EP1244548A2 - Element de formation d'image contenant un polymere a commutation thermique et procede d'utilisation - Google Patents

Element de formation d'image contenant un polymere a commutation thermique et procede d'utilisation

Info

Publication number
EP1244548A2
EP1244548A2 EP00982378A EP00982378A EP1244548A2 EP 1244548 A2 EP1244548 A2 EP 1244548A2 EP 00982378 A EP00982378 A EP 00982378A EP 00982378 A EP00982378 A EP 00982378A EP 1244548 A2 EP1244548 A2 EP 1244548A2
Authority
EP
European Patent Office
Prior art keywords
polymer
imaging member
imaging
heat
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00982378A
Other languages
German (de)
English (en)
Other versions
EP1244548B1 (fr
Inventor
Jeffrey W. Leon
James C. Fleming
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kodak Graphics Holding Inc
Original Assignee
Kodak Graphics Holding Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/454,151 external-priority patent/US6447978B1/en
Application filed by Kodak Graphics Holding Inc filed Critical Kodak Graphics Holding Inc
Priority to EP03028448A priority Critical patent/EP1413432B1/fr
Publication of EP1244548A2 publication Critical patent/EP1244548A2/fr
Application granted granted Critical
Publication of EP1244548B1 publication Critical patent/EP1244548B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1041Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by modification of the lithographic properties without removal or addition of material, e.g. by the mere generation of a lithographic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/36Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using a polymeric layer, which may be particulate and which is deformed or structurally changed with modification of its' properties, e.g. of its' optical hydrophobic-hydrophilic, solubility or permeability properties
    • B41M5/368Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using a polymeric layer, which may be particulate and which is deformed or structurally changed with modification of its' properties, e.g. of its' optical hydrophobic-hydrophilic, solubility or permeability properties involving the creation of a soluble/insoluble or hydrophilic/hydrophobic permeability pattern; Peel development

Definitions

  • This invention relates in general to lithographic printing plates and specifically to lithographic printing plates that require no wet processing after imaging.
  • the invention also relates to a method of digitally imaging such imaging members, and to a method of printing using them.
  • lithographic printing is based upon the immiscibility of oil and water, wherein an oily material or ink is preferentially retained by an imaged area and the water or fountain solution is preferentially retained by the non-imaged areas.
  • an oily material or ink is preferentially retained by an imaged area and the water or fountain solution is preferentially retained by the non-imaged areas.
  • the background or non-imaged areas retain the water and repel the ink while the imaged areas accept the ink and repel the water.
  • the ink is then transferred to the surface of a suitable substrate, such as cloth, paper or metal, thereby reproducing the image.
  • Very common lithographic printing plates include a metal or polymer support having thereon an imaging layer sensitive to visible or UV light. Both positive and negative-working printing plates can be prepared in this fashion. Upon exposure, and perhaps post-exposure heating, either imaged or non-imaged areas are removed using wet processing chemistries.
  • Thermally sensitive printing plates are less common, yet represent a steadily growing market.
  • a thermal acid generator might be used in lieu of a photoacid generator and the same series of preheat and development steps might be employed.
  • the main advantage of these digital plates is that the thermal imaging process is rapid and inexpensive compared to the analog process involving the creation of a mask and blanket UV exposure. Examples of such plates are described in US-N-5,372,915 (Haley et al.). They include an imaging layer comprising a mixture of dissolvable polymers and an infrared radiation absorbing compound. While these plates can be imaged using lasers and digital information, they require wet processing using alkaline developer solutions.
  • a lithographic printing plate could be created by ablating an IR absorbing layer.
  • Canadian 1,050,805 discloses a dry planographic printing plate comprising an ink receptive substrate, an overlying silicone rubber layer, and an interposed layer comprised of laser energy absorbing particles (such as carbon particles) in a self-oxidizing binder (such as nitrocellulose).
  • laser energy absorbing particles such as carbon particles
  • a self-oxidizing binder such as nitrocellulose
  • switchable polymers These polymers will undergo thermally driven chemical reactions in which highly polar moieties are either created or destroyed under imaging conditions. This results in the storage of the imaging data as hydrophilic and hydrophobic regions of a continuous polymer surface.
  • switchable polymer plate in its ideal form would consist of one layer and can be manufactured on a single pass through a coating machine.
  • US-A-4,034,183 (Uhlig) describes the use of high powered lasers to convert hydrophilic surface layers to hydrophobic surfaces. A similar process is described for converting polyamic acids into polyamides in US-A-4,081,572 (Pacansky). The use of high-powered lasers is undesirable in the industry because of their power requirements and because of their need for cooling and frequent maintenance.
  • US-A-4, 634,659 (Esumi et al.) describes imagewise irradiating hydrophobic polymer coatings to render exposed regions more hydrophilic in nature. While this concept was one of the early applications of converting surface characteristics in printing plates, it has the disadvantages of requiring long UV light exposure times (up to 60 minutes), and the plate's use is in a positive-working mode only.
  • US-A-4,405,705 (Etoh et al.) and US-A-4,548,893 (Lee et al.) describe amine-containing polymers for photosensitive materials used in non-thermal processes. The imaged materials also require wet processing after imaging.
  • WO 92/09934 (Vogel et al.) describes photosensitive compositions containing a photoacid generator and a polymer with acid labile tetrahydropyranyl or activated ester groups. However, imaging of these compositions converts the imaged areas from hydrophobic to hydrophilic in nature and the imaged areas are prone to scumming.
  • EP-A 0 652 483 (Ellis et al.) describes lithographic printing plates imageable using IR lasers, and which do not require wet processing. These plates comprise an imaging layer that becomes more hydrophilic upon imagewise exposure to heat.
  • This coating contains a polymer having pendant groups (such as t-alkyl carboxylates) that are capable of reacting under heat or acid to form more polar, hydrophilic groups. Imaging such compositions converts the imaged areas from hydrophobic to relatively more hydrophilic in nature, and thus requires imaging the background of the plate, which is generally a larger area. This can be a problem when imaging to the edge of the printing plate is desired.
  • the plates described in Ellis et al. are also prone to scumming.
  • switchable polymer-based printing plates Although a number of switchable polymer-based printing plates are known, there remain technical barriers toward the utilization of this technology in commercially feasible products. Three difficulties commonly experienced in the design of switchable polymer-based plates are physical wear of the plates, and the related problems of background scumming and blanket toning.
  • Physical wear refers to the mechanical degradation of a printing plate during the printing process. Sufficient resistance to physical wear is often the major factor in determining whether or not a printing plate will be useful for press runs of very long length.
  • the problems noted above are overcome by using a general class of heat- sensitive, switchable polymers that provide a good balance of physical toughness with resistance to scumming and blanket toning when incorporated into an imaging member.
  • the switchable polymers can be obtained by simply reacting any of several carboxylic acid-containing polymers (or polymers containing equivalent groups, such as anhydrides) with a quaternary ammonium hydroxide.
  • the quaternary ammonium hydroxide contains a substituted -alkylene (Cl-C3)-phenyl group.
  • the heat- sensitive polymer when formulated with a photothermal conversion material and preferably a crosslinking agent, provides a mechanically durable infrared radiation sensitive imaging member that exhibits excellent resistance to scumming and blanket toning.
  • One embodiment of the present invention is an imaging member comprising a support having thereon a hydrophilic imaging layer comprising a hydrophilic heat-sensitive polymer comprising recurring units that comprise quaternary ammonium carboxylate groups.
  • the ammonium carboxylate groups contain at least one substituted -alkylene (C,-C,)-phenyl group.
  • This invention also provides a method imaging comprising the steps of:
  • the method of imaging can be extended to be a method of printing by following steps A and B with a further step of C) in the presence of water or a fountain solution, contacting the imagewise exposed imaging member with a lithographic printing ink, and imagewise transferring the ink to a receiving material.
  • the ammonium ion contains one or more of the following substituents in such a way so as to complete four carbon- nitrogen bonds: substituted or unsubstituted benzyl groups, substituted or unsubstituted phenyl groups, five- or six-membered rings, and indoline or isoindoline rings.
  • the ammonium cations used in the heat-sensitive polymers include one or more substituted -alkylene(C
  • the one or more noted alkylenephenyl groups comprise one or more substituents on either or both of the alkylene and phenyl moieties. As described in more detail below, the substitution can be of any of a wide variety of patterns and chemical components.
  • the use of specific ammonium ions alleviates the problem of malodorous emissions.
  • small molecule amines such as trimethylamine when the benzyltrimethylammonium cation is used
  • reactive byproducts Many of these amines are malodorous and possibly toxic.
  • This problem has been alleviated using two approaches. The first approach is to utilize spiro-quaternary ammonium cations in which the nitrogen is at the quaternary vertex of the intersecting rings.
  • the second approach is to use specific cations that contain three or four benzyl groups or three or four hydroxyethyl groups.
  • the imaging member (for example, printing plates) of this invention have improved mechanical durability over other "switchable polymer" processless printing plates.
  • the imaging member of this invention also exhibits substantially reduced blanket toning and reduced scumming. In some embodiments, the emission of malodorous gases is reduced. In addition, some of the polymers can be prepared easily using very inexpensive materials.
  • the imaging members of this invention comprise a support and one or more layers thereon that are heat-sensitive.
  • the support can be any self-supporting material including polymeric films, glass, ceramics, metals or stiff papers, or a lamination of any of these materials.
  • the thickness of the support can be varied. In most applications, the thickness should be sufficient to sustain the wear from printing and thin enough to wrap around a printing form.
  • a preferred embodiment uses a polyester support prepared from, for example, polyethylene terephthalate or polyethylene naphthalate, and having a thickness of from about 100 to about 310 ⁇ m.
  • Another preferred embodiment uses aluminum foil having a thickness of from about 100 to about 600 ⁇ m.
  • the support should resist dimensional change under conditions of use.
  • the support can also be a cylindrical surface having the heat-sensitive polymer composition thereon, and thus being an integral part of the printing press.
  • imaged cylinders is described for example in US-A-5, 713,287 (Gelbart).
  • the support may be coated with one or more "subbing" layers to improve adhesion of the final assemblage.
  • subbing layer materials include, but are not limited to, gelatin and other naturally occurring and synthetic hydrophilic colloids and vinyl polymers (such as vinylidene chloride copolymers) known for such purposes in the photographic industry, vinylphosphonic acid polymers, silicon-based sol-gel materials, such as those prepared from alkoxysilanes such as aminopropyltriethoxysilane or glycidoxypropyltriethoxysilane, titanium sol gel materials, epoxy functional polymers, and ceramics.
  • vinyl polymers such as vinylidene chloride copolymers
  • vinylphosphonic acid polymers vinylphosphonic acid polymers
  • silicon-based sol-gel materials such as those prepared from alkoxysilanes such as aminopropyltriethoxysilane or glycidoxypropyltriethoxysilane
  • titanium sol gel materials epoxy functional polymers, and ceramics.
  • the backside of the support may be coated with antistatic agents and/or slipping layers or matte layers to improve handling and "feel" of the imaging member.
  • the imaging members have preferably only one heat-sensitive layer that is required for imaging.
  • This hydrophilic layer includes one or more heat-sensitive polymers, and optionally but preferably a photothermal conversion material (described below), and preferably provides the outer printing surface of the imaging member. Because of the particular polymer(s) used in the imaging layer, the exposed (imaged) areas of the layer are rendered more oleophilic in nature.
  • the heat-sensitive polymers useful in this invention comprise random recurring units at least some of which comprise quaternary ammonium salts of carboxylic acids.
  • the polymers generally have a molecular weight of at least 3,000 Daltons and preferably of at least 20,000 Daltons.
  • the polymer randomly comprises one or more types of carboxylate- containing recurring units (or equivalent anhydride units) units identified as "A” below in Structure 1 and optionally one or more other recurring units (non-carboxylated) denoted as "B" in Structure 1.
  • the carboxylate-containing recurring units are linked directly to the polymer backbone which is derived from the "A" monomers, or are connected by spacer units identified as "X" in Structure 1 below.
  • This spacer unit can be any divalent aliphatic, alicyclic or aromatic group that does not adversely affect the polymer's heat- sensitivity.
  • X can be a substituted or unsubstituted alkylene group having 1 to 16 carbon atoms (such as methylene, ethylene, isopropylene, «-propylene and n- butylene), a substituted or unsubstituted arylene group having 6 to 10 carbon atoms in the arylene ring (such as m- or/?-phenylene and naphthylenes). substituted or unsubstituted combinations of alkylene and arylene groups (such arylenealkylene, arylenealkylenearylene and alkylenearylenealkylene groups), and substituted or unsubstituted N-containing heterocyclic groups.
  • any of these defined groups can be connected in a chain with one or more amino, carbonamido, oxy, thio, amido, oxycarbonyl, aminocarbonyl, alkoxycarbonyl, alkanoyloxy, alkanoylamino or alkaminocarbonyl groups.
  • Particularly useful "X" spacers contains an ester or amide connected to an alkylene group or arylene group (as defined above), such as when the ester and amide groups are directed bonded to "A".
  • Additional monomers (non-carboxylate monomers) that provide the recurring units represented by "B" in Structure 1 above include any useful hydrophilic or oleophilic ethylenically unsaturated polymerizable comonomers that may provide desired physical or printing properties of the surface imaging layer or which provide crosslinkable functionalities.
  • One or more "B" monomers may be used to provide these recurring units, including but not limited to, acrylates, methacrylates, styrene and its derivatives, acrylamides, methacrylamides, olefins, vinyl halides, and any monomers (or precursor monomers) that contain carboxy groups (that are not quaternized).
  • the quaternary ammonium carboxylate-containing polymer may be chosen or derived from a variety of polymers and copolymer classes including, but not necessarily limited to polyamic acids, polyesters, polyamides, polyurethanes, silicones, proteins (such as modified gelatins), polypeptides, and polymers and copolymers based on ethylenically unsaturated polymerizable monomers such as acrylates, methacrylates, acrylamides, methacrylamides, vinyl ethers, vinyl esters, alkyl vinyl ethers, maleic acid/anhydride, itaconic acid/anhydride, styrenics, acrylonitrile, and olefins such as butadiene, isoprene, propylene, and ethylene.
  • polymers and copolymer classes including, but not necessarily limited to polyamic acids, polyesters, polyamides, polyurethanes, silicones, proteins (such as modified gelatins), polypeptides,
  • a parent carboxylic acid-containing polymer may contain more than one type of carboxylic acid-containing monomer. Certain monomers, such as maleic acid/anhydride and itaconic acid/anhydride may contain more than one carboxylic acid unit.
  • the parent carboxylic acid-containing polymer is an addition polymer or copolymer containing acrylic acid, methacrylic acid, maleic acid or anhydride, or itaconic acid or anhydride or a conjugate base or hydrolysis product thereof.
  • n represents about 25 to 100 mol % (preferably from about 50 to 100 mol %), and m represents 0 to about 75 mol % (preferably from 0 to about 50 mol %).
  • Structure 1 could be interpreted to show polymers derived from only two ethylenically unsaturated polymerizable monomers, it is intended to include terpolymers and other polymers derived from more than two monomers.
  • the quaternary ammonium carboxylate groups must be present in the heat- sensitive polymer useful in this invention in such a quantity as to provide a minimum of one mole of the quaternary ammonium carboxylate groups per 1300 g of polymer, and preferably per 1000 g of polymer, and a maximum of one mole of quaternary ammonium carboxylate groups per 45 g of polymer, and preferably per 132 g of polymer.
  • this ratio (moles of quaternary ammonium carboxylate groups to grams of polymer) is from about 1 :600 to about 1 :132 and more preferably, this ratio is from about 1 :500 to about 1 :132, or from about 1 :500 to 1 :45, and more preferably from about 1 :300 to 1 :45.
  • This parameter is readily determined from a knowledge of the molecular formula of a given polymer.
  • the quaternary ammonium counterion of the carboxylate functionalities may be any ammonium ion in which the nitrogen is covalently bound to a total of four alkyl or aryl substituents as defined below.
  • at least one of the four substituents is a substituted -alkylene (C,-C 3 )-phenyl group.
  • R,, R 2 , R 3 and R 4 are independently substituted or unsubstituted alkyl groups having 1 to 12 carbon atoms [such as methyl, ethyl, ⁇ -propyl, isopropyl, t-butyl, hexyl, hydroxyethyl, 2-propanonyl, ethoxycarbonymethyl, benzyl, substituted benzyl (such as 4-methoxybenzyl, o- bromobenzyl, and / ⁇ -trifluoromethylbenzyl), and cyanoalkyl], or substituted or unsubstituted aryl groups having 6 to 14 carbon atoms in the carbocyclic ring (such as phenyl, naphthyl, xylyl, -methoxyphenyl, -methylphenyl, m-methoxyphenyl, p- chlorophenyl, /?-methylthiophenyl,
  • any two, three or four of R,, R 2 , R 3 and R 4 can be combined to form a ring (or two rings for four substituents) with the quaternary nitrogen atom, the ring having 5 to 14 carbon, oxygen, sulfur and nitrogen atoms in the ring.
  • Such rings include, but are not limited to, morpholine, piperidine, pyrrolidine, carbazole, indoline and isoindoline rings.
  • the nitrogen atom can also be located at the tertiary position of the fused ring.
  • Other useful substituents for these various groups would be readily apparent to one skilled in the art, and any combinations of the expressly described substituents are also contemplated.
  • At least one of R crab R 2 , R 3 and R is a substituted -alkylene (C ] -C 3 )-phenyl group. Any two or all three of the remaining substituents may be combined to form a ring or rings as described above.
  • multi-cationic ionic species containing more than one quaternary ammonium unit covalently bonded together and having charges greater than +1 (for example +2 for diammonium ions, and +3 for triammonium ions) may be used in this invention.
  • the nitrogen of the quaternary ammonium ion is directly bonded to one or more benzyl groups or one or two phenyl groups.
  • the nitrogen atom is part of one or two five-membered rings, or one or two indoline or isoindoline rings and has a molecular weight of less than 400 Daltons.
  • a spiro ammonium cation in which the nitrogen lies at the vertex of two intersecting rings is especially preferred.
  • a carboxylate polymer containing such an ammonium counterion is thermally imaged, small molecule amines are not given off and hence the problem of odor during imaging is alleviated.
  • the use of a benzyl-tris-hydroxyethyl ammonium ion may result in the release of triethanolamine that is odorless and relatively benign. This embodiment of the invention is also preferred.
  • R réelle R 2 and R 3 are independently linear or branched unsubstituted alkyl groups of 1 to 3 carbon atoms, or linear or branched hydroxyalkyl groups of 1 to 3 carbon atoms that comprise 1 to 3 hydroxy groups as the only substituents (generally only one hydroxy group per carbon atom). More preferably, these radicals are independently methyl, hydroxymethyl, ethyl, 2-hydroxyethyl, 1- hydroxyethyl or 1 ,2-dihydroxyethyl and most preferably, they are either methyl or 2- hydroxyethyl.
  • R 4 is a substituted alkylenephenyl group that has at least one substituent on either the alkylene or phenyl moiety of the group. More preferably, the one or more substituents are on the phenyl moiety.
  • the alkylene moiety can be linear or branched in nature and has from 1 to 3 carbon atoms (such as methylene, ethylene, /7-propylene or isopropylene).
  • the alkylene moiety of R 4 has 1 or 2 carbon atoms and more preferably, it is methylene.
  • the alkylene moiety can have as many substituents as there are available hydrogen atoms to be removed from a carbon atom.
  • Useful alkylene substituents are the same as those described below in defining the phenyl substituents, but the most preferred substituents for the alkylene moiety are fluoro and alkoxy.
  • the phenyl moiety of R 4 can have from 1 to 5 substituents in any useful substitution pattern.
  • Useful substituents include but are not limited to, halo groups (such as fluoro, chloro, bromo, and iodo), substituted or unsubstituted alkyl groups having from 1 to 12 carbon atoms (such as methyl, ethyl, isopropyl, t-butyl, «-pentyl and «-propyl) that can be further substituted with any of the substituents listed herein (such as haloalkyl groups including trihalomethyl groups), substituted or unsubstituted alkoxy groups having 1 to 12 carbon atoms (such as methoxy, ethoxy, isopropoxy, «-pentoxy and n- propoxy), cyano, nitro, substituted or unsubstituted aryl groups having 6 to 14 carbon atoms in the aromatic carbocyclic ring (as defined above for R, ,
  • R 4 contains 1 to 5 substituents (more preferably 1 or 2 substituents) on the phenyl moiety, which substituents are either halo groups, substituted or unsubstituted methyl or ethyl groups, or substituted or unsubstituted methoxy or 2- ethoxy groups. More preferably, R 4 comprises 1 to 3 methyl, fluoro, chloro, bromo or methoxy groups, or any combination of these groups on either the alkylene or phenyl moiety.
  • the heat-sensitive polymers may be readily prepared using many methods that will be obvious to one skilled in the art. Many quaternary ammonium salts and carboxylic acid or anhydride-containing polymers are commercially available. Others can be readily synthesized using preparative techniques that would be obvious to one skilled in the art. Substituted benzyltrialkylammonium salts can be readily synthesized using preparative techniques that would be obvious to one skilled in the art. One convenient method involves the reaction of a substituted benzylamine with a desired alkyl halide, alkyl sulfonate ester or other alkyl-containing compound having a suitable "leaving" group. Another useful method involves the reaction of a substituted benzylic halide with a trialkylamine.
  • the carboxylic acid or anhydride-containing polymers can be converted to the desired quaternary ammonium carboxylate salts by a variety of methods including, but not necessarily limited to: 1 ) the reaction of a carboxylic acid- or acid anhydride-containing polymer with the hydroxide salt of the desired quaternary ammonium ion,
  • the first method is employed.
  • imaging compositions in which the polymer is incompletely converted may still retain satisfactory imageability.
  • at least 50 monomer percent of the carboxylic acid (or equivalent anhydride) containing monomers are reacted to form the desired quaternary ammonium groups.
  • the heat-sensitive polymer is crosslinked.
  • Crosslinking can be provided in a number of ways. There are numerous monomers and methods for crosslinking that are familiar to one skilled in the art. Some representative crosslinking strategies include, but are not necessarily limited to:
  • Lewis basic units such as carboxylic acid, carboxylate, amine and thiol units within the polymer with a multifiictional epoxi de-containing crosslinker or resin
  • Ethylenically unsaturated polymerizable monomers having crosslinkable groups can be copolymerized with the other monomers as noted above.
  • Such monomers include, but are not limited to, 3-(trimethylsilyl)propyl acrylate or methacrylate, cinnamoyl acrylate or methacrylate, N-methoxymethyl methacrylamide, N-aminopropylmethacrylamide hydrochloride, acrylic or methacrylic acid and hydroxyethyl methacrylate.
  • crosslinking is provided by the addition of an epoxy- containing resin to the quaternary ammonium carboxylate polymer or by the reaction of a bisvinylsulfonyl compound with amine containing units (such as N- aminopropylmethacrylamide ) within the polymer.
  • a bisvinylsulfonyl compound with amine containing units (such as N- aminopropylmethacrylamide ) within the polymer.
  • CR-5L an epoxide resin sold by Esprit Chemicals
  • the imaging layer of the imaging member can include one or more of such homopolymers or copolymers, with or without up to 50 weight % (based on total dry weight of the layer) of additional binder or polymeric materials that will not adversely affect its imaging properties.
  • the amount of heat-sensitive polymer(s) used in the imaging layer is generally at least 0.1 g/m 2 , and preferably from about 0.1 to about 10 g/m 2 (dry weight). This generally provides an average dry thickness of from about 0.1 to about 10 ⁇ m.
  • the imaging layer can also include one or more conventional surfactants for coatability or other properties, dyes or colorants to allow visualization of the written image, or any other addenda commonly used in the lithographic art, as long as the concentrations are low enough so they are inert with respect to imaging or printing properties.
  • the heat-sensitive imaging layer also includes one or more photothermal conversion materials to absorb appropriate radiation from an appropriate energy source (such as an IR laser), which radiation is converted into heat.
  • an appropriate energy source such as an IR laser
  • the radiation absorbed is in the infrared and near- infrared regions of the electromagnetic spectrum.
  • Such materials can be dyes, pigments, evaporated pigments, semiconductor materials, alloys, metals, metal oxides, metal sulfides or combinations thereof, or a dichroic stack of materials that absorb radiation by virtue of their refractive index and thickness. Borides, carbides, nitrides, carbonitrides, bronze-structured oxides and oxides structurally related to the bronze family but lacking the WO 29 component, are also useful.
  • Carbon blacks which are surface-functionalized with solubilizing groups are well known in the art and these types of materials are preferred photothermal conversion materials for this invention.
  • Carbon blacks which are grafted to hydrophilic, nonionic polymers, such as FX-GE-003 (manufactured by Nippon Shokubai), or which are surface-functionalized with anionic groups, such as CAB-O-JET ® 200 or CAB-O- JET ® 300 (manufactured by the Cabot Corporation) are especially preferred.
  • Useful absorbing dyes for near infrared diode laser beams are described, for example, in US-A-4,973,572 (DeBoer), incorporated herein by reference.
  • Particular dyes of interest are "broad band” dyes, that is those that absorb over a wide band of the spectrum. Mixtures of pigments, dyes, or both, can also be used.
  • Particularly useful infrared radiation absorbing dyes include those illustrated as follows:
  • Useful oxonol compounds that are infrared radiation sensitive include Dye 5 noted above and others described in copending and commonly assigned U.S.S.N. 09/444,695, filed November 22, 1999 by DoMinh et al. and entitled "Thermal Switchable Composition and Imaging Member Containing Oxonol IR Dye and Methods of Imaging and Printing".
  • the photothermal conversion material(s) are generally present in an amount sufficient to provide an optical density of at least 0.3 (preferably of at least 0.5 and more preferably of at least 1.0) at the operating wavelength of the imaging laser.
  • the particular amount needed for this purpose would be readily apparent to one skilled in the art, depending upon the specific material used.
  • a photothermal conversion material can be included in a separate layer that is in thermal contact with the heat-sensitive imaging layer.
  • the action of the photothermal conversion material can be transferred to the heat-sensitive polymer layer without the material originally being in the same layer.
  • the heat-sensitive composition can be applied to the support using any suitable equipment and procedure, such as spin coating, knife coating, gravure coating, dip coating or extrusion hopper coating.
  • the composition can also be applied by spraying onto a suitable support (such as an on-press printing cylinder) as described in US-A-5,713,287 (noted above).
  • the imaging members of this invention can be of any useful form including, but not limited to, printing plates, printing cylinders, printing sleeves and printing tapes (including flexible printing webs).
  • the imaging members are printing plates.
  • Printing plates can be of any useful size and shape (for example, square or rectangular) having the requisite heat-sensitive imaging layer disposed on a suitable support.
  • Printing cylinders and sleeves are known as rotary printing members having the support and heat-sensitive layer in a cylindrical form. Hollow or solid metal cores can be used as substrates for printing sleeves.
  • the imaging member of this invention is exposed to a suitable source of energy that generates or provides heat, such as a focused laser beam or a thermoresistive head, in the foreground areas where ink is desired in the printed image, typically from digital information supplied to the imaging device. No additional heating, wet processing, or mechanical or solvent cleaning is needed before the printing operation.
  • a laser used to expose the imaging member of this invention is preferably a diode laser, because of the reliability and low maintenance of diode laser systems, but other lasers such as gas or solid state lasers may also be used. The combination of power, intensity and exposure time for laser imaging would be readily apparent to one skilled in the art.
  • the imaging member is typically sensitized so as to maximize responsiveness at the emitting wavelength of the laser.
  • the dye is typically chosen such that its ⁇ max closely approximates the wavelength of laser operation.
  • the imaging apparatus can operate on its own, functioning solely as a platesetter, or it can be incorporated directly into a lithographic printing press. In the latter case, printing may commence immediately after imaging, thereby reducing press set-up time considerably.
  • the imaging apparatus can be configured as a flatbed recorder or as a drum recorder, with the imaging member mounted to the interior or exterior cylindrical surface of the drum.
  • the requisite relative motion between the imaging device (such as a laser beam) and the imaging member can be achieved by rotating the drum (and the imaging member mounted thereon) about its axis, and moving the imaging device parallel to the rotation axis, thereby scanning the imaging member circumferentially so the image "grows" in the axial direction.
  • the thermal energy source can be moved parallel to the drum axis and, after each pass across the imaging member, increment angularly so that the image "grows" circumferentially. In both cases, after a complete scan by the laser beam, an image corresponding to the original document or picture can be applied to the surface of the imaging member.
  • the laser beam is drawn across either axis of the imaging member, and is indexed along the other axis after each pass. Obviously, the requisite relative motion can be produced by moving the imaging member rather than the laser beam.
  • thermoresistive head thermal printing head
  • thermal printing described for example in US-A-5,488,025 (Martin et al.).
  • Thermal print heads are commercially available (for example, as Fujitsu Thermal Head FTP-040 MCS001 and TDK Thermal Head F415 HH7-1089).
  • printing can then be carried out by applying a lithographic ink and fountain solution to the imaging member printing surface, and then transferring the ink to a suitable receiving material (such as cloth, paper, metal, glass or plastic) to provide a desired impression of the image thereon.
  • a suitable receiving material such as cloth, paper, metal, glass or plastic
  • an intermediate "blanket” roller can be used to transfer the ink from the imaging member to the receiving material.
  • the imaging members can be cleaned between impressions, if desired, using conventional cleaning means.
  • the polymers prepared as described below were characterized as having the ratio of moles of quaternary ammonium carboxylate groups to grams of polymer as shown in TABLE I below.
  • aqueous solution [60.00 g of a 25% (w/w)] of polyacrylic acid (available from Polysciences, MW ⁇ 90,000) was combined with 60.0 g distilled water and 84.63 g of a 41.5% (w/w) methanolic solution of benzyltrimethylammonium hydroxide (Aldrich Chemical). A gummy precipitate initially formed and was slowly redissolved over 30 minutes. The resulting polymer was stored as a 32% (w/w) solution in a water/methanol mixture.
  • a nitrogen-degassed solution of acrylic acid (1.00 g) and 3- aminopropylmethacrylamide hydrochloride (0.13 g) in water (10 ml) were added gradually over one hour using syringe pump to a rapidly stirring, nitrogen degassed solution of 2,2'-azobis(2-methylpropionamidine) dihydrochloride (0.056 g) in water (20 ml) at 60°C.
  • the reaction solution was allowed to stir at 60°C for an additional one hour and was then precipitated into acetonitrile.
  • the solids were collected by vacuum filtration and dried in a vacuum oven at 60°C overnight to afford 0.85 g of the product copolymer as a white powder.
  • the clear solution was passed through a flash chromatography column packed with 300 cc 3 DOWEX ® 550A OH resin using methanol eluent and concentrated to ⁇ 50 ml by rotary evaporation.
  • the concentration of hydroxide anion in the solution was determined to be 1.353. meq/g by HC1 titration.
  • aqueous solution [8.00 g of a 25% (w/w)] of polyacrylic acid (Polysciences, MW ⁇ 90,000) was combined with 10.00 g methanol and 12.31 g of a 2.254 meq/g (38.5% w/w) methanolic solution of phenyltrimethylammonium hydroxide (available from TCI America). A gummy precipitate initially formed and was slowly redissolved over 30 minutes. The resulting polymer was stored as a 21% ⁇ (w/w) solution in a water/methanol mixture.
  • step B The product solution of step A was combined in a 500 ml round bottomed flask with 9: 1 methanol: water (130 ml) and silver (I) oxide (16.59 g). The flask grew slightly warm and the silver (I) oxide turned from black to a dull gray. The reaction solution was allowed to stir for an hour at room temperature and the insolubles were filtered off. The filtrates were passed through a flash chromatography column packed with 300 cm 3 of DOWEX ® 550A OH resin using a methanol eluent. The collected fractions were concentrated to a weight of 36 g by rotary evaporation. The concentration of hydroxide anion was determined to be 2.218 meq/g by HC1 titration.
  • Step B A sample (7.39 g) of the product from step A was converted from the bromide to the hydroxide using 5.65 g silver (I) oxide and 70 ml of a 9:1 methanol: water mixture in an analogous manner as used for Polymer 6 (Step B). A solution (14.50 g) of 1.452 meq/g of hydroxide anion was obtained.
  • the filtrates were concentrated to an orange oil, dissolved in 200 ml methanol, adsorbed onto about 100 cm 3 silica gel, and loaded onto the top of a flash chromatography column packed with about 1000 cm 3 of silica gel.
  • the column was first eluted with 1 :1 ethyl acetate :hexane to remove an organic-soluble impurity, and then with methanol to elute the desired product.
  • the collected methanolic solution was concentrated to a yellowish oil on a rotary evaporator to provide 15.0 g of the purified spiro-indolinium bromide salt.
  • Step B All of the purified product from Step A was dissolved in 150 ml of a 9:1 methanol: water mixture. It was then converted to the corresponding hydroxide salt with silver (I) oxide (27.34 g) in an analogous manner as used for Polymer 6 (Step B). A solution (41.9 g) of 1.300 meq/g of hydroxide anion was obtained.
  • MW ⁇ 90,000 was combined with 13.34 g of the solution from step B. A gummy precipitate initially formed and was slowly redissolved over 30 minutes. The resulting polymer was stored as a 23.28 % (w/w) solution in a water/methanol mixture.
  • Polymer 1 was stored as a 32% (w/w) solution in water-methanol. Because this polymer is outside the scope of the present invention (no substituents on benzyl group), this polymer was used to make a Control printing plate.
  • the first step involved the reaction of the substituted benzyl halides with 1.5 to 3.0 equivalents of trimethylamine in ether to yield substituted benzyltrimethylammonium halide salts. These salts were characterized by proton NMR and electrospray-MS and the purity was further checked by reverse phase HPLC.
  • the second step involved the conversion of the halide salts to the corresponding hydroxides using 1.0 equivalents of Ag 2 O in methanol-water followed by the removal of volatiles to afford solutions with a hydroxide content of 0.5 to 2.5 mEq/g as determined by HC1 titration.
  • the hydroxide salts were characterized by electrospray- MS and the purity was checked by reverse phase HPLC.
  • solutions usually 20%
  • w/w the number of substituted benzyltrimethylammonium hydroxides
  • MeOH/water having weight ratios ranging from 2:1 to 1 :2
  • Polymers 12-23 were synthesized using analogous procedures. Variations from the representative procedure are noted where applicable in TABLE II below.
  • the insoluble materials were filtered off and the filtrates were concentrated to 80 ml by rotary evaporation.
  • the clear solution was passed through a flash chromatography column packed with 300 cm 3 DOWEX ® 550A OH resin using methanol eluent and concentrated to ⁇ 50 ml by rotary evaporation.
  • the concentration of hydroxide anion in the solution was determined to be 1.353. meq/g by HC1 titration.
  • step B 10.00 g (2.99 x 10 "2 mol) of the product from step A was converted to the corresponding hydroxide salt using the procedure described for Polymer 2 (step B). 30 ml of a solution with a hydroxide content of 0.906 mEq/g was obtained.
  • a coating formulation was prepared comprising Polymer 1 solution (3.74 g), CR-5L (0.12 g, an epoxy resin sold by Esprit Chemicals), FLUORAD FC-135 cationic surfactant (0.024 g of a 50% solution in isopropanol, 3M Co.), FX-GE-003 (1.80 g, a 10 % dispersion of polymer-grafted carbon black manufactured by Nippon Shokubai), methanol (9.66 g) and water (0.66 g).
  • the printing plates were then exposed on a platesetter (similar to the commercially available CREO TRENDSETTERTM, but smaller in size) having an array of laser diodes operating at a wavelength of 830 nm each focused to a spot diameter of 23 ⁇ m. Each channel provided a maximum of 356 mW of power incident on the recording surface.
  • the printing plates were mounted on a drum whose rotation speed was varied to provide for a series of images set at various exposures as listed in TABLE III below.
  • the laser beams were modulated to produce halftone dot images.
  • the imaged printing plates were mounted on a commercial A.B. Dick 9870 duplicator press and paper prints were made using VanSon Diamond Black lithographic printing ink and Universal Pink fountain solution containing PAR alcohol substitute (Varn Products Company). It was apparent that the printing plates produced solid images of good quality at the two higher exposure levels. The background showed no scumming and no blanket toning or wear was observed over the press run of 2,000 impressions.
  • the imaging layer coating formulation comprised the Polymer 2 solution (5.68 g), CR-5L (0.12 g), FLUORAD FC-135 cationic surfactant (0.024 g), FX-GE-003 (1.80 g), methanol (8.69 g) and water (8.69 g).
  • the plates Upon printing, the plates produced solid images of good quality at the two higher exposure levels.
  • the background showed no scumming and no blanket toning or wear was observed over the press run of 2,000 impressions.
  • Example 3 Printing Plate Prepared Using Polymer 3 A coating formulation was prepared comprising the Polymer 3 solution
  • This mixture was roll-milled overnight and coated on a gelatin-subbed polyethylene terephthalate support with a wet coverage of 2.36 ml/ft 2 (25.5 ml/m 2 ) that was sufficient to afford a dry coverage of 100 mg/ft 2 (1.08 g/m 2 ) of polymer and 10 mg/ft 2 (108 mg/m 2 ) of carbon black.
  • the printing plates were dried in a convection oven at 80°C for 4 minutes.
  • the printing plates were then imaged and run on press as described in Example 1. Upon printing, the plates produced solid images of good quality at the highest exposure level. The background showed no scumming and no blanket toning was observed over the press run of 1,000 impressions.
  • Printing plates were prepared, imaged and used on press as described in Example 1.
  • the coating formulation comprised the Polymer 4 solution (4.76 g), CR-5L (0.12 g), FLUORAD FC-135 cationic surfactant (0.024 g), FX-GE-003 (1.80 g), methanol (9.15 g) and water (9.15 g).
  • the imaging exposure series is shown in TABLE IV below.
  • the printing plates produced solid images of good quality at the higher two exposure levels.
  • the background showed no scumming and no blanket toning or wear was observed over the press run of 2,000 impressions.
  • the imaging layer coating formulation comprised the Polymer 5 solution (5.83 g), CR-5L (0.12 g), FLUORAD FC-135 cationic surfactant (0.024 g), FX-GE-003 (1.80 g), methanol (8.62 g) and water (8.62 g).
  • the resulting printing plates were imaged in the same manner as described in Example 4 and used for printing in the same manner as described in Example 1.
  • the printing plates produced solid images of good quality at all exposure levels. No wear was observed over the press run of 2000 impressions.
  • the ink setting on the A.B. Dick duplicator press was maintained at 3 while the fountain solution setting was slowly decreased from 20 (its standard setting) to 12. The background remained very clean until a setting of 14 was reached. As the fountain level was restored to 20, the plates rapidly cleared up and continued to provide good quality impressions.
  • Imaging layer coating formulation comprised the Polymer 6 solution (6.73 g), CR-5L (0.12 g), FLUORAD FC-135 cationic surfactant (0.024 g), FX-GE-003 (1.80 g), methanol (8.16 g) and water (8.16 g).
  • the printing plates were imaged as described in Example 4 and used for printing as described in Example 1. They provided solid images of good quality at the three highest exposure levels. No scumming, blanket toning, or wear was observed over the press run of 2000 impressions.
  • Printing plates were prepared as described in Example 1 except that the plate was cured at 80 °C for 20 minutes.
  • the imaging layer coating formulation comprised the Polymer 7 solution (7.30 g), CR-5L (0.12 g), FLUORAD FC-135 cationic surfactant (0.024 g), FX-GE-003 (1.80 g), methanol (7.88 g) and water (7.88 g).
  • the printing plates were imaged as described in Example 4 and used for printing as described in Example 1.
  • the printing plates provided solid images of good quality at all exposure levels. No wear was observed over the press run of 2000 impressions.
  • the ink setting on the A.B. Dick duplicator press was maintained at 3 while the fountain setting was slowly decreased from 20 (its standard setting) to 12. The background remained very clean until a setting or 14 was reached. As the fountain level was restored to 20, the printing plates rapidly cleared up and continued to provide good quality impressions.
  • Example 8 Printing Plate Prepared Using Polymer 8 Printing plates were prepared in an identical manner as described in
  • Example 1 except that they were cured at 80°C for 3.5 minutes.
  • the imaging layer coating formulation comprised the Polymer 8 solution (5.12 g), CR-5L (0.12 g), FC-135 (0.024 g), FX-GE-003 (1.80 g), methanol (8.95 g) and water (8.95 g).
  • the plates were imaged in the same manner as described in Example 4 and run on press in the same manner as described in Example 1. They produced solid images of good quality at all exposure levels. No wear was observed over the press run of 2000 impressions.
  • the ink setting on the A.B. Dick duplicator press was maintained at 3 while the fountain setting was slowly decreased from 20 (its standard setting) to 12. The background remained very clean until a setting or 14 was reached. As the fountain level was restored to 20, the plates rapidly cleared up and continued to print good quality impressions.
  • Printing plates were prepared in an identical manner as described in Example 1 except that they were cured at 80°C for 5 minutes.
  • the imaging layer coating formulation comprised the Polymer 9 solution (6.74 g), CR-5L (0.12 g), FC-135 (0.024 g), FX-GE-003 (1.80 g), methanol (8.16 g) and water (8.16 g).
  • the plates were imaged in the same manner as described in Example 4 and run on press in the same manner as described in Example 1. They produced solid images of good quality at all exposure levels. No wear was observed over the press run of 2000 impressions.
  • the formulation, coating, and imaging procedures described herein using polymers 10-25 are analogous to those described hereinabove for polymers 1-9.
  • Coating formulations were prepared using each of the heat-sensitive switchable polymers 10-25 and the additional components in such quantities as to provide 25 g coating mixtures of approximately 6% solids that, when coated at a wet coverage of 2.36 cm 3 /ft 2 (25.5 cm 3 /m 2 ) yield the target dry laydowns listed below in TABLE V.
  • the diluent solvent was either 1 :1 methanol: water (Polymers 10-18) or methanol (Polymers 19-23).
  • the components were combined in a glass jar and stirred vigorously with a magnetic stirrer for one hour to afford the coating mixtures.
  • the coating mixtures were coated using a digitally controlled syringe drive coating machine on a mechanically grained and anodized aluminum support and dried in an oven at 80°C for 20 minutes.
  • the printing plates were exposed on an experimental platesetter (similar to the commercially available CREO TRENDSETTERTM platesetter, but smaller in size) having an array of laser diodes operating at a wavelength of 830 nm each focused to a spot diameter of 23 ⁇ m. Each channel provides a maximum of 450 mW of power incident on the recording surface.
  • the plates were mounted on a drum whose rotation speed was varied to provide for a series of images set at various exposures as listed in TABLE VI below.
  • the laser beams were modulated to produce halftone dot images.
  • the exposed printing plates were mounted on a commercial A.B. Dick 9870 duplicator press and prints were made using VanSon Diamond Black lithographic printing ink and Universal Pink fountain solution containing PAR alcohol substitute (Varn Products Company). Each plate was run for approximately 1 ,000 impressions.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

L'invention concerne la préparation d'un élément de formation d'image tel qu'une plaque d'impression ou un cylindre d'impression à négatif, au moyen d'une couche hydrophile de formation d'image comprenant un polymère hydrophile thermosensible qui contient des motifs répétés comprenant des groupes carboxylate d'ammonium quaternaire. Dans une forme préférée, ces groupes carboxylate d'ammonium quaternaire comprennent au moins un groupe alkylène-phényle (C1-C3) substitué. Cet élément de formation d'image peut également comprendre un matériau sensible au rayonnement infrarouge qui augmente sa sensibilité à la chaleur, cette dernière pouvant être fournie par une irradiation laser dans les régions IR. Ce polymère thermosensible est considéré comme « commutable » en réaction à la chaleur et permet d'obtenir une image lithographique sans traitement humide.
EP00982378A 1999-12-03 2000-12-04 Element thermosensible pour preparer une plaque d'impression lithographique Expired - Lifetime EP1244548B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03028448A EP1413432B1 (fr) 1999-12-03 2000-12-04 Elément thermosensible pour l'enregistrement d'images pour la fabrication de plaques d'impression lithographiques

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/454,151 US6447978B1 (en) 1999-12-03 1999-12-03 Imaging member containing heat switchable polymer and method of use
US454151 1999-12-03
US09/644,600 US6451500B1 (en) 1999-12-03 2000-08-23 Imaging member containing heat switchable carboxylate polymer and method of use
US644600 2000-08-23
PCT/US2000/032841 WO2001039985A2 (fr) 1999-12-03 2000-12-04 Element de formation d'image contenant un polymere a commutation thermique et procede d'utilisation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP03028448A Division EP1413432B1 (fr) 1999-12-03 2000-12-04 Elément thermosensible pour l'enregistrement d'images pour la fabrication de plaques d'impression lithographiques

Publications (2)

Publication Number Publication Date
EP1244548A2 true EP1244548A2 (fr) 2002-10-02
EP1244548B1 EP1244548B1 (fr) 2004-06-16

Family

ID=27037355

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00982378A Expired - Lifetime EP1244548B1 (fr) 1999-12-03 2000-12-04 Element thermosensible pour preparer une plaque d'impression lithographique

Country Status (5)

Country Link
EP (1) EP1244548B1 (fr)
AU (1) AU1942001A (fr)
BR (1) BR0016070A (fr)
DE (2) DE60011675T2 (fr)
WO (1) WO2001039985A2 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610458B2 (en) 2001-07-23 2003-08-26 Kodak Polychrome Graphics Llc Method and system for direct-to-press imaging
JP3917422B2 (ja) * 2001-07-26 2007-05-23 富士フイルム株式会社 画像形成材料
US6762223B2 (en) 2001-10-31 2004-07-13 Kodak Polychrome Graphics Llc Stabilized imageable coating composition and printing plate precursor
US6841335B2 (en) 2002-07-29 2005-01-11 Kodak Polychrome Graphics Llc Imaging members with ionic multifunctional epoxy compounds
US7090957B2 (en) * 2002-09-11 2006-08-15 Fuji Photo Film Co., Ltd. Polymerizable composition and planographic printing plate precursor using the same
JP4133493B2 (ja) * 2003-03-25 2008-08-13 富士フイルム株式会社 赤外線レーザ用ポジ型平版印刷版原版
US7371454B2 (en) 2003-12-15 2008-05-13 Eastman Kodak Company Imageable element comprising sulfated polymers
EP1584485B1 (fr) 2004-04-09 2007-12-05 FUJIFILM Corporation Précurseur de plaque d'impression lithographique et méthode pour l'impression lithographique.
JP2005305735A (ja) 2004-04-20 2005-11-04 Fuji Photo Film Co Ltd 平版印刷版原版および平版印刷方法
US7402374B2 (en) 2004-05-31 2008-07-22 Fujifilm Corporation Method for colored image formation
JP2006062188A (ja) 2004-08-26 2006-03-09 Fuji Photo Film Co Ltd 色画像形成材料及び平版印刷版原版
JP5150287B2 (ja) * 2008-02-06 2013-02-20 富士フイルム株式会社 平版印刷版の作製方法及び平版印刷版原版

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910395A (en) * 1995-04-27 1999-06-08 Minnesota Mining And Manufacturing Company Negative-acting no-process printing plates
EP0980754B1 (fr) * 1998-08-14 2005-10-05 Fuji Photo Film Co., Ltd. Composition photopolymère, précurseur d'une plaque d'impression lithographique et procédé de fabrication d'une plaque d'impression lithographique
ATE288359T1 (de) * 1999-02-22 2005-02-15 Fuji Photo Film Co Ltd Wärmeempfindliche lithographische druckplatte

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0139985A3 *

Also Published As

Publication number Publication date
WO2001039985A3 (fr) 2001-11-08
AU1942001A (en) 2001-06-12
WO2001039985A2 (fr) 2001-06-07
DE60011675T2 (de) 2005-07-07
DE60023197T2 (de) 2006-07-06
DE60023197D1 (de) 2006-02-23
BR0016070A (pt) 2003-02-25
DE60011675D1 (de) 2004-07-22
EP1244548B1 (fr) 2004-06-16

Similar Documents

Publication Publication Date Title
EP1413432B1 (fr) Elément thermosensible pour l'enregistrement d'images pour la fabrication de plaques d'impression lithographiques
US6190831B1 (en) Processless direct write printing plate having heat sensitive positively-charged polymers and methods of imaging and printing
US6190830B1 (en) Processless direct write printing plate having heat sensitive crosslinked vinyl polymer with organoonium group and methods of imaging and printing
US5985514A (en) Imaging member containing heat sensitive thiosulfate polymer and methods of use
EP1291173B1 (fr) Composition activable thermiquement, élément d'imagerie contenant un colorant du type oxonol, et procédés d'imagerie et d'impression
US6465152B1 (en) Imaging member containing heat sensitive thiosulfate polymer on improved substrate and methods of use
US6413694B1 (en) Processless imaging member containing heat sensitive sulfonate polymer and methods of use
WO2003010600A2 (fr) Procede et systeme d'imagerie directe de presse
US6423469B1 (en) Thermal switchable composition and imaging member containing oxonol IR dye and methods of imaging and printing
EP1244548B1 (fr) Element thermosensible pour preparer une plaque d'impression lithographique
US6569597B2 (en) Thermal imaging composition and member and methods of imaging and printing
US6660449B2 (en) Heat-sensitive compositions and imaging member containing carbon black and methods of imaging and printing
US6399268B1 (en) Processless direct write imaging member containing polymer grafted carbon and methods of imaging and printing
JP4213311B2 (ja) 感熱性チオスルフェートポリマーを含む画像形成部材及びその使用方法
US7022461B2 (en) Thermal imaging composition and member and methods of imaging and printing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020528

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20021227

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60011675

Country of ref document: DE

Date of ref document: 20040722

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040616

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061201

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101217

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120103

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121128

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20121212

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121221

Year of fee payment: 13

BERE Be: lapsed

Owner name: *KODAK POLYCHROME GRAPHICS CY LTD

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60011675

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60011675

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131204