EP1226031A2 - Procede de fabrication de materiaux composites multiphases - Google Patents

Procede de fabrication de materiaux composites multiphases

Info

Publication number
EP1226031A2
EP1226031A2 EP00951429A EP00951429A EP1226031A2 EP 1226031 A2 EP1226031 A2 EP 1226031A2 EP 00951429 A EP00951429 A EP 00951429A EP 00951429 A EP00951429 A EP 00951429A EP 1226031 A2 EP1226031 A2 EP 1226031A2
Authority
EP
European Patent Office
Prior art keywords
aluminum
composite
production
composite material
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00951429A
Other languages
German (de)
English (en)
Other versions
EP1226031B1 (fr
Inventor
Jutta KLÖWER
Katja Brune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VDM Metals GmbH
Original Assignee
Krupp VDM GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp VDM GmbH filed Critical Krupp VDM GmbH
Publication of EP1226031A2 publication Critical patent/EP1226031A2/fr
Application granted granted Critical
Publication of EP1226031B1 publication Critical patent/EP1226031B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • Aluminum-containing nickel-based alloys and stainless steels are often used as carrier foils in automotive exhaust gas catalysts, as electrical heating conductors, as components in industrial furnaces, in plant construction and in gas turbines because of their excellent oxidation resistance and because of their heat resistance.
  • Typical examples are nickel-based alloys with 1 to 3 mass% aluminum and 1 5 to 30% chromium as defined by materials 2.4633 and 2.4851 (DIN material number) and UNS 07214 (Unified Numbering System by ASTM). With high thermal loads and / or low wall thicknesses, however, the aluminum content in these materials is not sufficient to form an aluminum oxide layer over a long period of time. Chromium oxides then form locally, which lead to local corrosion at high temperatures. In addition, chromium oxides evaporate at temperatures above 1000 ° C and can e.g. B. in industrial furnaces lead to contamination of the annealing material.
  • EP 051 1 699 B1 describes a process for producing aluminum-alloyed iron-chromium foils, in which an Fe-Cr steel is provided with a thin layer of aluminum. The resulting composite material is rolled to the desired final dimension or to an intermediate dimension, the final, homogeneous material being adjusted by diffusion annealing.
  • US-A-5,336, 139 describes a method in which a composite is made by roll cladding with aluminum.
  • the base material is a ferritic iron-based alloy.
  • ferritic materials often do not have the heat resistance required for many high-temperature applications. If high heat resistance combined with good heat resistance is required, austenitic steels or nickel-based alloys must be used. Austenitic materials, however, have not yet been able to be produced using such processes, since the Diffusion annealing must be carried out at a temperature at which the aluminum coating is already melting.
  • the invention is therefore based on the object of developing an economical method with which high aluminum contents can be achieved to produce heat-resistant austenitic materials.
  • the object is achieved by a method for producing a composite material with high heat and abrasion resistance, in that a base material made of an austenitic nickel, cobalt or iron-based alloy on one or both sides with an intermediate layer made of a ferritic, a chromium content between (in wt. %) Containing 8 and 25%, chromium steel, to which a layer of aluminum or an aluminum alloy is applied on one or both sides, and this composite material formed from the base material, intermediate layer and aluminum layer by cold and / or hot shaping to the desired intermediate - or final dimension and then diffusion annealed at a temperature above 600 ° C.
  • the method according to the invention is distinguished in that an intermediate layer made of a ferritic chromium steel with a chromium content between 8 and 25% by mass is applied between the aluminum coating and the base material. It has surprisingly been found that when an intermediate layer made of a ferritic chromium steel is used, the aluminum first penetrates into the intermediate layer and there immediately forms high-melting iron-aluminum and iron-chromium and iron-chromium-aluminum compounds before the aluminum melts he follows. The diffusion annealing can take place at temperatures above 600 ° C.
  • the intermediate layer can consist of a sheet, tape, foil or, in the case of round cross sections, a tube. It is also possible to combine the intermediate layer and the aluminum layer by first coating a chromium steel with an aluminum layer by fire eium finishing or plating and then this two-phase composite is then plated onto the base material. Alternatively, the composite of base material and chrome steel or the composite of aluminum and chrome steel can also be produced directly using the continuous casting process. The thickness of the intermediate layer made of chrome steel, base material and aluminum layer is determined in each case according to the desired thickness and desired properties of the aluminum-rich outer layer.
  • This method also has the advantage that special alloy elements, for example oxygen-affine elements, which improve the heat resistance and the adhesion of the protective oxide layers (yttrium, hafnium, zirconium, titanium, silicon, cerium, lanthanum) can be introduced into the intermediate layer and thus close to the surface To be available.
  • special alloy elements for example oxygen-affine elements, which improve the heat resistance and the adhesion of the protective oxide layers (yttrium, hafnium, zirconium, titanium, silicon, cerium, lanthanum) can be introduced into the intermediate layer and thus close to the surface To be available.
  • Another advantage of this method is that by choosing suitable combinations of base material, intermediate layer and support material, materials with a wide range of property combinations can be produced. For example, special requirements for the strength and physical properties of the base material with special requirements for surface properties such as hardness,
  • Corrosion resistance and abrasion resistance can be combined.
  • Another advantage of the method according to the invention is that of producing sheets or tubes with aluminum enrichment on one side. From this results there is the possibility of producing semi-finished products for components that have different material requirements due to different process media on both sides (e.g. in heat exchangers).
  • the composite material according to the invention can be used for tools for cutting, cutting and grinding.
  • Figures 1 to 4 show design examples for the production of a multi-phase composite material with high aluminum contents, as will be explained in more detail in the following examples.
  • Fig. 1 shows the structure of the different materials before the diffusion annealing.
  • the thickness of the base material, intermediate layer and aluminum layer are determined depending on the desired ratio of the aluminum-rich zone and the base material.
  • the intermediate layer consists of a chrome steel with a chrome content between 8 and 25% by mass.
  • the aluminum pad consists of an aluminum-silicon alloy or pure aluminum.
  • a composite material consisting of a fire-aluminum chromium steel (Fe-Cr18) with additions of yttrium and hafnium was chosen as the cladding.
  • the individual layers of the composite material are joined together by cold rolling.
  • Cold rolling is carried out to the desired final dimension or an intermediate dimension with or without intermediate annealing.
  • the aluminum penetrates completely into the intermediate layer and partially into the base material.
  • a connection is created between the base material and the support, as shown in Fig. 2. Diffusion pores occurring in the interface can be eliminated by further shaping.
  • the width of the aluminum-rich zone is determined by the time and temperature for the diffusion annealing. Highly heat-resistant and heat-resistant alloys with inadequate scale resistance at very high temperatures are particularly suitable for this process. This includes all nickel and cobalt-based alloys that form chromium oxide layers at high temperatures like the materials 2.4816, 2.4855, 2.4663, 2.4856, 2.4665, 2.4665. 2.4964, 2.4683 and 2.4650 (details: DIN material numbers).
  • the material is produced by cold rolling and annealing the composite as described in Example 1.
  • heat-resistant steels of the type 1.4876, for example, are available
  • High temperature corrosion resistance in hot process gases is significantly improved by the aluminum-containing edge zone.
  • the material is produced by cold rolling and annealing the composite material as described in Example 1.
  • the one-sided plating of corrosion-resistant materials acc. Fig. 3 comes into question for semi-finished products made of typical corrosion-resistant stainless steels, pure nickel, Ni-Cu alloys and nickel-based alloys, which are exposed on one side to an aggressive aqueous medium (acids or alkalis, sea water) and on the other side to a hot process gas.
  • the aluminum-rich surface layer protects the corrosion-resistant material on the process gas side against high-temperature corrosion.
  • the material is produced by cold rolling and annealing the composite as described in Example 1.
  • Manufacture of a semi-finished product with a round cross-section (tube or rod) with high aluminum contents in the area near the surface by applying aluminum or aluminum-silicon on one side to a corrosion-resistant, heat-resistant or high-temperature-resistant material.
  • a tube or a rod is produced by the usual methods of tube or rod production (for example extrusion, cold hammering, vocationalage or drawing) as shown in Fig Composite of base material, Fe-Cr intermediate layer and aluminum layer.
  • the diffusion annealing is carried out as described in Example 1.
  • Example 1 The preparation is carried out as described in Example 1.
  • the composite is rolled onto thin foils with or without intermediate annealing.
  • the diffusion annealing is carried out as indicated in Example 1.
  • the annealing times and annealing temperatures are chosen so that a homogeneous aluminum content is obtained over the entire film cross section, with the exception of a thin edge zone with an increased aluminum content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Metal Rolling (AREA)
  • Coating With Molten Metal (AREA)
EP00951429A 1999-09-03 2000-07-22 Procede de fabrication de materiaux composites multiphases Expired - Lifetime EP1226031B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19942234 1999-09-03
DE19942234A DE19942234C1 (de) 1999-09-03 1999-09-03 Verfahren zur Herstellung von Mehrphasen-Verbundwerkstoffen sowie Verwendung des Verbundwerkstoffes
PCT/EP2000/007045 WO2001017767A2 (fr) 1999-09-03 2000-07-22 Procede de fabrication de materiaux composites multiphases

Publications (2)

Publication Number Publication Date
EP1226031A2 true EP1226031A2 (fr) 2002-07-31
EP1226031B1 EP1226031B1 (fr) 2003-09-10

Family

ID=7920794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00951429A Expired - Lifetime EP1226031B1 (fr) 1999-09-03 2000-07-22 Procede de fabrication de materiaux composites multiphases

Country Status (6)

Country Link
EP (1) EP1226031B1 (fr)
JP (1) JP2003508230A (fr)
AT (1) ATE249337T1 (fr)
AU (1) AU6436700A (fr)
DE (2) DE19942234C1 (fr)
WO (1) WO2001017767A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10137823C2 (de) * 2001-08-02 2003-08-21 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von Bändern aus einem metallischen Verbundwerkstoff
AU2006322640B2 (en) * 2005-12-06 2011-06-30 Andrew Warburton Swan Video-captured model vehicle simulator
DE102006041324A1 (de) * 2006-09-01 2008-03-06 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zum Fügen von dickwandigen Bauteilen aus hochwarmfesten Werkstoffen
DE102009025197B4 (de) * 2008-10-01 2012-11-08 Thyssenkrupp Vdm Gmbh Verfahren zur Herstellung von Verbundmetall-Halbzeugen
DE102016201337A1 (de) * 2016-01-29 2017-08-03 Bayerische Motoren Werke Aktiengesellschaft Wasserstoffführendes Stahlbauteil zum Einsatz bei Kraftfahrzeugen, Kraftfahrzeug mit wasserstoffführendem Stahlbauteil sowie Verfahren zur Herstellung eines wasserstoffführenden Stahlbauteils

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US336139A (en) * 1886-02-16 Method of operating proportional water meters
US4705727A (en) * 1985-10-11 1987-11-10 Pfizer Inc. Composite material for induction heating
EP0511699B1 (fr) * 1991-04-29 1995-08-09 General Motors Corporation Tôles minces fer-chrome avec additions de terres rares ou d'yttrium et revêtus d'aluminium
EP0672520B1 (fr) * 1994-03-18 1999-03-03 Clad Lizenz AG Matériau composite métallique multicouche, déformable à froid et apte à l'emboutissage profond
DE4434801A1 (de) * 1994-09-29 1996-04-04 Kolbenschmidt Ag Gleitlager-Werkstoff
US5976708A (en) * 1995-11-06 1999-11-02 Isuzu Ceramics Research Institute Co., Ltd. Heat resistant stainless steel wire
DE19652399A1 (de) * 1996-12-17 1998-06-18 Krupp Vdm Gmbh Verfahren zur Herstellung einer mehrschichtigen Metallfolie sowie deren Verwendung
FR2760244B1 (fr) * 1997-02-28 1999-04-09 Usinor Procede de fabrication d'un feuillard en acier inoxydable ferritique a haute teneur en aluminium utilisable notamment pour un support de catalyseur d'echappement de vehicule automobile
SE9702909L (sv) * 1997-08-12 1998-10-19 Sandvik Ab Användning av en ferritisk Fe-Cr-Al-legering vid framställning av kompoundrör, samt kompoundrör och användning av röret

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0117767A2 *

Also Published As

Publication number Publication date
EP1226031B1 (fr) 2003-09-10
WO2001017767A3 (fr) 2001-08-02
ATE249337T1 (de) 2003-09-15
DE50003671D1 (de) 2003-10-16
WO2001017767A2 (fr) 2001-03-15
JP2003508230A (ja) 2003-03-04
DE19942234C1 (de) 2001-03-01
AU6436700A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
DE2327250A1 (de) Verfahren zur herstellung eines metallurgisch abgedichteten ueberzugs
EP2043808A1 (fr) Procédé pour fabriquer une pièce faite d'un produit plat en titane pour des utilisations à haute température avec application d'une couche d'aluminium sur au-moins une face du produit plat en titane par plaquage par laminage et laminage à froid
DE3813685A1 (de) Gewalzte, rostfreie stahlfolie mit hohem aluminium-gehalt zur verwendung als substrat eines katalysator-traegers
DE3726072C2 (fr)
WO2009071046A1 (fr) Acier pour éléments de construction très résistants sous forme de rubans, de tôles ou de tuyaux ayant une excellente malléabilité et étant particulièrement adaptés aux procédés de revêtement à haute température
EP1235682B1 (fr) Utilisage d'un alliage resistant a la chaleur, presentant une bonne stabilite a l'oxidation a haute temperature comme feuille ou conducteur electrique a chauffer
DE10002933C1 (de) Verfahren zur Herstellung einer formstabilen Eisen-Chrom-Aluminium-Folie sowie Verwendung derselben
US4931421A (en) Catalyst carriers and a method for producing the same
EP1226031B1 (fr) Procede de fabrication de materiaux composites multiphases
DE112007000992B4 (de) Verfahren zum Löten eines ersten Metallelements auf ein zweites Metallelement unter Verwenden eines hoch benetzbaren Metalls als Schicht zwischen den zwei Metallelementen; durch dieses Verfahren hergestellter Reformer, wobei die Metallelemente Nuten aufweisen können
DE3926830C2 (de) Verwendung einer auf einem dünnen Stahlband ausgebildeten Diffusionsschicht
DE3606804A1 (de) Metallisches halbzeug und verfahren zu seiner herstellung sowie verwendung
DE4010076A1 (de) Materialsysteme fuer den einsatz in bei hoeherer temperatur einsetzbaren strahltriebwerken
EP0846039B1 (fr) Procede de fabrication d'un corps a nids d'abeilles soude faisant intervenir des toles de construction lamellaire
EP1368189B1 (fr) Procede de production d'un element de titane aluminium
DE2835869A1 (de) Verbundwerkstoff und verfahren zu dessen herstellung
EP0391054B1 (fr) Application d'un acier réfractaire pour pièces résistant à la corrosion
DE3726075C1 (en) Method of soldering steel parts and of producing catalyst supports, heat exchangers and soot filters
EP2740814A1 (fr) Feuille d'acier aluminée à chaud et procédé de fabrication d'une feuille d'acier aluminée à chaud
DE102005022193A1 (de) Lötverbundmaterial und dieses verwendendes gelötetes Produkt
DE102016103313A1 (de) Verfahren zur Herstellung einer beschichteten Stahlfolie
DE19743720C1 (de) Verfahren zur Herstellung einer oxidationsbeständigen Metallfolie und deren Verwendung
EP1002141B1 (fr) Composant resistant aux temperatures elevees et procede de reali sation d'une protection antioxydation
EP0837151A1 (fr) Procédé pour la fabrication d'une feuille de fer-chrome-aluminium et son utilisation
DE4409004C2 (de) Hitzebeständiger Mehrschichtverbundwerkstoff und seine Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011018

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP VDM GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50003671

Country of ref document: DE

Date of ref document: 20031016

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031023

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030910

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040722

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

26N No opposition filed

Effective date: 20040614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST