale.
L'invention a donc pour but d'améliorer la situation.
Elle propose à cet effet un dispositif du type de celui décrit dans l'introduction, et dans lequel on prévoit des moyens de régulation permettant de contrôler la pression de la phase mobile en amont et/ou en aval de la phase stationnaire, de sorte que cette pression demeure inférieure ou égale à une pression limite, liée à la pression externe choisie.
Dans ce qui suit, on entendra par « phase mobile » tout fluide permettant de déplacer les constituants d'un échantillon sur la phase stationnaire. Il pourra donc s'agir d'un liquide, tel qu'un éluent, ou d'un gaz, tel que de l'air permettant de chasser un solvant préalablement introduit dans la chambre de séparation.
Ces moyens de régulation comprennent de préférence au moins une vanne placée en aval de la première sortie de phase mobile et agencée pour faire varier le débit de la phase mobile en sortie de la chambre entre une valeur nulle et une valeur maximale.
Plus préférentiellement encore, les moyens de régulation comprennent en outre des moyens permettant de mesurer la pression de la phase mobile en amont de la première entrée et/ou en aval de la première sortie, ainsi qu'un module agencé pour commander la vanne en fonction d'une comparaison entre la pression mesurée et la pression limite liée à la pression externe choisie (ou plus brièvement pression limite), la vanne étant ouverte pour laisser sortir la phase mobile lorsque la pression mesurée devient supérieure ou égale à la pression limite. Cette pression limite est par définition inférieure à la pression externe.
De la sorte, l'air qui se trouve initialement piégé dans la phase stationnaire est progressivement comprimé devant le front alpha jusqu'à ce que la pression mesurée atteigne la valeur limite choisie. La pression ' augmente donc progressivement dans l'ensemble de la phase mobile, y compris dans la zone alpha, si bien que la vitesse de migration du front alpha et la largeur de la zone alpha diminuent, conduisant ainsi à une quasi-linéarité du front d'humidité totale. Deux modes de fonctionnement peuvent être avantageusement envisagés pour le dispositif selon l'invention. Dans un premier mode appelé "hors ligne", ou "infusion", la phase stationnaire est extraite de la chambre, après séparation des constituants de l'échantillon, puis placée dans un analyseur externe, en vue de l'identification et/ou de la quantification des composants, par exemple par densitomètrie ou balayage vidéo ou encore balayage radiométrique.
Dans ce mode où l'échantillon est de préférence placé sur la phase stationnaire avant l'alimentation en phase mobile, le module de commande contrôle conjointement la vanne, les moyens d'alimentation et les moyens de pressurisation externe de sorte que l'alimentation en phase mobile s'effectue pendant toute la durée de la séparation en maintenant la vanne fermée, c'est à dire jusqu'à ce que la pression mesurée de la phase mobile atteigne la pression limite (ou pression seuil). Puis, l'alimentation en phase mobile est interrompue, puis la vanne est ouverte et la pression externe est relâchée.
Dans un deuxième mode appelé "en ligne" ou "infusion-transfusion", les constituants séparés sur la phase stationnaire sont identifiés et/ou quantifiés à l'aide d'analyseurs, sur cette phase stationnaire et/ou en ligne en sortie de la chambre. Il s'agira par exemple d'analyse par détection ultraviolette ou visible ou encore par spectrométrie de masse. Dans ce cas d'analyse en ligne, les constituants séparés sont élues par la phase mobile qui sort de la chambre.
Dans ce mode, le module de commande contrôle également conjointement la vanne, les moyens d'alimentation et les moyens de pressurisation externe de manière à ce que l'alimentation en phase mobile s'effectue pendant toute la durée de la séparation et de l'analyse en maintenant la vanne fermée tant que la pression mesurée de la phase mobile est inférieure à la pression limite, puis en la maintenant ouverte.
Ici, l'échantillon peut être placé sur la phase stationnaire soit avant que ne commence l'alimentation en phase mobile, soit une fois que la vanne a été placée en position ouverte.
Le dispositif selon l'invention pourra comprendre d'autres caractéristiques complémentaires, prises séparément ou en combinaison, et notamment : - la chambre pourra être agencée de manière à recevoir une cassette extractible comprenant la phase stationnaire;
- les moyens de pressurisation externe pourront comprendre un film flexible logé en regard de la face supérieure de la phase stationnaire et des moyens d'application propres à plaquer le film contre la phase stationnaire pour appliquer la pression externe d'intensité choisie;
- les moyens d'application pourront comprendre un réservoir de fluide destiné à générer la pression externe (ou plus brièvement « fluide de pressurisation externe »), couplé à un circuit d'alimentation ; mais, d'autres moyens peuvent être envisagés, tels que des moyens pneumatiques ou mécaniques ;
- le réservoir de fluide de pressurisation externe et les moyens d'alimentation en phase mobile pourront être logés dans une même unité d'alimentation en fluides;
- la phase stationnaire pourra être pourvue de l'échantillon à traiter avant d'être introduite dans la chambre, ou bien être pourvue de cet échantillon une fois introduite dans la chambre, via la même entrée ou bien via une autre entrée ;
- le module de commande pourra être agencé de manière à ordonner, avant l'introduction de l'échantillon, d'une part, à la vanne de se placer dans un état interdisant l'évacuation de la phase mobile et, d'autre part, aux moyens d'alimentation de fournir à la phase stationnaire un volume de phase mobile choisi, de préférence, de sorte que ce volume corresponde à une pression mesurée de phase mobile sensiblement égale à la pression limite.
L'invention concerne également un procédé de traitement des constituants d'au moins un échantillon par séparation sous flux forcé. Ce procédé comprend les étapes suivantes : a) placer dans une chambre au moins une phase stationnaire propre à recevoir en au moins un premier endroit choisi au moins un échantillon à traiter, b) alimenter en phase mobile au moins un second endroit choisi de la phase stationnaire, tout en appliquant une pression externe d'intensité choisie sur la face supérieure de cette phase stationnaire et en interdisant à la phase mobile de quitter la phase stationnaire, c) mesurer la pression de la phase mobile en amont et/ou en aval de la chambre, d) comparer chaque pression mesurée à une pression limite, liée à la pression externe choisie, et, lorsque la pression mesurée devient supérieure ou égale à la pression limite, réduire la pression de la phase mobile de sorte qu'elle demeure inférieure ou égale à cette pression limite.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés, sur lesquels :
- la figure 1 illustre schématiquement un exemple de dispositif selon l'invention propre à la séparation en mode infusion et/ou infusion-transfusion, - la figure 2 est une vue en coupe transversale de la chambre de séparation de la figure 1 ,
- la figure 3 est une variante de la figure 1 dans laquelle les moyens de pressurisation externe ne sont pas hydrauliques mais, par exemple, mécaniques,
- les figures 4a et 4b sont des diagrammes comparant les évolutions en fonction du temps des fronts alpha et d'humidité totale et de la pression mesurée pour les modes d'infusion (a) et d'infusion-transfusion (b), dans le cas d'une régulation sur la pression de la phase mobile mesurée en amont de la chambre,
- les figures 5a à 5d sont des variantes des dispositifs des figures 1 et 3.
Les dessins annexés sont, pour l'essentiel, de caractère certain. En conséquence, ils pourront non seulement servir à compléter la description, mais aussi contribuer à la définition de l'invention le cas échéant.
Dans la description détaillée qui suit, il sera fait référence à un dispositif de traitement d'un échantillon complexe par séparation sous flux forcé (ou OPLC). On entend ici par traitement d'un échantillon, principalement la séparation des consti- tuants qui le composent, couplée, éventuellement, à une ou plusieurs analyse(s) en ligne et/ou hors ligne de ces constituants.
Le dispositif illustré sur les figures 1 et 2 comprend tout d'abord une chambre 1 de séparation adaptée pour recevoir une couche 2 (en anglais « sorbent layer ») formant une phase stationnaire. Cette couche 2 est par exemple constituée de poudre ou particules de gel de silicate, alumine, silicate de magnésium, talc à base de composants inorganiques, cellulose, résine synthétique, polyamides à base de composants organiques, ou bien de dérivés ou mélanges de certains de ces composants sur une plaque support comportant une couche 2 à une ou deux phases stationnaires de séparation. Mais, il est clair que le matériau utilisé et son état de surface (granularité, porosité, et analogues) dépendent du type d'échantillon à traiter.
Cette couche 2 repose, de préférence, sur un support 3 rigide supporté par le fond de la partie inférieure 4 de la chambre 1 , et à quelque distance de celui-ci de sorte qu'une cavité 12 soit formée sous le support 3. Le ou les échantillons à traiter sont placés en au moins un premier endroit choisi 6 sur la face supérieure 5 de la couche 2, opposée au fond 4. Par ailleurs, la phase mobile est introduite sur cette même face supérieure 5, en au moins un second endroit choisi 7. Comme indiqué précédemment, la phase mobile est destinée à provoquer la migration des constituants de l'échantillon.
On entend par "endroit", aussi bien un emplacement localisé qu'un emplacement étendu de type ligne droite, ou curviligne ou circulaire, ou bien de toute autre forme choisie.
Comme on le verra plus loin, les premier 6 et second 7 endroits peuvent être au moins partiellement confondus. L'homme du métier sait choisir le ou les premiers) et second(s) endroits selon le type de traitement qu'il souhaite effectuer. Ainsi, selon les positionnements respectifs des premier(s) 6 et second(s) 7 endroits la séparation pourra être unidirectionnelle ou bien bidirectionnelle, ou circulaire, ou encore anti-circulaire. Mais tout cela est bien connu de l'homme du métier, et ne fait pas l'objet de la présente invention.
A une faible distance au-dessus de la face supérieure 5 de la couche 2 se trouve placé un film flexible imperméable 8, par exemple en téflon. Comme on le verra plus loin, ce film 8 est destiné à appliquer une pression externe, uniforme ou non, sur la face supérieure 5 de la phase stationnaire 2. Dans l'exemple illustré sur la figure 2, le film 8 comprend, en regard d'une partie au moins du second endroit 7, une première ouverture 9 pour le passage étanche de l'extrémité d'un tube 10 destiné à distribuer la phase mobile au niveau du second endroit 7.
Dans une variante, la couche 2 (ou phase stationnaire) peut être logée préalablement dans une cassette agencée pour être introduite dans la chambre avant le traitement. La paroi supérieure de cette cassette peut, éventuellement, comprendre le film flexible de pressurisation externe. Dans cette variante, il est préférable que l'échantillon soit implanté dans la phase stationnaire 2, avant introduction de la cassette dans la chambre 1. Mais cela n'est pas obligatoire, notamment lorsque la cassette ne comporte pas de film flexible.
Si l'échantillon doit être introduit sur la couche 2 (ou phase stationnaire), une fois celle-ci placée dans la chambre 1 , le film 8 comprend, en regard d'une partie au moins du premier endroit 6, une seconde ouverture pour le passage étanche de l'extrémité d'un tube destiné à l'introduction de l'échantillon au niveau du premier endroit 6. Bien entendu, lorsque les premier 6 et second 7 endroits sont au moins partiellement confondus, une unique ouverture peut être suffisante pour l'introduction de la phase mobile et de l'échantillon.
La partie supérieure de la chambre 1 est fermée par une paroi 11 placée, dans l'exemple illustré sur les figures 1 et 2, légèrement au-dessus du film 8. Cette paroi supérieure 11 comprend une première entrée 13 pour le passage étanche de l'extrémité du tube 10 de distribution de la phase mobile. La paroi inférieure 4 de la chambre comprend une seconde entrée 14 pour le passage étanche de l'extrémité d'un tube 15 d'alimentation en fluide de pressurisation externe. Ce fluide de pressurisation externe (ou fluide de transfert de pression) peut être un gaz ou comme dans l'exemple décrit ci-après, un liquide tel que de l'huile.
Le fluide de pressurisation externe circule de préférence dans un circuit fermé, dont la partie amont d'alimentation est formée par le tube 15 et la partie aval est formée par un tube 19 dont une première extrémité 20 débouche dans la cavité 12 de la chambre 1 par une ouverture étanche 21 formée, par exemple, dans sa paroi inférieure 4, tandis que l'extrémité opposée 22 de ce tube 19 débouche dans un réservoir de fluide de pressurisation externe 27. Ce réservoir 27 est couplé à une première micro-pompe qui est contrôlée par le module de commande 25 du dispositif et, de préférence, logée dans une unité 23 d'alimentation en fluide. De préférence également, le tube 15 d'alimentation en fluide de pressurisation externe est muni d'un capteur de pression 32 qui délivre sa mesure de pression au module de commande 25. Ainsi, le module de commande 25 peut agir sur la première micro-pompe pour fixer, selon les besoins, le débit d'alimen- tation en fluide de pressurisation externe, et par conséquent la pression externe appliquée sur la couche 2. On peut également prévoir sur le tube 20, entre l'ouverture 21 et le réservoir 27, une vanne 34.
Lorsque le fluide de pressurisation externe circule, il exerce une pression externe sensiblement verticale sur la face inférieure du support 3, ce qui conduit à le soulever et par conséquent à presser l'un contre l'autre le film 8 et la phase stationnaire 2 selon une pression externe d'intensité choisie.
Comme cela est le cas dans l'exemple de la figure 3, d'autres moyens de pressurisation externe de la phase stationnaire 2 peuvent être envisagés, comme par exemple des moyens mécaniques, ou pneumatiques, ou analogues. Cela peut éviter, dans certains cas, d'utiliser un circuit externe pour l'alimentation en fluide de pressurisation externe.
Dans l'exemple illustré sur les figures 1 et 2, la chambre comprend, en au moins un troisième endroit choisi 16, localisé ou étendu, une zone de collection de la phase mobile ayant servi à la séparation des constituants de l'échantillon. Ce troisième endroit peut être situé sur la phase stationnaire 2, comme illustré sur la figure 2, ou bien à la périphérie de celle-ci. Dans le premier cas, le film 8 comprend une seconde ouverture 17 pour le passage étanche de l'extrémité d'un tube 24 de collection de la phase mobile, et la chambre 2 comprend une sortie 18 étanche permettant le passage de cette extrémité du tube 24. Dans le second cas, la seconde ouverture n'est pas utile, et donc seule la sortie 18 est requise.
Le tube 10 qui alimente la couche 2 en phase mobile présente une extrémité
26 raccordée à une seconde micro-pompe couplée à un ou plusieurs réservoir(s) de phase mobile 28, pour l'établissement d'un gradient continu ou par pas, et également contrôlée par le module de commande 25. De préférence, la seconde micro-pompe est également logée dans l'unité 23.
Bien entendu, dans l'exemple de la figure 3, l'unité d'alimentation en fluide 23 ne sert qu'à l'alimentation en phase mobile, et par conséquent elle ne comporte qu'une seule micro-pompe.
Selon l'invention, on prévoit un capteur de pression 29 en amont de l'entrée de phase mobile 13 de la chambre 1 , ou un capteur de pression 30 en aval de la sortie de phase mobile 18 de cette chambre 1.
Mais, comme cela est illustré sur les figures 1 et 3, on peut également prévoir un premier capteur de pression 29 en amont de l'entrée de phase mobile 13 de la chambre 1 et un second capteur de pression 30 en aval de la sortie de phase mobile 18 de cette chambre 1. Cette dernière solution à deux capteurs est particulièrement avantageuse car elle permet d'améliorer la précision du contrôle du dispositif. Le premier capteur 29 est agencé de manière à effectuer sa mesure de pression sur la phase mobile qui circule dans le tube d'alimentation 10, tandis que le second capteur 30 est agencé de manière à effectuer sa mesure de pression sur la phase mobile qui circule dans le tube de collection 24. Le premier capteur 29 délivre donc une mesure de pression amont PI au module de commande 25, tandis que le second capteur 30 délivre une mesure de pression aval PO audit module de commande 25.
Par ailleurs, l'invention prévoit également une vanne 31 agencée pour contrôler le débit de la phase mobile en aval de la sortie de phase mobile 18. Cette vanne est donc installée sur le tube de collection 24, de préférence en aval du second capteur de pression 30 (lorsque celui-ci est prévu).
L'état de fonctionnement de la vanne 31 est contrôlé par le module de commande 25 en fonction d'une première comparaison entre la première pression PI mesurée par le premier capteur 29 et une première pression limite que PMI.UΠI et d'une seconde comparaison entre la seconde pression PO mesurée par le second capteur 30 et une seconde pression limite que P o.um- La PMi.Lim et/ou la P o.um sont choisies plus petites que la pression externe appliquée Pext.
Les première PMI,L..T. et seconde PMO,L._T. pressions limites, ainsi que Pεxt sont stockées dans des registres d'une mémoire, de préférence réinscriptible, de sorte que les valeurs des limites puissent être adaptées aux conditions d'utilisation pour l'infusion ou l'infusion-transfusion. Le relâchement de la pression externe vient après la séparation.
Bien entendu, lorsqu'un seul capteur de pression (29 ou 30) est prévu, le contrôle de l'état de fonctionnement de la vanne 31 par le module de commande 25 s'effectue en fonction d'une unique comparaison entre la pression mesurée (PI ou PO) et la pression limite associée (P i.um ou PMo.um)-
De préférence, le débit de la phase mobile qui alimente la chambre 1 et la pression externe appliquée sur la couche 2 sont également contrôlés par le module de commande 25 au niveau des micro-pompes d'alimentation.
Ainsi, en jouant sur les moyens de pressurisation externe (débit du fluide de pressurisation externe ou force appliquée sur la phase stationnaire 2) et conjointement sur la vanne 31 (et donc sur le débit de collection de la phase mobile) et sur le débit d'alimentation en phase mobile, il est possible de contrôler avec une très bonne précision la linéarité du front d'humidité totale qui caractérise le déplacement de la phase mobile dans la phase stationnaire 2, sous l'action des moyens de pressurisation externe.
En effet, et comme indiqué précédemment, lorsque la vanne 31 est placée dans un état "fermé" (débit nul) dans lequel elle interdit l'évacuation de la phase mobile hors de la chambre 1 , l'air "piégé" dans la phase stationnaire, avant l'arrivée de la phase mobile, est progressivement comprimé devant le front alpha. La pression sur ce front alpha va donc augmenter progressivement tandis que sa vitesse de migration va diminuer progressivement. La largeur de la zone partiellement humide (ou zone alpha), située entre le front alpha et le front d'humidité totale, va donc progressivement diminuer, si bien que le front d'humidité totale va progressivement tendre vers une quasi-linéarité.
Cet état de quasi-linéarité correspond à des pressions limites (PMI.UΠI,
PMo.Lim) qui peuvent être déterminées facilement.
Le module de commande 25 n'a donc qu'à effectuer sa ou ses comparaisons pour surveiller si la ou les pressions mesurées sont respectivement supérieures ou inférieures aux pressions limites associées. Lorsque les pressions mesurées PI et PO deviennent supérieures ou égales aux pressions limites PMI,L._TI et PMO,U.TI. qui sont plus petites que Pεxt, le module de commande 25 agit sur la vanne 31 , et éventuellement sur l'une au moins des micro-pompes d'alimentation, de sorte que la phase mobile puisse, ou non, sortir de la chambre 1. Lorsque la vanne 31 est à débit variable (par opposition à un fonctionnement binaire de type "tout ou rien"), le débit de collection (ou d'évacuation) autorisé est déterminé en fonction de la différence entre la pression mesurée et la pression limite associée, pendant la période durant laquelle la zone partiellement humide quitte la phase stationnaire 2 et la chambre 1.
En revanche, en fonctionnement de type tout ou rien, lequel est actuellement préféré pour des raisons de simplicité de la régulation, la vanne 31 est commutée de l'état "fermé" à l'état "ouvert", ou l'inverse selon le résultat des comparaisons.
L'état "fermé" correspond à un débit d'une valeur nulle, tandis que l'état "ouvert" correspond à un débit d'une valeur maximale.
Deux modes de fonctionnement peuvent être envisagés. Le premier mode correspond à un fonctionnement du dispositif de type "hors ligne", ou "infusion", dans lequel le traitement dans le dispositif ne consiste qu'en la séparation des constituants de l'échantillon. L'analyse (détermination et/ou quantification) de ces constituants s'effectue dans un analyseur externe après séparation des constituants puis extraction de la phase stationnaire 2. Tout type d'analyse connue de l'homme du métier peut être envisagé.
Dans ce premier mode, où l'échantillon peut être placé avant ou après introduction de la phase stationnaire 2 dans la chambre 1 , on part de préférence d'une phase stationnaire "sèche", c'est-à-dire avant que la phase stationnaire ne soit alimentée en phase mobile. Le module de commande 25 ordonne la fermeture complète de la vanne 31 puis l'alimentation en phase mobile. La vanne 31 est maintenue fermée pendant toute la durée dé la séparation, c'est-à-dire tant que la pression mesurée PI de la phase mobile en amont demeure inférieure à PMI,L._TI OU, comme cela sera exposé plus loin en référence à la figure 4b, à PMi.umo-
Puis, lorsque la pression limite P I.LJΠI est atteinte ou dépassée, l'alimentation en phase mobile est interrompue par action sur la micro-pompe correspondante, la vanne 31 est ouverte, ce qui revient à réduire la pression de cette phase mobile, par exemple à la pression ambiante, et enfin la pression externe est relâchée. Comme indiqué précédemment, lorsque la vanne 31 fonctionne en mode tout ou rien, elle est commutée de l'état fermé à l'état ouvert. En revanche, lorsque la vanne 31 est à débit variable, elle est commutée de l'état fermé à l'un de ses états ouverts à débit non nul (strictement supérieur à zéro et inférieur ou égal au débit maximal). Cet état est choisi par le module de commande en fonction d'un critère fonction des conditions de séparation. Il repose sur la différence de viscosité entre l'air et la phase mobile.
Le second mode correspond à un fonctionnement du dispositif de type "en ligne", ou "infusion-transfusion". Le traitement dans le dispositif consiste en la séparation des constituants de l'échantillon couplée à une analyse en ligne de ses constituants et/ou à une analyse externe. Les constituants séparés sont donc identifiés et/ou quantifiés sur la phase stationnaire 2 et/ou en dehors de cette chambre par analyse de la phase mobile sortie de cette chambre, qui comporte les constituants séparés.
Dans ce second mode, il est possible d'introduire l'échantillon sur la phase stationnaire 2 avant infusion, c'est-à-dire avant l'introduction de la phase mobile.
Mais il pourrait en être autrement ; une étape d'infusion précédant alors l'introduction de l'échantillon. Le volume utilisé pour l'infusion est connu du module de commande, dès lors que celui-ci connaît le type de phase stationnaire utilisé.
Les constituants de l'échantillon sont séparés sous l'action conjointe d'une alimentation permanente en phase mobile et d'une gestion de l'état de la vanne 31. En fait, tout comme dans le mode d'infusion, le module de commande 25 ordonne tout d'abord la fermeture complète de la vanne 31 puis l'alimentation en phase mobile. Dans un mode de réalisation ne comportant q'un capteur de pression amont, la vanne 31 est maintenue fermée tant que la pression mesurée PI de la phase mobile en amont de la chambre demeure inférieure à la pression limite PMi.um ou, comme cela sera exposé plus loin en référence à la figure 4b, à P i.umo-
Mais, lorsque la limite PMI.UΠI (ou P i.um o) est atteinte ou dépassée, Palimen- tation en phase mobile est maintenue et la vanne 31 est ouverte, ce qui revient à réduire la pression de cette phase mobile. Bien entendu, comme indiqué précédemment, lorsque la vanne 31 fonctionne en mode tout ou rien, elle est commutée de l'état fermé à l'état ouvert autorisant un débit maximal d'évacuation de la phase mobile (hors de la chambre). En revanche, lorsque la vanne 31 est à débit variable, elle est commutée de l'état fermé à l'un de ses états ouverts autorisant un débit non nul (strictement supérieur à zéro et inférieur ou égal au débit maximal) d'évacuation de la phase mobile (hors de la chambre). Cet état est choisi par le module de commande en fonction d'un critère fonction des conditions de séparation. La séparation terminée, l'analyse des constituants est effectuée sur la phase stationnaire et ou à l'extérieur en utilisant la phase mobile sortie de la chambre avec les constituants séparés de l'échantillon.
Comme cela est illustré sur les figures 1 et 3, on peut prévoir un module d'alimentation en courant ou tension 33 pour alimenter des électrodes logées dans la chambre 1 en vue d'une séparation par électro-chromatographie ou électrophorèse. Ces électrodes sont placées parallèlement ou perpendiculairement au débit, l' électrophorèse s'effectuant soit simultanément, soit séquentiellement, relativement à la séparation par la phase mobile.
Cependant, l' électro-chromatographie peut être effectuée après une infusion de pré-humidification (ou pré-mouillage) dans l'état ouvert de la vanne 31 , en utilisant des électrodes perpendiculaires au flux. Après le pré-mouillage, l'électro- chromatographie et la chromatographie peuvent être effectuées simultanément ou séquentiellement. La séparation chromatographique et électrophorétique peut être effectuée simultanément ou séquentiellement sur la phase stationnaire prémouillée, en utilisant des électrodes parallèles ou perpendiculaires au flux. L'électrophorèse est bien entendu effectuée en phase humide (ou mouillé).
La phase stationnaire peut également comporter plusieurs zones identiques ou différentes, chacune permettant d'effectuer un traitement particulier (séparation et/ou analyse). Les moyens de pressurisation externe utilisés dans les différentes zones pourront être éventuellement différents, ou bien ils pourront être identiques mais assurer des pressions différentes.
Ces différents cas sont illustrés sur les diagrammes des figures 4a (infusion) et 4b (infusion-transfusion). Plus précisément, on peut voir, dans les parties supérieures des diagrammes, les évolutions comparées au cours du temps des positions du front alpha (en trait continu et référencé 1) et du front d'humidité totale (en pointillé et référencé 2), et dans les parties inférieures, l'évolution au cours du temps de la pression mesurée PI en amont de l'entrée de chambre 13 (en trait continu et référencée 3) et de la pression mesurée PO en aval de la sortie 18 de chambre 13 (en trait continu et référencée 7).
Les rectangles désignés par A, B, C et D illustrent, pour quatre instants successifs, les profils instantanés des fronts alpha (1) et d'humidité totale (2).
Dans les parties supérieures des diagrammes, Ml désigne le lieu d'introduc- tion de la phase mobile (ou second endroit choisi 7), tandis que MO désigne le lieu de collection de la phase mobile (ou troisième endroit choisi 16). La référence (6) désigne le lieu d'implantation de l'échantillon entre Ml et MO. La référence (4) désigne le lieu et l'instant où disparaît le front alpha (1 ). La référence (5) désigne le lieu et l'instant où disparaît le front d'humidité totale (2). Par ailleurs :
- P I.UΓTI désigne la pression limite de la phase mobile, liée à la pression externe, en amont de l'entrée 13 de la chambre;
- PO désigne la pression mesurée en aval de la sortie 18 de la chambre;
- Pεxt désigne la pression externe appliquée sur la phase stationnaire par les moyens de pressurisation externe (Pεxtest toujours strictement supérieure à PMi.um, typiquement PMi.um est choisie sensiblement égale à environ 80% de Pgxt, par exemple ; en fait, au début de la programmation on choisit la pression externe et le module de commande en déduit automatiquement la pression limite) ;
- PMi.um o désigne dans le mode d'infusion-transfusion une pression limite de la phase mobile, également liée à la pression externe, mais choisie inférieure à la pression limite Pιyιι,um- Il s'agit en fait d'une pression de sécurité. En d'autres termes, cette pression est la pression limite réelle qui est préférentiellement utilisée par le module de commande pour effectuer la comparaison avec la pression PI mesurée en amont de la chambre. Elle correspond par conséquent, à l'instant où l'on décide d'ouvrir \a vanne 31, tout en maintenant l'alimentation en phase mobile. Lorsque le dispositif fonctionne selon ce mode, il est clair que le module de commande calcule directement PMi.umo à partir de PBΛ.
On se réfère maintenant aux figures 5a à 5d pour décrire différentes variantes des dispositifs illustrés sur les figures 1 et 3. Dans ces variantes, tous les éléments sensiblement identiques à ceux des figures 1 et 3 portent des références identiques. Bien entendu, ces variantes ne sont que quelques exemples de réalisation parmi de nombreux autres.
La figure 5a illustre une première variante dans laquelle on prévoit une unité 35 permettant d'alimenter la phase stationnaire à la fois en phase mobile et en échantillon. Cette unité 35 est donc placée sur le tube 10 d'alimentation en fluide, entre le capteur de pression amont 29 et l'entrée 13 de la chambre 1, et elle est raccordée à un tube 36 d'injection de l'échantillon qui pénètre dans la chambre par une entrée prévue à cet effet et débouche en regard du premier endroit 6. Un unique tube 10 pourrait être prévu pour injecter à la fois la phase mobile et l'échantillon.
La figure 5b illustre une seconde variante dans laquelle on prévoit une unité 37 permettant d'alimenter la phase stationnaire en deux seconds endroits différents et indépendants pour effectuer une séparation de type bidirectionnel, ou bien deux séparations d'échantillons placés sur deux phases stationnaires différentes. Un tube 38 alimente en phase mobile l'unité 37, tandis que deux tubes 39 et 40 repartent de l'unité 37 pour alimenter chacun l'un des deux seconds endroits, après avoir pénétré dans la chambre par deux entrées 41 et 42 et traversé le film 8 au niveau de deux ouvertures étanches 9 et 17 prévues en regard des deux seconds endroits. Dans l'hypothèse bidirectionnelle, une ligne de phase mobile, sensiblement linéaire, est réalisée entre les deux lieux d'injection et la séparation s'effectue sensiblement perpendiculairement à cette ligne. Cette unité 37 a également pour fonction de diriger la (ou les différentes) phase(s) mobile(s) vers des zones appropriées de la (ou des) phase(s) stationnaire(s).
Dans cette variante, on prévoit deux troisièmes endroits indépendants pour collecter chaque phase mobile ayant servi à la séparation des constituants de (ou des) l'échantillon(s) dans chacune des deux parties de la chambre 1. Cette chambre comprend donc deux sorties de collection indépendantes 43 et 44 qui alimentent deux tubes 45 et 46 raccordés à la vanne 31 , laquelle comporte par conséquent deux entrées et une sortie.
La figure 5c illustre une troisième variante dans laquelle on prévoit une unité 37 permettant une alimentation en parallèle de la phase stationnaire en trois seconds endroits différents et indépendants, éventuellement formés sur la même phase stationnaire ou sur trois phases stationnaires différentes. Un tube 38 alimente en phase mobile l'unité 37, tandis que trois tubes 47, 48 et 49 repartent de l'unité 37 pour alimenter chacun l'un des trois seconds endroits, après avoir pénétré dans la chambre par trois entrées 50, 51 et 52 et traversé le film 8 au niveau de trois ouvertures étanches 9 prévues en regard des trois seconds endroits.
Dans cette variante à séparation de type unidirectionnel, on prévoit trois troisièmes endroits indépendants pour collecter chaque phase mobile ayant servi à la séparation des constituants de (ou des) l'échantillon(s) dans chacune des trois parties de la chambre 1. Cette chambre comprend donc trois sorties de collection indépendantes 53, 54 et 55 qui alimentent trois tubes 56, 57 et 58 raccordés à la vanne 31 , qui dans cette variante est une vanne triple permettant de laisser sortir séparément et indépendamment chacune des trois phases mobiles collectées.
La figure 5d illustre une quatrième variante dans laquelle on prévoit une unité 59 permettant d'alimenter la phase stationnaire à la fois en phase mobile et en échantillon. L'alimentation en phase mobile peut s'effectuer en parallèle sur trois voies, comme sur la figure 5c, tout comme l'implantation d'échantillon qui peut s'effectuer en parallèle sur trois voies. Cette unité 59 est donc raccordée, d'une part, à trois tubes d'alimentation en phase mobile 60, 61 et 62 qui pénètrent dans la chambre par trois entrées de fluide 66, 67 et 68 et traversent le film 8 au niveau de trois ouvertures étanches 9 prévues en regard de trois seconds endroits, et d'autre part, à trois tubes d'injection d'échantillon 63, 64 et 65 qui pénètrent dans la chambre par trois entrées d'échantillon 69, 70 et 71 et traversent le film 8 au niveau de trois ouvertures étanches prévues en regard de trois premiers endroits.
Dans cette variante de séparation de type unidirectionnel, on prévoit trois troisièmes endroits indépendants pour collecter chaque phase mobile ayant servi à la séparation des constituants de (ou des) l'échantillon(s) dans chacune des trois parties de la chambre 1. Cette chambre comprend donc trois sorties de collection indépendantes 72, 73 et 74 qui alimentent trois tubes 75, 76 et 77 raccordés à la vanne 31 , qui dans cette variante est une vanne triple permettant de laisser sortir séparément et indépendamment chacune des trois phases mobiles collectées.
L'invention concerne également un procédé de traitement d'un échantillon par séparation sous flux forcé (OPLC). Ce procédé comprend les étapes suivantes.
Dans une première étape on place dans une chambre au moins une phase stationnaire propre à recevoir en au moins un premier endroit choisi au moins un échantillon à traiter. Bien entendu, la chambre peut être agencée pour recevoir plusieurs phases stationnaires en parallèle ou en série, ou bien empilées les unes sur les autres, comme cela est bien connu de l'homme du métier.
Cette phase stationnaire, qui est de préférence une couche du type de celle présentée dans la description du dispositif selon l'invention, est soit directement placée dans la chambre sur un support prévu à cet effet, soit préalablement placée dans une cassette qui est alors introduite dans la chambre. De même, l'échantillon peut être placé sur la phase stationnaire prévue pour séparer ses constituants avant que la phase stationnaire ne soit introduite dans la chambre, ou bien implanté (ou injecté) une fois la phase stationnaire introduite dans la chambre.
Dans une seconde étape, on alimente en phase mobile au moins un second endroit choisi de la phase stationnaire, tout en appliquant une pression externe d'intensité choisie sur une face supérieure de la phase stationnaire et en interdisant à la phase mobile de quitter la phase stationnaire.
Cette pression externe n'est pas forcément uniforme. On peut en effet envisager d'appliquer des pressions externes différentes sur des zones différentes d'une même phase stationnaire, ou sur des phases stationnaires différentes placées dans une même chambre.
Dans une troisième étape, on effectue une mesure de la pression de la phase mobile en amont et/ou en aval de la chambre.
Dans une quatrième étape, on compare la ou les pressions amont et/ou aval qui vien(nen)t d'être mesurée(s) à une (ou des) pression(s) limite(s) amont et/ou aval. Puis, lorsque la (ou les) pression(s) mesurée(s) est (sont) supérieure(s) ou égale(s) à la (ou aux) pression(s) limite(s) associée(s) et la pression limite de la phase mobile, liée à la pression externe (Pεxt), laquelle est plus grande que la (les) pression(s) limite(s), on réduit la pression de la phase mobile de sorte qu'elle demeure inférieure ou égale à la pression limite. Dans un mode de fonctionnement de type tout ou rien, cette réduction de pression est pas adaptable (en fait on place la phase mobile à la pression ambiante). En revanche, dans un mode de fonctionnement de type « variable », la valeur de la pression peut être choisie en fonction du résultat de la comparaison.
Tout comme cela a été précédemment indiqué dans la partie détaillant le dispositif, le procédé peut s'appliquer au mode d'infusion (ou « hors ligne ») ou bien au mode d'infusion-transfusion (ou « en ligne »).
La séparation par transfusion conventionnelle est également possible lorsque la vanne 31 est dans son état ouvert pendant le processus de séparation.
Dans le mode d'infusion, on procède lors de la quatrième étape du procédé à l'interruption définitive de l'alimentation de la phase stationnaire en phase mobile lorsque la pression amont mesurée devient supérieure ou égale à la pression P i.Lim- En fait, comme illustré sur la figure 4b, il est possible de décider d'utiliser PMi.Lim o comme pression limite servant à la comparaison, laquelle est strictement inférieure à PMi.um. Puis, on place la phase mobile à la pression ambiante, de préférence, ce qui revient à réduire la pression de cette phase mobile, et enfin on relâche la pression externe.
Dans le mode d'infusion-transfusion, lors de la quatrième étape, on interdit à la phase mobile de sortir de la chambre, puis on alimente en phase mobile. L'interdiction est maintenue tant que la pression mesurée de la phase mobile en amont de la chambre demeure inférieure à la pression limite. Lorsque la pression limite PMI.UITI ou PMi.um o (selon le choix effectué au début) est atteinte ou dépassée, l'alimentation en phase mobile est maintenue et on laisse sortir la phase mobile hors de la chambre, ce qui revient à réduire la pression de cette phase mobile. On peut envisager qu'une fois la vanne ouverte, on effectue une régulation du débit sortant de la phase mobile de sorte que la (ou les) pression(s) mesurée(s) de cette phase mobile demeure(nt) sensiblement comprise(nt) entre la (ou les) pression(s) limite(s) associée(s) et une pression minimale, pendant toute la durée du traitement. Dans un mode de réalisation préférentiel, lors de la seconde étape la pression externe est appliquée sur la phase stationnaire par un moyen fluidique, de préférence hydraulique. Mais bien entendu, d'autres modes d'application peuvent être envisagés, notamment par des moyens mécaniques ou pneumatiques.
On peut, lors de la première étape, commencer par alimenter la phase stationnaire en phase mobile, avant d'implanter l'échantillon. Cette alimentation consiste en un remplissage de la phase stationnaire avec un volume choisi. L'évacuation de la phase mobile hors de la chambre est par conséquent interdite pendant cette phase d'alimentation. Avantageusement, le volume de phase mobile qui est admis dans la chambre correspond à peu près au volume total de la phase stationnaire quand la pression mesurée est sensiblement égale à la pression limite.
Plus généralement, tout ce qui a été dit dans la partie décrivant le dispositif s'applique également au procédé.
L'invention ne se limite pas aux modes de réalisation de dispositifs et de procédés décrits ci-avant, seulement à titre d'exemple, mais elle englobe toutes les variantes que pourra envisager l'homme du métier dans le cadre des revendications ci-après.
Ainsi, on a décrit des dispositifs dans lesquels les moyens de régulation de flux comprenaient avantageusement un module de contrôle couplé à une vanne ainsi qu'à des moyens de mesure de la pression de la phase mobile en amont et/ou en aval de la chambre. Mais, l'invention concerne également les dispositifs dans lesquels les moyens de régulation de flux ne comportent qu'une vanne de régulation du débit de la phase mobile dans la chambre, cette vanne étant pilotée soit manuellement, soit par un module de contrôle programmable.
Par ailleurs, on a décrit des dispositifs dans lesquels la chambre ne traitait qu'une ou plusieurs phases stationnaires placées les unes à côté des autres sur un même support. Mais la chambre peut être adaptée pour recevoir plusieurs phases stationnaires empilées les unes sur les autres, avec ou sans support, et utilisées en série ou en parallèle, avec ou sans intercalaire.
D'autre part, on a décrit un mode de réalisation dans lequel on introduisait une phase mobile liquide pour entraîner les constituants de l'échantillon. Mais, l'invention s'applique également lorsque l'on introduit tout d'abord un solvant puis que l'on utilise un gaz tel que de l'air pour déplacer (chasser) le solvant mélangé aux constituants de l'échantillon. L'air sert alors de phase mobile. Cette technique est connue sous le nom de chromatographie « flash ». Il en résulte que dans tout ce qui précède et ce qui suit, la phase mobile doit être prise dans une définition large, à savoir « fluide d'entraînement », qu'il soit gazeux ou liquide.

Claims

Revendications
1. Dispositif de traitement d'un échantillon par séparation sous flux forcé, du type comprenant : - une chambre (1 ) agencée pour loger au moins une phase stationnaire (2) propre à recevoir en au moins un premier endroit choisi (6) au moins un échantillon à traiter, des moyens de pressurisation externe (8) propres à appliquer une pression externe d'intensité choisie sur une face supérieure de la phase stationnaire, des moyens de distribution (10) d'une phase mobile en au moins un second endroit choisi (7) de la phase stationnaire (2), au moins une première entrée (13) d'alimentation desdits moyens de distribution (10) en phase mobile, et une première sortie (18) d'évacuation de la phase mobile hors de la chambre (1 ), et
- des moyens agencés pour alimenter ladite première entrée (13) en phase mobile, caractérisé en ce qu'il comprend des moyens de régulation (31) propres à contrôler la pression de la phase mobile en amont et/ou en aval de la phase stationnaire (2), de sorte que cette pression demeure inférieure ou égale à une pression limite, liée à la pression externe choisie.
2. Dispositif selon la revendication 1 , caractérisé en ce que lesdits moyens de régulation comprennent une vanne (31) placée en aval de ladite première sortie (18) et propre à faire varier le débit de la phase mobile en sortie de la chambre (1 ) entre une valeur nulle et une valeur maximale.
3. Dispositif selon la revendication 2, caractérisé en ce que lesdits moyens de régulation comprennent en outre des moyens (29 ;30) propres à mesurer la pression de la phase mobile en amont de ladite première entrée (13) et/ou en aval de ladite première sortie (18) et un module (25) agencé pour commander ladite vanne (31) en fonction d'une comparaison entre la pression mesurée et ladite pression limite, ladite vanne étant placée dans un état ouvert lorsque la pression mesurée est supérieure ou égale à ladite pression limite.
4. Dispositif selon la revendication 3, caractérisé en ce que ledit module de commande (25) est agencé pour commander lesdits moyens d'alimentation et lesdits moyens de pressurisation externe (8), conjointement avec ladite vanne (31), en fonction de ladite comparaison.
5. Dispositif selon la revendication 4, caractérisé en ce que ledit module de commande (25) est propre à ordonner auxdits moyens d'alimentation d'interrompre l'alimentation de la chambre (1) en phase mobile, puis à ladite vanne (31) de se placer dans un état ouvert et auxdits moyens de pressurisation externe de relâcher la pression externe, dès que la pression mesurée devient supérieure ou égale à la pression limite.
6. Dispositif selon la revendication 4, caractérisé en ce que ledit module de commande (25) est agencé, après ladite ouverture de vanne, pour ordonner auxdits moyens d'alimentation (23) de continuer à alimenter en phase mobile la première entrée (13) de ladite chambre, et pour ordonner à la vanne (31) de se placer dans un état ouvert autorisant ladite phase mobile à sortir de la chambre selon un débit choisi.
7. Dispositif selon la revendication 6, caractérisé en ce que ladite chambre (1) loge des moyens d'analyse des constituants de l'échantillon.
8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce que ladite chambre (1 ) est agencée pour recevoir une cassette extractible comprenant ladite phase stationnaire.
9. Dispositif selon l'une des revendications 1 à 8, caractérisé en ce que lesdits moyens de pressurisation externe comprennent un film flexible (8) logé en regard de la face supérieure (5) de la phase stationnaire (2) et des moyens d'application propres à plaquer l'un contre l'autre ledit film (8) et ladite phase stationnaire selon une pression externe d'intensité choisie, ledit film (8) comportant une ouverture (9) étanche pour l'alimentation de la phase stationnaire (2) par les moyens de distribution (10).
10. Dispositif selon la revendication 9, caractérisé en ce que lesdits moyens d'application comprennent une pompe couplée à un réservoir (27) pour le fluide destiné à générer la pression externe et propre à alimenter une partie amont (15) d'un circuit débouchant en dessous de la phase stationnaire (2), et en ce que ladite chambre (1 ) comprend une seconde sortie (21 ) étanche agencée pour recueillir le fluide de pressurisation externe pour alimenter une partie aval (20) du circuit, raccordée audit réservoir (27).
11. Dispositif selon la revendication 10, caractérisé en ce que ladite pompe à fluide de pressurisation externe (27) et lesdits moyens d'alimentation en phase mobile sont placés dans une unité d'alimentation en fluides (23) contrôlée par ledit module de commande (25).
12. Dispositif selon l'une des revendications 1 à 11 , caractérisé en ce que ladite phase stationnaire (2) est pourvue dudit échantillon à traiter avant d'être introduite dans ladite chambre (1 ).
13. Dispositif selon l'une des revendications 1 à 11 , caractérisé en ce que ladite chambre (1 ) comporte une seconde entrée pour l'acheminement de l'échantillon au niveau du premier endroit (6) de ladite phase stationnaire (2).
14. Dispositif selon l'une des revendications 1 à 13, caractérisé en ce que lesdits premier (6) et second (7) endroits sont au moins partiellement confondus.
15. Dispositif selon la revendication 14, caractérisé en ce que lesdits moyens d'alimentation sont agencés pour alimenter ladite première entrée en phases stationnaire et mobile.
16. Dispositif selon l'une des revendications 13 à 15, caractérisé en ce que le module de commande (25) est agencé pour ordonner, avant l'acheminement de l'échantillon, d'une part, à ladite vanne (31 ) de se placer dans un état tel qu'il interdit l'évacuation de la phase mobile hors de la chambre et, d'autre part, aux moyens d'alimentation de fournir à la phase stationnaire un volume de phase mobile choisi.
17. Dispositif selon la revendication 16, caractérisé en ce que ledit volume est choisi de sorte qu'il soit sensiblement égale à un volume nécessaire pour que la pression mesurée soit sensiblement égale à la pression limite.
18. Dispositif selon l'une des revendications 3 à 17, caractérisé en ce que lesdits moyens de mesure (29 ;30) comprennent un premier capteur (29) propre à mesurer la pression de la phase mobile en amont de ladite première entrée (13) et un second capteur (30) propre à mesurer la pression de la phase mobile en aval de ladite première sortie (18), et en ce que ledit module de commande (25) est agencé pour commander lesdits moyens d'alimentation et ladite vanne (31 ) en fonction d'une première comparaison entre la pression mesurée en amont de la chambre et une première pression limite et d'une seconde comparaison entre la pression mesurée en aval de la chambre et une seconde pression limite.
19. Procédé de traitement d'un échantillon par séparation sous flux forcé, caractérisé en ce qu'il comprend les étapes suivantes :
a) placer dans une chambre au moins une phase stationnaire propre à recevoir en au moins un premier endroit choisi au moins un échantillon à traiter,
b) alimenter en phase mobile au moins un second endroit choisi de la phase stationnaire, tout en appliquant une pression externe d'intensité choisie sur une face supérieure de cette phase stationnaire et en interdisant à ladite phase mobile de sortir de la phase stationnaire,
c) mesurer la pression de la phase mobile en amont et/ou en aval de la chambre,
d) comparer cette pression mesurée à une pression limite liée à la pression externe choisie, et, lorsque la pression mesurée devient supérieure ou égale à ladite pression limite, réduire la pression de la phase mobile de sorte qu'elle demeure inférieure ou égale à cette pression limite.
20. Procédé selon la revendication 19, caractérisé en ce qu'à l'étape d), lorsque la pression mesurée devient supérieure ou égale à la pression limite, on interrompt définitivement l'alimentation en phase mobile, puis on place la phase mobile introduite dans la phase stationnaire à la pression ambiante, et on relâche la pression externe.
21. Procédé selon la revendication 19, caractérisé en ce qu'à l'étape d), lorsque la pression mesurée devient supérieure ou égale à la pression limite, on laisse la phase mobile sortir de la chambre selon un débit choisi, non nul, tout en continuant d'alimenter ladite phase stationnaire en phase mobile.
22. Procédé selon la revendication 19, caractérisé en ce qu'à l'étape d) l'alimentation en phase mobile est effectuée par pressurisation et/ou par un champ électrique.
23. Procédé selon l'une des revendications 19 à 22, caractérisé en ce qu'à l'étape b) la pression externe est appliquée sur la phase stationnaire par des moyens hydrauliques.
24. Procédé selon l'une des revendications 19 à 23, caractérisé en ce qu'à l'étape a) la phase stationnaire est préalablement pourvue d'échantillon(s) à traiter.
25. Procédé selon l'une des revendications 19 à 23, caractérisé en ce qu'à l'étape a) la phase stationnaire est pourvue d'échantillon à traiter après une sous-étape dans laquelle on alimente la phase stationnaire en phase mobile, tout en interdisant son évacuation hors de la chambre, jusqu'à ce que ladite phase stationnaire ait reçu un volume de phase mobile choisi.
26. Procédé selon la revendication 25, caractérisé en ce que ledit volume est choisi de sorte qu'il corresponde à une pression mesurée sensiblement égale à ladite pression limite.
EP01903867A 2000-01-04 2001-01-03 Dispositif et procede de traitement d'un echantillon par separation sur une phase stationnaire, sous flux force contr le Withdrawn EP1244908A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0000063A FR2803220B1 (fr) 2000-01-04 2000-01-04 Dispositif et procede de traitement d'un echantillon par separation sur une phase stationnaire, sous flux force controle
FR0000063 2000-01-04
PCT/FR2001/000022 WO2001050123A1 (fr) 2000-01-04 2001-01-03 Dispositif et procede de traitement d'un echantillon par separation sur une phase stationnaire, sous flux force contrôle

Publications (1)

Publication Number Publication Date
EP1244908A1 true EP1244908A1 (fr) 2002-10-02

Family

ID=8845617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01903867A Withdrawn EP1244908A1 (fr) 2000-01-04 2001-01-03 Dispositif et procede de traitement d'un echantillon par separation sur une phase stationnaire, sous flux force contr le

Country Status (8)

Country Link
US (1) US20030019816A1 (fr)
EP (1) EP1244908A1 (fr)
JP (1) JP2003529749A (fr)
CN (1) CN1262837C (fr)
AU (1) AU770513B2 (fr)
CA (1) CA2396189A1 (fr)
FR (1) FR2803220B1 (fr)
WO (1) WO2001050123A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100528363C (zh) 2002-02-13 2009-08-19 安捷伦科技有限公司 微流体分离柱装置及其制备方法
US7261812B1 (en) 2002-02-13 2007-08-28 Nanostream, Inc. Multi-column separation devices and methods
FR2843198B1 (fr) * 2002-08-02 2004-10-15 Bionisis Sa Dispositif de separation de constituants d'echantillons par chromatograhie liquide sous pression
US7736517B2 (en) * 2003-06-19 2010-06-15 Indiana University Research And Technology Corporation Method and apparatus for performing planar electrochromatography at elevated pressure
US7028536B2 (en) * 2004-06-29 2006-04-18 Nanostream, Inc. Sealing interface for microfluidic device
US7590997B2 (en) * 2004-07-30 2009-09-15 Broadband Itv, Inc. System and method for managing, converting and displaying video content on a video-on-demand platform, including ads used for drill-down navigation and consumer-generated classified ads
CN102680639B (zh) * 2011-03-15 2014-07-16 上海高佳仪器科技有限公司 加压薄层色谱展开室

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU187282B (en) * 1980-12-05 1985-12-28 Mueszeripari Muevek Lab Control unit for row-chromatographic equipment under high pressure
US4346001A (en) * 1981-06-12 1982-08-24 Labor Muszeripari Muvek Linear overpressured thin-layer chromatographic apparatus
JP2944721B2 (ja) * 1990-08-22 1999-09-06 生化学工業株式会社 エンドトキシンの測定剤
HUT60934A (en) * 1990-08-28 1992-11-30 Emil Mincsovics Process, apparatus and sorbent layer for thin-layer chromatography

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0150123A1 *

Also Published As

Publication number Publication date
FR2803220B1 (fr) 2002-07-05
AU770513B2 (en) 2004-02-26
JP2003529749A (ja) 2003-10-07
WO2001050123A1 (fr) 2001-07-12
AU3183601A (en) 2001-07-16
CA2396189A1 (fr) 2001-07-12
CN1398349A (zh) 2003-02-19
FR2803220A1 (fr) 2001-07-06
US20030019816A1 (en) 2003-01-30
CN1262837C (zh) 2006-07-05

Similar Documents

Publication Publication Date Title
CH682458A5 (fr) Procédé de concentration d'échantillons par évaporation du solvant et évaporateur-concentrateur centrifuge pour la mise en oeuvre de ce procédé.
FR2596294A1 (fr) Separateur centrifuge a boucle continue
FR2497319A1 (fr) Soupape de derivation avec alarme
EP3089806B1 (fr) Tubulure de remplissage d'un réservoir de carburant avec separateur liquide vapeur a deux positions
EP1244908A1 (fr) Dispositif et procede de traitement d'un echantillon par separation sur une phase stationnaire, sous flux force contr le
FR2591287A1 (fr) Groupe compresseur a vis et appareil integre a separateur d'huile et valve a tiroir.
FR2556240A1 (fr) Dispositif de separation centrifuge
FR2808853A1 (fr) Systeme de freinage d'un rotor par rapport a un stator
EP0973032B1 (fr) Système de prélevement de polluants spécifiques contenus dans des gaz d'échappement dilués issus de machines thermiques
FR2664367A1 (fr) Sechage de materiaux biologiques.
EP0089255A1 (fr) Dispositif de chromatographie et procédé de mise en oeuvre
FR2540094A1 (fr) Perfectionnement aux epaississeurs de boues a vis
EP1373883A1 (fr) Installation de traitement d'echantillons en continu, par separation sur une phase stationnaire, sous flux force
FR2505206A1 (fr) Bol centrifuge a vidange automatique
FR2790406A1 (fr) Centrifugeuse a entrainement pneumatique et a filtration de l'atmosphere de son enceinte
FR2845642A1 (fr) Dispositif de conditionnement d'air de vehicule automobile comprenant un filtre a charbon actif regenerable, vehicule automobile equipe d'un tel dispositif et procede de regeneration associe
FR2584777A1 (fr) Pompe a amorcage automatique
CH648769A5 (fr) Centrifugeuse entrainee par air comprime.
FR2612425A1 (fr) Dispositif de sortie dans un separateur centrifuge
EP0771897B1 (fr) Machine de traitement, notamment textile, comprenant une cuve amovible et une borne technique fixe
WO1998041324A1 (fr) Pompe d'injection de reactif dans des matras et procede d'injection a l'aide d'une telle pompe
WO1991014941A1 (fr) Systeme de regulation de pression dans un circuit ouvert de circulation de fluide a debit determine
EP1098158A1 (fr) Installation de gestion des éléments solides mis en circulation dans un échangeur de chaleur
EP2112899B1 (fr) Dispositif d aspiration a plusieurs pompes
FR2597068A1 (fr) Dispositif d'approvisionnement pour approvisionner un reservoir de liquide, notamment en apesanteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KECSK S, LAESZLO

Inventor name: TYIHAK, ERNOE

Inventor name: MINCSOVICS, EMIL

Inventor name: TAPA, BARNABAES

17Q First examination report despatched

Effective date: 20080514

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080925