EP1234355B1 - Verfahren zum kalibrieren einer elektronisch phasengesteuerten gruppenantenne in funk-kommunikationssystemen - Google Patents
Verfahren zum kalibrieren einer elektronisch phasengesteuerten gruppenantenne in funk-kommunikationssystemen Download PDFInfo
- Publication number
- EP1234355B1 EP1234355B1 EP00983055A EP00983055A EP1234355B1 EP 1234355 B1 EP1234355 B1 EP 1234355B1 EP 00983055 A EP00983055 A EP 00983055A EP 00983055 A EP00983055 A EP 00983055A EP 1234355 B1 EP1234355 B1 EP 1234355B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- calibration
- signal
- signals
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/267—Phased-array testing or checking devices
Definitions
- the invention relates to a method for calibrating a electronically phased array using a common reference point for all reference signals in radio communication systems and an arrangement therefor.
- Intelligent antennas form by means of corresponding phase-correct Control of the individual antenna elements of the antenna array a directional characteristic.
- the beam shaping can therefore used to receive a message from a base station to a subscriber station targeted in their direction too transfer.
- the sensitivity to Interference in the current radio cell of the base station On the other hand, co-channel interference can be reduced be reduced in adjacent radio cells.
- due to the spatial separation physical channels within a reused by a base station powered radio cell and the so-called antenna lobes of the directional diagram be moved adaptively during movement of subscriber stations.
- the original transmission signal via several antenna elements usually with different but defined phase angles, sent.
- EP 0 881 704 A2 describes a CDMA communication system with a calibration.
- so-called “processing sections” for baseband signal generation and “transmit radio circuits” for their processing are arranged in a transmitter.
- processing sections for baseband signal generation and “transmit radio circuits” for their processing are arranged in a transmitter.
- codes distinguishable signals from the "transmit radio circuits” carrier frequency on the one hand via “transmit terminals” for emission to antennas and on the other hand wired via cable to an addition device.
- a summed signal formed there passes via another cable and via another "transmit terminal” to a so-called “transmit radio circuit characteristic measuring section", which divides the sum signal into individual signals and evaluates them.
- the Direction is determined by the evaluation of different phase angles the Emptangssignals to each antenna element of the antenna array detected. That is why an antenna calibration in the base station not just for the downlink to the subscriber station (downlink), but also for the uplink from the subscriber station to the base station (Uplink) necessary.
- a so-called reference antenna In a TD-SCDMA system (Time Division-Synchronous Code Division Multiple Access System) using intelligent Antennas will be an extra for antenna calibration Antenna used, a so-called reference antenna.
- a reference antenna About the reference antenna is in the case of an uplink calibration a reference signal to all antenna elements of the Antenna arrays sent. At the individual antenna elements becomes electromagnetic due to the finite propagation velocity Waves depending on the distance to the reference antenna a certain delay time and a certain phase position expected. The difference between the expected setpoint and the actually measured actual value is determined and as Correction factor saved. The correction factor will then involved in the normal signal processing process, whereby the antenna is calibrated.
- the reference antenna at a certain time receives a reference signal from an antenna element of the antenna array and the correction factor is determined. To counteract the distortion of the measurement result due to other antenna elements of the antenna array, they must not transmit any signal at this time. Subsequently, the reference antenna receives a reference signal from a second antenna element of the antenna array at a second time, and the correction factor for this second antenna element is determined, etc.
- n time slots must be supported in support of a TDMA (Time Division Multiple) method Access) are expended.
- TDMA Time Division Multiple
- the present invention has the task Basically, a calibration of smart antennas like that perform that time required for both the calibration of the uplink as well as for the calibration the downlink is significantly shortened. It should be a Correction of an analog error without the need of Calculation of a correction factor for each individual Antenna element and without oversampling from it accompanying high data rates.
- the Transmission capacity of the physical channels is intended by the antenna calibration to be made only to a small extent be charged.
- all antenna elements of a smart Antenna in the downlink calibrated in one step the individual antenna elements of the antenna array simultaneously distinguishable reference signals sent and after reception on one for all antenna signals common reference point separated again.
- CDMA Code Division Multiple Access
- the separation of the reference signals conventional spreading code techniques, such as correlation, used where the common reference point is on the respective reference code channel of the antenna elements synchronized and the reference signals back to their original bandwidth be reduced.
- the reference signals after another Embodiment coded orthogonally so the interference remain minimal despite simultaneous transmission.
- the calibration factor may be from the result of the correlation be obtained in a digital signal processor.
- Another advantageous embodiment of the invention is It is to use an optimized reference signal set, the an unbiased estimate of the calibration factor allowed.
- the correction of delay time, Phase error and / or amplitude of the transmission signals immediately within a digital UP conversion / down conversion be made, whereby no correction factor must be included and no oversampling of the Receive and transmit signal is necessary to delay error to eliminate.
- the downlink calibration can in a further embodiment too Start of delay time and uplink calibration on End of the delay time take place.
- a Reference antenna used as a common reference point for the reference signals from and to the antenna elements.
- Fig. 1 shows a base station BS, which in the area of their supplied Radio cell Z with, by way of example, three mobile stations MS simultaneously connected.
- TDD Time Division Duplex
- TD-SCDMA Time Division-Synchron Code Division Multiple Access
- TD-CDMA Time Division Code Division Multiple Access
- TD-CDMA is a combination the multiple access component TDMA (Time Division Multiple Access) and CDMA (Code Division Multiple Access) and is determined by the degrees of freedom frequency, time slot and code characterized.
- TD-SCDMA differs from TD-CDMA by using a high-precision synchronization the received signals in the uplink. This will be the orthogonality the reception signals largely maintained, and thereby again, the detection properties are improved.
- Radio communication system with intelligent antennas are antennas, with which a directional selectivity of a Base station BS emitted transmission signals leaves.
- Smart antennas can be used electronically generate pivotable, strongly focusing propagation diagrams. This intelligent antennas reduce the angle of incidence for environmental detours of the transmission signals the mobile stations, reducing the interference. From the same base station BS thus different antenna lobes, which pivoted in different directions are at the same time the same frequency channel within one Use cell Z In addition, it increases with the same transmission power the range of a base station BS.
- the smart antenna detects the base station BS the directions from which the mobile stations transmit MS and forms in their direction corresponding antenna lobes.
- FIG. 2 is a schematic of the signal flow in an uplink calibration represented by a smart group antenna, consisting of several antenna elements AE1 to AEN and one Reference antenna AR for calibration.
- the arrows illustrate the different duration of a reference signal from a reference antenna AR to the antenna elements AE1 to AEN.
- the recorded by each antenna element AE1 to AEN and optionally amplified reference signals digitized parallel to each other in analog-to-digital converters A / D.
- the digitized values then become treated in parallel in a digital down-converter DDC.
- Out the measurement signals obtained in this way can, for example in a digital signal processor DSP correction factors determined and the correction values as control information to the digital down converter DDC of the individual antenna elements AE1 to AEN.
- the reference signals from the signal processor DSP via a digital up-converter DUC and a digital-to-analog converter D / A sent to the reference antenna AR, this for calibration to the antenna elements AE1 to AEN sends etc
- Fig. 3 is a schematic of the signal flow in a downlink calibration presented a smart group antenna.
- the antenna elements AE1 to AEN simultaneously transmit one each Reference signal to the reference antenna AR, these with different Reference signal transit time is received.
- the reference antenna AR possibly amplifies the reference signals and put them back in an analog-to-digital converter A / D digital signals around.
- the signal processor DSP are off the measurement results, for example, correction factors determined and as control information to the digital UP converter DUC of the antenna elements AE1 to AEN given.
- the following is a calculation example for a TD-SCDMA system using a smart antenna with 8 antenna elements, a reference antenna and a length of the CDMA code elements (Chip) selected from 0.75 ⁇ s.
- the antenna calibration that is the correction of the influence of the analog error on the entire signal chain the directional characteristic of the intelligent array antenna, is carried out directly by digital means. It is not Oversampling the receive and transmit signal necessary to eliminate delay errors.
- Digital up-converter DUC and digital down-converter DDC enable also tuning the amplitude of the transmission signals, because a faulty amplitude is the radiation shaping also affected.
- a delay time a certain length to meet maturity differences the signals and data to be transmitted provided is.
- the calibration measurements are found in this delay time, because at this time no other signals can influence the measurements.
- the Downlink calibration is preferably at the beginning of the delay time and the uplink calibration performed at the end of this. In the same way, for example, a for Communication links provided time slot TS for the described calibration procedure are reserved.
- the frequency of the antenna calibration is freely selectable and can be dynamically adapted to the transmission requirements. For example, a calibration in the downlink and uplink in each delay time between downlink and uplink TDMA frames or a calibration is done with a Of this multiple time interval made. Also, the Frequency of a downlink calibration from the frequency of one Uplink calibration deviate, for example, if the part the base station is determined that a mobile station only insignificantly or not at all during a communication connection, for example for voice transmission, moved for data transport or for a multimedia transmission.
Landscapes
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Description
Zusätzlich müssen die an die Additionseinrichtung angeschalteten Kabel sehr genau aufeinander bezüglich ihrer Phasenfehler abgestimmt werden, was einen erhöhten Aufwand bei der Abstimmung verursacht.
Claims (12)
- Verfahren zum Kalibrieren einer elektronisch phasengesteuerten und n Antennenelemente (AE1 bis AEN) aufweisenden Gruppenantenne bei einem Funk-Kommunikationssystem, wobei aus mindestens einem abzustrahlenden Referenzsignal auf einen Referenzpunkt bezogene Mess-Signale zur Fehlerkorrektur gebildet werden,
dadurch gekennzeichnet,dass bei einer Antennen-Kalibrierung in Aufwärtsrichtung (UL) ein von einer gemeinsamen Referenzantenne (AR) abgestrahltes Referenzsignal von jedem n-ten Antennenelement (AE1 bis AEN) empfangen wird und jeweils als n-tes Mess-Signal (Meß-Sign) an eine Einrichtung zur Fehlerkorrektur (DSP) gelangt, die aus jedem eine Signallaufzeit aufweisenden n-ten Mess-Signal (Meß-Sign) dem n-ten Antennenelement zugeordnete, auf den Referenzpunkt bezogene Fehlerkorrekturwerte ermittelt,dass bei einer Antennen-Kalibrierung in Abwärtsrichtung (DL) über jedes n-te Antennenelement ein ihm zuordenbares Referenzsignal abgestrahlt wird und diese n Referenzsignale, die zeitgleich zueinander gebildet wurden, an der Referenzantenne (AR) überlagert empfangen werden und als ein gemeinsames Mess-Signal an die Einrichtung zur Fehlerkorrektur gelangen, die aus dem gemeinsamen Mess-Signal, das jedem der n Antennenelemente zuordenbare Signalanteile mit einer jeweiligen Signallaufzeit aufweist, jeweils einem n-ten Antennenelement zugeordnete, auf den Referenzpunkt bezogene Fehlerkorrekturwerte ermittelt. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass eine Kodierung und Dekodierung der Referenzsignale nach einem CDMA-Verfahren vorgenommen wird. - Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass ein Korrelationsverfahren zur Synchronisation des Referenzpunktes (AR) auf den Referenzcodekanal der Antennenelemente (AE1 bis AEN) angewendet wird. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Referenzsignale orthogonal kodiert sind. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass eine Korrektur des analogen Fehlers in Zeitverzögerung, Phase und/oder Amplitude digital erfolgt. - Verfahren nach Anspruch 5,
dadurch gekennzeichnet, dass die Korrektur innerhalb einer digitalen Up-Conversion bzw. Down-Conversion erfolgt. - Verfahren nach Anspruch 5 oder 6,
dadurch gekennzeichnet, dass ein Kalibrierungsfaktor aus dem Ergebnis einer Korrelation in einem digitalen Signalprozessor (DSP) gewonnen wird. - Verfahren nach einem der Ansprüche 5 bis 7,
dadurch gekennzeichnet, dass eine optimierte Signalmenge für eine Schätzung des Kalibrierungsfaktors verwendet wird. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass bei einem Zeitduplexbetrieb (TDD) die Kalibrierung innerhalb einer Verzögerungszeit zwischen der Aufwärtsrichtung (UL) und der Abwärtsrichtung (DL) durchgeführt wird. - Verfahren nach Anspruch 9,
dadurch gekennzeichnet, dass die Referenzsignale für die Kalibrierung in Abwärtsrichtung (DL) zu Beginn der Verzögerungszeit gesendet werden. - Verfahren nach Anspruch 9,
dadurch gekennzeichnet, dass die Referenzsignale für die Kalibrierung in Aufwärtsrichtung (UL) am Ende der Verzögerungszeit gesendet werden. - Verfahren nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet, dass die Referenzsignale für die Kalibrierung in Aufwärts- (UL) und/oder in Abwärtsrichtung (DL) in jeweils einem Zeitschlitz (TS) gesendet werden.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19951525A DE19951525C2 (de) | 1999-10-26 | 1999-10-26 | Verfahren zum Kalibrieren einer elektronisch phasengesteuerten Gruppenantenne in Funk-Kommunikationssystemen |
DE19951525 | 1999-10-26 | ||
PCT/DE2000/003756 WO2001031744A1 (de) | 1999-10-26 | 2000-10-24 | Verfahren zum kalibrieren einer elektronisch phasengesteuerten gruppenantenne in funk-kommunikationssystemen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1234355A1 EP1234355A1 (de) | 2002-08-28 |
EP1234355B1 true EP1234355B1 (de) | 2003-08-13 |
Family
ID=7926909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00983055A Expired - Lifetime EP1234355B1 (de) | 1999-10-26 | 2000-10-24 | Verfahren zum kalibrieren einer elektronisch phasengesteuerten gruppenantenne in funk-kommunikationssystemen |
Country Status (7)
Country | Link |
---|---|
US (1) | US6693588B1 (de) |
EP (1) | EP1234355B1 (de) |
CN (1) | CN1384989A (de) |
AU (1) | AU1995001A (de) |
BR (1) | BR0015016A (de) |
DE (2) | DE19951525C2 (de) |
WO (1) | WO2001031744A1 (de) |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8194770B2 (en) | 2002-08-27 | 2012-06-05 | Qualcomm Incorporated | Coded MIMO systems with selective channel inversion applied per eigenmode |
US8570988B2 (en) | 2002-10-25 | 2013-10-29 | Qualcomm Incorporated | Channel calibration for a time division duplexed communication system |
US7324429B2 (en) | 2002-10-25 | 2008-01-29 | Qualcomm, Incorporated | Multi-mode terminal in a wireless MIMO system |
US7986742B2 (en) | 2002-10-25 | 2011-07-26 | Qualcomm Incorporated | Pilots for MIMO communication system |
US20040081131A1 (en) | 2002-10-25 | 2004-04-29 | Walton Jay Rod | OFDM communication system with multiple OFDM symbol sizes |
US8134976B2 (en) | 2002-10-25 | 2012-03-13 | Qualcomm Incorporated | Channel calibration for a time division duplexed communication system |
US7002900B2 (en) | 2002-10-25 | 2006-02-21 | Qualcomm Incorporated | Transmit diversity processing for a multi-antenna communication system |
US8170513B2 (en) | 2002-10-25 | 2012-05-01 | Qualcomm Incorporated | Data detection and demodulation for wireless communication systems |
US8320301B2 (en) | 2002-10-25 | 2012-11-27 | Qualcomm Incorporated | MIMO WLAN system |
US8208364B2 (en) | 2002-10-25 | 2012-06-26 | Qualcomm Incorporated | MIMO system with multiple spatial multiplexing modes |
US8218609B2 (en) | 2002-10-25 | 2012-07-10 | Qualcomm Incorporated | Closed-loop rate control for a multi-channel communication system |
US8169944B2 (en) | 2002-10-25 | 2012-05-01 | Qualcomm Incorporated | Random access for wireless multiple-access communication systems |
US6891497B2 (en) * | 2003-06-25 | 2005-05-10 | Harris Corporation | Chirp-based method and apparatus for performing phase calibration across phased array antenna |
US6861975B1 (en) * | 2003-06-25 | 2005-03-01 | Harris Corporation | Chirp-based method and apparatus for performing distributed network phase calibration across phased array antenna |
US9473269B2 (en) | 2003-12-01 | 2016-10-18 | Qualcomm Incorporated | Method and apparatus for providing an efficient control channel structure in a wireless communication system |
US7486740B2 (en) * | 2004-04-02 | 2009-02-03 | Qualcomm Incorporated | Calibration of transmit and receive chains in a MIMO communication system |
US7616929B2 (en) * | 2005-04-04 | 2009-11-10 | Broadcom Corporation | Cross-core calibration in a multi-radio system |
US9306657B2 (en) * | 2005-04-08 | 2016-04-05 | The Boeing Company | Soft handoff method and apparatus for mobile vehicles using directional antennas |
US7636552B2 (en) * | 2005-04-08 | 2009-12-22 | The Boeing Company | Point-to-multipoint communications system and method |
US8280309B2 (en) * | 2005-04-08 | 2012-10-02 | The Boeing Company | Soft handoff method and apparatus for mobile vehicles using directional antennas |
US7466749B2 (en) | 2005-05-12 | 2008-12-16 | Qualcomm Incorporated | Rate selection with margin sharing |
US8358714B2 (en) | 2005-06-16 | 2013-01-22 | Qualcomm Incorporated | Coding and modulation for multiple data streams in a communication system |
US7672668B2 (en) * | 2005-09-07 | 2010-03-02 | Samsung Electronics Co., Ltd. | Calibration system architecture for calibrating multiple types of base stations in a wireless network |
ATE397301T1 (de) * | 2005-09-28 | 2008-06-15 | Alcatel Lucent | Kalibrierungsverfahren für intelligente gruppenantenne |
US7576686B2 (en) * | 2006-08-07 | 2009-08-18 | Garmin International, Inc. | Method and system for calibrating an antenna array for an aircraft surveillance system |
US7671798B2 (en) * | 2007-02-28 | 2010-03-02 | Alcatel-Lucent Usa Inc. | Method and apparatus for optimal combining of noisy measurements |
US20120020396A1 (en) * | 2007-08-09 | 2012-01-26 | Nokia Corporation | Calibration of smart antenna systems |
US8503941B2 (en) | 2008-02-21 | 2013-08-06 | The Boeing Company | System and method for optimized unmanned vehicle communication using telemetry |
GB2461082A (en) * | 2008-06-20 | 2009-12-23 | Ubidyne Inc | Antenna array calibration with reduced interference from a payload signal |
CN101483273B (zh) * | 2009-02-24 | 2012-06-13 | 中国航天科技集团公司第五研究院第五○四研究所 | 一种幅度和相位可变的阵列天线的校准方法 |
DE102009019557A1 (de) * | 2009-04-30 | 2010-11-11 | Kathrein-Werke Kg | Verfahren zum Betrieb einer phasengesteuerten Gruppenantenne sowie einer Phasenschieber-Baugruppe und eine zugehörige phasengesteuerte Gruppenantenne |
US8731005B2 (en) * | 2009-10-12 | 2014-05-20 | Kathrein-Werke Kg | Absolute timing and Tx power calibration of the Tx path in a distributed system |
US8374826B2 (en) * | 2010-02-22 | 2013-02-12 | Ubidyne, Inc. | System, apparatus and method for calibrating a delay along a signal path |
US8340612B2 (en) * | 2010-03-31 | 2012-12-25 | Ubidyne, Inc. | Active antenna array and method for calibration of the active antenna array |
US8311166B2 (en) | 2010-03-31 | 2012-11-13 | Ubidyne, Inc. | Active antenna array and method for calibration of the active antenna array |
US8441966B2 (en) | 2010-03-31 | 2013-05-14 | Ubidyne Inc. | Active antenna array and method for calibration of receive paths in said array |
US8774196B2 (en) | 2010-06-03 | 2014-07-08 | Kathrein-Werke Kg | Active antenna array and method for relaying radio signals with synchronous digital data interface |
US8599861B2 (en) * | 2010-06-03 | 2013-12-03 | Kathrein-Werke Kg | Active antenna array and method for relaying radio signals |
US20110319034A1 (en) * | 2010-06-28 | 2011-12-29 | Boe Eric N | Method and system for propagation time measurement and calibration using mutual coupling in a radio frequency transmit/receive system |
CN101938305B (zh) * | 2010-08-13 | 2012-12-26 | 四川九洲电器集团有限责任公司 | 一种相控阵体制接收通道的幅相校准方法 |
EP2710843B1 (de) * | 2011-05-17 | 2015-03-18 | Telefonaktiebolaget L M Ericsson (Publ) | Verfahren und anordnung zur unterstützung der kalibrierung korrelierter antennen |
CN103684566A (zh) * | 2012-09-11 | 2014-03-26 | 株式会社Ntt都科摩 | 一种收发机及其天线校准方法 |
GB2517217B (en) * | 2013-08-16 | 2018-03-21 | Analog Devices Global | Communication unit, integrated circuit and method for generating a plurality of sectored beams |
GB2517218B (en) | 2013-08-16 | 2017-10-04 | Analog Devices Global | Communication unit and method of antenna array calibration |
US9590747B2 (en) * | 2013-10-30 | 2017-03-07 | Samsung Electronics Co., Ltd | RF loopback via antenna coupling for calibration of multiple transceiver systems |
CN104681987B (zh) * | 2013-11-28 | 2018-01-12 | 中国航空工业集团公司雷华电子技术研究所 | 一种雷达天线阵元多频点配相方法 |
JP6396664B2 (ja) * | 2014-03-26 | 2018-09-26 | 株式会社Soken | 位置推定装置 |
CN104618930B (zh) * | 2014-12-29 | 2018-02-02 | 大唐移动通信设备有限公司 | 一种多天线测试系统校准方法和设备 |
CN104506253A (zh) * | 2015-01-13 | 2015-04-08 | 重庆大学 | 一种相控阵天线发射通道幅相误差校正系统及方法 |
JP6494551B2 (ja) * | 2016-03-28 | 2019-04-03 | アンリツ株式会社 | 電界強度分布測定装置及び電界強度分布測定方法 |
EP3790111B1 (de) * | 2018-07-06 | 2022-03-02 | Huawei Technologies Co., Ltd. | Verfahren zur kalibrierung einer phasengesteuerten antenne und zugehörige vorrichtung |
US11115136B1 (en) * | 2020-07-10 | 2021-09-07 | Lg Electronics Inc. | Method for calibrating an array antenna in a wireless communication system and apparatus thereof |
US20220015051A1 (en) * | 2020-07-13 | 2022-01-13 | Qualcomm Incorporated | Reference device hardware group delay calibration |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2171849A (en) * | 1985-02-25 | 1986-09-03 | Secr Defence | Improvements in or relating to the alignment of phased array antenna systems |
DE3934155C2 (de) * | 1988-10-13 | 1999-10-07 | Mitsubishi Electric Corp | Verfahren zum Messen einer Amplitude und einer Phase jedes Antennenelementes einer phasengesteuerten Antennenanordnung sowie Antennenanordnung zum Durchführen des Verfahrens |
US5351239A (en) * | 1990-03-16 | 1994-09-27 | Newbridge Networks Corporation | Digital data transmission system |
US5955989A (en) * | 1990-11-15 | 1999-09-21 | Li; Ming-Chiang | Optimum edges for speakers and musical instruments |
CA2180051C (en) * | 1995-07-07 | 2005-04-26 | Seth David Silverstein | Method and apparatus for remotely calibrating a phased array system used for satellite communication |
US5572219A (en) * | 1995-07-07 | 1996-11-05 | General Electric Company | Method and apparatus for remotely calibrating a phased array system used for satellite communication |
KR100336233B1 (ko) * | 1997-03-18 | 2002-06-20 | 모리시타 요이찌 | 어레이안테나무선수신장치의캘리브레이션장치및방법,지연검출장치,진폭검출장치및기지국장치 |
SE509434C2 (sv) * | 1997-05-16 | 1999-01-25 | Ericsson Telefon Ab L M | Anordning och förfarande vid antennkalibrering |
JPH10336149A (ja) * | 1997-05-28 | 1998-12-18 | Matsushita Electric Ind Co Ltd | アレーアンテナ無線cdma通信装置 |
GB2342505B (en) * | 1998-10-06 | 2003-06-04 | Telecom Modus Ltd | Antenna array calibration |
US6236839B1 (en) * | 1999-09-10 | 2001-05-22 | Utstarcom, Inc. | Method and apparatus for calibrating a smart antenna array |
-
1999
- 1999-10-26 DE DE19951525A patent/DE19951525C2/de not_active Expired - Fee Related
-
2000
- 2000-10-24 AU AU19950/01A patent/AU1995001A/en not_active Abandoned
- 2000-10-24 EP EP00983055A patent/EP1234355B1/de not_active Expired - Lifetime
- 2000-10-24 US US10/111,503 patent/US6693588B1/en not_active Expired - Lifetime
- 2000-10-24 WO PCT/DE2000/003756 patent/WO2001031744A1/de active IP Right Grant
- 2000-10-24 DE DE50003316T patent/DE50003316D1/de not_active Expired - Fee Related
- 2000-10-24 BR BR0015016-9A patent/BR0015016A/pt not_active Application Discontinuation
- 2000-10-24 CN CN00814932A patent/CN1384989A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
BR0015016A (pt) | 2002-06-18 |
DE19951525C2 (de) | 2002-01-24 |
EP1234355A1 (de) | 2002-08-28 |
DE50003316D1 (de) | 2003-09-18 |
WO2001031744A1 (de) | 2001-05-03 |
CN1384989A (zh) | 2002-12-11 |
AU1995001A (en) | 2001-05-08 |
US6693588B1 (en) | 2004-02-17 |
DE19951525A1 (de) | 2001-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1234355B1 (de) | Verfahren zum kalibrieren einer elektronisch phasengesteuerten gruppenantenne in funk-kommunikationssystemen | |
DE69716699T2 (de) | Selbstkalibrierendes gerät und verfahren für eine nachrichtenübertragungseinrichtung | |
DE69712790T2 (de) | Verfahren und vorrichtung zur richtfunkübertragung | |
DE60224213T2 (de) | Kalibrierung eines funkkommunikationssystems | |
DE69938399T2 (de) | Verfahren und Einrichtung zur Übertragungszeitsteuerung von einem drahtlosen Sender-Empfänger | |
EP0637181B1 (de) | Funksystem mit Frequenz-Optimierung | |
DE19780990C2 (de) | Vorrichtung und Verfahren zur drahtlosen Nachrichtenübermittlung in einem Versorgungsbereich mit mehreren Sektoren | |
DE69625671T2 (de) | Verfahren zur übertragung von pilotkanälen sowie zellularfunksystem | |
DE69900646T2 (de) | Verfahren und vorrichtung zur bestimmung der empfangsrichtung eines signals | |
DE69731978T2 (de) | Verfahren und vorrichtung zur gerichteten funkübertragung | |
DE3044101C2 (de) | Verfahren zur Erhöhung des Regengrenzwertes einer TDMA-Satellitenfunkanlage und Anlage zur Durchführung des Verfahrens | |
DE69936682T2 (de) | Basistation und Funkübertragungsverfahren mit Empfängsdiversität | |
EP1297639A2 (de) | Strahlformungsverfahren mit zyklisch erneuerten gewichtungsvektoren | |
DE69736743T2 (de) | Verfahren und einrichtung für richtfunkkommunikation | |
DE3145992A1 (de) | Digitale mobilfunkanlage hoher kapazitaet | |
DE19803188A1 (de) | Verfahren und Basisstation zur Datenübertragung in einem Funk-Kommunikationssystem | |
EP1027783B1 (de) | Verfahren und anordnung zur übertragung von daten über eine funkschnittstelle in einem funk-kommunikationssystem | |
DE69601636T2 (de) | Verfahren zur kalibrierung von sende/empfangsketten einer basisstation eines mobilen funkkommunikationssystems | |
WO1999021315A1 (de) | Verfahren und funkstation zur datenübertragung | |
DE19810285A1 (de) | Verfahren, Funk-Kommunikationssystem und Mobilstation zum Bestimmen von Kanaleigenschaften | |
DE69938185T2 (de) | Eine Methode und ein Apparat zum Betrieb eines zellularen Telekommunikationsystems | |
DE10025287B4 (de) | Verfahren und Kommunikationssystem zur Schätzung einer Störungs-Kovarianzmatrix für die Abwärtsverbindung in zellularen Mobilfunknetzen mit adaptiven Antennen | |
DE10359649A1 (de) | Übertragungseinrichtung vom regenerativen Relais-Typ und Kommunikationssystem mit dieser | |
WO2001043307A2 (de) | Verfahren zur aufrechterhaltung einer synchronisierten signalübertragung in aufwärtsrichtung in einem funk-kommunikationssystem | |
WO2019063119A1 (de) | Verfahren zur bidirektionalen datenübertragung in schmalbandsystemen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020404 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHLEE, JOHANNES |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHLEE, JOHANNES |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50003316 Country of ref document: DE Date of ref document: 20030918 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040501 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040514 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20071016 Year of fee payment: 8 Ref country code: GB Payment date: 20071023 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20090205 AND 20090211 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20081024 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081024 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20171023 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181024 |