EP1232550A1 - Amplificateur optique a semi-conducteur - Google Patents

Amplificateur optique a semi-conducteur

Info

Publication number
EP1232550A1
EP1232550A1 EP01963110A EP01963110A EP1232550A1 EP 1232550 A1 EP1232550 A1 EP 1232550A1 EP 01963110 A EP01963110 A EP 01963110A EP 01963110 A EP01963110 A EP 01963110A EP 1232550 A1 EP1232550 A1 EP 1232550A1
Authority
EP
European Patent Office
Prior art keywords
sections
different
active
guiding structure
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01963110A
Other languages
German (de)
English (en)
Inventor
Léon Goldstein
Jean-Yves Emery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oclaro North America Inc
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP1232550A1 publication Critical patent/EP1232550A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5009Amplifier structures not provided for in groups H01S5/02 - H01S5/30 the arrangement being polarisation-insensitive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/14Semiconductor lasers with special structural design for lasing in a specific polarisation mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • H01S5/1085Oblique facets

Definitions

  • the present invention relates to the amplification of optical signals. It typically finds application in fiber optic telecommunications networks.
  • the signals transmitted by these networks consist of pulses carrying in binary form information to be transmitted. These pulses must be amplified to compensate for losses of power which they undergo during their propagation in these networks.
  • Semiconductor amplifiers constitute a space-saving and integrable means to achieve this amplification. However, in the absence of special provisions, their gain is sensitive to the state of polarization of the light they receive, which will be more simply indicated below by mentioning the sensitivity of an amplifier to polarization.
  • this invention finds an application whenever the sensitivity of an optical amplifier to polarization must be zero or limited.
  • the invention applies more specifically to so-called “buried ribbon” amplifiers, known under the term of BRS (for Burried Ridge Structure in English).
  • such a semiconductor optical amplifier (an illustration of which is given in FIG. 1) comprises a wafer 2 made up of layers of semiconductor materials having respective refractive indices and forming a common crystal lattice.
  • networks formed respectively by these materials have characteristic dimensions constituting respective meshes of these materials.
  • These layers follow one another in a vertical direction DV forming a trirectangle trihedron with two horizontal directions constituting a longitudinal direction DL and a transverse direction DT, these directions being defined with respect to this plate 2.
  • These layers form a succession in an ascending direction of the vertical direction DV from a lower face 4 to an upper face 6.
  • This plate 2 comprises at least the following layers or groups of layers or part of a layer:
  • a substrate 8 consisting mainly of a semiconductor base material having a first type of conductivity. This substrate has a sufficient thickness to impose the dimensions of the mesh of the base material on the entire crystal lattice of the wafer 2.
  • An active layer 10 including an active material capable of amplifying light by stimulated recombination of charge carriers of the two types injected into this material.
  • a guiding structure 12 comprising at least one buried ribbon having a higher refractive index than that of surrounding materials.
  • the strip 12 extends in the longitudinal direction DL to guide said light in this direction.
  • This ribbon 12 has a width 1 and a thickness e respectively transverse and vertical.
  • an upper confinement layer 18 made of a material having a second type of conductivity opposite to the first.
  • This amplifier further comprises a lower electrode 20 and an upper electrode 22 respectively formed on the lower face 4 and the upper face 6 of the wafer 2. to allow to pass between these faces an electric current injecting said carrier • charging of two types in the active material.
  • the basic materials of known semiconductor optical amplifiers are of the III-V type. Those are typically indium phosphide and gallium arsenide. Their active material is typically a ternary or quaternary material formed with the same chemical elements. It is generally desired that the width 1 of the ribbon 12 which guides the lights be close to a micrometer to facilitate the formation of this ribbon by etching and above all to facilitate the integration of the amplifier with other optical components on the same semiconductor wafer. The thickness e must then be much less than this width to ensure a mononodal guidance of the light whose wavelength is typically 1310 or 1550 nm. In the absence of special provisions, it is this rectangular shape of the section of the tape 12 which tends to cause the sensitivity to polarization previously mentioned.
  • the active material constituting the light-guiding ribbon 12 is surrounded on all sides by a binary semiconductor material 14, 16.
  • the latter has the advantage of conducting heat well, but its index of refraction is only slightly lower than that of the active material.
  • the active material is homogeneous and is then said to be mass (or bulk material in English).
  • the section of the buried ribbon 12 is strongly rectangular. Given the small difference in index between this ribbon 12 and the surrounding binary material 14, 16. The confinement of a wave with horizontal polarization is greater than that of a wave with vertical polarization, the difference between these two confinements being all the greater the greater the ratio of the width 1 to the thickness e of the strip.
  • the confinement mentioned here in connection with a wave is considered in a transverse plane. It is the ratio of the power of the wave passing through the area occupied by the strip 12 to the total power of 'this wave.
  • the confinement is defined for each polarization and for each wavelength by the shape and the dimensions of the section of the ribbon and by the refractive indices of the material of this ribbon and of the surrounding material. In the case of a rectangular ribbon section, it can be considered to be the product of a directional confinement in the horizontal direction by a directional confinement in the vertical direction, each of these two directional confinements depending on the polarization.
  • the gain of the amplifier for a wave the greater the confinement of this wave. It follows that, if the ribbon material were a homogeneous material, and moreover isotropic, therefore insensitive to polarization, the gain of the amplifier would be greater for the waves with horizontal polarization and than for those with vertical polarization.
  • Such an amplifier has a low sensitivity to polarization.
  • the object of the present invention is to solve the drawbacks of the technology proposed in the aforementioned patent US 5,982,531.
  • the present invention provides a structure such that the sensitivity to the polarization of the overall gain ⁇ G of the amplifier is easily controlled by current for an adjustment of this so-called “active” sensitivity.
  • the optical amplifier according to the invention thus has at least two separate sections, each provided with an electrode, each section having a different geometry and / or voltage stress. so as to favor respectively a higher gain of the TE mode and of the TM mode.
  • the transition between the two sections is abrupt which induces a non-adiabatic modification of the sizes of the modes propagating in the active layer and causes a reflection of the light waves at the level of this transition.
  • the reflections in an SOA are not acceptable.
  • the production of such a structure requires a step of etching the active layer which must be perfectly controlled as well as a step of epitaxial growth after this etching.
  • a well-controlled etching requires dry etching followed by chemical etching.
  • Such a technique is generally avoided on active materials because it induces surface recombination effects which affect the quality of the active layer.
  • the regrowth step is particularly delicate on a thin active layer.
  • the present invention seeks to resolve these drawbacks by proposing another structure with two sections favoring respectively a higher gain of the TE mode and of the TM mode for an “active” adjustment.
  • the structure proposed by the invention consists in making two sections comprising an active layer of the same thickness, but subject to stresses of different tensions and / or having different geometries, while preserving a continuity of the effective indices of refraction of the active layer in the two sections for an adiabatic transition or without index jump.
  • the present invention relates more particularly to a semiconductor optical amplifier comprising at least two amplifier sections each favoring, respectively, a higher gain of the TE mode and of the TM mode of polarization of the light to be amplified, said sections each comprising an active guiding structure having the same thickness, characterized in that the active guiding structure of the two sections is respectively subjected to different tension stresses and / or has a different geometry so as to make the overall gain of the amplifier insensitive to the polarization of said light at amplify, and in that the transition between the different sections presents a continuity of the effective indices of refraction.
  • the active guiding structure of the different sections has a different respective width.
  • the active guiding structure of at least one of the sections has a curvature.
  • the active guiding structure of the different sections is subjected to different respective tension stresses.
  • the active guiding structure is composed of a material having different stoichiometric ratios between the elements making up said material for the different sections.
  • the material of the active guiding structures consists of a quaternary material.
  • the quaternary material is InGaAsP.
  • Figure 1 already described, illustrates schematically ent a buried ribbon amplifier produced according to the prior art
  • Figure 2 is a schematic top view of an amplifier according to a first embodiment of the invention
  • Figure 3 is a schematic top view of an amplifier according to a second embodiment of the invention
  • Figure 4 is a schematic top view of an amplifier according to a third embodiment of the invention.
  • the invention consists in producing an optical amplifier whose gain is independent of the polarization of the light to be amplified.
  • the amplifier comprises two amplifier sections 30 and 40 each favoring, respectively, a higher gain of the TE mode and of the TM mode of polarization of the light to be amplified, each section 30 and 40 being respectively controlled by an electrode. separate 23 and 24.
  • the amplifier comprises a single active guiding structure 12 consisting of an engraved and buried ribbon.
  • This tape 12 is common to the different sections 30 and 40 and has the same thickness everywhere.
  • the material constituting the guiding active structure is a quaternary material such as InGaAsP for example.
  • the guiding active structure 12 nevertheless has specific features specific to each section 30 and 40 making it possible to favor one or the other polarization mode of the light to be amplified.
  • the structure - active guide 12 has a different width li, 1 2 for each section 30 and 40.
  • the confinement of the widest portion of tape will favor the TE propagation mode. while confining the narrowest portion of tape will favor the TM propagation mode.
  • Such a tape 12 can easily be produced by etching with a suitable mask which defines the respective widths of each section 30 and 40.
  • the width l ⁇ of the active guiding structure 12 of section 30 promoting a higher gain of the TE mode is between 0.8 and 1.2 ⁇ m
  • the width 1 2 of the active guiding structure 12 of section 40 favoring a higher gain of the TM mode is between 0.6 and 1.0 ⁇ m, with the condition l ⁇ > l 2 always fulfilled.
  • the active guiding structure 12 has a curvature 13 on the section 30 favoring the TE mode of propagation of the light to be amplified.
  • the material of the active guiding structure is the same on the two sections 30 and 40, as well as its confinement.
  • the curved section 13 of the ribbon 12 will favor the TE mode of light propagation while the straight sections will favor the TM mode (by the nature of the material constituting the ribbon).
  • the straight ribbon sections 40 are separated by the curved section 13, in the example illustrated, but are electrically connected by electrodes 24, 24 'connected to each other.
  • Such a ribbon 12 with a curvature 13 can easily be produced by etching with a suitable mask.
  • an adiabatic transition of the modes between the two sections 30 and 40 is obtained, which eliminates the risks of reflection of the light waves.
  • the active guiding structure 12 is subjected to different respective tension stresses on the different sections 30 and 40.
  • the active guiding structure 12 is composed of a quaternary material.
  • the difference in tension stress between the two sections 30 and 40 is obtained by a difference between the stoichiometric ratios of the elements constituting the material of said active structure 12.
  • the use of the same material (InGaAsP) makes it possible to avoid jumps index from section to section and consequently the light wave reflections between these sections 30 and 40. It is the composition of this material which varies.
  • the ribbon 12 is produced by a double epitaxy for each section according to the known and mastered technique of "butt-coupling".

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

L'invention concerne un amplificateur optique à semi-conducteur comportant au moins deux sections amplificatrices (30, 40) favorisant chacune, respectivement, un gain plus élevé du mode TE et du mode TM de polarisation de la lumière à amplifier, lesdites section comprenant chacune une structure active guidante (12) présentant la même épaisseur (e), caractérisé en ce que la structure active guidante (12) des deux sections (30, 40) est respectivement soumise à des contraintes de tension différentes et/ou présente une géométrie différente de manière à rendre le gain global de l'amplificateur insensible à la polarisation de ladite lumière à amplifier, et en ce que la transition entre les différentes sections (30, 40) présente une continuité des indices effectifs de réfraction.

Description

AMPLIFICATEUR OPTIQUE A SEMI-CONDUCTEUR
La présente invention concerne l'amplification de signaux optiques. Elle trouve typiquement application dans les réseaux de télécommunications à fibres optiques. Les signaux transmis par ces réseaux sont constitués d'impulsions portant sous forme binaire une information à transmettre. Ces impulsions doivent être amplifiées pour compenser des pertes de puissance qu'elles subissent au cours de leur propagation dans ces réseaux. Les amplificateurs à semi-conducteurs constituent un moyen peu encombrant et intégrable pour réaliser cette amplification. Cependant, en l'absence de dispositions particulières, leur gain est sensible à l'état de polarisation de la lumière qu'ils reçoivent, ce qui sera plus simplement indiquée ci-après en mentionnant la sensibilité d'un amplificateur à la polarisation.
Cette invention trouve alors plus particulièrement application dans le cas où il convient de supprimer ou du moins de limiter cette sensibilité, qui peut s'exprimer par l'équation suivante : ΔG=GTE-GTM. On cherche à atteindre |ΔG|< ldB.
Le cas où la sensibilité doit être limitée ou supprimée est fréquent et apparaît, d'une part lorsque la distance parcourue par les impulsions optiques à amplifier est telle que l'état de polarisation de ces impulsions a été affecté d'une manière importante et aléatoire au cours de leur propagation et, d'autre part lorsqu'il est préférable que les impulsions amplifiées présentent un ou plusieurs niveaux de puissance prédéterminés . De manière plus générale cette invention trouve une application chaque fois que la sensibilité d'un amplificateur optique à la polarisation doit être nulle ou limitée.
L'invention s'applique plus spécifiquement à des amplificateurs dits à « ruban enterré », connu sous le terme de BRS (pour Burried Ridge Structure en anglais) .
On sait qu'un tel amplificateur optique à semiconducteur (dont une illustration est donnée sur la figure 1) comporte une plaquette 2 constituée de couches de matériaux semi-conducteurs ayant des indices de réfraction respectifs et formant un réseau cristallin commun. En l'absence de contraintes mécaniques, des réseaux formés respectivement par ces matériaux ont des dimensions caractéristiques constituant des mailles respectives de ces matériaux. Ces couches se succèdent selon une direction verticale DV formant un trièdre trirectangle avec deux directions horizontales constituant une direction longitudinale DL et une direction transversale DT, ces directions étant définies par rapport à cette plaquette 2. Ces couches forment une succession dans un sens ascendant de la direction verticale DV d'une face inférieure 4 à une face supérieure 6. Cette plaquette 2 comporte au moins les couches ou groupes de couches ou partie de couche suivants : Un substrat 8 constitué majoritairement d'un matériau de base semi-conducteur ayant un premier type de conductivité. Ce substrat présente une épaisseur suffisante pour imposer les dimensions de la maille du matériau de base à tout le réseau cristallin de la plaquette 2.
Une couche active 10 incluant un matériau actif apte à amplifier une lumière par recombinaison stimulée de porteurs - de charges des deux types injectés dans ce matériau.
Une structure guidante 12 comportant au moins un ruban enterré présentant un indice de réfraction plus grand que celui de matériaux environnants. Le ruban 12 s'étend selon la direction longitudinale DL pour guider ladite lumière selon cette direction. Ce ruban 12 présente une largeur 1 et une épaisseur e respectivement transversale et verticale.
Enfin une couche de confinement supérieure 18 constituée d'un matériau ayant un deuxième type de conductivité opposé au premier.
Cet amplificateur comporte en outre une électrode inférieure 20 et une électrode supérieure 22 respectivement formées sur la face inférieure 4 et la face supérieure 6 de la plaquette 2. pour permettre de faire passer entre ces faces un courant électrique injectant lesdits porteurs de charge des deux types dans le matériau actif.
Les matériaux de base des amplificateurs optiques à semi-conducteurs connus sont du type III-V. Ce sont typiquement le phosphure d' indium et l'arséniure de gallium. Leur matériau actif est typiquement un matériau ternaire ou quaternaire constitué avec les mêmes éléments chimiques. Il est généralement souhaité que la largeur 1 du ruban 12 qui guide la lumières soit voisine d'un micromètre pour faciliter la formation de ce ruban par gravure et surtout pour faciliter l'intégration de l'amplificateur avec d'autres composants optiques sur une même plaquette semi- conductrice. L'épaisseur e doit alors être très inférieure à cette largeur pour assurer un guidage mononodal de la lumière dont la longueur d'onde est typiquement 1310 ou 1550 nm. En l'absence de dispositions particulières c' est cette forme rectangulaire de la section du ruban 12 qui tend à entraîner la sensibilité à la polarisation précédemment mentionnée .
Dans les amplificateurs à ruban enterré, ou BRS, le matériau actif constituant le ruban 12 guidant la lumière est entouré de toutes parts par un matériau semi-conducteur binaire 14, 16. Ce dernier présente l'avantage de bien conduire la chaleur mais son indice de réfraction n'est que légèrement inférieur à celui du matériau actif. On considère en outre le cas où le matériau actif est homogène et est alors dit massique (ou bulk material en anglais) . En général, la section du ruban enterré 12 est fortement rectangulaire. Compte tenu de la faible différence d' indice entre ce ruban 12 et le matériau binaire environnant 14, 16. Le confinement d'une onde à polarisation horizontale est supérieur à celui d'une onde à polarisation verticale, la différence entre ces deux confinements étant d' autant plus grande que le rapport de la largeur 1 à l'épaisseur e du ruban est grand. Le confinement mentionné ici à propos d'une onde est considéré dans un plan transversal. Il est égal au rapport de la puissance de cette onde transitant dans l'aire occupée par le ruban 12 à la puissance totale de' cette onde. Le confinement est défini pour chaque polarisation et pour chaque longueur d'onde par la forme et les dimensions de la section du ruban et par les indices de réfraction du matériau de ce ruban et du matériau environnant. Dans le cas d'une section de ruban rectangulaire il peut être considéré comme étant le produit d'un confinement directionnel selon la direction horizontale par un confinement directionnel selon la direction verticale, chacun de ces deux confinements directionnels dépendant de la polarisation. Compte tenu du fait que le phénomène d'amplification de l'onde par recombinaison de porteurs et émission stimulée n'est réalisée que dans le matériau actif, c'est à dire dans le ruban 12, le gain de l'amplificateur pour une onde est d'autant plus grand que le confinement de cette onde est plus grand. Il est résulte que, si le matériau du ruban était un matériau homogène, et de plus isotrope, donc insensible à la polarisation, le gain de l'amplificateur serait plus grand pour les ondes à polarisation horizontale et que pour celles à polarisation verticale.
Plusieurs recherches ont été effectuées dans l'art antérieur pour rendre ces amplificateurs insensibles à la polarisation de la lumière à amplifier. En particulier, le brevet américain US 5 982 531, du déposant, propose un tel amplificateur rendu insensible à la polarisation de la lumière. Cet amplificateur est caractérisé par le fait que son matériau actif est soumis à une contrainte de tension suffisante pour rendre son gain insensible à la polarisation de ladite lumière à amplifier. Cette contrainte résulte généralement d'un désaccord de maille entre le matériau actif et le matériau de base. Typiquement le confinement horizontal est égal au produit du confinement vertical par un coefficient de dissymétrie de confinement.
Cette demande de brevet est basée sur l'observation que, "même en présence d'un coefficient de dissymétrie de confinement élevé résultant, par exemple, du fait que la structure guidante est constituée par un ruban à section fortement rectangulaire, la contrainte de tension à appliquer à un matériau actif homogène formant ce ruban pour obtenir l'insensibilité à la polarisation est suffisamment faible pour que l'épaisseur de ce ruban reste inférieure à l'épaisseur critique correspondante relative aux dislocations.
Un tel amplificateur présente une faible sensibilité à la polarisation. Les principaux paramètres d'un tel amplificateur sont : longueur d'onde de la couche active amplificatrice : λ=l,57 μm, matériau actif : Inι_xGaxPι-yASy contrainte en tension de la . couche active : Δa/a=-0,015 épaisseur de la couche active : e = 0, 2 μm largeur de ruban 1 = lμ
Une telle structure présente néanmoins des inconvénients. Il a en effet été établi, expérimentalement et théoriquement, que la polarisation dépendait fortement du contrôle de l'épaisseur de la couche active ainsi que des contraintes auxquelles elle est soumise. Par exemple, une modification de cette contrainte (Δa/a) de -0,015 à 0,014 ou -0,016 induit un décalage du gain ΔG de 0,8dB vers une sensibilité respective du mode TE ou du mode TM. De même, une légère modification de quelques pourcents de l'épaisseur de la couche active induit directement un décalage du gain ΔG de l'ampli. Ainsi, la sensibilité à la polarisation de la lumière de l'amplificateur dépend de sa structure et ne peut pas être facilement contrôlée.
L'objet de la présente invention est de résoudre les inconvénients de la technologie proposée dans le brevet précité US 5 982 531.
A cet effet, la présente invention propose une structure telle que la sensibilité à la polarisation du gain global ΔG de l'amplificateur soit contrôlée facilement par courant pour un ajustement de cette sensibilité dite « active »
L'amplificateur optique selon l'invention présente ainsi au moins deux sections distinctes munies chacune d'une électrode, chaque section présentant une géométrie et/ou une contrainte en tension différentes de manière à favoriser respectivement un gain plus élevé du mode TE et du mode TM.
Une telle structure à deux sections a déjà été proposée, en particulier dans la demande de brevet japonais JP 10154841. Cette demande de brevet explore une solution consistant à faire varier l'épaisseur de la couche active d'une section à l'autre de manière à influer sur le gain en favorisant respectivement le mode TE avec une faible épaisseur puis le. mode TM avec une épaisseur plus importante.
Par un ajustement des courants injectés sur chaque électrode de chaque section, les gains des deux sections peuvent être ajustés de manière à obtenir un amplificateur indépendant de la polarisation. Néanmoins, la solution proposée par cette demande de brevet japonais présente des inconvénients, en particulier sur le plan de la réalisation technique.
D'une part, la transition entre les deux sections est abrupte ce qui induit une modification non adiabatique des tailles des modes se propageant dans la couche active et provoque une réflexion des ondes lumineuses au niveau de cette transition. Or, les réflexions dans un SOA ne sont pas acceptables.
D'autre part, la réalisation d'une telle structure nécessite une étape de gravure de la couche active qui doit être parfaitement contrôlée ainsi qu'une étape de croissance épitaxiale après cette gravure. Or, une gravure bien contrôlée nécessite une gravure sèche suivie d'une gravure chimique. Une telle technique est généralement évitée sur des matériaux actifs car elle induit des effets de recombinaison en surface qui nuisent à la qualité de la couche active. En outre, l'étape de recroissance est particulièrement délicate sur une couche active fine.
La présente invention cherche à résoudre ces inconvénients en proposant une autre structure à deux sections favorisant respectivement un gain plus élevé du mode TE et du mode TM pour un ajustement « actif ».
La structure proposée par l'invention consiste à réaliser deux sections comportant une couche active de même épaisseur, mais soumises à des contraintes de tensions différentes et/ou présentant des géométries différentes, tout en conservant une continuité des indices effectifs de réfraction de la couche active dans les deux sections pour une transition adiabatique ou sans saut d'indice.
La présente invention concerne plus particulièrement un amplificateur optique à semiconducteur comportant au moins deux sections amplificatrices favorisant chacune, respectivement, un gain plus élevé du mode TE et du mode TM de polarisation de la lumière à amplifier, lesdites section comprenant chacune une structure active guidante présentant la même épaisseur, caractérisé en ce que la structure active guidante des deux sections est respectivement soumise à des contraintes de tension différentes et/ou présente une géométrie différente de manière à rendre le gain global de l'amplificateur insensible à la polarisation de ladite lumière à amplifier, et en ce que la transition entre les différentes sections présente une continuité des indices effectifs de réfraction. Selon un premier mode de réalisation, la structure active guidante des différentes sections présente une largeur respective différente.
Selon un deuxième mode de réalisation, la structure active guidante d' au moins une des sections présente une courbure .
Selon un troisième mode de réalisation, la structure active guidante des différentes sections est soumise à des contraintes de tension respectives différentes.
Selon une particularité du troisième mode de réalisation, la structure active guidante est composée d'un matériau présentant des rapports stoechiométriques différents entre les éléments composant ledit matériau pour les différentes sections.
Selon une caractéristique, le matériau des structures actives guidantes est constitué d'un matériau quaternaire.
Selon une particularité, le matériau quaternaire est de l'InGaAsP.
Les particularités et avantages de l'invention apparaîtront clairement à la lecture de la description qui suit, donnée à titre d'exemple illustratif et non limitatif, et faite en référence aux figures annexées dans lesquelles :
La figure 1, déjà décrite, illustre schématique ent un amplificateur à ruban enterré réalisé selon l'art antérieur ; - La figure 2 est une vue schématique de dessus d'un amplificateur selon un premier mode de réalisation de l'invention ; La figure 3 est une vue schématique de dessus d'un amplificateur selon un deuxième mode de réalisation de l'invention ;
La figure 4 est une vue schématique de dessus d'un amplificateur selon un troisième mode de réalisation de l'invention.
L'invention consiste à réaliser, un amplificateur optique dont le gain est indépendant de la polarisation de la lumière à amplifier.
Selon l'invention, l'amplificateur comporte deux sections amplificatrices 30 et 40 favorisant chacune, respectivement, un gain plus élevé du mode TE et du mode TM de polarisation de la lumière à amplifier, chaque section 30 et 40 étant respectivement commandée par une électrode distincte 23 et 24.
Ainsi, par un ajustement dit « actif » au moyen du courant injecté sur chaque électrode 23 et 24, il est possible de favoriser l'un ou l'autre mode de polarisation de la lumière à amplifier afin de rendre le gain global de l'amplificateur insensible à cette polarisation. Le courant appliqué doit être suffisant pour éviter les nuisances dues au bruit, sans être trop élevé, ce qui diminuerai les effets de la commande électrique sur la polarisation de la lumière.
Selon une particularité de l'invention, l'amplificateur comporte une unique structure active guidante 12 constituée d'un ruban gravé et enterré. Ce ruban 12 est commun aux différentes sections 30 et 40 et présente la même épaisseur partout. Préférentiellement, le matériau constituant la structure active guidante est un matériau quaternaire tel que de l'InGaAsP par exemple.
La structure active guidante 12 présente néanmoins des particularités propres à chaque section 30 et 40 permettant de favoriser l'un et l'autre mode de polarisation de la lumière à amplifier.
Selon un premier mode de réalisation, illustré sur la figure 2, la structure - active guidante 12 présente une largeur différente li, 12 pour chaque section 30 et 40. Le confinement de la portion de ruban la plus large favorisera le mode de propagation TE alors que le confinement de la portion de ruban la plus étroite favorisera le mode de propagation TM. Un tel ruban 12 est aisément réalisable par gravure avec un masque adapté qui définie les largeurs respectives de chaque section 30 et 40.
Selon des exemples de modes de mise en œuvre, la largeur lχ de la structure active guidante 12 de la section 30 favorisant un gain plus élevé du mode TE est comprise entre 0.8 et 1.2 μm, et la largeur 12 de la structure active guidante 12 de la section 40 favorisant un gain plus élevé du mode TM est comprise entre 0.6 et 1.0 μm, avec la condition lι>l2 toujours remplie.
Cette différence de largeur du ruban actif 12, contrairement à une différence d'épaisseur, permet une transition adiabatique des modes entre les deux sections 30 et 40, ce qui élimine les risques de réflexion des ondes lumineuses. Selon un deuxième mode de réalisation, illustré sur la figure 3, la structure active guidante 12 présente une courbure 13 sur la section 30 favorisant le mode TE de propagation de la lumière à amplifier. Comme précédemment, le matériau de la structure active guidante est le même sur les deux sections 30 et 40, ainsi que son confinement. La section courbe 13 du ruban 12 va favoriser le mode TE de propagation de la lumière alors que les sections droites vont favoriser le mode TM (de par la nature du matériau constituant le ruban) . Les sections à ruban droit 40 sont séparées par la section courbe 13, dans l'exemple illustré, mais sont électriquement reliées par des électrodes 24, 24' connectées entre elles. Un tel ruban 12 avec une courbure 13 est aisément réalisable par gravure avec un masque adapté. Là encore, on obtient une transition adiabatique des modes entre les deux sections 30 et 40, ce qui élimine les risques de réflexion des ondes lumineuses. Selon un troisième mode de réalisation, illustré sur la figure 4, la structure active guidante 12 est soumise à des contraintes de tension respectives différentes sur les différentes sections 30 et 40.
La structure active guidante 12 est composée d'un matériau quaternaire. La différence de contrainte de tension entre les deux sections 30 et 40 est obtenue par une différence entre les rapports stœchiométriques des éléments constituant le matériau de ladite structure active 12. L'utilisation d'un même matériau (InGaAsP) permet d'éviter les sauts d'indice d'une section à l'autre et par conséquent les réflexions d'ondes lumineuses entre ces sections 30 et 40. C'est la composition de ce matériau qui varie.
Ainsi, pour une longueur d'onde donnée λ de la lumière à .amplifier (1.5 μm, par exemple), plusieurs couples (x, y) sont possibles pour donner des tensions de mailles différentes du matériau Inι-xGax sι-yPy sur chaque section.
Le ruban 12 est réalisé par une double épitaxie pour chaque section selon la technique connue et maîtrisée du « butt-coupling ».
Les trois modes de réalisation décrits ne sont pas limitatifs, et en particulier, ils peuvent être combinés entre eux sans sortir du cadre de la présente invention.

Claims

REVENDICATIONS
1. Amplificateur optique à semi-conducteur comportant -au moins deux sections amplificatrices (30, 40) favorisant chacune, respectivement, un gain plus élevé du mode TE et du mode TM de .polarisation de la lumière à amplifier, lesdites section comprenant chacune une structure active guidante (12) présentant la même épaisseur (e) , caractérisé en ce que la structure active guidante (12) des deux sections (30, 40) est respectivement soumise à des contraintes de tension différentes et/ou présente une géométrie différente de manière à rendre le gain global de l'amplificateur insensible à la polarisation de ladite lumière à amplifier, et en ce que la transition entre les différentes sections (30, 40) présente une continuité des indices effectifs de réfraction.
2. Amplificateur optique à semi-conducteur selon la revendication 1, caractérisé en ce que la structure active guidante (12) des différentes sections (30, 40) présente une largeur respective différente (li, 12) .
3. Amplificateur optique à semi-conducteur selon la revendication 1, caractérisé en ce que la structure active guidante (12) d'au moins une des sections (30) présente une courbure (13) .
4. Amplificateur optique à semi-conducteur selon la revendication 1, caractérisé en ce que la structure active guidante (12) des différentes sections (30, 40) est soumise à des contraintes de tension respectives différentes.
5. Amplificateur optique à semi-conducteur selon la revendication 2, caractérisé en ce que la largeur (lx) de la structure active guidante (12) de la section (30) favorisant un gain plus élevé du mode TE est comprise entre 0.8 et 1.2 μm.
6. Amplificateur optique à semi-conducteur selon la revendication 2, caractérisé en ce que la largeur (12) de la structure active guidante (12) de la section (40) favorisant un gain plus élevé du mode TM est comprise entre 0.6 et 1.0 μm.
7. Amplificateur optique à semi-conducteur selon la revendication 4, caractérisé en ce que la structure active guidante (12) est composée d'un matériau présentant des rapports stœchiométriques différents entre les éléments composant ledit matériau pour les différentes sections (30, 40) .
8. Amplificateur optique à semi-conducteur selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau des structures actives guidantes (12) est constitué d'un matériau quaternaire.
9. Amplificateur optique à semi-conducteur selon la revendication 8, caractérisé en ce que le matériau quaternaire est de l'InGaAsP.
EP01963110A 2000-08-22 2001-08-20 Amplificateur optique a semi-conducteur Withdrawn EP1232550A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0010818A FR2813448A1 (fr) 2000-08-22 2000-08-22 Amplificateur optique a semi-conducteur
FR0010818 2000-08-22
PCT/FR2001/002632 WO2002017454A1 (fr) 2000-08-22 2001-08-20 Amplificateur optique a semi-conducteur

Publications (1)

Publication Number Publication Date
EP1232550A1 true EP1232550A1 (fr) 2002-08-21

Family

ID=8853659

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01963110A Withdrawn EP1232550A1 (fr) 2000-08-22 2001-08-20 Amplificateur optique a semi-conducteur

Country Status (5)

Country Link
US (1) US6751015B2 (fr)
EP (1) EP1232550A1 (fr)
JP (1) JP2004507894A (fr)
FR (1) FR2813448A1 (fr)
WO (1) WO2002017454A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158291B2 (en) * 2003-01-30 2007-01-02 Quantum Photonics, Inc. Low polarization gain dependent semiconductor optical amplifier with variable residual cladding layer thickness
JP2021012990A (ja) * 2019-07-09 2021-02-04 住友電気工業株式会社 量子カスケードレーザ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952017A (en) * 1989-03-14 1990-08-28 At&T Bell Laboratories Polarization independent semiconductor optical amplifier
DE69104573T2 (de) * 1990-08-03 1995-04-20 Philips Nv Optischer Verstärker.
JP3387746B2 (ja) * 1996-07-31 2003-03-17 キヤノン株式会社 屈曲チャンネルストライプの偏波変調可能な半導体レーザ
JP2937148B2 (ja) * 1996-11-06 1999-08-23 日本電気株式会社 半導体集積型偏波モード変換器
JPH1174604A (ja) * 1997-08-29 1999-03-16 Furukawa Electric Co Ltd:The 半導体導波路型光素子
US6175446B1 (en) * 1998-09-23 2001-01-16 Sarnoff Corporation Polarization-independent semiconductor optical amplifier
FR2784243B1 (fr) * 1998-10-02 2000-11-24 Cit Alcatel Amplificateur optique en semi-conducteur
JP2001053392A (ja) * 1999-06-03 2001-02-23 Fujitsu Ltd 偏波無依存型半導体光増幅器
KR100353419B1 (ko) * 2000-03-10 2002-09-18 삼성전자 주식회사 편광 무의존 반도체 광증폭기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0217454A1 *

Also Published As

Publication number Publication date
WO2002017454A1 (fr) 2002-02-28
WO2002017454B1 (fr) 2002-07-04
JP2004507894A (ja) 2004-03-11
US6751015B2 (en) 2004-06-15
US20020154391A1 (en) 2002-10-24
FR2813448A1 (fr) 2002-03-01

Similar Documents

Publication Publication Date Title
EP0545820B1 (fr) Composant optique semi-conducteur à mode de sortie élargi et son procédé de fabrication
EP2411863B1 (fr) Modulateur optique à haut débit en semi-conducteur sur isolant
EP1247301B1 (fr) Dispositif de photodétection à microrésonateur metalsemiconducteur vertical et procédé de fabrication de ce dispositif
EP0645654B1 (fr) Procédés de réalisation d&#39;une structure intégrée monolithique incorporant des composants opto-électroniques et structures ainsi réalisées
FR2981803A1 (fr) Structure optique integree comportant un isolateur optique
EP0823982B1 (fr) Amplificateur optique a semi-conducteur
EP0752743B1 (fr) Dispositif laser à structure enterrée pour circuit photonique intégré et procédé de fabrication
FR2765347A1 (fr) Reflecteur de bragg en semi-conducteur et procede de fabrication
FR2756938A1 (fr) Dispositif, notamment a semiconducteur, pour le traitement de deux ondes, notamment lumineuses
EP0871061A1 (fr) Convertisseur de longueur d&#39;onde de signaux optiques binaires
EP0252565B1 (fr) Dispositif semiconducteur intégré du type dispositif de couplage entre un photodéecteur et un guide d&#39;ond lumineuse
FR2709566A1 (fr) Composant optique actif semiconducteur à ruban.
EP1742313B1 (fr) Dispositif optique à source laser à semi-conducteur et isolateur optique intégrés
EP0562925B1 (fr) Photorécepteur en onde guidée à base de puits quantiques de matériaux semiconducteurs, notamment pour système de communication cohérent en diversité de polarisation
EP1232550A1 (fr) Amplificateur optique a semi-conducteur
EP1314231A1 (fr) Amplificateur optique en semi-conducteur
EP0501872B1 (fr) Dispositif à rétroaction positive pour le traitement d&#39;un signal optique
FR2909192A1 (fr) Isolateur optique integre comportant un reseau de bragg
EP0480780A1 (fr) Dispositif optoélectronique et application à la réalisation d&#39;un laser et d&#39;un photodétecteur
FR2854469A1 (fr) Procede de fabrication d&#39;un dispositif optique semi-conducteur comportant une region munie d&#39;une couche active a epaisseur variable
WO2002017452A1 (fr) Dispositif optique amplificateur
FR2683392A1 (fr) Procede de realisation de composants optoelectroniques par epitaxie selective dans un sillon.
FR2663161A1 (fr) Guide d&#39;onde optique a structure de transistor integre et applications a la realisation de modulateurs de lasers et de coupleurs optique.
FR2639766A1 (fr) Dispositif semiconducteur integre incluant un element optoelectronique de commutation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020522

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AVANEX CORPORATION

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20040929