EP1244480A1 - Hemodiafiltrationssystem - Google Patents

Hemodiafiltrationssystem

Info

Publication number
EP1244480A1
EP1244480A1 EP00989978A EP00989978A EP1244480A1 EP 1244480 A1 EP1244480 A1 EP 1244480A1 EP 00989978 A EP00989978 A EP 00989978A EP 00989978 A EP00989978 A EP 00989978A EP 1244480 A1 EP1244480 A1 EP 1244480A1
Authority
EP
European Patent Office
Prior art keywords
substituate
dialysate
hollow fiber
fiber membranes
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00989978A
Other languages
English (en)
French (fr)
Inventor
Ulrich Baurmeister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Membrana GmbH
Original Assignee
Membrana GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Membrana GmbH filed Critical Membrana GmbH
Publication of EP1244480A1 publication Critical patent/EP1244480A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3413Diafiltration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1621Constructional aspects thereof
    • A61M1/1635Constructional aspects thereof with volume chamber balancing devices between used and fresh dialysis fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1654Dialysates therefor
    • A61M1/1656Apparatus for preparing dialysates
    • A61M1/1672Apparatus for preparing dialysates using membrane filters, e.g. for sterilising the dialysate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • A61M1/3424Substitution fluid path
    • A61M1/3431Substitution fluid path upstream of the filter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • A61M1/3424Substitution fluid path
    • A61M1/3437Substitution fluid path downstream of the filter, e.g. post-dilution with filtrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • A61M1/3441Substitution rate control as a function of the ultrafiltration rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • A61M1/3455Substitution fluids
    • A61M1/3465Substitution fluids using dialysate as substitution fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/19Specific flow restrictors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/23Specific membrane protectors, e.g. sleeves or screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/90Additional auxiliary systems integrated with the module or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/90Additional auxiliary systems integrated with the module or apparatus
    • B01D2313/903Integrated control or detection device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/243Dialysis

Definitions

  • the invention relates to a hemodiafiltration system for the treatment of blood, comprising a membrane module which has a cylindrical housing with a longitudinal extension, in which hollow-fiber membranes with a semipermeable wall embedded in the first and second potting compound, which can flow through on the lumen side and at their ends are embedded in a fluid-tight manner with the inner wall of the housing Are arranged in the direction of the longitudinal extent, and which has a dialysate space into which an inlet device for dialysate and an outlet device for dialysate open, and a substituate space into which an inlet device for substituate opens, means for supplying a dialysate with a defined volume flow via the inlet device for dialysate into the dialysate chamber, means for discharging the dialysate via the outlet device for dialysate from the dialysate room, means for feeding a substituate with a defined volume flow via the inlet device for sub stituat in the substituatraum, wherein the membrane module is designed as a uniform
  • the invention also relates to a membrane module for hemodiafiltration.
  • Hemodiafiltration or the hemodiafiltration process is a membrane-based combination process for blood purification, in which hemodialysis and hemofiltration are carried out simultaneously. This procedure combines the advantages of convective mass transfer in hemofiltration with those of diffusion in hemodialysis.
  • blood is directed past one side of the membrane of a hemofilter, with part of the liquid in the blood being drawn off through the membrane by ultrafiltration.
  • This partial flow is replaced by a sterile and pyrogen-free substitution liquid or a substitute which is supplied to the extracorporeal blood flow either upstream of the hemofilter in the form of a pre-dilution (predilution) or downstream of the hemofilter in the form of a post-dilution (post-dilution).
  • pre-dilution pre-dilution
  • post-dilution post-dilution
  • hemodialysis is also carried out in hemodiafiltration, in which dialysate is passed past the other side of the membrane of the hemodialyzer, so that substances that require urine can be removed across the membrane.
  • the amount of ultrafiltrate is significantly increased to approximately 20 to 30% of the blood volume flow due to the liquid fraction which is required to increase the convective transport across the membrane.
  • the net amount of fluid ultimately withdrawn from the patient corresponds to that in conventional hemodialysis.
  • the amount of liquid going beyond that to increase the convective transport is, as stated, replaced by a substituate.
  • modified dialysis machines are generally used, which allow control of the ultrafiltration rates and carry out a balancing of the ultrafiltration volume flow and the substituate volume flow.
  • the dialysate can be produced on-line from fresh water and an electrolyte concentrate, the fresh water usually being sterile and the electrolyte concentrate being self-sterile.
  • the substitution liquid in turn can be prepared online from the dialysate.
  • the dialysate produced on-line is absolutely sterile and free of endotoxins and pyrogens or CIS.
  • Endotoxins Cell fragments of dead bacteria are referred to as endotoxins.
  • the endotoxin concentration is usually determined using the so-called LAL test, a biological assay such as that produced by BioWhittaker Inc.
  • Pyrogens are temperature-increasing substances. For example, they increase the body temperature when infused into rabbits. Pyrogens can include endotoxins or exotoxins. The latter are produced by living bacteria. In human blood, these substances stimulate monocytes, which in turn produce cytokines and thus trigger a cascade of further cell stimulation. Endotoxins, exotoxins, pyrogens and other blood-stimulating substances from the dialysate are therefore now combined under the abbreviation CIS (Cytokine Inducing Substances).
  • CIS Cytokine Inducing Substances
  • IL 6 interleukin 6
  • the determination of CIS by the detection of IL 6 is, for example, by BL Jaber et al., Blood Purif. 1998, Vol. 16, pages 210-219.
  • the dialysate for the preparation of the substitution liquid should e.g. be converted into the sterile and ideally CIS-free state using a filter.
  • the substitution liquid produced in this way can also be used as a dialysate.
  • Modern dialysis machines generally contain a device with which the dialysate is filtered on-line in such a way that it has a concentration of endodoxins of less than 0.5 EU per ml of dialysate. This means that even with so-called high-flux dialysis, there are almost no more pyrogenic reactions in the patient, which are frequently observed in dialysate contaminated by endotoxins.
  • EP-A 692 269 describes a hemodiafiltration device which has two blood filters connected in series.
  • the blood filters each contain membranes over which the blood to be cleaned flows on one side and dialysate on the other side.
  • the dialysate fed to the hemodiafiltration device is previously passed through a sterile filter.
  • dialysate in one of the two blood filters, due to the positive transmembrane pressure set there in the direction of the blood path through the membrane of this blood filter, dialysate as a substitution liquid is transferred directly into the blood.
  • a negative transmembrane pressure is detected in the second blood filter testifies, and there is a separation of part of the blood fluid and removal of urinary substances in the dialysate via diafiltration.
  • EP-A 451 429 also discloses a hemodiafiltration device which contains two membrane modules connected in series.
  • the first membrane module is a hemofilter, in which a partial flow of liquid is extracted from the blood to be purified, which primarily contains the medium-molecular substances to be removed from the blood.
  • the ultrafiltrate is regenerated in a special filter and returned to the blood stream before it is introduced into the second membrane module. This blood flow is then in the second membrane module. undergo hemodialysis.
  • DE-A 196 07 162 describes a hemodiafiltration system with a controlled feed for a substituate and a controlled feed for a dialysate in a dialyzer, the dialyzer as a single component for blood treatment, the substituate filtration and the mixing of the substituate with the treating blood is trained.
  • the dialyzer contains two membrane modules arranged next to one another, each with a bundle of hollow fiber membranes, the membrane modules being separated from one another by a partition wall which is essentially parallel to the hollow fiber membranes.
  • the first membrane module is used for hemodiafiltration and the second membrane branch module for sterile filtration of the substituate.
  • the dialyzer further comprises a chamber in which the purified substituate is combined with the blood to be treated.
  • the hemodiafiltration system described in DE-A 196 07 162 is simpler and more clearly structured in comparison to the systems with several blood filters connected in series.
  • the manufacture of the dialyzers comprising two modules disclosed in DE-A 196 07 162 proves to be difficult, in particular because of the handling of two different hollow fiber membrane bundles.
  • the membrane modules in the dialyzer are not arranged rotationally symmetrically, so that there is a risk of a non-uniform flow, in particular of the outer space around the hollow fiber membranes of the first membrane module, which is used for hemodiafiltration.
  • a hemodiafiltration system according to the preamble of claim 1, which is characterized in that the hollow fiber membranes are combined into a single bundle and the same hollow fiber membranes are used for blood treatment, for filtering the substituate and for supplying the substituate to the blood, that the hollow fiber membranes are formed around an outer space which is delimited by the inner wall of the housing and the first and second potting compound and which along the longitudinal extent of the housing through the partition into the substituate space and the dialysate space is divided, with the partition enclosing each hollow fiber membrane.
  • the housing of the membrane module used according to the invention is circular-cylindrical around its longitudinal axis oriented in the direction of the longitudinal extent, and the hollow fiber membranes are arranged in a bundle which is essentially rotationally symmetrical about the longitudinal axis.
  • the hollow fiber membranes are embedded at their ends in a fluid-tight manner in casting compounds, which at the same time distribute the outer space formed around the hollow fibers opposite a distribution space, in which the blood to be treated and introduced via a blood inlet device into the distribution space is distributed to the lumens of the hollow fiber membranes is closed, or opposite a collecting space in which the blood flowing out of the lumens is collected and discharged from the module via a blood outlet device.
  • the hollow fiber membranes extend with their ends open at the ends through the respective potting compound and are connected to the distributor space or the collection space on the lumen side, so that the blood to be treated can flow through them.
  • the same hollow fiber membranes are used for blood treatment, for filtering the substituate and for supplying the substituate to the blood, and the dialysate space and the substituate space are separated from one another by means of a partition, it follows that the hollow fiber membranes extend in the direction of extension seen dialysate space and substituate space are arranged side by side at different positions along the hollow fiber membranes, wherein the partition fills the inner cross section of the housing.
  • the partition wall in the membrane module used in the hemodiafiltration system according to the invention is preferably arranged essentially transversely to the hollow fiber membranes.
  • the blood removed from the patient and to be purified is introduced into the membrane module via the blood inlet device and passed through the lumen of the hollow fiber membranes.
  • the means for supplying dialysate which comprise suitable conveying means, for example in the form of a pump or a metering unit for conveying dialysate with a defined volume flow, and a dialysate line connected to the inlet device for the dialysate, fresh dialysate with a defined volume flow is supplied to the membrane module and via the Inlet device for the dialysate introduced into the dialysate room.
  • the dialysate is directed past the hollow fiber membranes, at the same time taking up the ultrafiltrate drawn from the blood through ultrafiltration through the walls of the hollow fiber membranes. Hemodiafiltration of the blood takes place in the area of the dialysate room, in which the urinary substances are extracted from the blood via diffusive and convective transport mechanisms.
  • the dialysate mixed with the ultrafiltrate is drawn off from the dialysate space by means of a dialysate flow pump via the outlet device for the dialysate, and the dialysate drain is drained off.
  • the substituate is introduced via its own means for supplying substituate with a defined volume flow via the inlet device for substituate under excess pressure into the substituate space and there via the walls of the sections of the hollow fiber membranes located in the substituate space to the blood flowing through the lumens of the hollow fiber membranes with a defined volume flow.
  • the amount of substituate to be supplied per unit of time ie the volume flow of substituate, results from the difference between the liquid flow drawn from the blood in the area of the dialysate space via ultrafiltration and the net filtration controlled and permanently preset by the dialysis machine.
  • the volume flow of substituate is generally smaller than the flow of dialysate introduced into the dialysate chamber.
  • the substituate can be added to the blood before it is subjected to hemodiafiltration (pre-dilution) or after it has been subjected to hemodiafiltration (post-dilution).
  • a control of the dialysate cycle including the administration of substituate.
  • the net filtration ie the net amount of liquid to be withdrawn from the blood in the area of the dialysate chamber, is set by means of an ultrafiltrate pump which is coupled to the balancing unit in terms of control technology.
  • the means for supplying the substituate are physically completely separate from the means for supplying the dialysate and comprise suitable subsidies for conveying substituate with a defined volume flow, e.g. in the form of a pump or a metering unit, and a substituate line which is separate from the dialysate line and is in fluid communication with the inlet device for the substituate.
  • suitable subsidies for conveying substituate with a defined volume flow e.g. in the form of a pump or a metering unit
  • a substituate line which is separate from the dialysate line and is in fluid communication with the inlet device for the substituate.
  • the funding for dialysate and the funding for substituate must be controlled separately by means of control loops coupled together.
  • the means for supplying substituate and the means for supplying dialysate are coupled to one another.
  • the coupling is particularly preferably realized in that these means comprise a common multiple pump, to which a dialysate feed line connected to the inlet device for dialysate and a substituate feed line connected to the inlet device for substituate are connected.
  • This multiple pump comprises a common pump drive to which two separate pump heads are coupled. The ratio of the substituate volume flow to the dialysate volume flow can be set via the delivery rate of the pump heads.
  • the means for supplying dialysate comprise a conveying device for dialysate and a dialysate feed line
  • the means for feeding substituate include a substituate feed line
  • the substituate feed line branches off from the dialysate feed line via a branch.
  • the substituate is removed via this branch from the dialysate feed line as a partial stream from the dialysate flowing through the dialysate feed line and via the substituate feed line and the inlet device for substituate into the substituate chamber, from where it is supplied to the blood flowing through the hollow fiber membranes via the walls of the hollow fiber membranes.
  • a pump is installed in the substituate feed line, through which a defined delivery of the substituate takes place, i.e. Via which the substituate volume flow is set, the pump being advantageously controllable.
  • the setting of the volume flows of dialysate and substituate or the ratio of these volume flows to each other can also be done via throttles. Therefore, in a likewise particularly preferred embodiment, a throttle is installed in the dialysate feed line in the area between the branching and the inlet device for dialysate or in the substituate feed line and the dialysate feed line in the area between the branching and the inlet device for dialysate for adjusting the ratio of the substituate volume flow to the dialysate volume flow.
  • a throttle is understood to mean a defined narrowing of a flow cross-section for the targeted generation of a defined pressure loss in the flow of a fluid through this constriction, ie the throttle has a flow cross-section that is reduced in the flow direction compared to the flow cross-section in front of and behind the throttle.
  • the flow cross section of the throttle has a defined fixed value that is independent of the medium flowing through or can be set to a defined value that is independent of the medium flowing through. With such throttles, the pressure loss occurring during the flow can be predetermined.
  • the throttles with a fixed flow cross-section include, for example, orifices in the form of perforated shutters or slit diaphragms, the flow cross-section of which can preferably be adjusted to the fixed cross-section, or capillary tubes with defined diameters, and the throttles with an adjustable cross-section, e.g. valves or throttle valves, in the pipelines are installed.
  • the chokes used according to the invention are preferably adjustable and particularly preferably controllable.
  • the dialysate flow introduced into the dialysate space and the substituate flow, and thus also the ratio of these two flows to one another, can be set to a defined value in a simple manner via the throttles arranged in the dialysate feed line or in the substituate feed line.
  • the hemodiafiltration system according to the invention is due to the membrane module used according to the invention, in which the dilution of the blood with substituate required in hemodiafiltration and the hemodiafiltration are integrated in a single membrane module in a simple, controllable and reproducible manner and, like conventional hemodialyzers, is a bundle of only Contains hollow fiber membranes, significantly simplified compared to the systems of the prior art.
  • the concept according to the invention of the separate supply of dialysate and substituate via respective means in the dialysate space and the substituate space, which are separated from one another in a fluid-tight manner enables the dialysate and substituate volume flows required to be adjusted in a manner adapted to the hemodiafiltration application.
  • hemodiafiltration can be carried out in dialysis machines on the market with volume flow-controlled ultrafiltration.
  • DE-A 28 51 929 discloses a module construction based on hollow fiber membranes, in which the dialysate space is divided into two partial spaces by a dense partition.
  • dialysate is passed through the one sub-space, which is provided with an inlet device and with an outlet device, in order to remove substances that require urine from the blood flowing through the hollow fiber membranes by diffusion.
  • a negative pressure is applied to the second partial space, which is provided with an outlet device, in order to draw off a filtrate from the blood flowing through the hollow fiber membranes via the walls of the hollow fiber membranes.
  • DE-A 28 51 929 does not disclose the use of such a membrane module in a hemodiafiltration system or the use of such a membrane module in a hemodiafiltration process.
  • the invention therefore also relates to the use of a membrane module which has a cylindrical housing with a longitudinal extension in which, in the direction of the longitudinal extension, a bundle of hollow fiber membranes through which the lumen can flow and which is embedded at its ends in a first and second potting compound which is fluid-tightly connected to the inner wall of the housing is arranged with a semi-permeable wall, and in which around the hollow fiber membranes is formed an outer space delimited by the inner wall of the housing and the first and second potting compound, which along the longitudinal extent of the housing by means of a continuous partition wall enclosing each individual hollow fiber membrane into a dialysate space and a substituate chamber, which is separated from the dialysate chamber in a fluid-tight manner, for carrying out a hemodiafiltration process in which, in addition to the actual blood treatment, the filtration also uses the bundle of hollow fiber membranes of the substituate and the delivery of the substituate to the blood.
  • the substituate can be supplied to the blood before or after the blood has been subjected to hemodiafiltration in the region of the dialysate chamber.
  • two substituate subspaces are arranged along the extension of the hollow fiber membranes adjacent to the embeddings of the hollow fiber membrane ends, each of which is separated from an intermediate dialysate space in a fluid-tight manner by a partition.
  • the dialysate space and thus the hemodiafiltration and to arrange, for example, two dialysate subspaces in the membrane module along the extension of the hollow fiber membranes adjacent to the embeddings of the hollow fiber membrane ends, each of which is separated from an intermediate substituate space by a partition.
  • the blood flows into the hollow fiber membranes at the end of the membrane module facing the dialysate space and flows through them in the direction of the end facing the substituate space.
  • the blood is then first withdrawn from the blood in the area of the dialysate space by means of ultrafiltration and then the substituate is added to the area of the substituate area.
  • dialysate inlet device is arranged adjacent to the dividing wall and the dialysate outlet device is arranged adjacent to the casting compound which delimits the dialysate space and surrounds the hollow fiber membrane ends.
  • the dialysate then flows through the dialysate chamber in the opposite direction to the blood flow.
  • the blood flows into the hollow fiber membranes at the end of the membrane module facing the substituate space and flows through them in the direction of the end facing the dialysate space.
  • the blood is first supplied with substituate in the area of the substituate area and then the necessary liquid is removed in the area of the dialysate area by means of ultrafiltration.
  • the dialysate inlet device is arranged adjacent to the potting compound delimiting the dialysate chamber and enclosing the hollow fiber membrane ends, and the dialysate outlet device is arranged adjacent to the partition, so that the dialysate flows through the dialysate chamber in the opposite direction to the flow of blood.
  • a sterile filter is often connected upstream of the actual membrane module, by means of which sterile filtration of the dialysate or at least of the liquid supplied as a substituate is carried out.
  • sterile filtration of the entire dialysate is not necessary, since the part of the dialysate ultimately passed as a dialysate over the hollow fiber membranes does not have to meet the high purity requirements as is the case for the substituate.
  • the sterile filtration of the substituate In the form of the hemodiafiltration system according to the invention, a sterile filter is arranged within the membrane module in the region of the substituate around the hollow fiber bundle, which surrounds the hollow fiber membrane bundle.
  • the invention also relates to a membrane module, comprising a cylindrical housing with a longitudinal extension, in which a bundle of hollow fiber membranes with a semipermeable wall through which the lumen can flow and oriented in the direction of the longitudinal extension of the housing is arranged, the ends of which are in a first and in a second with the Potting compound connected to the interior of the housing in a fluid-tight manner is embedded in such a fluid-tight manner that an outer space is formed around the hollow fiber membranes and is delimited by the first and the second potting compound and the interior wall of the housing and along the longitudinal extent of the housing by a partition wall enclosing each hollow fiber membrane and essentially transverse to the hollow fiber membranes is divided into a dialysate space and a substituate space, the dialysate space having an inlet device and an outlet device for introducing or discharging a dialysate, and the substituate space having at least one opening, e.g.
  • Ur introduction of a substituate characterized in that a sterile filter is arranged in the area of the substituate between the inlet device for the substituate and the hollow fiber membranes located in the substituate space, which divides the substituate space into an outer substituate part space and an inner substituate part space spatially separated from the outer substituate part space by the sterile filter , wherein the outer substituate compartment is in fluid communication with the inlet device for substituate and the hollow fiber membranes are arranged in the inner substituate compartment.
  • Spatial separation is understood here to mean that a fluid introduced into the outer substituate subspace via the inlet device for substituate can only get into the inner substituate subspace via the sterile filter itself, ie the sterile filter acts as a so-called dead-end filter.
  • the sterile filter is arranged around the hollow fiber bundle and encloses the hollow fiber membrane bundle.
  • the sterile filter divides the substituate space perpendicular to the hollow fiber membranes into the outer substituate subspace, in which the substituate can be uniformly distributed over the sterile filter, and into the inner substituate subspace containing the bundle of the hollow fiber membranes.
  • An optionally pleated flat membrane can advantageously be used as a sterile filter.
  • the use of a continuous microporous flat membrane is advantageous.
  • the sterile filter is preferably tight to the passage of endotoxins, ie endotoxin-tight, and particularly preferably ClS-impermeable, so as to ensure the supply of a sterile endotoxin- and pyrogen-free and preferably CIS-free substituent to the hollow fiber membranes in use.
  • a sterile filter which is impervious to the passage of endotoxins is understood to be a filter which, when filtered, contains a dialysate contaminated with an endotoxin concentration of up to 30 EU / ml .
  • the filtrate has an endotoxin concentration below the detection limit of conventional tests, ie below about 0.03 EU / ml.
  • the endotoxin concentration is then determined by means of conventional LAL tests as (Multi-test Limulus amebocyte lysates Pyrogent ®) are marketed and described, for example, by the company. BioWhitteker Inc..
  • These semipermeable membrane elements can be present, for example, in the form of capillary membranes which are closed at one end, preferably continuously microporous, which are embedded in the sealing compound and which protrude with their closed end into the substituate space.
  • these membrane elements are preferably impervious to the passage of endotoxins and particularly preferably CIS-impermeable.
  • the partition of the membrane module used in the hemodiafiltration system according to the invention or of the membrane module according to the invention consists of an essentially dimensionally stable material, i.e. from a material which essentially maintains its dimension in use under the then prevailing conditions and in particular through the liquids used, i.e. especially through the dialysate, is not swollen.
  • the dividing wall preferably consists of a hardened casting compound in which the hollow fiber membranes are embedded in such a way that they enclose each hollow fiber membrane.
  • the partition, the first and the second casting compound are particularly preferably made of the same material.
  • the materials that are usually used as potting compounds for embedding hollow fiber membranes can be used here, such as cured polyurethane resins, epoxy resins and the like.
  • the housing of the membrane module is preferably designed such that it bundles the hollow fiber membranes in the major part of the dialysis Satraums tightly encloses with its inside and has an expansion of the cross-section in the area of the casting compounds as well as the partition and the substituate area.
  • annular spaces are formed in these areas around the bundle of hollow fiber membranes for distributing the dialysate onto the hollow fiber membrane bundle, for collecting the dialysate from the membrane bundle and / or for distributing the substituate over the bundle.
  • the bundle preferably has, at least in the major part of the dialysate space, a packing density of the hollow fiber membranes of between 40 and 65%, which is based on the bundle cross section and is essentially uniform due to the extent of the bundle in this area. It has been shown that for the membrane module used according to the invention or according to the invention with such packing densities, a good removal of the urinary substances from the blood is made possible.
  • the housing of the membrane module is shaped in such a way that it closely encloses the inside of the bundle of hollow fiber membranes in the area of the dialysate chamber and has an expansion of the housing cross section in the area of the casting compounds and the partition wall and the substituate chamber, and is the hollow fiber membrane bundle so arranged in the housing that the cross section of the hollow fiber membrane bundle widens in the area of the partition and the substituate space and thus the packing density of the hollow fiber membranes in this area is lower than in the majority of the dialysate space.
  • the packing density of the hollow fiber membrane bundle is particularly preferably essentially homogeneous over the cross section.
  • the hollow fiber membranes in the interior of the bundle can also be easily reached from the dialysate or the substituate, and the substituate flows uniformly into all hollow fiber membranes of the bundle.
  • the manufacture of the membrane module is also simplified, since in the case of a dividing wall which consists of a casting compound, when the hollow-fiber membranes are embedded, the casting can enclose the individual hollow fiber membranes better.
  • the bundle In its expanded area, the bundle preferably has a packing density of between 20 and 55%, based on the respective bundle cross section.
  • the ratio L d / L s of the extension of the dialysate space L d to the extension of the substituate space L s should preferably be greater than 3.
  • L d / L s is therefore preferably in the range between 3 and 20 and particularly preferably between 5 and 15.
  • the thickness of the partition wall of the membrane module should be as small as possible. On the other hand, a certain minimum thickness is required to ensure sufficient stability of the partition. It is therefore advantageous if the partition wall has a thickness between 1 and 15 mm, and is particularly advantageous if it has a thickness between 5 and 10 mm.
  • the hollow fiber membranes used in the invention or in the membrane module according to the invention preferably have an ultrafiltration rate for Water between 20 and 1500 ml / (hm 2 mmHg), the ultrafiltration rate being determined by the method described in DE-A 195 18 624, the disclosure of which is expressly referred to here.
  • the dialysate and / or at least the substituate can be subjected to sterile filtration in a separate or in a sterile filter integrated in the membrane module of the hemodiafiltration system according to the invention.
  • this sterile filtration can also take place in the hollow fiber membranes of the membrane module of the hemodiafiltration system according to the invention itself.
  • the hollow fiber membranes are therefore impervious to endotoxins and particularly preferably impervious to cytokine-inducing substances.
  • the impermeability can be achieved by an appropriately set pore size of the separation-active layer of the membranes and / or by adsorptive properties of the hollow fiber membranes.
  • the hollow fiber membranes used according to the invention preferably have an inside diameter between 140 and 260 ⁇ m, the wall thickness is preferably between 5 and 100 ⁇ m and particularly preferably between 20 and 60 ⁇ m.
  • Preferred membrane materials are those which have good blood tolerance. These include polymers from the group of cellulosic polymers, such as cellulose or regenerated cellulose, modified cellulose, such as cellulose esters, cellulose ethers, amine-modified celluloses, and mixtures of cellulosic polymers, from the group of synthetic polymers such as polyacrylonitrile and corresponding copolymers, polyarylsulfones and Polyarylether- sulfones, such as polysulfone or polyether sulfone, polyamides, polyether block amides, polycarbonates or polyesters, and modifications, blends, mixtures or copolymers of these polymers obtained therefrom.
  • cellulosic polymers such as cellulose or regenerated cellulose, modified cellulose, such as
  • the membrane may also have been subjected to surface modification, for example, in order to adjust certain properties of the membrane surface, for example in the form of certain functional groups, or to achieve hydrophilization of an otherwise hydrophobic membrane on its surfaces, as is described, for example, in JP-A 10118472 ,
  • the arrangement of the bundle of hollow fiber membranes arranged in the membrane module of the hemodiafiltration system according to the invention ie the arrangement of the hollow fiber membranes to form a bundle, can be as desired, with a good flow around the individual hollow fiber membranes being ensured.
  • the hollow fiber membranes are essentially parallel to one another and to the longitudinal axis of the bundle and are kept at a distance from one another by means of textile threads. This can be achieved, for example, by weaving the hollow fiber membranes into a mat or a ribbon of parallel hollow fiber membranes by means of the textile threads and then configuring them into a bundle before they are formed into a bundle.
  • the bundle of hollow fiber membranes contained in the membrane module according to the invention can also be composed of partial bundles as long as each of the hollow fiber membranes of the bundle is used in the treatment of blood, for filtering the substituate and for supplying the substituate to the blood.
  • Such a construction from partial bundles, in which the partial bundles are wound with winding threads to improve the flow around the hollow fiber membranes and the hollow fiber membranes are kept at a distance within the partial bundles via supporting threads, is described for example in EP-A 732 141.
  • the hollow fiber membranes can also have an undulation.
  • FIG. 1 shows a detail of a hemodiafiltration system according to the invention with a membrane module inserted therein in a longitudinal sectional view, a procedure with a redilution of the blood being shown,
  • FIG. 2 shows a detail of a hemodiafiltration system according to the invention with a membrane module inserted therein in a longitudinal sectional view, a procedure with a predilution of the blood being shown,
  • FIG. 1 shows schematically a section of a hemodiafiltration system according to the invention with a membrane module 1 inserted therein in a longitudinal sectional view.
  • the membrane module 1 has a cylindrical housing 2, in which a bundle of hollow fiber membranes 3 oriented in the direction of the longitudinal extent of the housing is arranged.
  • the ends of the hollow fiber membranes are embedded in a fluid-tight manner in casting compounds 4, 5, which in turn are fluid-tightly connected to the inner wall of the housing 2.
  • the hollow fiber membranes are embedded in the casting compounds 4.5 in such a way that their ends pass through the casting compounds 4.5. pass through and their lumens open into a distribution space 6 or a collection space 7.
  • the distribution space 6 has a blood inlet device 8 and the collecting space 7 has a blood outlet device 9.
  • An outer space is formed around the hollow fiber membranes 3 between the casting compounds 4, 5 and the inner wall of the housing 2, which is along the extension of the hollow fiber membranes 3 by a partition wall 10, which runs transversely to the hollow fiber membranes 3, e.g. is divided from a hardened epoxy or polyurethane casting compound into a substituate chamber 11 and a dialysate chamber 12.
  • the partition wall 10 surrounds the individual hollow fiber membranes 3 and is connected to the housing inner wall in a fluid-tight manner, so that the substituate space 11 and the dialysate space 12 are separated from one another in a fluid-tight manner.
  • the dialysate room has an inlet device 13 and an outlet device 14 for dialysate
  • the substituate room has an inlet device 15 for substituate.
  • the cross section of the housing 2 of the membrane module shown in FIG. 1 is widened in the region of the dividing wall 10 and in the region of the substituate space 11 , In the area of the outlet device 14, the cross section of the housing 2 is also widened in order to be able to pull the dialysate evenly out of the module.
  • a method of hemodiafiltration is indicated schematically in FIG. 1, in which the blood is subsequently diluted with a substituate, that is, when the blood flows through the membrane module, the ultrafiltrate is first withdrawn and then the substituate is added.
  • the blood which is indicated by the arrows 16 flows through the blood inlet device 8 into the distribution chamber 6, flows through the lumens of the hollow fiber membranes 3, then flows out of the hollow fiber membranes 3 into the collecting chamber 7 and is removed from the membrane module via the blood outlet device 9 ie derived from the hemodia filter.
  • the dialysate represented by the arrows 17, is introduced into the dialysate chamber 12 by means of a pump 18 serving as a conveying device via the dialysate feed line 19 connected to the inlet device 13 and flows through the dialysate chamber 12 in the opposite direction to the flow of blood.
  • the dialysate 17 absorbs the ultrafiltrate flowing out over the walls of the hollow fiber membranes 3 together with the urinary substances removed from the blood.
  • the dialysate 17 mixed with the ultrafiltrate is withdrawn from the dialysate chamber 12 via the outlet device 14.
  • the substituate represented by the arrow 20 is removed as a partial stream via a substituate feed line 21 branching off the dialysate feed line 19 from the dialysate flowing through the dialysate feed line 19 and introduced into the substituate space 11 via the inlet device 15, from where it flows flows through hollow fiber membranes 3 passing through and mixes with the blood flowing through the hollow fiber membranes 3.
  • a throttle 22 is installed in the dialysate feed line 19 in the area between the branch and the inlet device 13 for dialysate for the defined setting of the ratio of the dialysate volume flow to the substituate volume flow.
  • the membrane module shown schematically in longitudinal section in FIG. 2 corresponds in its essential features to the membrane module shown in FIG. 1, so that the same parts are provided with the same reference numerals and a detailed description is omitted again.
  • FIG. 2 a section of a hemodiafiltration system is shown, in which, when used in hemodiafiltration, the blood is prediluted, that is, when the membrane module flows through it, the substituate is first supplied and then the ultrafiltrate is removed.
  • the blood 16 is conducted into the hollow fiber membranes 3 via the blood inlet device 8 and the distribution space 6 and flows through them.
  • the blood in the area of the substituate space 11 is first supplied with and the blood is diluted with substituate before it continues on its way through the hollow fiber membranes 3 through the area of the dialysate chamber 12, in which the required amount of liquid is withdrawn from it through ultrafiltration through the walls of the hollow fiber membranes and the urinary substances are removed in the process.
  • the cleaned blood adjusted to the required liquid content, leaves the membrane module according to the invention via the blood outlet device 9.
  • the dialysing liquid 17 is introduced into the dialysate chamber via the inlet device 13, which in the present case is located at the end of the dialysate chamber facing away from the partition 10, and flows through the dialysate chamber in the opposite direction to the flow of blood in the direction of the partition 10. In this case, it takes the ultrafiltrate with the urinary substances removed from the blood and is then withdrawn from the dialysate chamber 12 via the outlet device 14 located near the partition 10. As also shown in FIG.
  • the substituate is taken as a partial stream via a substituate feed line 21 branching off the dialysate feed line 19 from the dialysate flowing through the dialysate feed line 19, introduced into the substituate space 11 via the inlet device 15 and supplied to the blood from there via hollow fiber membranes 3 ,
  • a pressure booster pump 23 built into the substituate feed line 21 is used to set the ratio of the dialysate volume flow to the substituate volume flow.
  • FIG. 3 shows, in an enlarged representation compared to FIGS. 1 and 2, a segment comprising the substituate space and the partition 10 of a membrane module 1 used in the hemodiafiltration system according to the invention or of a membrane module 1 according to the invention.
  • the membrane module embodiment shown in FIG. 3 has a sterile filter 24 integrated in the housing 2 for sterile filtration of the substituate 20.
  • the sterile filter 24 preferably in the form of a bacteria- and endotoxin-tight flat membrane, encloses the hollow fiber membrane bundle in the region of the substituate space and divides the substituate space into an outer substituate part space 25 and an inner substituate part space 26, which are separated in a fluid-tight manner from the dialysate space 12 via the partition 10.
  • the sterile filter can be embedded in a simple manner together with the hollow fiber membranes 3 in the sealing compound 5 and the partition 10.
  • the substituate 20 introduced into the housing via the inlet device 15 is uniformly distributed over the entire circumference in the outer substituate subspace 25 and flows completely through the sterile filter 24, whereby it is subjected to sterile filtration.
  • the substituate 20 is distributed over the inner substituate subspace 26 and flows from there through the walls of the hollow fiber membranes 3 into the blood flowing through them.
  • FIG. 4 schematically shows the basic structure of a hemodiafiltration system according to the invention, which comprises a membrane module 1 with a partition 10, as shown in FIG. 1.
  • the hemodiafiltration system according to FIG. 4 is suitable for hemodiafiltration processes in which the blood is rediluted with a substituate.
  • the blood withdrawn from the patient is fed in the arrow direction a via a blood supply line 27 and the blood inlet device 8 of the membrane module 1 serving as a hemodia filter to the membrane module 1 and passed through the lumen of the hollow fiber membranes arranged in the membrane module.
  • the cleaned blood is discharged from the membrane module 1 via the blood outlet device 9 and is returned to the patient in the direction of arrow a via the blood discharge line 28 and a drip chamber 29.
  • dialysate Via the dialysate feed line 19 and the inlet device 13 for the dialysate, dialysate is conveyed in the direction of arrow b into the dialysate chamber of the hemodia filter 1. It flows through the dialysate chamber in the opposite direction to the blood flow in Direction towards the outlet device 14 for dialysate, wherein it receives the ultrafiltrate extracted from the blood via the hollow fiber membranes and containing the urinary substances.
  • the dialysate enriched with the ultrafiltrate leaves the membrane module via the outlet device 14 and is drawn off via the dialysate discharge line 30 in the direction of arrow c by means of the dialysate flow pump 31 and the ultrafiltrate pump 33.
  • the substituate to be supplied to the blood is introduced into the substituate space of the membrane module 1 through the substituate line 21 branching off from the dialysate line 19 and via the inlet device 15, and from there via the walls of the hollow fiber membranes to be supplied with blood flowing in the hollow fiber membranes.
  • the dialysate circuit is checked via the balancing unit 32 and the net filtrate flow withdrawn from the blood in the region of the dialysate chamber is adjusted via the ultrafiltrate pump 33.
  • the balancing unit 32 works in such a way that the volume flow conveyed by the pump 31 is replaced by an equally large volume flow of fresh dialysate.
  • FIG. 5 A further embodiment of the hemodiafiltration system according to the invention is shown schematically in FIG.
  • the hemodiafiltration system according to FIG. 5 corresponds to the hemodiafiltration system shown in FIG. 4, so that the same elements are provided with the same reference symbols.
  • the hemodiafiltration system according to FIG. 5 is suitable for hemodiafiltration processes in which the blood is prediluted with a substituate.
  • the dialysate which serves as a hemodia filter via the dialysate feed line 19.
  • the membrane module 1 is supplied, flows through the dialysate inlet device 13 into the dialysate chamber of the hemodia filter, the dialysate inlet device 13 being in the present case at the end of the hemodia filter facing the blood outlet device 9.
  • the dialysate flows counter to the flow direction of the blood in the direction of the dialysate outlet device 14, which is arranged adjacent to the partition wall 10, which is only indicated here.
  • the dialysate mixed with the ultrafiltrate taken up in the dialysate chamber leaves the dialysate chamber via the dialysate outlet device 14 and is drawn off via the dialysate discharge line 30 in the direction of arrow c by means of the dialysate flow pump 31 and the ultrafiltrate pump 33.
  • the substituate to be supplied to the blood is likewise branched off from the dialysate stream by a substituate line 21 branching off from the dialysate line 19 and introduced into the substituate space of the membrane module 1 via the inlet device for the substituate 15, from where it is introduced via the Walls of the hollow fiber membranes to be supplied to the blood flowing in the hollow fiber membranes.
  • a substituate line 21 branching off from the dialysate line 19 and introduced into the substituate space of the membrane module 1 via the inlet device for the substituate 15, from where it is introduced via the Walls of the hollow fiber membranes to be supplied to the blood flowing in the hollow fiber membranes.
  • a throttle 22 is located in the dialysate feed line 19 between the branch of the substituate feed line 21 and the inlet device for dialysate 13, preferably in the form of an adjustable valve, by means of which the ratio of dialysate volume flow to substituate volume flow is set ,

Abstract

Hemodiafiltrationssystem zur Blutbehandlung, umfassend einen Membranmodul (1), in dessen Gehäuse (2) in Längserstreckung Hohlfasermembranen (3) angeordnet sind, die an ihren Enden in mit der Gehäuseinnenwand fluiddicht verbundene Vergussmassen (4, 5) eingebettet sind, und welcher einen Dialysatraum (12) sowie einen vom Dialysatraum (12) durch eine durchgehende Trennwand (10) fluiddicht getrennten Substituatraum (11) aufweist, Mittel zur Zuführung (18, 19) und zur Abführung eines Dialysats in den bzw. aus dem Dialysatraum (12), sowie Mittel zur Zuführung (21) eines Substituats in den Substituatraum (11), wobei dieselben Hohlfasermembranen (3) zur Blutbehandlung, zur Filtrierung des Substituats und zur Zuführung des Substituats zum Blut dienen und um die Hohlfasermembranen (3) herum ein Aussenraum ausgebildet ist, welcher durch die Innenwand des Gehäuses (2) und Vergussmassen (4,5) begrenzt ist und welcher entlang der Längserstreckung des Gehäuses (2) durch die Trennwand (10) in den Substituatraum (11) und den Dialysatraum (12) unterteilt wird, wobei die Trennwand (10) jede einzelne Hohlfasermembran (3) umschliesst.

Description

Hemodiafiltrationssystem
Beschreibung:
Die Erfindung betrifft ein Hemodiafiltrationssystem zur Behandlung von Blut, umfassend einen Membranmodul, welcher ein zylinderförmiges Gehäuse mit einer Längserstreckung aufweist, in welchem lumenseitig durchströmbare und an ihren Enden in eine mit der Innenwand des Gehäuses fluiddicht verbundene erste und zweite Vergussmasse eingebettete Hohlfasermembranen mit semipermeabler Wand in Richtung der Längserstreckung angeordnet sind, und welcher einen Dialysatraum aufweist, in den eine Einlasseinrichtung für Dialysat und eine Auslasseinrichtung für Dialysat münden, sowie einen Substituatraum, in den eine Einlasseinrichtung für Substituat mündet, Mittel zur Zuführung eines Dialysats mit definiertem Volumenstrom über die Einlasseinrichtung für Dialysat in den Dialysatraum, Mittel zur Abführung des Dialysats über die Auslasseinrichtung für Dialysat aus dem Dialysatraum, Mittel zur Zuführung eines Substituats mit definiertem Volumenstrom über die Einlasseinrichtung für Substituat in den Substituatraum, wobei der Membranmodul als einheitliches Bauteil zur Blutbehandlung, zur Filtrierung des Substituats und zur Vermischung des Substituats mit dem Blut ausgebildet ist und der Substituatraum und der Dialysatraum mittels einer durchgehenden Trennwand fluiddicht voneinander getrennt sind. Die Erfindung betrifft außerdem einen Membranmodul zur Hemodiafil- tration. Die Hemodiafiltration bzw. das Hemodiafiltrationsverfahren ist ein membranbasiertes Kombinationsverfahren zur Blutreinigung, bei dem eine Hemodialyse und eine Hemofiltration gleichzeitig durchgeführt werden. Dieses Verfahren verbindet die Vorteile des konvektiven Stofftransports bei der Hemofiltration mit denen der Diffusion bei der Hemodialyse. Bei der Hemofiltration wird Blut an der einen Seite der Membran eines Hemofilters vorbeigeleitet, wobei ein Teil der Flüssigkeit des Blutes durch Ultrafiltration durch die Membran abgezogen wird. Dieser Teilstrom wird durch eine sterile und pyrogenfreie Substitutionsflüssigkeit bzw. ein Substituat ersetzt, die bzw. das entweder stromauf des Hemofilters in Form einer Vorverdünnung (Predilu- tion) oder stromab des Hemofilters in Form einer Nachverdünnung (Postdilution) dem extrakorporalen Blutstrom zugeführt wird. Zusätzlich wird bei der Hemodiafiltration noch die übliche Hemodialyse durchgeführt, bei der an der anderen Seite der Membran des Hemodialysators Dialysat vorbeigeführt wird, so dass über die Membran hinweg eine Entfernung harnpflichtiger Substanzen erfolgen kann.
Durch die Verbindung des diffusiven Stofftransports mit dem konvektiven Stofftransport bei der Hemodiafiltration lassen sich vorteilhaft nicht nur harnpflichtige Stoffe mit geringem Molekulargewicht aus dem Blut entfernen. Vom konvektiven Stofftransport profitieren vor allem die langsam diffundierenden Mittelmoleküle mit Molekulargewichten im Bereich von ca. 1 bis 55 kD, und dies um so mehr, je größer diese Moleküle sind und je größer der Filtratstrom durch die Membran ist. Bei ca. 60 kD sollen die Membranen annähernd dicht sein, so dass der Patient während einer etwa vierstündigen Behandlung nicht mehr als 4 g Proteine aus dem Blut in das Dialysat abgibt.
Beim konventionellen Hemodialyseverfahren wird nur die Flüssigkeitsmenge als Ul- trafiltrat über die Dialysemembran aus dem Blut entfernt, die der Patient zwischen den Dialysebehandlungen aufgenommen hat. Die dabei entfernte Flüssigkeitsmenge entspricht etwa 6 bis 8% des Blutvolumenstroms. Zur Durchführung von Hemodialyseverfahren werden heute in der Regel sogenannte volumenkontrollierte Dialysemaschinen eingesetzt. Diese kontrollieren die entzogene Netto-Flüssigkeitsmenge ent- sprechend der voreingestellten Nettofiltration über ein Bilanzieren des Dialy- satstroms, der dem Dialysator zugeführt wird, mit dem Dialysatstrom, der aus dem Dialysator abgezogen wird.
Bei der Hemodiafiltration ist demgegenüber die Menge an Ultrafiltrat aufgrund des Flüssigkeitsanteils, der zur Erhöhung des konvektiven Transports über die Membran hinweg erforderlich ist, deutlich auf etwa 20 bis 30% des Blutvolumenstroms erhöht. Dabei entspricht die dem Patienten letztendlich entzogene Netto-Flüssigkeitsmenge derjenigen bei der konventionellen Hemodialyse. Die darüber hinaus gehende Flüssigkeitsmenge zur Erhöhung des konvektiven Transports wird, wie ausgeführt, durch ein Substituat ersetzt.
Zur Durchführung von Hemodiafiltrationsverfahren werden in der Regel abgewandelte Dialysemaschinen eingesetzt, die eine Kontrolle der Ultrafiltrationsraten erlauben und ein Bilanzieren des Ultrafiltrationsvolumenstroms und des Substituatvolu- menstroms vornehmen.
An das Dialysat und die Substitutionsflüssigkeit werden in der Regel hinsichtlich ihrer Reinheit unterschiedliche Anforderungen gestellt. Das Dialysat kann on-line aus Frischwasser und einem Elektrolytkonzentrat hergestellt werden, wobei das Frischwasser üblicherweise keimfrei und das Elektrolytkonzentrat eigensteril ist. Die Substitutionsflüssigkeit ihrerseits kann on-line aus dem Dialysat hergestellt werden. Jedoch ist nicht generell sichergestellt, dass das on-line hergestellte Dialysat absolut steril und endotoxin- und pyrogenfrei bzw. CIS-frei ist.
Als Endotoxine werden Zellbruchstücke von abgestorbenen Bakterien bezeichnet. Die Endotoxinkonzentration wird üblicherweise mit dem sogenannten LAL-Test ermittelt, einem biologischen Assay, wie ihn beispielsweise die Firma BioWhittaker Inc. herstellt. Pyrogene sind temperaturerhöhende Stoffe. Sie bewirken z.B. bei Infusion in Kaninchen eine Erhöhung der Körpertemperatur. Pyrogene können u.a. Endotoxine oder auch Exotoxine sein. Letztere werden von lebenden Bakterien produziert. Im menschlichen Blut führen diese Substanzen zur Stimulation von Monozyten, die ihrerseits Cytokine produzieren und damit eine Kaskade von weiteren Zellstimulationen auslösen. Man fasst daher heute Endotoxine, Exotoxine, Pyrogene und andere das Blut stimulierende Substanzen aus dem Dialysat unter der Abkürzung CIS (Cytokine Inducing Substances) zusammen. Eines der relevanten Cytokine, das durch Stimulation von stimulierten Monozyten produziert wird, ist Interleukin 6 (IL 6). Die Bestimmung von CIS durch den Nachweis von IL 6 ist beispielsweise bei B.L. Jaber u.a., Blood Purif. 1998, Vol. 16, Seite 210-219, beschrieben.
Daher sollte das Dialysat zur Herstellung der Substitutionsflüssigkeit z.B. mittels eines Filters in den sterilen und idealerweise CIS-freien Zustand überführt werden. Natürlich lässt sich die so erzeugte Substitutionsflüssigkeit ihrerseits auch als Dialysat einsetzen. Moderne Dialysemaschinen beinhalten in der Regel eine Einrichtung, mit der das Dialysat on-line derart gefiltert wird, dass es eine Konzentration von En- dotoxinen von weniger als 0,5 EU pro ml Dialysat aufweist. Damit treten auch bei der sogenannten High-flux Dialyse nahezu keine pyrogenen Reaktionen beim Patienten mehr auf, die bei durch Endotoxine verunreinigtem Dialysat häufig beobachtet werden. Allerdings kann bei einer Endotoxinkonzentration von < 0,03 EU/ml, der Nachweisgrenze der gängigen LAL-Tests, noch CIS im Dialysat sein. Die Forderung nach CIS-freiem Dialysat ist also schärfer als die nach LAL-negativem Dialysat.
In der EP-A 692 269 wird eine Hemodiafiltrationsvorrichtung beschrieben, welche zwei in Reihe geschaltete Blutfilter aufweist. Die Blutfilter enthalten jeweils Membranen, die an ihrer einen Seite vom zu reinigenden Blut überströmt werden und an ihrer anderen Seite von Dialysat. Das der Hemodiafiltrationsvorrichtung zugeführte Dialysat wird zuvor über einen Sterilfilter geleitet. Bei der in der EP-A 692 269 beschriebenen Vorrichtung erfolgt in einem der beiden Blutfilter aufgrund des dort eingestellten positiven Transmembrandrucks in Richtung des Blutweges durch die Membran dieses Blutfilters hindurch ein Übergang von Dialysat als Substitutionsflüssigkeit direkt in das Blut. In dem zweiten Blutfilter wird ein negativer Transmembrandruck er- zeugt, und es erfolgt dort über eine Diafiltration eine Abtrennung eines Teils der Blutflüssigkeit und eine Entfernung harnpflichtiger Substanzen in das Dialysat.
Derartige Hemodiafiltrationsvorrichtungen mit in Reihe geschalteten Blutfiltern erweisen sich im Betrieb als aufwendig und lassen sich aufgrund der Konzeption und der damit verbundenen speziellen und aufwendigen Steuerung auf den marktüblichen Dialysemaschinen in der Regel nicht einsetzen.
Auch die EP-A 451 429 offenbart eine Hemodiafiltrationsvorrichtung, welche zwei in Reihe geschaltete Membranmodule enthält. Hierbei ist der erste Membranmodul ein Hemofilter, in dem über Ultrafiltration dem zu reinigenden Blut ein Teilstrom von Flüssigkeit entzogen wird, welcher vornehmlich die aus dem Blut zu entfernenden mittelmolekularen Substanzen enthält. Das Ultrafiltrat wird in einem speziellen Filter regeneriert und zum Blutstrom zurückgeführt, bevor dieser in den zweiten Membranmodul eingeleitet wird. Dieser Blutstrom wird dann im zweiten Membranmodul . einer Hemodialyse unterzogen.
Zu den zuvor genannten Nachteilen in Reihe geschalteter und getrennter Blutfilter tritt für die in der EP-A 451 429 beschriebenen Hemodiafiltrationsvorrichtungen als weiterer Nachteil hinzu, dass ein spezieller Regenerator erforderlich ist, mittels dessen das Ultrafiltrat gereinigt werden muss.
In der DE-A 196 07 162 wird ein Hemodiafiltrationssystem mit einer gesteuerten Zuführung für ein Substituat und einer gesteuerten Zuführung für ein Dialysat in einen Dialysator beschrieben, wobei der Dialysator als einheitliches Bauteil für die Blutbehandlung, die Substituatfiltrierung und die Vermischung des Substituats mit dem zu behandelnden Blut ausgebildet ist. Der Dialysator enthält in seinem langgestreckten Gehäuse zwei nebeneinander angeordnete Membranmodule mit jeweils einem Bündel von Hohlfasermembranen, wobei die Membranmodule durch eine zu den Hohlfasermembranen im wesentlichen parallele Trennwand voneinander getrennt sind. Der erste Membranmodul wird zur Hemodiafiltration eingesetzt und der zweite Mem- branmodul zur Sterilfiltration des Substituats. Der Dialysator umfasst des Weiteren eine Kammer, in der das gereinigte Substituat mit dem zu behandelnden Blut vereinigt wird.
Zwar ist das in der DE-A 196 07 162 beschriebene Hemodiafiltrationssystem im Vergleich zu den Systemen mit in Reihe geschalteten mehreren Blutfiltern einfacher und übersichtlicher aufgebaut. Jedoch erweist sich die Herstellung der in der DE-A 196 07 162 offenbarten, zwei Module enthaltenden Dialysatoren insbesondere auch wegen der Handhabung zweier unterschiedlicher Hohlfasermembranbündel als schwierig. Darüber hinaus sind die Membranmodule im Dialysator nicht rotationssymmetrisch angeordnet, so dass die Gefahr einer ungleichförmigen Durchströmung insbesondere des Außenraums um die Hohlfasermembranen des ersten Membranmoduls besteht, der zur Hemodiafiltration eingesetzt wird.
Es ist daher Aufgabe der vorliegenden Erfindung, ein Hemodiafiltrationssystem zur Verfügung zu stellen, welches einen einfachen Aufbau besitzt, eine vorausbestimmbare und reproduzierbare Zuführung von Substituat und von Dialysat erlaubt und welches in volumenkontrollierte Dialysemaschinen ohne größere Änderungen eingesetzt werden kann. Es ist eine weitere Aufgabe der vorliegenden Erfindung, einen in einem Hemodiafiltrationssystem einsetzbaren Membranmodul zur Hemodiafiltration zur Verfügung zu stellen, mittels dessen gleichzeitig eine Sterilfiltration des Substituats möglich ist.
Die Aufgabe wird zum einen durch ein Hemodiafiltrationssystem gemäß Oberbegriff des Anspruchs 1 gelöst, welches dadurch gekennzeichnet ist, dass die Hohlfasermembranen zu einem einzigen Bündel zusammengefasst sind und dieselben Hohlfasermembranen zur Blutbehandlung, zur Filtrierung des Substituats und zur Zuführung des Substituats zum Blut dienen, dass um die Hohlfasermembranen herum ein Außenraum ausgebildet ist, welcher durch die Innenwand des Gehäuses und die erste und zweite Vergussmasse begrenzt ist und welcher entlang der Längserstrek- kung des Gehäuses durch die Trennwand in den Substituatraum und den Dialysat- räum unterteilt wird, wobei die Trennwand jede einzelne Hohlfasermembran umschließt.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Hemodiafiltrationssystems ist das Gehäuse des erfindungsgemäß eingesetzten Membranmoduls um seine in Richtung der Längserstreckung orientierte Längsachse kreiszylinderförmig und die Hohlfasermembranen sind zu einem Bündel angeordnet, welches um die Längsachse im wesentlichen rotationssymmetrisch ist.
Bei dem Membranmodul des erfindungsgemäßen Hemodiafiltrationssystems sind die Hohlfasermembranen an ihren Enden jeweils fluiddicht in Vergussmassen eingebettet, die gleichzeitig den um die Hohlfasern ausgebildeten Außenraum gegenüber einem Verteilerraum, in welchem das über eine Bluteinlasseinrichtung in den Verteilerraum eingeleitete und zu behandelnde Blut auf die Lumina der Hohlfasermembranen verteilt wird, bzw. gegenüber einem Sammelraum, in dem das aus den Lumina ausströmende Blut gesammelt und über eine Blutauslasseinrichtung aus dem Modul ausgeleitet wird, verschließen. Dabei erstrecken sich die Hohlfasermembranen mit ihren stirnseitig offenen Enden durch die jeweilige Vergussmasse hindurch und stehen mit dem Verteilerraum bzw. dem Sammelraum lumenseitig in Verbindung, so dass sie von dem von zu behandelndem Blut durchströmbar sind.
Aufgrund dessen, dass bei dem im erfindungsgemäßen Hemodiafiltrationssystem eingesetzten Membranmodul dieselben Hohlfasermembranen zur Blutbehandlung, zur Filtrierung des Substituats und zur Zuführung des Substituats zum Blut dienen und der Dialysatraum und der Substituatraum mittels einer Trennwand voneinander getrennt sind, ergibt sich, dass sich in Erstreckungsrichtung der Hohlfasermembranen gesehen Dialysatraum und Substituatraum an unterschiedlichen Positionen entlang der Hohlfasermembranen nebeneinander angeordnet sind, wobei die Trennwand den Innenquerschnitt des Gehäuses ausfüllt. Vorzugsweise ist die Trennwand in dem im erfindungsgemäßen Hemodiafiltrationssystem verwendeten Membranmodul im wesentlichen quer zu den Hohlfasermembranen angeordnet. In der Anwendung des erfindungsgemäßen Hemodiafiltrationssystems wird das dem Patienten entnommene und zu reinigende Blut über die Bluteinlasseinrichtung in den Membranmodul eingeleitet und durch das Lumen der Hohlfasermembranen geführt. Über die Mittel zur Zuführung von Dialysat, welche geeignete Fördermittel z.B. in Form einer Pumpe oder einer Dosiereinheit zur Förderung von Dialysat mit definiertem Volumenstrom sowie eine mit der Einlasseinrichtung für das Dialysat verbundene Dialysatzuleitung umfassen, wird dem Membranmodul frisches Dialysat mit definiertem Volumenstrom zugeführt und über die Einlasseinrichtung für das Dialysat in den Dialysatraum eingeleitet. Dort wird das Dialysat an den Hohlfasermembranen vorbeigeleitet, wobei es gleichzeitig das über Ultrafiltration durch die Wände der Hohlfasermembranen aus dem Blut abgezogene Ultrafiltrat aufnimmt. Im Bereich des Dialysatraums erfolgt die Hemodiafiltration des Bluts, bei der die harnpflichtigen Stoffe über diffusive und konvektive Transportmechanismen dem Blut entzogen werden. Das mit dem Ultrafiltrat vermischte Dialysat wird mittels einer Dialysatflusspum- pe über die Auslasseinrichtung für das Dialysat aus dem Dialysatraum abgezogen und eine die Dialysatableitung abgeleitet.
Das Substituat wird über eigene Mittel zur Zuführung von Substituat mit definiertem Volumenstrom über die Einlasseinrichtung für Substituat unter Überdruck in den Substituatraum eingeleitet und dort über die Wände der im Substituatraum befindlichen Abschnitte der Hohlfasermembranen dem durch die Lumina der Hohlfasermembranen strömenden Blut mit einem definierten Volumenstrom zugeführt. Die Menge an pro Zeiteinheit zuzuführendem Substituat, d.h. der Substituatvolumenstrom ergibt sich aus der Differenz des im Bereich des Dialysatraums über Ultrafiltration aus dem Blut entzogenen Flüssigkeitsstroms und der von der Dialysemaschine kontrollierten und fest voreingestellten Nettofiltration. Hierbei ist der Substituatvolumenstrom in der Regel kleiner als der in den Dialysatraum eingeleitete Dialysatstrom. Je nach Durchströmungsrichtung des Bluts durch die Hohlfasermembranen kann das Substituat dem Blut zugeführt werden, bevor dieses der Hemodiafiltration unterzogen wird (Vorverdünnung) oder nachdem dieses der Hemodiafiltration unterzogen wurde (Nachverdünnung). Über eine mit dem Dialysatkreislauf verbundene Bilanziereinheit erfolgt eine Kontrolle des Dialysatkreislaufs einschließlich der Substituatzuführung. Die Nettofiltration, d.h. die dem Blut im Bereich des Dialysatraums zu entziehende Netto- Flüssigkeitsmenge, wird über eine mit der Bilanziereinheit regeltechnisch gekoppelte Ultrafiltratpumpe eingestellt.
In einer Ausführungsform des erfindungsgemäßen Hemodiafiltrationssystems sind die Mittel zur Zuführung des Substituats körperlich vollständig von den Mitteln zur Zuführung des Dialysats getrennt und umfassen geeignete Fördermittel zur Förderung von Substituat mit definiertem Volumenstrom, z.B. in Form einer Pumpe oder einer Dosiereinheit, sowie eine von der Dialysatzuleitung getrennte Substituatzulei- tung, die mit der Einlasseinrichtung für das Substituat in Fluidverbindung steht. In diesem Fall müssen die Fördermittel für Dialysat und die Fördermittel für Substituat über miteinander gekoppelte Regelkreise separat angesteuert werden.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Hemodiafiltrationssystems sind die Mittel zur Zuführung von Substituat und die Mittel zur Zuführung von Dialysat miteinander gekoppelt. Besonders bevorzugt wird die Kopplung dadurch realisiert, dass diese Mittel eine gemeinsame Mehrfachpumpe umfassen, an die eine mit der Einlasseinrichtung für Dialysat in Verbindung stehende Dialysatzuleitung und eine mit der Einlasseinrichtung für Substituat in Verbindung stehende Substituatzu- leitung angeschlossen sind. Diese Mehrfachpumpe umfasst einen gemeinsamen Pumpenantrieb, an den zwei getrennte Pumpenköpfe gekoppelt sind. Über die Förderleistung der Pumpenköpfe lässt sich das Verhältnis des Substituatvolumenstroms zum Dialysatvolumenstrom einstellen.
In einer weiteren besonders bevorzugten Ausführungsform umfassen die Mittel zur Zuführung von Dialysat eine Fördereinrichtung für Dialysat und eine Dialysatzuleitung und die Mittel zur Zuführung von Substituat eine Substituatzuleitung, und die Substituatzuleitung zweigt über eine Verzweigung von der Dialysatzuleitung ab. In diesem Fall wird das Substituat über diese Verzweigung aus der Dialysatzuleitung als Teilstrom dem durch die Dialysatzuleitung strömenden Dialysat entnommen und über die Substituatzuleitung und die Einlasseinrichtung für Substituat in den Substituatraum geleitet, von wo es über die Wände der Hohlfasermembranen dem durch die Hohlfasermembranen strömenden Blut zugeführt wird.
Zur Einstellung eines definierten Substituatstroms ist dabei besonders bevorzugt, wenn in die Substituatzuleitung eine Pumpe eingebaut ist, durch die eine definierte Förderung des Substituats erfolgt, d.h. über die der Substituatvolumenstrom eingestellt wird, wobei die Pumpe vorteilhafterweise regelbar ist. Die Einstellung der Volumenströme von Dialysat und Substituat bzw. das Verhältnis dieser Volumenströme zueinander kann auch über Drosseln erfolgen. Daher ist bei einer ebenfalls besonders bevorzugten Ausführungsform in die Dialysatzuleitung im Bereich zwischen der Verzweigung und der Einlasseinrichtung für Dialysat oder in die Substituatzuleitung und die Dialysatzuleitung im Bereich zwischen der Verzweigung und der Einlasseinrichtung für Dialysat eine Drossel zur Einstellung des Verhältnisses von Substituatvolumenstrom zu Dialysatvolumenstrom eingebaut.
Unter einer Drossel wird dabei eine definierte Verengung eines Strömungsquerschnitts zur gezielten Erzeugung eines definierten Druckverlustes bei der Strömung eines Fluids durch diese Verengung verstanden, d.h. die Drossel weist einen in Strömungsrichtung gesehen gegenüber dem Strömungsquerschnitt vor und hinter der Drossel reduzierten Strömungsquerschnitt auf. Dabei besitzt der Strömungsquerschnitt der Drossel einen definierten, vom durchströmenden Medium unabhängigen festen Wert oder ist auf einen definierten, vom durchströmenden Medium unabhängigen Wert einstellbar. Bei derartigen Drosseln ist der bei der Durchströmung entstehende Druckverlust vorausbestimmbar. Zu den Drosseln mit festem Strömungsquerschnitt zählen beispielsweise Blenden in Form von Lochblenden oder Spaltblenden, deren Strömungsquerschnitt vorzugsweise auf den festen Querschnitt einstellbar ist, oder auch Kapillarröhrchen mit definierten Durchmessern, zu den Drosseln mit ein-- stellbarem Querschnitt z.B. Ventile oder Drosselklappen, die in Rohrleitungen eingebaut sind. Vorzugsweise sind die erfindungsgemäß eingesetzten Drosseln einstellbar und besonders bevorzugt regelbar. Über die in der Dialysatzuleitung bzw. in der Substituatzuleitung angeordneten Drosseln lassen sich auf einfache Weise der in den Dialysatraum eingeleitete Dialy- satstrom und der Substituatstrom und damit auch das Verhältnis dieser beiden Ströme zueinander auf einen definierten Wert einstellen.
Das erfindungsgemäße Hemodiafiltrationssystem ist aufgrund des erfindungsgemäß eingesetzten Membranmoduls, bei dem in der Anwendung auf einfache, kontrollierbare und reproduzierbare Weise die bei der Hemodiafiltration erforderliche Verdünnung des Bluts mit Substituat und die Hemodiafiltration in einem einzigen Membranmodul integriert ist und der wie übliche Hemodialysatoren alleine ein Bündel von Hohlfasermembranen enthält, gegenüber den Systemen des Stands der Technik deutlich vereinfacht. Gleichzeitig ist durch das erfindungsgemäße Konzept der getrennten Zuführung von Dialysat und Substituat über jeweilige Mittel in Dialysatraum und Substituatraum, die voneinander fluiddicht getrennt sind, eine gezielte Einstellung der benötigten Dialysat- und Substituatvolumenströme in Anpassung an die Hemodiafiltrationsanwendung möglich. Darüber hinaus ist mit dem erfindungsgemäßen Hemodiafiltrationssystem die Hemodiafiltration in auf dem Markt befindlichen Dialysemaschinen mit volumenstromkontrollierter Ultrafiltration durchführbar.
Die DE-A 28 51 929 offenbart eine Modulkonstruktion auf Basis von Hohlfasermembranen, bei der der Dialysatraum durch eine dichte Trennwand in zwei Teilräume unterteilt wird. In einer Ausführungsform wird durch den einen Teilraum, der mit einer Einlasseinrichtung und mit einer Auslasseinrichtung versehen ist, Dialysat hindurchgeleitet, um über Diffusion harnpflichtige Substanzen aus dem durch die Hohlfasermembranen strömenden Blut zu entfernen. An den zweiten Teilraum, welcher mit einer Auslasseinrichtung versehen ist, wird ein Unterdruck angelegt, um aus dem die Hohlfasermembranen durchströmenden Blut über die Wände der Hohlfasermembranen ein Filtrat abzuziehen. In der DE-A 28 51 929 findet sich jedoch keine Offenbarung zu einem Einsatz eines solchen Membranmoduls in einem Hemodiafiltrationssystem bzw. zur Verwendung eines solchen Membranmoduls in einem Hemodiafil- trationsverfahren. Daher ist auch Gegenstand der Erfindung die Verwendung eines Membranmoduls, welcher ein zylinderförmiges Gehäuse mit einer Längserstreckung aufweist, in welchem in Richtung der Längserstreckung ein Bündel von lumenseitig durchströmbaren und an ihren Enden in eine mit der Innenwand des Gehäuses fluiddicht verbundene erste und zweite Vergussmasse eingebetteten Hohlfasermembranen mit semiper- meabler Wand angeordnet ist, und in welchem um die Hohlfasermembranen herum ein durch die Innenwand des Gehäuses und die erste und zweite Vergussmasse begrenzter Außenraum ausgebildet ist, der entlang der Längserstreckung des Gehäuses mittels einer durchgehenden und jede einzelne Hohlfasermembran umschließenden Trennwand in einen Dialysatraum und einen vom Dialysatraum fluiddicht getrennten Substituatraum unterteilt ist, zur Durchführung eines Hemodiafiltrations- verfahrens, bei welchem mittels des Bündels der Hohlfasermembranen neben der eigentlichen Blutbehandlung auch die Filtrierung des Substituats und die Zuführung des Substituats zum Blut erfolgt.
Bei dem Membranmodul des erfindungsgemäßen Hemodiafiltrationssystems kann die Zuführung des Substituats zum Blut erfolgen, bevor oder nachdem das Blut der Hemodiafiltration im Bereich des Dialysatraums unterworfen wurde. Im Einzelfall ist es auch möglich, den Substituatraum und damit die Zuführung des Substituats zum Blut entlang der Erstreckung der Hohlfasermembranen aufzuteilen und einen Teil des Substituats vor und einen Teil nach der Hemodiafiltration dem Blut zuzuführen. In diesem Fall sind beispielsweise in dem erfϊndungsgemäßen Membranmodul entlang der Erstreckung der Hohlfasermembranen benachbart zu den Einbettungen der Hohlfasermembranenden zwei Substituatteilräume angeordnet, die jeweils über eine Trennwand von einem dazwischenliegenden Dialysatraum fluiddicht getrennt sind. Entsprechend ist es auch möglich, den Dialysatraum und damit die Hemodiafiltration aufzuteilen und im Membranmodul entlang der Erstreckung der Hohlfasermembranen benachbart zu den Einbettungen der Hohlfasermembranenden z.B. zwei Dialy- satteilräume anzuordnen, die von einem dazwischenliegenden Substituatraum jeweils über eine Trennwand getrennt sind. Für Anwendungen, bei denen eine Nachverdünnung des Bluts mit Substituat erfolgt, strömt das Blut am dem Dialysatraum zugewandten Ende des Membranmoduls in die Hohlfasermembranen ein und durchströmt diese in Richtung des dem Substituatraum zugewandten Ende. Dem Blut wird dann zunächst im Bereich des Dialysatraums über Ultrafiltration die erforderliche Flüssigkeit entzogen und anschließend im Bereich des Substituatraums Substituat zugeführt. Dabei ist es von Vorteil, wenn die Dialysateinlasseinrichtung benachbart zur Trennwand und die Dialysatauslasseinrichtung benachbart zu der den Dialysatraum begrenzenden und die Hohlfasermembranenden umschließenden Vergussmasse angeordnet sind. Das Dialysat durchströmt dann den Dialysatraum entgegengesetzt zur Strömungsrichtung des Bluts.
Für Anwendungen, bei denen eine Vorverdünnung des Bluts mit Substituat erfolgt, strömt das Blut am dem Substituatraum zugewandten Ende des Membranmoduls in die Hohlfasermembranen ein und durchströmt diese in Richtung des dem Dialysatraum zugewandten Ende. Hierbei wird dem Blut zunächst im Bereich des Substituatraums Substituat zugeführt und anschließend im Bereich des Dialysatraums über Ultrafiltration die erforderliche Flüssigkeit entzogen. Für diesen Fall ist es von Vorteil, wenn die Dialysateinlasseinrichtung benachbart zu der den Dialysatraum begrenzenden und die Hohlfasermembranenden umschließenden Vergussmasse und die Dialysatauslasseinrichtung benachbart zur Trennwand angeordnet sind, so dass das Dialysat den Dialysatraum entgegengesetzt zur Strömungsrichtung des Bluts durchströmt.
Bei der Durchführung der Hemodiafiltration ist häufig ein externer Sterilfilter dem eigentlichen Membranmodul vorgeschaltet, mittels dessen eine Sterilfiltration des Dialysats oder zumindest der als Substituat zugeführten Flüssigkeit durchgeführt wird. In der Regel ist jedoch eine Sterilfiltration des gesamten Dialysats nicht erforderlich, da der letztlich als Dialysat an den Hohlfasermembranen vorbeigeführte Teil des Dialysats nicht den hohen Reinheitsanforderungen genügen muss, wie dies für das Substituat gilt. Zur Sterilfiltration des Substituats ist in einer vorteilhaften Ausführungs- form des erfindungsgemäßen Hemodiafiltrationssystems innerhalb des Membranmoduls im Bereich des Substituatraums um das Hohlfaserbündel herum ein Sterilfilter angeordnet, der das Hohlfasermembranbündel umschließt.
Die Erfindung betrifft desweiteren auch einen Membranmodul, umfassend ein zylin- derförmiges Gehäuse mit einer Längserstreckung, in welchem ein in Richtung der Längserstreckung des Gehäuses orientiertes Bündel von lumenseitig durchströmbaren Hohlfasermembranen mit semipermeabler Wand angeordnet ist, deren Enden in eine erste und in eine zweite mit der Gehäuseinnenwand fluiddicht verbundene Vergussmasse so fluiddicht eingebettet sind, dass um die Hohlfasermembranen herum ein von der ersten und der zweiten Vergussmasse sowie der Gehäuseinnenwand begrenzter Außenraum ausgebildet ist, der entlang der Längserstreckung des Gehäuses durch eine jede Hohlfasermembran umschließende und zu den Hohlfasermembranen im wesentlichen quer verlaufende Trennwand in einen Dialysatraum und einen Substituatraum unterteilt ist, wobei der Dialysatraum eine Einlasseinrichtung und eine Auslasseinrichtung zur Einleitung bzw. Ausleitung eines Dialysats und der Substituatraum zumindest eine Öffnung zur Einleitung eines Substituats aufweisen, dadurch gekennzeichnet, dass im Bereich des Substituatraums zwischen der Einlasseinrichtung für Substituat und den im Substituatraum befindlichen Hohlfasermembranen ein Sterilfilter angeordnet ist, der den Substituatraum in einen äußeren Substituatteilraum und einen vom äußeren Substituatteilraum durch den Sterilfilter räumlich abgetrennten inneren Substituatteilraum unterteilt, wobei der äußere Substituatteilraum mit der Einlasseinrichtung für Substituat in Fluidverbindung steht und die Hohlfasermembranen im inneren Substituatteilraum angeordnet sind.
Unter räumlicher Abtrennung wird hier verstanden, dass ein über die Einlasseinrichtung für Substituat in den äußeren Substituatteilraum eingeleitetes Fluid nur über den Sterilfilter selbst in den inneren Substituatteilraum gelangen kann, der Sterilfilter also als sogenannter dead-end Filter wirkt. In einer bevorzugten Ausführung des erfindungsgemäßen Membranmoduls ist der Sterilfilter um das Hohlfaserbündel herum angeordnet und umschließt das Hohlfasermembranbündel. In dieser bevorzugten Ausführungsform unterteilt der Sterilfilter den Substituatraum senkrecht zu den Hohlfasermembranen in den äußeren Substituatteilraum, in dem eine gleichmäßige Verteilung des Substituats auf den Sterilfilter erfolgen kann, und in den das Bündel der Hohlfasermembranen enthaltenden inneren Substituatteilraum. Mit Vorteil lässt sich als Sterilfilter eine gegebenenfalls plissierte Flachmembran einsetzen. Vorteilhaft ist der Einsatz einer durchgehend mikroporösen Flachmembran. Bevorzugt ist der Sterilfilter dicht gegenüber dem Durchgang von Endotoxinen, d.h. endotoxindicht, und besonders bevorzugt ClS-undurch- lässig, um so in der Anwendung die Zuführung eines sterilen endotoxin- und pyro- genfreien und vorzugsweise CIS-freien Substituats zu den Hohlfasermembranen sicherzustellen. Hierbei wird unter einem gegenüber dem Durchtritt von Endotoxinen dichten Sterilfilter ein solcher verstanden, für den sich bei Filtration eines mit einer Endotoxinkonzentration von bis zu 30 EU/ml kontaminierten Dialysats mit einer Fil- . trationsrate von 150 ml/min während einer Dauer von 4 Stunden durch den Sterilfilter hindurch das Filtrat eine Endotoxinkonzentration unterhalb der Nachweisgrenze üblicher Tests, d.h. unterhalb von ca. 0,03 EU/ml aufweist. Die Endotoxinkonzentration wird dabei mittels gängiger LAL-Tests ermittelt, wie sie z.B. von der Fa. BioWhitteker Inc. (Multi-Test Limulus Amebocyte Lysate Pyrogent®) vertrieben und beschrieben werden.
In Einzelfällen ist es bei dem im erfindungsgemäßen Hemodiafiltrationssystem eingesetzten Membranmodul bzw. beim erfindungsgemäßen Membranmodul zur Erhöhung des dem Blut zuzuführenden Substituatstroms auch möglich, in die an den Substituatraum angrenzende Vergussmasse, in die die Hohlfasermembranenden eingebettet sind, zusätzliche semipermeable Membranelemente einzubetten, die im dead-end Modus durchströmbar sind und über die der Substituatraum und der auf . der anderen Seite der Vergussmasse liegende Raum, der je nach Ausführung des erfindungsgemäßen Membranmoduls der Verteiler- oder der Sammelraum für das Blut ist, in Fluidverbindung stehen. Über diese Membranelemente kann dem Blut, welches sich dann in dem angrenzenden Sammel- bzw. Verteilerraum befindet, ebenfalls ein Teil des Substituats zugeführt werden. Diese semipermeablen Membranelemente können z.B. in Form von an ihrem einen Ende verschlossenen, vorzugsweise durchgehend mikroporösen Kapillarmembranen vorliegen, die in die Vergussmasse eingebettet sind und die mit ihrem verschlossenen Ende in den Substituatraum hineinragen. Diese Membranelemente sind wie der zuvor genannte Sterilfilter bevorzugt dicht gegenüber dem Durchgang von Endotoxinen und besonders bevorzugt CIS-undurchlässig. Hinsichtlich der Definition der Endotoxindichtigkeit bzw. der CIS-Dichtigkeit sowie hinsichtlich der jeweiligen Meßmethoden sei auf die zuvor gemachten Ausführungen verwiesen.
Für die Anwendung ist es von Vorteil, wenn die Trennwand des im erfindungsgemäßen Hemodiafiltrationssystem eingesetzten bzw. des erfindungsgemäßen Membranmoduls aus einem im wesentlichen dimensionsstabilen Material besteht, d.h. aus einem Material, welches in der Anwendung unter den dann vorherrschenden Bedingungen seine Dimension im wesentlichen beibehält und insbesondere durch die dabei eingesetzten Flüssigkeiten, d.h. vor allem durch das Dialysat, nicht gequollen wird. Nicht zuletzt aus Gründen der einfachen Herstellbarkeit besteht die Trennwand bevorzugt aus einer ausgehärteten Vergussmasse, in die die Hohlfasermembranen so eingebettet sind, dass sie jede Hohlfasermembran umschließt. Besonders bevorzugt bestehen die Trennwand, die erste und die zweite Vergussmasse aus dem gleichen Material. Hierbei können die zur Einbettung von Hohlfasermembranen üblicherweise als Vergussmassen zum Einsatz kommenden Materialien wie ausgehärtete Polyurethanharze, Epoxyharze und ähnliche verwendet werden.
In der Anwendung des erfindungsgemäßen Hemodiafiltrationssystems bzw. des erfindungsgemäßen Membranmoduls ist im Membranmodul eine möglichst gleichmäßige Verteilung von Substituat und Dialysat über den Bündelquerschnitt erforderlich. Eine gleichmäßige Verteilung lässt sich durch eine geeignete Gestaltung des Gehäuses erreichen. Vorzugsweise ist das Gehäuse des Membranmoduls so ausgebildet, dass es das Bündel der Hohlfasermembranen im überwiegenden Teil des Dialy- satraums mit seiner Innenseite eng anliegend umschließt und im Bereich der Vergussmassen sowie der Trennwand und des Substituatraums eine Erweiterung des Querschnitts aufweist. Hierdurch sind in einer vorteilhaften Ausgestaltung in diesen Bereichen um das Bündel der Hohlfasermembranen herum ringförmige Räume zum Verteilen des Dialysats auf das Hohlfasermembranbündel, zum Sammeln des Dialysats aus dem Membranbündel und/oder zum Verteilen des Substituats auf das Bündel ausgebildet.
Bevorzugt weist das Bündel zumindest im überwiegenden Teil des Dialysatraums eine auf den Bündelquerschnitt bezogene und über die Erstreckung des Bündels in diesem Bereich im wesentlichen gleichmäßige Packungsdichte der Hohlfasermembranen zwischen 40 und 65 % auf. Es hat sich gezeigt, dass für den erfindungsgemäß eingesetzten bzw. den erfindungsgemäßen Membranmodul bei derartigen Pak- kungsdichten eine gute Entfernung der harnpflichtigen Stoffe aus dem Blut ermöglicht wird.
In einer ebenfalls vorteilhaften Ausgestaltung ist das Gehäuse des Membranmoduls so ausgeformt, dass es das Bündel der Hohlfasermembranen im Bereich des Dialysatraums mit seiner Innenseite eng anliegend umschließt und im Bereich der Vergussmassen sowie der Trennwand und des Substituatraums eine Erweiterung des Gehäusequerschnitts aufweist, und das Hohlfasermembranbündel ist so im Gehäuse angeordnet, dass sich im Bereich der Trennwand und des Substituatraums der Querschnitt des Hohlfasermembranbündels erweitert und damit die Packungsdichte der Hohlfasermembranen in diesem Bereich geringer ist als im überwiegenden Teil des Dialysatraums. Besonders bevorzugt ist dabei im Bereich des erweiterten Querschnitts die Packungsdichte des Hohlfasermembranbündels über den Querschnitt im wesentlichen homogen. Hierdurch sind auch die Hohlfasermembranen im Bündelinneren leicht vom Dialysat bzw. dem Substituat erreichbar, und das Substituat strömt gleichmäßig in alle Hohlfasermembranen des Bündels ein. Gleichzeitig ist auch die Herstellung des Membranmoduls vereinfacht, da bei einer Trennwand, die aus einer Vergussmasse besteht, bei der Einbettung der Hohlfasermembranen die Verguss- masse die einzelnen Hohlfasermembranen besser umschließen kann. In seinem erweiterten Bereich weist das Bündel vorzugsweise eine auf den jeweiligen Bündelquerschnitt bezogene Packungsdichte zwischen 20 und 55 % auf.
Zur Durchführung einer effizienten Hemodiafiltration ist es erforderlich, dass eine ausreichend hohe Austauschfläche für die Diafiltration zur Verfügung steht, um die harnpflichtigen Stoffe effizient aus dem Blut entfernen zu können. Auf der anderen Seite muss auch eine ausreichende Membranfläche zur Verfügung stehen, um eine sichere Zuführung der erforderlichen Menge an Substituat zum Blut zu ermöglichen. Es wurde gefunden, dass für den Membranmodul gemäß vorliegender Erfindung in Richtung der Erstreckung der Hohlfasermembranen gesehen das Verhältnis Ld/ Ls der Erstreckung des Dialysatraums Ld zur Erstreckung des Substituatraums Ls vorzugsweise größer als 3 sein sollte. Bevorzugt liegt daher Ld/ Ls im Bereich zwischen 3 und 20 und besonders bevorzugt zwischen 5 und 15.
Um ebenfalls eine möglichst große Membranfläche für die Substituatzuführung zum Blut und für die Hemodiafiltration zur Verfügung zu haben, sollte die Dicke der Trennwand des Membranmoduls möglichst gering sein. Andererseits ist eine bestimmte Mindestdicke erforderlich, um eine ausreichende Stabilität der Trennwand zu gewährleisten. Daher ist es von Vorteil, wenn die Trennwand eine Dicke zwischen 1 und 15 mm aufweist, und von besonderem Vorteil, wenn sie eine Dicke zwischen 5 und 10 mm aufweist.
Für eine effiziente Hemodiafiltration ist es erforderlich, zur Entfernung insbesondere der langsam diffundierenden harnpflichtigen Stoffe mit mittlerem Molekulargewicht einen ausreichend hohen konvektiven Transport zu erzeugen. Zum anderen ist es von Vorteil wenn für die Zuführung von Substituat zum Blut nur ein relativ kleiner Abschnitt des Hohlfasermembranbündels benötigt wird. Damit ergibt sich, dass über die Membranwand hinweg ein genügend hoher Filtratfluss realisierbar sein muss. Daher weisen die im erfindungsgemäß eingesetzten bzw. die im erfindungsgemäßen Membranmodul enthaltenen Hohlfasermembranen bevorzugt eine Ultrafiltrationsrate für Wasser zwischen 20 und 1500 ml/(h m2 mmHg) auf, wobei die Ultrafiltrationsrate nach der in der DE-A 195 18 624 beschriebenen Methode ermittelt wird, auf deren diesbezügliche Offenbarung sich hier ausdrücklich bezogen wird.
Für einen sicheren Betrieb des erfindungsgemäßen Hemodiafiltrationssystems ist wichtig, dass es insbesondere bei der Zuführung des Substituats zum Blut nicht zu einer unerwünschten Verunreinigung des durch die Hohlfasermembranen strömenden Bluts mit Bakterien, Endotoxinen oder Pyrogenen kommt. Entsprechend den obigen Ausführungen kann hierzu das Dialysat und/oder zumindest das Substituat in einem separaten oder einem in den Membranmodul des erfindungsgemäßen Hemodiafiltrationssystems integrierten Sterilfilter einer Sterilfiltration unterzogen werden. Alternativ oder ergänzend kann diese Sterilfiltration jedoch auch in den Hohlfasermembranen des Membranmoduls des erfindungsgemäßen Hemodiafiltrationssystems selbst erfolgen. In einer bevorzugten Ausführungsform sind daher die Hohlfasermembranen undurchlässig gegenüber Endotoxinen und besonders bevorzugt undurchlässig gegenüber cytokin-induzierenden Substanzen. Hierbei kann die Un- durchlässigkeit durch eine entsprechend eingestellte Porengröße der trennaktiven Schicht der Membranen und/oder durch adsorptive Eigenschaften der Hohlfasermembranen erreicht werden. Hinsichtlich der Definition der Endotoxindichtigkeit bzw. der CIS-Dichtigkeit sowie hinsichtlich der jeweiligen Meßmethoden sei auf die weiter oben gemachten Ausführungen verwiesen.
Die erfindungsgemäß eingesetzten Hohlfasermembranen haben vorzugsweise einen Innendurchmesser zwischen 140 und 260 μm, die Wandstärke liegt bevorzugt zwischen 5 und 100 μm und besonders bevorzugt zwischen 20 und 60 μm. Als Membranmaterialien kommen vorzugsweise solche in Frage, die eine gute Blutverträglichkeit aufweisen. Hierzu zählen Polymere aus der Gruppe der cellulosischen Polymeren, wie z.B. Cellulose oder regenerierte Cellulose, modifizierte Cellulose, wie z.B. Celluloseester, Celluloseäther, aminmodifizierte Cellulosen, sowie Mischungen von cellulosischen Polymeren, aus der Gruppe der synthetischen Polymeren wie z.B. Polyacrylnitril und entsprechende Copolymere, Polyarylsulfone und Polyarylether- sulfone, wie z.B. Polysulfon oder Polyethersulfon, Polyamide, Polyetherblockamide, Polycarbonate oder Polyester sowie daraus gewonnene Modifikationen, Blends, Mischungen oder Copolymere dieser Polymere. Diesen Polymeren bzw. Polymergemischen können weitere Polymere wie z.B. Polyethylenoxid, Polyhydroxye- ther, Polyethylenglykol, Polyvinylpyrrolidon, Polyvinylalkohol oder Polycaprolacton als Zusatzstoffe beigemischt werden. Im Einzelfall kann die Membran auch z.B. einer Oberflächenmodifikation unterzogen worden sein, um bestimmte Eigenschaften der Membranoberfläche z.B. in Form bestimmter funktioneller Gruppen einzustellen oder um eine Hydrophilierung einer ansonsten hydrophoben Membran an deren Oberflächen zu erreichen, wie dies z.B. in der JP-A 10118472 beschrieben wird.
Die Aufmachung des im Membranmodul des erfindungsgemäßen Hemodiafiltrationssystems angeordneten Bündels von Hohlfasermembranen, d.h. die Anordnung der Hohlfasermembranen zum Bündel kann beliebig sein, wobei eine gute Umströmbar- keit der einzelnen Hohlfasermembranen gewährleistet sein sollte. Bei einer vorteilhaften Aufmachung sind die Hohlfasermembranen zueinander und zur Längsachse des Bündels im wesentlichen parallel und werden über textile Fäden gegeneinander auf Abstand gehalten. Dies kann beispielsweise dadurch erreicht werden, dass vor der Ausbildung zum Bündel die Hohlfasermembranen mittels der textilen Fäden zu einer Matte oder zu einem Bändchen von parallel liegenden Hohlfasermembranen verwoben und anschließend zum Bündel konfiguriert werden. Das im erfindungsge- mäßen Membranmodul enthaltene Bündel von Hohlfasermembranen kann auch aus Teilbündeln zusammengesetzt sein, solange jede der Hohlfasermembranen des Bündels in der Anwendung zur Blutbehandlung, zur Filtrierung des Substituats und zur Zuführung des Substituats zum Blut dienen. Ein solcher Aufbau aus Teilbündeln, bei dem die Teilbündel zur Verbesserung der Umströmbarkeit der Hohlfasermembranen mit Wickelfäden umwickelt sind und die Hohlfasermembranen innerhalb der Teilbündel über Stützfäden auf Abstand gehalten sind, ist beispielsweise in der EP-A 732 141 beschrieben. Darüber hinaus können die Hohlfasermembranen auch eine Ondulation aufweisen. Die Erfindung wird nachfolgend anhand der Figuren näher erläutert. Es zeigen in vereinfachter schematischer Darstellung:
Fig. 1 : einen Ausschnitt eines erfindungsgemäßen Hemodiafiltrationssystems mit einem darin eingesetzten Membranmodul in Längsschnittdarstellung, wobei eine Verfahrensweise mit einer Nachverdünnung des Bluts dargestellt ist,
Fig. 2: einen Ausschnitt eines erfindungsgemäßen Hemodiafiltrationssystems mit einem darin eingesetzten Membranmodul in Längsschnittdarstellung , wobei eine Verfahrensweise mit einer Vorverdünnung des Bluts dargestellt ist,
Fig. 3: Segment eines Längsschnitts durch einen im erfindungsgemäßen Hemodiafiltrationssystem eingesetzten Membranmodul bzw. eines erfindungsgemäßen Membranmoduls mit einem im Gehäuse des Moduls integrierten Sterilfilter,
Fig. 4: Schema eines erfindungsgemäßen Hemodiafiltrationssystems, bei welchem eine Verfahrensweise mit einer Nachverdünnung des Bluts dargestellt ist,
Fig. 5: Schema eines erfindungsgemäßen Hemodiafiltrationssystems, bei welchem eine Verfahrensweise mit einer Vorverdünnung des Bluts dargestellt ist.
Figur 1 zeigt schematisch einen Ausschnitt eines erfindungsgemäßen Hemodiafiltrationssystems mit einem darin eingesetzten Membranmodul 1 in Längsschnittdarstellung. Der Membranmodul 1 weist ein zylinderförmiges Gehäuse 2 auf , in dem ein Bündel von in Richtung der Längserstreckung des Gehäuses orientierten Hohlfasermembranen 3 angeordnet ist. Die Hohlfasermembranen sind mit ihren Enden in Vergussmassen 4,5 fluiddicht eingebettet, welche ihrerseits fluiddicht mit der Innenwand des Gehäuses 2 verbunden sind. Die Hohlfasermembranen sind so in die Vergussmassen 4,5 eingebettet, dass ihre Enden durch die Vergussmassen 4,5 hin- durchtreten und ihre Lumina in einen Verteilerraum 6 bzw. einen Sammelraum 7 münden. Der Verteilerraum 6 weist eine Bluteinlasseinrichtung 8 und der Sammelraum 7 eine Blutauslasseinrichtung 9 auf.
Um die Hohlfasermembranen 3 herum ist zwischen den Vergussmassen 4,5 und der Innenwand des Gehäuses 2 ein Außenraum ausgebildet, der entlang der Erstrek- kung der Hohlfasermembranen 3 durch eine quer zu den Hohlfasermembranen 3 verlaufende Trennwand 10 z.B. aus einer ausgehärteten Epoxy- oder Polyurethanvergussmasse in einen Substituatraum 11 und einen Dialysatraum 12 unterteilt ist. Die Trennwand 10 umschließt die einzelnen Hohlfasermembranen 3 und ist fluiddicht mit der Gehäuseinnenwand verbunden, so dass der Substituatraum 11 und der Dialysatraum 12 fluiddicht voneinander getrennt sind.
Der Dialysatraum weist eine Einlasseinrichtung 13 und eine Auslasseinrichtung 14 für Dialysat, der Substituatraum eine Einlasseinrichtung 15 für Substituat auf. Um in der Anwendung eine gute Verteilung von Dialysat bzw. von Substituat im Dialysatraum 12 bzw. im Substituatraum 11 erreichen zu können, ist das Gehäuse 2 des in Figur 1 gezeigten Membranmoduls im Bereich der Trennwand 10 und im Bereich des Substituatraums 11 in seinem Querschnitt erweitert. Im Bereich der Auslasseinrichtung 14 ist der Querschnitt des Gehäuses 2 ebenfalls erweitert, um das Dialysat gleichmäßig aus dem Modul abziehen zu können.
In Figur 1 ist schematisch eine Verfahrensweise einer Hemodiafiltration angedeutet, bei der eine Nachverdünnung des Bluts mit Substituat erfolgt, dem Blut beim Durchströmen des Membranmoduls also zunächst das Ultrafiltrat entzogen und anschließend Substituat zugeführt wird. In der Anwendung strömt das Blut, welches durch die Pfeile 16 angedeutet ist, über die Bluteinlasseinrichtung 8 in den Verteilerraum 6, durchströmt die Lumina der Hohlfasermembranen 3, strömt anschließend aus den Hohlfasermembranen 3 in den Sammelraum 7 und wird über die Blutauslasseinrichtung 9 aus dem Membranmodul d.h. aus dem Hemodiafilter ausgeleitet. Das Dialysat, dargestellt durch die Pfeile 17, wird mittels einer als Fördereinrichtung dienenden Pumpe 18 über die mit der Einlasseinrichtung 13 verbundene Dialysatzuleitung 19 in den Dialysatraum 12 eingeleitet und durchströmt den Dialysatraum 12 entgegengesetzt zur Strömungsrichtung des Bluts. Hierbei nimmt das Dialysat 17 das über die Wände der Hohlfasermembranen 3 ausströmende Ultrafiltrat zusammen mit den aus dem Blut entfernten harnpflichtigen Substanzen auf. Das mit dem Ultrafiltrat vermischte Dialysat 17 wird über die Auslasseinrichtung 14 aus dem Dialysatraum 12 abgezogen.
Bei der in der Figur 1 dargestellten Ausführungsform wird das durch den Pfeil 20 dargestellte Substituat als Teilstrom über eine von der Dialysatzuleitung 19 abzweigende Substituatzuleitung 21 dem durch die Dialysatzuleitung 19 strömenden Dialysat entnommen und über die Einlasseinrichtung 15 in den Substituatraum 11 eingeleitet, von wo es die dort hindurchführenden Hohlfasermembranen 3 durchströmt und sich mit dem durch die Hohlfasermembranen 3 strömenden Blut vermischt. Zur definierten Einstellung des Verhältnisses von Dialysatvolumenstrom zu Substituatvolumenstrom ist in die Dialysatzuleitung 19 im Bereich zwischen dem Abzweig und der Einlasseinrichtung 13 für Dialysat eine Drossel 22 eingebaut.
Der in Figur 2 schematisch im Längsschnitt dargestellte Membranmodul entspricht in seinen wesentlichen Merkmalen dem in Figur 1 dargestellten Membranmodul, so dass die gleichen Teile mit gleichen Bezugszeichen versehen sind und auf eine erneute ausführliche Beschreibung verzichtet wird. In Figur 2 ist jedoch ein Ausschnitt eines Hemodiafiltrationssystems gezeigt, bei welchem in der Anwendung bei der Hemodiafiltration eine Vorverdünnung des Bluts erfolgt, dem Blut beim Durchströmen des Membranmoduls also zunächst Substituat zugeführt und anschließend das Ultrafiltrat entzogen wird.
Bei der Hemodiafiltration wird das Blut 16 über die Bluteinlasseinrichtung 8 und den Verteilerraum 6 in die Hohlfasermembranen 3 geleitet und durchströmt diese. Hierbei wird dem Blut im Bereich des Substituatraums 11 zunächst Substituat zugeführt und das Blut dabei mit Substituat verdünnt, bevor es auf seinem weiteren Weg durch die Hohlfasermembranen 3 den Bereich des Dialysatraums 12 durchläuft, in dem ihm über Ultrafiltration durch die Wände der Hohlfasermembranen die erforderliche Flüssigkeitsmenge entzogen wird und dabei die harnpflichtigen Stoffe entfernt werden. Das gereinigte und auf den erforderlichen Flüssigkeitsgehalt eingestellte Blut veriässt den erfindungsgemäßen Membranmodul über die Blutauslasseinrichtung 9.
Die Dialysierflüssigkeit 17 wird über die Einlasseinrichtung 13, die sich im vorliegenden Fall an dem der Trennwand 10 abgewandten Ende des Dialysatraums befindet, in den Dialysatraum eingeleitet und durchströmt den Dialysatraum entgegengesetzt zur Strömungsrichtung des Bluts in Richtung auf die Trennwand 10. Hierbei nimmt es das Ultrafiltrat mit den aus dem Blut entfernten harnpflichtigen Substanzen auf und wird dann über die in der Nähe der Trennwand 10 liegende Auslasseinrichtung 14 aus dem Dialysatraum 12 abgezogen. Das Substituat wird, wie auch in der Figur 1 gezeigt, als Teilstrom über eine von der Dialysatzuleitung 19 abzweigende Substituatzuleitung 21 dem durch die Dialysatzuleitung 19 strömenden Dialysat entnommen, über die Einlasseinrichtung 15 in den Substituatraum 11 eingeleitet und von dort über Hohlfasermembranen 3 dem Blut zugeführt. Zur Einstellung des Verhältnisses von Dialysatvolumenstrom zu Substituatvolumenstrom dient jedoch bei der in Figur 2 dargestellten Ausführungsform eine in die Substituatzuleitung 21 eingebaute Druckerhöhungspumpe 23.
Figur 3 zeigt in gegenüber den Figuren 1 und 2 vergrößerter Darstellung ein den Substituatraum und die Trennwand 10 umfassendes Segment eines im erfindungsgemäßen Hemodiafiltrationssystem eingesetzten bzw. eines erfindungsgemäßen Membranmoduls 1. Auch der in Figur 3 ausschnittsweise gezeigte Membranmodul entspricht in wesentlichen Teilen dem in Figur 1 dargestellten Membranmodul, so dass die gleichen Teile mit gleichen Bezugszeichen versehen sind und auf eine erneute ausführliche Beschreibung verzichtet wird. Die in Figur 3 dargestellte Membranmodulausführungsform weist einen im Gehäuse 2 integrierten Sterilfilter 24 zur Sterilfiltration des Substituats 20 auf. Der Sterilfilter 24, vorzugsweise in Gestalt einer bakterien- und endotoxindichten Flachmembran, umschließt das Hohlfasermembranbündel im Bereich des Substituatraums und teilt den Substituatraum in einen äußeren Substituatteilraum 25 und einen inneren Substituatteilraum 26, die jeweils über die Trennwand 10 vom Dialysatraum 12 fluiddicht getrennt sind. Der Sterilfilter lässt sich auf einfache Weise zusammen mit den Hohlfasermembranen 3 in die Vergussmasse 5 und die Trennwand 10 einbetten. Bei der in Figur 3 gezeigten Ausführungsform des erfindungsgemäßen Membranmoduls wird in der Anwendung das über die Einlasseinrichtung 15 in das Gehäuse eingeleitete Substituat 20 im äußeren Substituatteilraum 25 über den gesamten Umfang gleichmäßig verteilt und strömt vollständig durch den Sterilfilter 24, wobei es einer Sterilfiltration unterzogen wird. Nach Durchströmen des Sterilfilters 24 verteilt sich das Substituat 20 auf den inneren Substituatteilraum 26 und fließt von dort durch die Wände der Hohlfasermembranen 3 in das diese durchströmende Blut.
In Figur 4 ist schematisch der grundsätzliche Aufbau eines erfindungsgemäßen Hemodiafiltrationssystems dargestellt, welches einen Membranmodul 1 mit einer Trennwand 10 umfasst, wie er in Figur 1 gezeigt ist. Das Hemodiafiltrationssystem gemäß Figur 4 ist für Hemodiafiltrationsverfahren geeignet, bei denen eine Nachverdünnung des Bluts mit Substituat vorgenommen wird. Das dem Patienten entnommene Blut wird in Pfeilrichtung a über eine Blutzuführleitung 27 sowie die Bluteinlasseinrichtung 8 des als Hemodiafilter dienenden Membranmoduls 1 dem Membranmodul 1 zugeführt und durch das Lumen der im Membranmodul angeordneten Hohlfasermembranen geleitet. Das gereinigte Blut wird über die Blutauslasseinrichtung 9 des Membranmoduls 1 aus diesem abgeleitet und in Pfeilrichtung a über die Blutabführleitung 28 und eine Tropfkammer 29 dem Patienten wieder zugeführt.
Über die Dialysatzuleitung 19 und die Einlasseinrichtung 13 für das Dialysat wird Dialysat in Pfeilrichtung b in den Dialysatraum des Hemodiafilters 1 gefördert. Es durchströmt den Dialysatraum entgegengesetzt zur Strömungsrichtung des Bluts in Richtung auf die Auslasseinrichtung 14 für Dialysat, wobei es das über die Hohlfasermembranen dem Blut entzogene und die harnpflichtigen Substanzen enthaltende Ultrafiltrat aufnimmt. Das mit dem Ultrafiltrat angereicherte Dialysat veriässt über die Auslasseinrichtung 14 den Membranmodul und wird über die Dialysatabführleitung 30 in Pfeilrichtung c mittels der Dialysatflusspumpe 31 und der Ultrafiltratpumpe 33 abgezogen.
Das dem Blut zuzuführende Substituat wird bei der in Figur 4 dargestellten Ausführungsform des erfindungsgemäßen Hemodiafiltrationssystems durch die von der Dialysatzuleitung 19 abzweigende Substituatzuleitung 21 und über die Einlasseinrichtung 15 für das Substituat in den Substituatraum des Membranmoduls 1 eingeleitet, um von dort über die Wände der Hohlfasermembranen dem in den Hohlfasermembranen strömenden Blut zugeführt zu werden. In der Substituatzuleitung 21 befindet sich im vorliegenden Fall eine vorzugsweise regelbare Pumpe 23, mittels derer der Substituatvolumenstrom und damit das Verhältnis von Dialysatvolumenstrom zu Substituatvolumenstrom eingestellt wird.
Über die Bilanziereinheit 32 erfolgt eine Kontrolle des Dialysatkreislaufs und über die Ultrafiltratpumpe 33 eine Einstellung des im Bereich des Dialysatraums dem Blut entzogenen Nettofiltratstroms. Die Bilanziereinheit 32 arbeitet dabei so, dass der über die Pumpe 31 geförderte Volumenstrom durch einen gleich großen Volumenstrom an frischem Dialysat ersetzt wird.
In Figur 5 ist eine weitere Ausführungsform des erfindungsgemäßen Hemodiafiltrationssystems schematisch dargestellt. Hinsichtlich der wesentlichen Elemente entspricht das Hemodiafiltrationssystem gemäß Figur 5 dem in Figur 4 dargestellten Hemodiafiltrationssystem, so dass die gleichen Elemente mit gleichen Bezugszeichen versehen sind. Im Unterschied zu dem Hemodiafiltrationssystem der Figur 4 ist jedoch das Hemodiafiltrationssystem gemäß Figur 5 für Hemodiafiltrationsverfahren geeignet, bei denen eine Vorverdünnung des Bluts mit Substituat vorgenommen wird. Das Dialysat, das über die Dialysatzuleitung 19 dem als Hemodiafilter dienen- den Membranmodul 1 zugeführt wird, strömt über die Dialysateinlasseinrichtung 13 in den Dialysatraum des Hemodiafilters ein, wobei sich die Dialysateinlasseinrichtung 13 im vorliegenden Fall an dem der Blutauslasseinrichtung 9 zugewandten Ende des Hemodiafilters befindet. Im Dialysatraum strömt das Dialysat entgegengesetzt zur Strömungsrichtung des Bluts in Richtung auf die Dialysatauslasseinrichtung 14, die benachbart zu der hier nur angedeuteten Trennwand 10 angeordnet ist. Das mit dem im Dialysatraum aufgenommenen Ultrafiltrat vermischte Dialysat veriässt den Dialysatraum über die Dialysatauslasseinrichtung 14 und wird über die Dialysatabführlei- tung 30 in Pfeilrichtung c mittels der Dialysatflusspumpe 31 und der Ultrafiltratpumpe 33 abgezogen.
Das dem Blut zuzuführende Substituat wird bei der in Figur 5 dargestellten Ausführungsform des erfindungsgemäßen Hemodiafiltrationssystems ebenfalls durch eine von der Dialysatzuleitung 19 abzweigende Substituatzuleitung 21 vom Dialysatstrom abgezweigt und über die Einlasseinrichtung für das Substituat 15 in den Substituatraum des Membranmoduls 1 eingeleitet, um von dort über die Wände der Hohlfasermembranen dem in den Hohlfasermembranen strömenden Blut zugeführt zu werden. In der in der Figur 5 dargestellten Ausführungsform des erfindungsgemäßen Hemodiafiltrationssystems befindet sich in der Dialysatzuleitung 19 zwischen der Abzweigung der Substituatzuleitung 21 und der Einlasseinrichtung für Dialysat 13 eine Drossel 22, vorzugsweise in Form eines einstellbaren Ventils, mittels derer das Verhältnis von Dialysatvolumenstrom zu Substituatvolumenstrom eingestellt wird.

Claims

Patentansprüche:
1. Hemodiafiltrationssystem zur Behandlung von Blut, umfassend einen Membranmodul (1 ), welcher ein zylinderförmiges Gehäuse (2) mit einer Längserstreckung aufweist, in welchem lumenseitig durchströmbare und an ihren Enden in eine mit der Innenwand des Gehäuses (2) fluiddicht verbundene erste und zweite Vergussmasse (4,5) eingebettete Hohlfasermembranen (3) mit se- mipermeabler Wand in Richtung der Längserstreckung angeordnet sind, und welcher einen Dialysatraum (12) aufweist, in den eine Einlasseinrichtung (13) für Dialysat und eine Auslasseinrichtung (14) für Dialysat münden, sowie einen Substituatraum (11 ), in den eine Einlasseinrichtung (15) für Substituat mündet, Mittel zur Zuführung eines Dialysats mit definiertem Volumenstrom über die Einlasseinrichtung (13) für Dialysat in den Dialysatraum (12), Mittel zur Abführung des Dialysats über die Auslasseinrichtung (14) für Dialysat aus dem Dialysatraum (12), Mittel zur Zuführung eines Substituats mit definiertem Volumenstrom über die Einlasseinrichtung (15) für Substituat in den Substituatraum (11 ), wobei der Membranmodul (1 ) als einheitliches Bauteil zur Blutbehandlung, zur Filtrierung des Substituats und zur Vermischung des Substituats mit dem Blut ausgebildet ist und der Substituatraum (11 ) und der Dialysatraum (12) mittels einer durchgehenden Trennwand (10) fluiddicht voneinander getrennt sind, dadurch gekennzeichnet, dass die Hohlfasermembranen (3) zu einem einzigen Bündel zusammengefasst sind und dieselben Hohlfasermembranen (3) zur Blutbehandlung, zur Filtrierung des Substituats und zur Zuführung des Substituats zum Blut dienen, dass um die Hohlfasermembranen (3) herum ein Außenraum ausgebildet ist, welcher durch die Innenwand des Gehäuses (2) und die erste und zweite Vergussmasse (4,5) begrenzt ist und welcher entlang der Längserstreckung des Gehäuses (2) durch die Trennwand (10) in den Substituatraum (11 ) und den Dialysatraum (12) unterteilt wird, wobei die Trennwand (10) jede einzelne Hohlfasermembran (3) umschließt.
2. Hemodiafiltrationssystem nach Anspruch 1 , dadurch gekennzeichnet, dass die Trennwand (10) im wesentlichen quer zu den Hohlfasermembranen (3) angeordnet ist.
3. Hemodiafiltrationssystem nach einem oder mehreren der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Mittel zur Zuführung von Substituat und die Mittel zur Zuführung von Dialysat miteinander gekoppelt sind.
4. Hemodiafiltrationssystem nach Anspruch 3, dadurch gekennzeichnet, dass die Mittel zur Zuführung von Substituat und die Mittel zur Zuführung von Dialysat eine gemeinsame Mehrfachpumpe umfassen, an die eine mit der Einlasseinrichtung (13) für Dialysat in Verbindung stehende Dialysatzuleitung (19) und eine mit der Einlasseinrichtung (15) für Substituat in Verbindung stehende Substituatzuleitung (21 ) angeschlossen sind.
5. Hemodiafiltrationssystem nach Anspruch 3, dadurch gekennzeichnet, dass die Mittel zur Zuführung von Dialysat eine Fördereinrichtung (18) für Dialysat und eine Dialysatzuleitung (19) umfassen und die Mittel zur Zuführung von Substituat eine Substituatzuleitung (21 ) und dass die Substituatzuleitung (21 ) über eine Verzweigung von der Dialysatzuleitung (19) abzweigt.
6. Hemodiafiltrationssystem nach Anspruch 5, dadurch gekennzeichnet, dass in die Substituatzuleitung (21 ) eine Substituatpumpe (23) zur Förderung des Substituats eingebaut ist.
7. Hemodiafiltrationssystem nach Anspruch 5, dadurch gekennzeichnet, dass in die Dialysatzuleitung (19) im Bereich zwischen der Verzweigung und der Einlasseinrichtung (13) für Dialysat oder in die Substituatzuleitung (21 ) und die Dialysatzuleitung (19) im Bereich zwischen der Verzweigung und der Einlasseinrichtung (13) für Dialysat eine Drossel (22) zur Einstellung des Verhältnisses von Substituatvolumenstrom zu Dialysatvolumenstrom eingebaut ist.
8. Hemodiafiltrationssystem nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Membranmodul (1 ) im Bereich des Substituatraums (11 ) um das Bündel der Hohlfasermembranen (3) herum einen das Bündel umschließenden Sterilfilter (24) aufweist.
9. Hemodiafiltrationssystem nach Anspruch 8, dadurch gekennzeichnet, dass der Sterilfilter (24) eine mikroporöse Flachmembran ist.
10. Hemodiafiltrationssystem nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Membranmodul (1 ) in Richtung der Längserstreckung des Gehäuses (2) gesehen ein Verhältnis Ld/ Ls der Erstreckung Ld des Dialysatraums (12) zur Erstreckung Ls des Substituatraums (11 ) im Bereich zwischen 3 und 20 aufweist.
11. Hemodiafiltrationssystem nach Anspruch 10, dadurch gekennzeichnet, dass das Verhältnis zwischen 5 und 15 liegt.
12. Hemodiafiltrationssystem nach einem oder mehreren der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Trennwand (10) des Membranmoduls (1 ) aus einer ausgehärteten Vergussmasse besteht.
13. Hemodiafiltrationssystem nach Anspruch 12, dadurch gekennzeichnet, dass die Trennwand (10), die erste und die zweite Vergussmasse (4,5) aus dem gleichen Material bestehen.
14. Hemodiafiltrationssystem nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Trennwand (10) des Membranmoduls (1 ) eine Dicke zwischen 1 und 15 mm aufweist.
15. Hemodiafiltrationssystem nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das Gehäuse (2) des Membranmoduls (1 ) im Bereich des Dialysatraums (12) das Bündel der Hohlfasermembranen (3) mit seiner Innenseite eng anliegend umschließt und im Bereich der Vergussmassen (4,5) sowie der Trennwand (10) und des Substituatraums (11 ) eine Erweiterung des Querschnitts aufweist.
16. Hemodiafiltrationssystem nach einem oder mehreren der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Hohlfasermembranen (3) des Membranmoduls (1 ) eine Ultrafiltrationsrate für Wasser zwischen 20 und 1500 ml/(h-m2-mmHg) aufweisen.
17. Hemodiafiltrationssystem nach einem oder mehreren der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Hohlfasermembranen (3) des Membranmoduls (1 ) endotoxindicht sind.
18. Verwendung eines Membranmoduls (1 ), welcher ein zylinderförmiges Gehäuse (2) mit einer Längserstreckung aufweist, in welchem in Richtung der Längserstreckung ein Bündel von lumenseitig durchströmbaren und an ihren Enden in eine mit der Innenwand des Gehäuses (2) fluiddicht verbundene erste und zweite Vergussmasse (4,5) eingebetteten Hohlfasermembranen (3) mit semi- permeabler Wand angeordnet ist, und in welchem um die Hohlfasermembranen (3) herum ein durch die Innenwand des Gehäuses (2) und die erste und zweite Vergussmasse (4,5) begrenzter Außenraum ausgebildet ist, der entlang der Längserstreckung des Gehäuses (2) mittels einer durchgehenden und jede einzelne Hohlfasermembran (3) umschließenden Trennwand (10) in einen Dialysatraum (12) und einen vom Dialysatraum (12) fluiddicht getrennten Substituatraum (11 ) unterteilt ist, zur Durchführung eines Hemodiafiltrationsverfahrens, bei welchem mittels des Bündels der Hohlfasermembranen neben der eigentlichen Blutbehandlung auch die Filtrierung des Substituats und die Zuführung des Substituats zum Blut erfolgt.
19. Membranmodul, umfassend ein zylinderförmiges Gehäuse (2) mit einer Längserstreckung, in welchem ein in Richtung der Längserstreckung des Gehäuses
(2) orientiertes Bündel von lumenseitig durchströmbaren Hohlfasermembranen
(3) mit semipermeabler Wand angeordnet ist, deren Enden in eine erste und in eine zweite mit der Gehäuseinnenwand fluiddicht verbundene Vergussmasse (4,5) so fluiddicht eingebettet sind, dass um die Hohlfasermembranen herum ein von der ersten und der zweiten Vergussmasse (4,5) sowie der Innenwand des Gehäuses (2) begrenzter Außenraum ausgebildet ist, der entlang der Längserstreckung des Gehäuses (2) durch eine jede Hohlfasermembran (3) umschließende und zu den Hohlfasermembranen (3) im wesentlichen quer verlaufende Trennwand (10) in einen Dialysatraum (12) und einen Substituatraum (11 ) unterteilt ist, wobei der Dialysatraum (12) eine Einlasseinrichtung (13) und eine Auslasseinrichtung (14) zur Einleitung bzw. Ausleitung eines Dialysats und der Substituatraum (11 ) zumindest eine Einlasseinrichtung (15) zur Einleitung eines Substituats aufweisen, dadurch gekennzeichnet, dass im Bereich des Substituatraums (11 ) zwischen der Einlasseinrichtung (15) für Substituat und den im Substituatraum (11 ) befindlichen Hohlfasermembranen (3) ein Sterilfilter (24) angeordnet ist, der den Substituatraum in einen äußeren Substituatteilraum (25) und einen vom äußeren Substituatteilraum (25) durch den Sterilfilter (24) räumlich abgetrennten inneren Substituatteilraum (26) unterteilt, wobei der äußere Substituatteilraum (25) mit der Einlasseinrichtung (15) für Substituat in Fluidverbindung steht und die Hohlfasermembranen (3) im inneren Substituatteilraum (26) angeordnet sind.
20. Membranmodul nach Anspruch 19, dadurch gekennzeichnet, dass der Sterilfilter (24) um das Bündel der Hohlfasermembranen (3) herum angeordnet ist und das Bündel der Hohlfasermembranen (3) umschließt.
21. Membranmodul nach einem oder mehreren der Ansprüche 19 oder 20, dadurch gekennzeichnet, dass der Sterilfilter (24) eine mikroporöse Flachmembran ist.
22. Membranmodul nach einem oder mehreren der Ansprüche 19 bis 21 , dadurch gekennzeichnet, dass der Sterilfilter (24) gegenüber dem Durchtritt von Endotoxinen dicht ist.
EP00989978A 1999-12-23 2000-12-14 Hemodiafiltrationssystem Withdrawn EP1244480A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19962287 1999-12-23
DE19962287 1999-12-23
PCT/EP2000/012699 WO2001047580A1 (de) 1999-12-23 2000-12-14 Hemodiafiltrationssystem

Publications (1)

Publication Number Publication Date
EP1244480A1 true EP1244480A1 (de) 2002-10-02

Family

ID=7933994

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00989978A Withdrawn EP1244480A1 (de) 1999-12-23 2000-12-14 Hemodiafiltrationssystem

Country Status (4)

Country Link
US (1) US6776912B2 (de)
EP (1) EP1244480A1 (de)
JP (1) JP2003527167A (de)
WO (1) WO2001047580A1 (de)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024849A1 (de) * 1999-10-06 2001-04-12 Membrana Gmbh Membranmodul zur hemodiafiltration mit integrierter vor- oder nachverdünnung des bluts
DE10118446A1 (de) * 2001-04-12 2002-10-17 Thomas Hartung Prüfverfahren zur Untersuchung fließfähiger Medien auf Gehalte an mikrobiellen Toxinen
US20030010718A1 (en) * 2001-07-12 2003-01-16 Nxstage Medical, Inc. Hemodilution cap and methods of use in blood-processing procedures
US7241272B2 (en) 2001-11-13 2007-07-10 Baxter International Inc. Method and composition for removing uremic toxins in dialysis processes
US7309323B2 (en) * 2001-11-16 2007-12-18 National Quality Care, Inc. Wearable continuous renal replacement therapy device
US7871390B2 (en) 2001-11-16 2011-01-18 Fresenius Medical Care Holdings, Inc. Enhanced clearance in an artificial kidney incorporating a pulsatile pump
US7597677B2 (en) * 2001-11-16 2009-10-06 National Quality Care, Inc. Wearable ultrafiltration device
US7645253B2 (en) * 2001-11-16 2010-01-12 National Quality Care, Inc. Wearable ultrafiltration device
WO2003103533A2 (en) * 2002-06-06 2003-12-18 Nxstage Medical, Inc. Last-chance quality check and/or air/pyrogen filter for infusion systems
JP4890761B2 (ja) 2002-07-19 2012-03-07 バクスター・インターナショナル・インコーポレイテッド 腹膜透析を実施するためのシステムおよび方法
US9700663B2 (en) 2005-01-07 2017-07-11 Nxstage Medical, Inc. Filtration system for preparation of fluids for medical applications
WO2004062710A2 (en) 2003-01-07 2004-07-29 Nxstage Medical Inc. Batch filtration system for preparation of sterile replacement fluid for renal therapy
US20080210606A1 (en) 2004-01-07 2008-09-04 Jeffrey Burbank Filtration System Preparation of Fluids for Medical Applications
WO2004084973A2 (en) * 2003-03-24 2004-10-07 Becton, Dickinson And Company Invisible antimicrobial glove and hand antiseptic
CA2481865C (en) * 2003-09-24 2011-07-05 Nipro Corporation Hollow fiber blood-processing device and method for packaging and sterilizing such devices
JP4731875B2 (ja) 2004-10-15 2011-07-27 東洋紡績株式会社 血液浄化器の滅菌方法および血液浄化器包装体
JP4885437B2 (ja) 2004-10-15 2012-02-29 東洋紡績株式会社 血液浄化器および血液浄化器包装体
US9067178B2 (en) * 2004-12-22 2015-06-30 Nipro Corporation Blood purifier package and process for manufacturing the same
US7144271B1 (en) * 2005-02-18 2006-12-05 Corning Gilbert Inc. Sealed tamper resistant terminator
BRPI0614083A2 (pt) * 2005-08-05 2011-03-09 Nat Quality Care Inc bomba pulsátil de canal duplo e dispositivo de rim artificial completamente portátil (rap)
US8597505B2 (en) 2007-09-13 2013-12-03 Fresenius Medical Care Holdings, Inc. Portable dialysis machine
US8475399B2 (en) 2009-02-26 2013-07-02 Fresenius Medical Care Holdings, Inc. Methods and systems for measuring and verifying additives for use in a dialysis machine
US9308307B2 (en) 2007-09-13 2016-04-12 Fresenius Medical Care Holdings, Inc. Manifold diaphragms
US8105487B2 (en) 2007-09-25 2012-01-31 Fresenius Medical Care Holdings, Inc. Manifolds for use in conducting dialysis
US9358331B2 (en) 2007-09-13 2016-06-07 Fresenius Medical Care Holdings, Inc. Portable dialysis machine with improved reservoir heating system
US9199022B2 (en) 2008-09-12 2015-12-01 Fresenius Medical Care Holdings, Inc. Modular reservoir assembly for a hemodialysis and hemofiltration system
US8240636B2 (en) 2009-01-12 2012-08-14 Fresenius Medical Care Holdings, Inc. Valve system
CA3057806C (en) 2007-11-29 2021-11-23 Fresenius Medical Care Holdings, Inc. System and method for conducting hemodialysis and hemofiltration
US7488210B1 (en) 2008-03-19 2009-02-10 Corning Gilbert Inc. RF terminator
WO2009155248A1 (en) * 2008-06-16 2009-12-23 Triaxis Medical Devices, Inc. Blood treatment apparatus having branched flow distribution
US20100125235A1 (en) * 2008-06-16 2010-05-20 Triaxis Medical Devices, Inc. Blood Treatment Apparatus Having Branched Flow Distribution
AU2009301502B2 (en) * 2008-10-07 2013-05-30 Applied Biomimetic A/S Biomimetic membrane formed from a vesicle-thread conjugate
CA2739786C (en) 2008-10-07 2018-01-02 Fresenius Medical Care Holdings, Inc. Priming system and method for dialysis systems
WO2010042667A2 (en) 2008-10-07 2010-04-15 Xcorporeal, Inc. Thermal flow meter
US8231406B2 (en) 2008-10-29 2012-07-31 Corning Gilbert Inc. RF terminator with improved electrical circuit
CN102639201B (zh) 2008-10-30 2015-07-08 弗雷塞尼斯医疗保健控股公司 模块化便携透析系统
IT1399646B1 (it) * 2010-04-21 2013-04-26 Rand Srl Apparato di filtrazione e pompaggio per uso medico
US20110290728A1 (en) * 2010-05-25 2011-12-01 General Electric Company SWRO Pressure Vessel and Process That Increases Production and Product Quality and Avoids Scaling Problems
US20130146541A1 (en) 2011-12-13 2013-06-13 Nxstage Medical, Inc. Fluid purification methods, devices, and systems
US9201036B2 (en) 2012-12-21 2015-12-01 Fresenius Medical Care Holdings, Inc. Method and system of monitoring electrolyte levels and composition using capacitance or induction
US9157786B2 (en) 2012-12-24 2015-10-13 Fresenius Medical Care Holdings, Inc. Load suspension and weighing system for a dialysis machine reservoir
US10603419B2 (en) 2013-01-11 2020-03-31 The Charles Stark Draper Laboratories, Inc. Systems and methods for increasing convective clearance of undesired particles in a microfluidic device
US10478543B2 (en) 2013-01-11 2019-11-19 The Charles Stark Draper Laboratory, Inc. Systems and methods for increasing convective clearance of undesired particles in a microfluidic device
US10342909B2 (en) 2013-01-11 2019-07-09 The Charles Stark Draper Laboratory Inc. Systems and methods for increasing convective clearance of undesired particles in a microfluidic device
US9354640B2 (en) 2013-11-11 2016-05-31 Fresenius Medical Care Holdings, Inc. Smart actuator for valve
EP3131663A2 (de) 2014-03-29 2017-02-22 Princeton Trade and Technology Inc. Blutverarbeitungskartuschen und systeme sowie verfahren für extrakorporale bluttherapien
WO2015157348A1 (en) * 2014-04-07 2015-10-15 Carnegie Mellon University Compact pulmonary assist device for destination therapy
US10426884B2 (en) 2015-06-26 2019-10-01 Novaflux Inc. Cartridges and systems for outside-in flow in membrane-based therapies
US10399040B2 (en) 2015-09-24 2019-09-03 Novaflux Inc. Cartridges and systems for membrane-based therapies
EP3178539A1 (de) * 2015-12-11 2017-06-14 Gambro Lundia AB Filtervorrichtung, system und verfahren zur filterung von fluiden
JP6953162B2 (ja) * 2016-03-31 2021-10-27 旭化成メディカル株式会社 血液浄化器
EP3463508A1 (de) * 2016-05-27 2019-04-10 The Charles Stark Draper Laboratory, Inc. Hämotransfiltrationshohlfaservorrichtung
CN110141702A (zh) * 2019-05-13 2019-08-20 谢华南 逆变流血液透析滤过方法与装置、血滤组件及其管路组件
US10926019B2 (en) 2019-06-05 2021-02-23 Choon Kee Lee Gradient dialysate hemodiafiltration

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2851929A1 (de) 1978-12-01 1980-06-04 Peter Weiss Dialysator fuer kuenstliche nieren
CA1213404A (en) 1981-11-13 1986-11-04 Theodore E. Spielberg Ultrafiltering hybrid artificial organ
IT1215765B (it) * 1988-01-22 1990-02-22 Grace W R & Co Dispositivo di emodiafiltrazione erelativo procedimento di emodiafiltrazione.
IT1241588B (it) 1990-03-09 1994-01-19 Sorin Biomedica Emodialisi S R Apparecchiatura per la depurazione del sangue, particolarmente per il trattamento di pazienti affetti da insufficienza renale, e procedimentoo per produzione di liquido di reinfusione per emodiafiltrazione (hdf)
DE19523505A1 (de) * 1994-07-13 1996-01-18 Fresenius Ag Hämo(dia)filtrationsvorrichtung mit Filtratflußsteuerung
ES2142981T3 (es) 1994-09-02 2000-05-01 Terumo Corp Dializador.
DE59508062D1 (de) * 1995-03-11 2000-04-27 Akzo Nobel Nv Hohlfadenbündel sowie Stoff- und/oder Wärmetauscher
DE19518624C1 (de) * 1995-05-24 1996-11-21 Akzo Nobel Nv Synthetische Trennmembran
DE19607162C2 (de) 1996-02-26 1998-01-15 Fresenius Ag Verwendung eines Dialysators mit zwei Modulen zur Durchführung eines Verfahrens zum Filtrieren und sofortigen Verwenden von Substituatflüssigkeit in einer Hämodialfiltrationsvorrichtung
JP3548354B2 (ja) 1996-10-15 2004-07-28 日機装株式会社 中空糸膜及びその製造方法
US6635179B1 (en) * 1999-12-30 2003-10-21 Nephros, Inc. Sterile fluid filtration cartridge and method for using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0147580A1 *

Also Published As

Publication number Publication date
US6776912B2 (en) 2004-08-17
US20020190000A1 (en) 2002-12-19
WO2001047580A1 (de) 2001-07-05
JP2003527167A (ja) 2003-09-16

Similar Documents

Publication Publication Date Title
EP1244480A1 (de) Hemodiafiltrationssystem
EP1218040B1 (de) Membranmodul zur hemodiafiltration mit integrierter vor- oder nachverdünnung des bluts
DE3901446C2 (de) Hemodiafiltrationspatrone
DE2827256C2 (de) Hämodialyse-Vorrichtung
DE3101159C2 (de) Verfahren zur Reinigung von Blut und künstliche Niere zur Durchführung des Verfahrens
DE3641843C2 (de)
DE60030885T2 (de) Filterkartusche für sterile flüssigkeit und verfahren zu dessen verwendung
DE69532258T2 (de) Vorrichtung und Verfahren zur Vorbereitung einer Behandlungsflüssigkeit durch Filtrierung
DE60120761T2 (de) Hämodiafiltration/hämofiltrations-patronen
DE3634763C2 (de)
DE60127657T2 (de) Blutreinigungssystem
DE2646459A1 (de) Verteilvorrichtung und mit dieser versehene blutdialysevorrichtung
DE102017210134A1 (de) System zur extrakorporalen Blutbehandlung, Behandlungsvorrichtung, Kit und Verfahren zum Betreiben eines Systems zur extrakorporalen Blutbehandlung
DE3422435A1 (de) Verfahren und vorrichtung zur selektiven abtrennung pathologischer und/oder toxischer spezies aus blut oder blutplasma unter verwendung von filterkerzen
EP2440265B1 (de) Dialysevorrichtung
DE4102693C2 (de)
EP0476335B1 (de) Medizinisches Desinfektionsgerät
EP3185926B1 (de) System zur entfernung von proinflammatorischen mediatoren sowie von granulozyten und monozyten aus blut
DE4118625C1 (en) Sterile blood purifier filter for dialysis etc. - includes blood and dialysate chambers sepd. by semipermeable member with fluid supply- and run=off lines and hollow fibre filters for pyrogen retention
WO2022238374A1 (de) Hohlfasermembranfilter mit verbesserten trenneigenschaften
DE102021112314A1 (de) Hohlfasermembranfilter mit verbesserten Trenneigenschaften
DE102022113911A1 (de) Vorrichtung und Verfahren zur extrakorporalen Behandlung einer Körperflüssigkeit
EP3902578A1 (de) Dialysemaschine enthaltend eine vorrichtung zur aufbereitung von flüssigkeiten, insbesondere wasser, und verfahren zur überwachung der vorrichtung auf kontamination

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20061228

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070508