EP1224777B1 - Verfahren zum verbessern der datenübertragungsqualität in datenpaketorientierten kommunikationsnetzen - Google Patents

Verfahren zum verbessern der datenübertragungsqualität in datenpaketorientierten kommunikationsnetzen Download PDF

Info

Publication number
EP1224777B1
EP1224777B1 EP00983041A EP00983041A EP1224777B1 EP 1224777 B1 EP1224777 B1 EP 1224777B1 EP 00983041 A EP00983041 A EP 00983041A EP 00983041 A EP00983041 A EP 00983041A EP 1224777 B1 EP1224777 B1 EP 1224777B1
Authority
EP
European Patent Office
Prior art keywords
data
data stream
transmitter
transmitted
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00983041A
Other languages
English (en)
French (fr)
Other versions
EP1224777A2 (de
Inventor
Rainer Windecker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1224777A2 publication Critical patent/EP1224777A2/de
Application granted granted Critical
Publication of EP1224777B1 publication Critical patent/EP1224777B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2416Real-time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/102Gateways
    • H04L65/1023Media gateways
    • H04L65/103Media gateways in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/102Gateways
    • H04L65/1033Signalling gateways
    • H04L65/104Signalling gateways in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/75Media network packet handling
    • H04L65/765Media network packet handling intermediate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols

Definitions

  • the invention relates to a method for improving the data transmission quality in data packet-oriented communication networks according to the preamble of patent claim 1.
  • data streams to be transmitted are split into individual data packets which are provided with a destination address and transmitted via network nodes of the communication network to the respective transmission destination.
  • the transmission is usually carried out in the context of different layers of transmission protocols, such as e.g. the IP protocol (Internet protocol) as a layer three protocol and the so-called TCP protocol (transmission control protocol) or the so-called.
  • IP protocol Internet protocol
  • TCP protocol transmission control protocol
  • UDP protocol user datagram protocol
  • a transmission protocol such as the IP protocol
  • IP protocol is used for the transmission of data packets, which does not guarantee a correct transmission for each individual data packet.
  • overload situations occurring in a network node or a transmission link are managed by triggering the overload situation.
  • an ATM transmission method which is known from the document: JAIN R, "Congestion control and traffic management in ATM networks: Recent advances and a survey" COMPUTER NETWORKS AND ISDN SYSTEMS, NL, NORTH HOLLAND PUBLISHING. AMSTERDAM, Vol. 28, No. 13, Oct. 1, 1996 (1996-10-01).
  • Data packets that therefore do not arrive at the transmission destination are usually requested by the sender of the data packets within the framework of a higher-level transmission protocol, such as the TCP protocol, by the transmission destination.
  • a backup of data transmission is not suitable for real-time applications, since a necessary re-request of a data packet is a complete reconstruction of the Data stream of the transmission data at the receiver greatly delayed.
  • real-time data such as e.g. Voice or video data
  • a transmission of real-time data is often used to reduce the data rate of real-time data to reduce congestion-related data packet loss rate, thereby reducing congestion.
  • This is often done by using data compression techniques.
  • a compression of real-time data improves their transmission quality in an overload situation, however, only if the overload situation is also mainly caused by a transmission of real-time data. If the overload situation is mainly caused by transmission of other data, compressing the real-time data will essentially only cause the other data to be transmitted faster.
  • real-time data and in particular voice or video data are compressed
  • the information content of the real-time data is often not completely preserved, as a result of which the signal quality deteriorates, in particular in the case of voice or video data.
  • real-time data are more delayed due to their compression, in particular in the case of transmission via data packet-oriented communication networks, since filling individual data packets with compressed real-time data takes a correspondingly longer time.
  • the transmission quality of a transmitter from a network node of a data packet-oriented communication network to a transmitter to be transmitted data stream can be significantly improved. This is especially true for a data packet-oriented transmission of real-time data, such as voice and / or video data - in professional jargon also referred to as "Voice over IP” (VoIP) or "Video over IP”.
  • VoIP Voice over IP
  • the inventive method can be applied to a variety of communication networks, such as so-called local area networks (LAN) and wide area networks (WAN), with different transmission protocols, such as the Internet Protocol (IP), without interfering with the existing structure of communication networks would be required.
  • the transmitting network node can be, for example, a bridge, also referred to as an L2 switch, a router, also referred to as an L3 switch, a so-called gateway or another data packet switching device of the communications network.
  • data packets are discarded by such a network node if the data rate of data streams to be transmitted exceeds the transmission capacity of the network node or its transmission lines.
  • data packets from all data streams contributing to the overload are discarded proactively in such an overload case. For example, if the volume of data to be transmitted exceeds twice the transmission capacity of a network node, every other data packet of all data streams contributing to the congestion can be discarded by the network node.
  • the data rate of the first data stream is added by adding redundant data by the transmitter elevated.
  • the increase of the data rate of the first data stream compared to the data rate of the at least one further data stream displaces the latter to the extent that that the first data stream accounts for a larger share of the jointly available transmission capacity.
  • the inventive method can be applied particularly advantageously to a transmission of real-time or quasi-real-time data of predetermined data rate, since no additional delay of the data to be transmitted necessarily occurs.
  • the method can be used particularly advantageously in local networks in which no charges are caused by an increase in the data rate of a data stream to be transmitted.
  • a higher proportion of the transmission capacity of the network node can be provided to a data stream to be transmitted via a network node in a simple manner. It is particularly advantageous in this context that no intervention in existing communication networks or network nodes is required.
  • the redundancy of the first data stream can be increased in many ways. For example, by adding parity information, checksums and / or redundancy data according to the so-called CRC method (cyclic redundancy check).
  • CRC method cyclic redundancy check
  • the increase in the data rate can be achieved by duplication of the data packets at the transmitter.
  • An advantage of this embodiment is that the Implementation of the method according to the invention usually no changes to the receiver are necessary because the data packet transmission protocols commonly used usually provide a correct treatment of multiple incoming data packets.
  • the data rate of the first data stream can also take place by an extension of its data packets. This is particularly advantageous if the transmission capacity is restricted less by the data rate than by the data packet rate at the network node.
  • a measure of the transmission quality of the first data stream can be determined by the receiver.
  • a measure represents e.g. the proportion of non-received data packets of the first data stream.
  • RTP protocol real time transport protocol
  • RTCP protocol real time control protocol
  • the feedback may e.g. always take place when the transmission quality falls below a predetermined limit.
  • the transmitter may be caused by a feedback received by it to add, depending on this redundancy data, to the first data stream. For example, upon receiving a feedback indicating that only every other data packet of the first data stream arrives at the receiver, the data rate of the first data stream may be added by adding a doubling amount of redundancy data from the transmitter.
  • the feedback may further include information provided by the receiver on the type and amount of redundancy data to be added to the first data stream from the transmitter.
  • the transmitter can transmit information about the redundancy data, which are added by him to the first data stream to the receiver.
  • the information may indicate the type and amount of added redundancy data.
  • a reconstruction of the information content of the first data stream from the data packets received by the receiver can then take place depending on the information transmitted. For example, based on the information received about the redundancy data, a reconstruction method (e.g., the CRC method) tuned to the type of redundancy data may be selected.
  • a reconstruction method e.g., the CRC method
  • FIG. 1 and FIG. 2 the same communication system with two terminals EG 1 and EG 2 for real-time communication, eg two video telephones, two data servers DS 1 and DS 2, as well as two network nodes NK 1 and NK 2 of a data packet-oriented communication network directly or indirectly coupled to one another are shown schematically.
  • the communication network can be realized, for example, as a local area network (LAN) whose LAN subnets are connected by the network nodes NK1 and NK2 realized as routers.
  • LAN local area network
  • the maximum transmission capacity for data transmissions from the network node NK1 to the network node NK2 is limited to 10 Mbit / s.
  • the terminal EG1 and the data server DS1 are coupled to the network node NK1 and the terminal EG2 and the data server DS2 to the network node NK2.
  • a data connection between the data server DS1 and the data server DS2 and a real-time communication connection between the terminal EG1 and the terminal EG2 are established via the network nodes NK1 and NK2.
  • general data AD with a data rate of 19 Mbit / s are sent from the data server DS1
  • real-time data ED e.g. Voice and / or video data to transmit at a predetermined by the real-time requirements data rate of 1 Mbit / s.
  • Both the real-time data ED and the general data AD are transmitted within data packets provided with a respective destination address.
  • FIG. 1 illustrates a first transmission mode in which the real-time data ED is sent to the network node NK1 as a first data stream with a data rate of 1 Mbit / s.
  • the general data AD is also transmitted as a second data stream with a data rate of 19 Mbit / s from the data server DS1 to the network node NK1. Since the maximum available transmission capacity for data transmissions from network node NK1 to network node NK2 is only 10 Mbit / s, but the sum of the data rates of the data streams to be transmitted is 20 Mbit / s, only every second incoming data packet is forwarded to network node NK2 by network node NK1. The remaining data packets are discarded.
  • the network node NK1 handles the data streams to be transmitted equally, ie discards approximately the same proportion of data packets for each data stream to be transmitted.
  • the data server DS2 thus encounters a fragmented stream of general data AD at a data rate of approximately 9.5 Mbit / s and at the terminal EG2 a fragmented stream of real-time data with a data rate of approximately 0.5 Mbit / s.
  • the data server DS2 may request the discarded data packets of the general data AD again from the data server DS1 as part of a superordinate transmission protocol, such as the TCP protocol, re-requesting discarded data packets of the real-time data ED would generally lead to an intolerable delay. If voice data is transmitted as real-time data ED, a transmitted voice content will generally remain intelligible even if half of the voice data to be transmitted is lost due to a redundant voice data, but the transmission quality of the voice content is considerably reduced.
  • the transmission quality of the received data stream is monitored by real-time data ED by regularly determining the proportion of non-received data packets.
  • This component can preferably be determined in the context of the RTC protocol on the basis of a numbering of the data packets of the first data stream sent by the terminal EG1.
  • the terminal EG2 then sends depending on the determined transmission quality a feedback RM preferably in accordance with the RTCP protocol via the network node NK2 and NK1 back to the terminal EG1.
  • the acknowledgment RM contains the information that only half of all data packets of the real-time data ED have been received by the terminal EG2.
  • Such feedback concerning the transmission quality of received real-time data is already common in a large number of terminals used in connection with data-packet-oriented voice transmission (VoIP: voice over IP).
  • the terminal EG1 After receiving the feedback RM and its evaluation, the terminal EG1 changes to a second transmission mode, which is illustrated in FIG.
  • the terminal EG1 adds additional redundancy data RD to the data stream of the real-time data ED in order to increase the redundancy of this data stream so that its data rate increases.
  • the factor by which the data rate is increased is based on the proportion of the data packets received by the terminal EG2 that are specified in the response.
  • the data rate of the first data stream is thus doubled by the addition of the redundancy data RD to 2 Mbit / s.
  • redundant data RD for example, additional information according to the CRC method can be added.
  • a respective data content of individual data packets with real-time data ED can be distributed together with the redundancy data RD over a plurality of data packets of the first data stream.
  • each individual data packet of the real-time data ED can be doubled by the terminal EG1 and thus transmitted twice to the network node NK1.
  • the sum of the data rates of the data streams transmitted to the network node NK1 is now 21 Mbit / s and thus exceeds the maximum transmission capacity of the transmission link between the network nodes NK1 and NK2 by 2.1 times. Since only 10 out of 21 data packets are forwarded by the network node NK1 on average over time, a data stream of fragmented general data AD with a data rate of approximately 9 Mbit / s and a fragmented data stream of the real time data ED and the redundancy data arrive at the data server DS2 RD existing data stream with a data rate of about 1 Mbit / s.
  • the data rate of received general data AD at the data server DS2 only decreases slightly, the data rate of the data received by the terminal EG2 increases approximately twice. Since the data rate of the fragmented data stream of real-time data and redundancy data corresponds approximately to the data rate of the real-time data ED to be originally transmitted, they can be used by the terminal EG2 on the basis of the transmitted data Redundancy data RD be largely reconstructed. The transmission quality of the real-time data ED increases considerably.
  • the method according to the invention thus makes it possible in a simple manner and without changes to existing communication networks or their network nodes to regulate a so-called quality-of-service parameter (QoS) of a data packet-oriented connection with the transmission quality. Since it is generally assumed that the transmission volume of non-real-time data will greatly increase in the future in comparison with the transmission volume of real-time data, an increase of the data rate in real-time transmissions caused by the method according to the invention is in all probability tolerable or even negligible.
  • QoS quality-of-service parameter
  • the terminal EG2 can transmit a further response to the terminal EG1 in order to initiate a reduction in the data rate by reducing the proportion of added redundancy data.
  • the terminal EG2 can check whether the transmission quality for the real-time data ED is effectively improved by an increase in the data rate of the data stream transmitted by the terminal EG1. If no predetermined improvement occurs, another feedback may be transmitted to the terminal EG1, thereby causing the terminal EG1 to cancel the increase in the data rate. In this way, the communication network is relieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

Zur Verbesserung der Übertragungsqualität eines ersten Datenstroms (ED), insbesondere eines Echtzeitdatenstroms, der mit mindestens einem weiteren Datenstrom (AD) in Konkurrenz um eine begrenzte Übertragungskapazität eines Netzknotens (NK1) eines datenpaketorientierten Kommunikationsnetzes steht, wird die Datenrate des ersten Datenstroms (ED) durch senderseitiges Hinzufügen von Redundanzdaten (RD) erhöht. Während einer Überlastsituation wird durch die Erhöhung der Datenrate des ersten Datenstroms (ED) gegenüber derjenigen des mindestens einen weiteren Datenstroms (AD) letzterer insofern verdrängt, als dass auf den ersten Datenstrom (ED) nunmehr ein grösserer Anteil an der gemeinsam verfügbaren Übertragungskapazität des Netzknotens (NK1) entfällt.

Description

  • Die Erfindung betrifft ein Verfahren zum Verbessern der Datenübertragungsqualität in datenpaketorientierten Kommunikationsnetzen gemäß dem Oberbegriff des Patentanspruchs 1.
  • In datenpaketorientierten Kommunikationsnetzen werden zu übermittelnde Datenströme in einzelne Datenpakete aufgeteilt, die mit einer Zieladresse versehen, über Netzknoten des Kommunikationsnetzes zum jeweiligen Übertragungsziel übermittelt werden. Die Übermittlung erfolgt dabei üblicherweise im Rahmen verschiedener Schichten von Übertragungsprotokollen, wie z.B. dem IP-Protokoll (internet protocol) als Schicht-Drei-Protokoll und dem sog. TCP-Protokoll (transmission control protocol) oder dem sog. UDP-Protokoll (user datagram protocol) als Schicht-Vier-Protokolle. Die vorstehende Numerierung der Protokollschichten bezieht sich auf das sog. OSI-Referenzmodell.
  • Häufig wird zur Übermittlung von Datenpaketen ein Übertragungsprotokoll, wie z.B. das IP-Protokoll, eingesetzt, das eine korrekte Übermittlung nicht für jedes einzelne Datenpaket garantiert. Im Rahmen eines derartigen Übertragungsprotokolls werden bei einem Netzknoten oder einer Übertragungsstrecke auftretende Überlastsituationen dadurch bewältigt, daß die Überlastsituation auslösende. Datenpakete verworfen und damit nicht weiter übermittelt werden, siehe z.B. auch ein ATM Übertragungsverfahren, das aus der Druckschrift: JAIN R, "Congestion control and traffc management in ATM networks: Recent advances and a survey" COMPUTER NETWORKS AND ISDN SYSTEMS, NL, NORTH HOLLAND PUBLISHING. AMSTERDAM, Bd. 28, Nr. 13, 1. Oktober 1996 (1996-10-01), bekannt ist. Datenpakete, die deshalb nicht beim Übermittlungsziel ankommen, werden üblicherweise im Rahmen eines übergeordneten Übertragungsprotokolls, wie z.B. dem TCP-Protokoll, durch das Übermittlungsziel erneut vom Sender der Datenpakete angefordert. Eine derartige Sicherung der Datenübertragung ist jedoch für Echtzeitanwendungen nicht geeignet, da eine notwendige Neuanforderung eines Datenpakets eine lückenlose Rekonstruktion des Datenstroms der Übermittlungsdaten beim Empfänger stark verzögert.
  • Bei einer Übertragung von Echtzeitdaten, wie z.B. Sprach- oder Videodaten, über ein paketorientiertes Kommunikationsnetz wird zur Verringerung einer überlastungsbedingten Datenpaketverlustrate häufig die Datenrate der Echtzeitdaten gesenkt, um dadurch die Überlastung zu reduzieren. Dies erfolgt häufig durch Anwendung von Datenkomprimierungsverfahren. Eine Komprimierung von Echtzeitdaten verbessert deren Übertragungsqualität bei einer Überlastsituation jedoch nur dann, wenn die Überlastsituation auch vorwiegend durch eine Übertragung von Echtzeitdaten hervorgerufen wird. Falls die Überlastsituation hauptsächlich durch Übertragung anderer Daten verursacht wird, bewirkt die Komprimierung der Echtzeitdaten im wesentlichen nur, daß die anderen Daten schneller übertragen werden können. Zudem bleibt bei einer Komprimierung von Echtzeitdaten und insbesondere von Sprach- oder Videodaten häufig der Informationsgehalt der Echtzeitdaten nicht vollständig erhalten, wodurch sich insbesondere bei Sprach- oder Videodaten die Signalqualität verschlechtert. Weiterhin werden Echtzeitdaten durch ihre Komprimierung insbesondere bei Übertragung über datenpaketorientierte Kommunikationsnetze stärker verzögert, da ein Auffüllen einzelner Datenpakete mit komprimierten Echtzeitdaten entsprechend länger dauert.
  • Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren zum Verbessern der Übertragungsqualität von über ein datenpaketorientiertes Kommunikationsnetz zu übertragenden Daten anzugeben, mit dem die vorgenannten Nachteile vermieden werden können.
  • Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Patentanspruchs 1.
  • Durch das erfindungsgemäße Verfahren kann die Übertragungsqualität eines von einem Sender über einen Netzknoten eines datenpaketorientierten Kommunikationsnetzes zu einem Sender zu übertragenden Datenstroms wesentlich verbessert werden. Dies gilt insbesondere für eine datenpaketorientierte Übermittlung von Echtzeitdaten, wie z.B. Sprach- und/oder Videodaten - im Fachjargon auch als "Voice over IP" (VoIP) bzw. "Video over IP" bezeichnet. Das erfindungsgemäße Verfahren läßt sich auf eine Vielzahl von Kommunikationsnetzen, wie z.B. sog. Lokale Netze (LAN) und Weitverkehrsnetze (WAN), mit unterschiedlichen Übertragungsprotokollen, wie z.B. dem Internet-Protokoll (IP) anwenden, ohne daß Eingriffe in die bestehende Struktur der Kommunikationsnetze erforderlich wären. Der übertragende Netzknoten kann dabei z.B. eine auch als L2-Switch bezeichnete Brücke, ein auch als L3-Switch bezeichneter Router, ein sog. Gateway oder eine andere datenpaketvermittelnde Einrichtung des Kommunikationsnetzes sein.
  • Üblicherweise werden durch einen solchen Netzknoten Datenpakete verworfen, wenn die Datenrate zu übertragender Datenströme die Übertragungskapazität des Netzknotens oder dessen Übertragungsleitungen übersteigt. Meist werden in einem solchen Überlastungsfall Datenpakete aus allen zur Überlastung beitragenden Datenströmen anteilig verworfen. So kann beispielsweise, falls das Aufkommen zu übertragender Daten die Übertragungskapazität eines Netzknotens um das Doppelte übersteigt, jedes zweite Datenpaket aller zur Überlastung beitragenden Datenströme durch den Netzknoten verworfen werden.
  • Gemäß dem erfindungsgemäßen Verfahren wird zur Verbesserung der Übertragungsqualität eines ersten Datenstroms, der mit mindestens einem weiteren über den Netzknoten zu übertragenden Datenstrom in Konkurrenz um eine begrenzte Übertragungskapazität des Netzknotens oder einer seiner Übertragungsleitungen steht, die Datenrate des ersten Datenstroms durch Hinzufügen von Redundanzdaten durch den Sender erhöht. Während einer Überlastsituation wird durch die Erhöhung der Datenrate des ersten Datenstroms gegenüber der Datenrate des mindestens einen weiteren Datenstroms letzterer insofern verdrängt, als daß auf den ersten Datenstrom ein größerer Anteil an der gemeinsam verfügbaren Übertragungskapazität entfällt. Nach Erhöhung der Datenrate des ersten Datenstroms erreichen bei gleichbleibendem oder geringfügig steigendem Anteil an verworfenen Datenpaketen eine größere Anzahl von nicht verworfenen Datenpaketen des ersten Datenstroms den Empfänger als vor der Erhöhung. Damit kann der ursprüngliche Informationsinhalt des ersten Datenstroms durch den Empfänger besser rekonstruiert werden, wodurch sich die Übertragungsqualität verbessert.
  • Das erfindungsgemäße Verfahren läßt sich besonders vorteilhaft auf eine Übertragung von Echtzeit- oder Quasi-Echtzeitdaten vorgegebener Datenrate anwenden, da keine zusätzliche Verzögerung der zu übertragenden Daten notwendigerweise auftritt. Besonders vorteilhaft läßt sich das Verfahren in Lokalen Netzen einsetzen, in denen durch eine Erhöhung der Datenrate eines zu übertragenden Datenstroms keine Gebühren verursacht werden.
  • Mittels des erfindungsgemäßen Verfahrens kann einem über einen Netzknoten zu übertragenden Datenstrom auf einfache Weise ein höherer Anteil an der Übertragungskapazität des Netzknotens verschafft werden. Besonders vorteilhaft ist in diesem Zusammenhang, daß dazu kein Eingriff in bestehende Kommunikationsnetze oder Netzknoten erforderlich ist.
  • Vorteilhafte Ausführungsformen und Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
  • Die Redundanz des ersten Datenstroms kann auf vielerlei Weise erhöht werden. So z.B. durch Hinzufügen von Paritätsinformationen, Prüfsummen und/oder Redundanzdaten gemäß dem sog. CRC-Verfahren (cyclic redundancy check). Gemäß einer besonders einfachen Ausführungsvriante kann die Erhöhung der Datenrate durch Vervielfältigung der Datenpakete beim Sender erfolgen. Ein Vorteil dieser Ausführungsvariante ist, daß zur Durchführung des erfindungsgemäßen Verfahrens in der Regel auch keine Veränderungen am Empfänger notwendig sind, da die üblicherweise verwendeten Datenpaket-Übertragungsprotokolle meist eine korrekte Behandlung von mehrfach eintreffenden Datenpaketen vorsehen. Außer durch eine Erhöhung der Datenpaketrate kann die Datenrate des ersten Datenstroms auch durch eine Verlängerung von dessen Datenpaketen erfolgen. Dies ist insbesondere dann vorteilhaft, wenn die Übertragungskapazität weniger durch die Datenrate als vielmehr durch die Datenpaketrate beim Netzknoten eingeschränkt wird.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung kann durch den Empfänger ein Maß für die Übertragungsqualität des ersten Datenstroms ermittelt werden. Ein solches Maß stellt z.B. der Anteil nicht empfangener Datenpakete des ersten Datenstroms dar. Dieser Anteil kann z.B. anhand einer vorzugsweise im Rahmen des sog. RTP-Protokolls (real time transport protocol) erfolgten Numerierung der Datenpakete des ursprünglichen ersten Datenstroms bestimmt werden. Abhängig vom ermittelten Maß für die Übertragungsqualität kann daraufhin eine Rückmeldung, vorzugsweise im Rahmen des sog. RTCP-Protokolls (real time control protocol), vom Empfänger zum Sender übermittelt werden. Die Rückmeldung kann z.B. immer dann erfolgen, wenn die Ubertragungsqualität eine vorgegebene Grenze unterschreitet.
  • Eine derartige Überwachung und Rückmeldung der Übertragungsqualität ist im RTCP-Protokoll bereits standardmäßig vorgesehen, so daß eine Vielzahl bestehender Kommunikationseinrichtungen mit implementiertem RTCP-Protokoll unverändert als Empfänger im Sinne des erfindungsgemäßen Verfahrens verwendet werden können. Der Sender kann durch eine von ihm empfangene Rückmeldung dazu veranlaßt werden, abhängig von dieser Redundanzdaten zum ersten Datenstrom hinzuzufügen. Beispielsweise kann nach Empfang einer Rückmeldung, die angibt, daß nur jedes zweite Datenpaket des ersten Datenstroms beim Empfänger ankommt, die Datenrate des ersten Datenstroms durch Hinzufügen einer entsprechenden Menge von Redundanzdaten vom Sender verdoppelt werden. Die Rückmeldung kann weiterhin auch eine vom Empfänger vorgegebene Information über die Art und Menge von Redundanzdaten enthalten, die dem ersten Datenstrom vom Sender hinzuzufügen sind.
  • Nach einer weiteren vorteilhaften Weiterbildung der Erfindung kann der Sender eine Information über die Redundanzdaten, die von ihm zum ersten Datenstrom hinzugefügt werden, zum Empfänger übermitteln. Durch die Information kann beispielsweise die Art und Menge der hinzugefügten Redundanzdaten angegeben werden. Eine Rekonstruktion des Informationsinhalts des ersten Datenstroms aus den vom Empfänger empfangenen Datenpaketen kann dann abhängig von der übermittelten Information erfolgen. Beispielsweise kann anhand der empfangenen Information über die Redundanzdaten ein auf die Art der Redundanzdaten abgestimmtes Rekonstruktionsverfahren (z.B. das CRC-Verfahren) ausgewählt werden.
  • Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung näher erläutert.
  • Dabei zeigen, jeweils in schematischer Darstellung
  • FIG 1 und FIG 2
    ein Kommunikationssystem beim Übertragen von Echtzeitdaten und Allgemeindaten in verschiedenen Übertragungsmoden.
  • In FIG 1 und FIG 2 ist jeweils dasselbe Kommunikationssystem mit zwei Endgeräten EG 1 und EG2 zur Echtzeitkommunikation, z.B. zwei Videotelefonen, zwei Datenservern DS1 und DS2, sowie zwei miteinander direkt oder indirekt gekoppelten Netzknoten NK1 und NK2 eines datenpaketorientierten Kommunikationsnetzes schematisch dargestellt. Das Kommunikationsnetz kann dabei z.B. als Lokales Netz (LAN) realisiert sein, dessen LAN-Subnetze durch die als Router realisierten Netzknoten NK1 und NK2 verbunden sind. Im vorliegenden Ausführungsbeispiel ist die maximale Übertragungskapazität für Datenübertragungen vom Netzknoten NK1 zum Netzknoten NK2 auf 10 MBit/s beschränkt.
  • Das Endgerät EG1 und der Datenserver DS1 sind an den Netzknoten NK1 und das Endgerät EG2 und der Datenserver DS2 an den Netzknoten NK2 gekoppelt. Über die Netzknoten NK1 und NK2 ist eine Datenverbindung zwischen den Datenserver DS1 und dem Datenserver DS2 sowie eine Echtzeit-Kommunikationsverbindung zwischen dem Endgerät EG1 und dem Endgerät EG2 aufgebaut. Während im Rahmen der Datenverbindung Allgemeindaten AD mit einer Datenrate von 19 MBit/s vom Datenserver DS1 gesendet werden, sind im Rahmen der Echtzeit-Kommunikationsverbindung Echtzeitdaten ED, z.B. Sprach- und/oder Videodaten, mit einer durch die Echtzeiterfordernisse vorgegebenen Datenrate von 1 MBit/s zu übertragen. Sowohl die Echtzeitdaten ED als auch die Allgemeindaten AD werden innerhalb von mit einer jeweiligen Zieladresse versehenen Datenpaketen übertragen.
  • FIG 1 veranschaulicht einen ersten Übertragungsmodus, bei dem die Echtzeitdaten ED als ein erster Datenstrom mit einer Datenrate von 1 MBit/s zum Netzknoten NK1 gesendet werden. Parallel dazu werden die Allgemeindaten AD als ein zweiter Datenstrom mit einer Datenrate von 19 MBit/s vom Datenserver DS1 ebenfalls zum Netzknoten NK1 übertragen. Da die maximal verfügbare Übertragungskapazität für Datenübertragungen vom Netzknoten NK1 zum Netzknoten NK2 nur 10 MBit/s beträgt, die Summe der Datenraten der zu übertragenden Datenströme jedoch 20 MBit/s ergibt, wird durch den Netzknoten NK1 nur jedes zweite ankommende Datenpaket zum Netzknoten NK2 weitergeleitet. Die restlichen Datenpakete werden verworfen. Für das vorliegende Ausführungsbeispiel sei angenommen, daß der Netzknoten NK1 die zu übertragenden Datenströme gleichberechtigt behandelt, d.h. bei jedem zu übertragenden Datenstrom annähernd den gleichen Anteil an Datenpaketen verwirft. Dies bedeutet, daß von den Echtzeitdaten ED und den Allgemeindaten AD nur jeweils ca. die Hälfte der Datenpakete über den Netzknoten NK2 zum jeweiligen Übertragungsziel EG2 bzw. DS2 ausgeliefert wird. Beim Datenserver DS2 trifft somit ein fragmentierter Strom von Allgemeindaten AD mit einer Datenrate von ca. 9,5 MBit/s und beim Endgerät EG2 ein fragmentierter Strom von Echtzeitdaten mit einer Datenrate von ca. 0,5 MBit/s ein. Während der Datenserver DS2 die verworfenen Datenpakete der Allgemeindaten AD im Rahmen eines übergeordneten Übertragunsprotokolls, wie z.B. des TCP-Protokolls, erneut vom Datenserver DS1 anfordern kann, würde ein Neuanfordern von verworfenen Datenpaketen der Echtzeitdaten ED in der Regel zu einer nicht tolerierbaren Verzögerung führen. Sofern als Echzeitdaten ED Sprachdaten übertragen werden, bleibt ein übertragener Sprachinhalt zwar in der Regel auch bei Verlust der Hälfte der zu übertragenden Sprachdaten aufgrund einer Sprachdaten eigentümlichen Redundanz verständlich, doch verschlechtert sich die Übertragungsqualität des Sprachinhaltes beträchtlich.
  • Durch das Endgerät EG2 wird die Übertragungsqualität des empfangenen Datenstroms von Echtzeitdaten ED überwacht, indem regelmäßig der Anteil nicht empfangener Datenpakete bestimmt wird. Dieser Anteil kann vorzugsweise im Rahmen des RTC-Protokolls anhand einer Numerierung der Datenpakete des vom Endgerät EG1 gesendeten, ersten Datenstroms ermittelt werden. Das Endgerät EG2 sendet daraufhin abhängig von der ermittelten Übertragungsqualität eine Rückmeldung RM vorzugsweise gemäß dem RTCP-Protokoll über den Netzknoten NK2 und NK1 zum Endgerät EG1 zurück. Die Rückmeldung RM enthält im vorliegenden Ausführungsbeispiel die Information, daß nur die Hälfte aller Datenpakete der Echtzeitdaten ED vom Endgerät EG2 empfangen wurden. Eine solche die Übertragungsqualität von empfangenen Echtzeitdaten betreffende Rückmeldung ist bei einer Vielzahl von Endgeräten, die im Zusammenhang mit datenpaketorientierter Sprachübertragung (VoIP: voice over IP) verwendet werden, bereits üblich.
  • Nach Empfang der Rückmeldung RM und deren Auswertung wechselt das Endgerät EG1 in einen zweiten Übertragungsmodus, der in FIG 2 veranschaulicht wird. Das Endgerät EG1 fügt hierbei dem Datenstrom der Echtzeitdaten ED zusätzliche Redundanzdaten RD zur Erhöhung der Redundanz dieses Datenstroms hinzu, so daß sich dessen Datenrate erhöht. Der Faktor, um den die Datenrate erhöht wird, orientiert sich dabei an dem in der Rückmeldung angegebenen Anteil der vom Endgerät EG2 empfangenen Datenpakete. Im vorliegenden Ausführungsbeispiel wird somit die Datenrate des ersten Datenstroms durch das Hinzufügen der Redundanzdaten RD auf 2 MBit/s verdoppelt. Als Redundanzdaten RD können beispielsweise Zusatzinformationen gemäß dem CRC-Verfahren hinzugefügt werden. Vorzugsweise kann ein jeweiliger Dateninhalt einzelner Datenpakete mit Echtzeitdaten ED zusammen mit den Redundanzdaten RD über mehrere Datenpakete des ersten Datenstroms verteilt werden. Nach einer besonders einfachen Variante kann auch jedes einzelne Datenpaket der Echtzeitdaten ED vom Endgerät EG1 verdoppelt und somit zweimal zum Netzknoten NK1 übertragen werden.
  • Die Summe der Datenraten der zum Netzknoten NK1 übertragenen Datenströme beträgt nunmehr 21 MBit/s und überschreitet somit die maximale Übertragungskapazität der Übertragungsstrecke zwischen den Netzknoten NK1 und NK2 um das 2,1 fache. Da durch den Netzknoten NK1 somit im zeitlichen Mittel nur 10 von 21 Datenpaketen weitergeleitet werden, trifft beim Datenserver DS2 ein Datenstrom fragmentierter Allgemeindaten AD mit einer Datenrate von ca. 9 MBit/s und beim Endgerät EG2 ein fragmentierter, aus den Echtzeitdaten ED und den Redundanzdaten RD bestehender Datenstrom mit einer Datenrate von ca. 1 MBit/s ein. Während sich die Datenrate empfangener Allgemeindaten AD beim Datenserver DS2 nur leicht verringert, steigt die Datenrate der vom Endgerät EG2 empfangenen Daten ca. auf das Doppelte. Da die Datenrate des fragmentiert übertragenen Datenstroms aus Echtzeitdaten und Redundanzdaten in etwa der Datenrate der ursprünglich zu übertragenden Echtzeitdaten ED entspricht, können diese vom Endgerät EG2 anhand der übertragenen Redundanzdaten RD weitgehend rekonstruiert werden. Die Übertragungsqualität der Echtzeitdaten ED erhöht sich dadurch beträchtlich.
  • Das erfindungsgemäße Verfahren erlaubt es somit, auf einfache Weise und ohne daß Änderungen an bestehenden Kommunikationsnetzen oder deren Netzknoten erforderlich wären, mit der Übertragungsqualität einen sog. Quality-of-Service-Parameter (QoS) einer datenpaketorientierten Verbindung zu regulieren. Da im allgemeinen davon ausgegangen wird, daß das Übertragungsvolumen von Nicht-Echtzeitdaten gegenüber dem Übertragungsvolumen von Echtzeitdaten zukünftig stark ansteigen wird, ist eine durch das erfindungsgemäße Verfahren bedingte Erhöhung der Datenrate bei Echtzeitübertragungen aller Voraussicht nach tolerierbar oder sogar vernachlässigbar.
  • Falls vom Endgerät EG2 festgestellt wird, daß sich die Übertragungsqualität des empfangenen Datenstroms verbessert, d.h. daß ein geringerer Anteil an Datenpaketen verworfen wird, kann vom Endgerät EG2 eine weitere Rückmeldung zum Endgerät EG1 übertragen werden, um dort eine Verringerung der Datenrate durch Verringerung des Anteils von hinzugefügten Redundanzdaten zu veranlassen.
  • Weiterhin kann vom Endgerät EG2 überprüft werden, ob sich durch eine erfolgte Erhöhung der Datenrate des vom Endgerät EG1 übertragenen Datenstroms die Übertragungsqualität für die Echtzeitdaten ED effektiv verbessert. Falls keine vorgegebene Verbesserung eintritt, kann eine weitere Rückmeldung zum Endgerät EG1 übermittelt werden, um dadurch das Endgerät EG1 dazu zu veranlassen, die Erhöhung der Datenrate wieder rückgängig zu machen. Auf diese Weise wird das Kommunikationsnetz entlastet.

Claims (10)

  1. Verfahren zum Verbessern der Übertragungsqualität eines von einem Sender (EG1) über einen Netzknoten (NK1) eines datenpaketorientierten Kommunikationsnetzes zu einem Empfänger (EG2) zu übertragenden, ersten Datenstroms (ED) vorgegebener Datenrate, der vom Netzknoten (NK1) gemeinsam mit mindestens einem weiteren Datenstrom (AD) weiterzuleiten ist, wobei bei Überschreiten einer für die Datenströme (ED, AD) gemeinsam verfügbaren Übertragungskapazität Datenpakete der zu übertragenden Datenströme (ED, AD) durch den Netzknoten (NK1) verworfen werden,
    dadurch gekennzeichnet,
    daß während einer Überlastsituation die Datenrate des ersten Datenstroms (ED) durch den Sender (EG1) durch Hinzufügen von redundanzerhöhenden Redundanzdaten (RD) erhöht wird, wodurch der mindestens eine weitere Datenstrom (AD) insofern verdrängt wird, als ein größerer Anteil an der gemeinsam verfügbaren Übertragungskapazität auf den ersten Datenstrom entfällt.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß zur zusätzlichen Übertragung der Redundanzdaten (RD) eine Datenpaketrate des ersten Datenstroms (ED) vom Sender (EG1) erhöht wird.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet,
    daß als Redundanzdaten (RD) Kopien von Datenpaketen des ersten Datenstroms (ED) vom Sender (EG1) erstellt und zum Netzknoten (NK1) übertragen werden.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß zur zusätzlichen Übertragung der Redundanzdaten (RD) die Länge von Datenpaketen des ersten Datenstroms (ED) vom Sender (EG1) erhöht wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß durch den Sender (EG1) der Dateninhalt eines zu übertragenden Datenpaketes des ersten Datenstroms (ED) zusammen mit Redundanzdaten (RD) über mehrere Datenpakete verteilt wird, die vom Sender (EG1) zum Netzknoten (NK1) übermittelt werden.
  6. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß vom Empfänger (EG1) anhand des empfangenen, ersten Datenstroms (ED, ED+RD) ein Maß für dessen Übertragungsqualität ermittelt wird,
    abhängig vom ermittelten Maß für die Übertragungsqualität eine Rückmeldung (RM) vom Empfänger (EG2) zum Sender (EG1) übermittelt wird, und
    vom Sender (EG1) abhängig von der empfangenen Rückmeldung (RM) Redundanzdaten (RD) zum ersten Datenstrom (ED) hinzugefügt werden.
  7. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet,
    daß die Datenrate der hinzugefügten Redundanzdaten (RD) vom Sender (EG1) verringert wird, falls keine vorgegebene Verbesserung der Übertragungsqualität festgestellt wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß vom Sender (EG1) Redundanzdaten (RD) auf Anforderung des Empfängers (EG2) zum ersten Datenstrom (ED) hinzugefügt werden.
  9. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß vom Sender (EG1) eine Information über die Redundanzdaten (RD) zum Empfänger (EG2) übermittelt wird, und
    daß durch den Empfänger (EG2) ein Informationsinhalt des ersten Datenstroms (ED) aus den vom Empfänger (EG2) empfangenen Datenpaketen des ersten Datenstroms (ED) abhängig von der übermittelten Information, zumindest teilweise, rekonstruiert wird.
  10. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß innerhalb des ersten Datenstroms Quasi-Echtzeitdaten (ED) übermittelt werden.
EP00983041A 1999-10-28 2000-10-19 Verfahren zum verbessern der datenübertragungsqualität in datenpaketorientierten kommunikationsnetzen Expired - Lifetime EP1224777B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19952048 1999-10-28
DE19952048 1999-10-28
PCT/DE2000/003680 WO2001031858A2 (de) 1999-10-28 2000-10-19 Verfahren zum verbessern der datenübertragungsqualität in datenpaketorientierten kommunikationsnetzen

Publications (2)

Publication Number Publication Date
EP1224777A2 EP1224777A2 (de) 2002-07-24
EP1224777B1 true EP1224777B1 (de) 2006-09-06

Family

ID=7927241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00983041A Expired - Lifetime EP1224777B1 (de) 1999-10-28 2000-10-19 Verfahren zum verbessern der datenübertragungsqualität in datenpaketorientierten kommunikationsnetzen

Country Status (4)

Country Link
US (1) US6999473B2 (de)
EP (1) EP1224777B1 (de)
DE (1) DE50013437D1 (de)
WO (1) WO2001031858A2 (de)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244897A (ja) * 2004-02-27 2005-09-08 Fujitsu Ltd 信頼性のある通信方法及びその装置
JP2009027720A (ja) * 2007-07-23 2009-02-05 Polycom Inc 輻輳回避と共に損失パケット回復を行うシステム及び方法
US8774210B2 (en) 2008-10-27 2014-07-08 Lennox Industries, Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US8855825B2 (en) 2008-10-27 2014-10-07 Lennox Industries Inc. Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system
US8874815B2 (en) 2008-10-27 2014-10-28 Lennox Industries, Inc. Communication protocol system and method for a distributed architecture heating, ventilation and air conditioning network
US9261888B2 (en) 2008-10-27 2016-02-16 Lennox Industries Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US9152155B2 (en) 2008-10-27 2015-10-06 Lennox Industries Inc. Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system
US8433446B2 (en) 2008-10-27 2013-04-30 Lennox Industries, Inc. Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network
US8600558B2 (en) 2008-10-27 2013-12-03 Lennox Industries Inc. System recovery in a heating, ventilation and air conditioning network
US8548630B2 (en) 2008-10-27 2013-10-01 Lennox Industries, Inc. Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network
US9678486B2 (en) 2008-10-27 2017-06-13 Lennox Industries Inc. Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system
US8892797B2 (en) 2008-10-27 2014-11-18 Lennox Industries Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US8802981B2 (en) 2008-10-27 2014-08-12 Lennox Industries Inc. Flush wall mount thermostat and in-set mounting plate for a heating, ventilation and air conditioning system
US8437877B2 (en) 2008-10-27 2013-05-07 Lennox Industries Inc. System recovery in a heating, ventilation and air conditioning network
US8744629B2 (en) 2008-10-27 2014-06-03 Lennox Industries Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US9325517B2 (en) 2008-10-27 2016-04-26 Lennox Industries Inc. Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system
US8615326B2 (en) 2008-10-27 2013-12-24 Lennox Industries Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US9632490B2 (en) 2008-10-27 2017-04-25 Lennox Industries Inc. System and method for zoning a distributed architecture heating, ventilation and air conditioning network
US8295981B2 (en) 2008-10-27 2012-10-23 Lennox Industries Inc. Device commissioning in a heating, ventilation and air conditioning network
US8463443B2 (en) 2008-10-27 2013-06-11 Lennox Industries, Inc. Memory recovery scheme and data structure in a heating, ventilation and air conditioning network
US9377768B2 (en) 2008-10-27 2016-06-28 Lennox Industries Inc. Memory recovery scheme and data structure in a heating, ventilation and air conditioning network
US8452906B2 (en) 2008-10-27 2013-05-28 Lennox Industries, Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US9268345B2 (en) 2008-10-27 2016-02-23 Lennox Industries Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8694164B2 (en) 2008-10-27 2014-04-08 Lennox Industries, Inc. Interactive user guidance interface for a heating, ventilation and air conditioning system
US9432208B2 (en) 2008-10-27 2016-08-30 Lennox Industries Inc. Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system
US8762666B2 (en) 2008-10-27 2014-06-24 Lennox Industries, Inc. Backup and restoration of operation control data in a heating, ventilation and air conditioning network
US8543243B2 (en) 2008-10-27 2013-09-24 Lennox Industries, Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8560125B2 (en) 2008-10-27 2013-10-15 Lennox Industries Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US8255086B2 (en) 2008-10-27 2012-08-28 Lennox Industries Inc. System recovery in a heating, ventilation and air conditioning network
US8977794B2 (en) 2008-10-27 2015-03-10 Lennox Industries, Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US9651925B2 (en) * 2008-10-27 2017-05-16 Lennox Industries Inc. System and method for zoning a distributed-architecture heating, ventilation and air conditioning network
US8352080B2 (en) 2008-10-27 2013-01-08 Lennox Industries Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US8452456B2 (en) 2008-10-27 2013-05-28 Lennox Industries Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8994539B2 (en) 2008-10-27 2015-03-31 Lennox Industries, Inc. Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network
US8725298B2 (en) 2008-10-27 2014-05-13 Lennox Industries, Inc. Alarm and diagnostics system and method for a distributed architecture heating, ventilation and conditioning network
US8564400B2 (en) 2008-10-27 2013-10-22 Lennox Industries, Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US8798796B2 (en) * 2008-10-27 2014-08-05 Lennox Industries Inc. General control techniques in a heating, ventilation and air conditioning network
US8788100B2 (en) 2008-10-27 2014-07-22 Lennox Industries Inc. System and method for zoning a distributed-architecture heating, ventilation and air conditioning network
US8600559B2 (en) 2008-10-27 2013-12-03 Lennox Industries Inc. Method of controlling equipment in a heating, ventilation and air conditioning network
US8352081B2 (en) 2008-10-27 2013-01-08 Lennox Industries Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US8442693B2 (en) 2008-10-27 2013-05-14 Lennox Industries, Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8463442B2 (en) 2008-10-27 2013-06-11 Lennox Industries, Inc. Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network
US8661165B2 (en) 2008-10-27 2014-02-25 Lennox Industries, Inc. Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system
US8655491B2 (en) 2008-10-27 2014-02-18 Lennox Industries Inc. Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network
US8437878B2 (en) 2008-10-27 2013-05-07 Lennox Industries Inc. Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network
US8239066B2 (en) 2008-10-27 2012-08-07 Lennox Industries Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8655490B2 (en) 2008-10-27 2014-02-18 Lennox Industries, Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
USD648642S1 (en) 2009-10-21 2011-11-15 Lennox Industries Inc. Thin cover plate for an electronic system controller
USD648641S1 (en) 2009-10-21 2011-11-15 Lennox Industries Inc. Thin cover plate for an electronic system controller
US8260444B2 (en) 2010-02-17 2012-09-04 Lennox Industries Inc. Auxiliary controller of a HVAC system
JP2024022698A (ja) * 2020-10-30 2024-02-21 株式会社Preferred Networks 通信装置及び通信方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2216752A (en) 1988-03-02 1989-10-11 Cyclotomics Inc Forward error correction in packet switched communications
ATE210361T1 (de) 1992-09-23 2001-12-15 Siemens Ag Verfahren zum multiplexen von virtuellen kanälen auf eine übertragungsleitung
JPH07147553A (ja) * 1993-11-24 1995-06-06 Sanyo Electric Co Ltd 周波数ホッピング通信方法及びその装置
ATE272919T1 (de) * 1996-03-20 2004-08-15 Cit Alcatel Verfahren zur kontrolle der datenstromgeschwindigkeit, des warteschlangenetzknoten und des paketvermittlungsnetzwerkes
US6145109A (en) * 1997-12-12 2000-11-07 3Com Corporation Forward error correction system for packet based real time media
US6512761B1 (en) * 1999-02-02 2003-01-28 3Com Corporation System for adjusting billing for real-time media transmissions based on delay

Also Published As

Publication number Publication date
DE50013437D1 (de) 2006-10-19
WO2001031858A3 (de) 2001-12-27
EP1224777A2 (de) 2002-07-24
US20020145972A1 (en) 2002-10-10
WO2001031858A2 (de) 2001-05-03
US6999473B2 (en) 2006-02-14

Similar Documents

Publication Publication Date Title
EP1224777B1 (de) Verfahren zum verbessern der datenübertragungsqualität in datenpaketorientierten kommunikationsnetzen
DE19983404B4 (de) Verfahren und Vorrichtung zur Verwendung bei der Einstellung eines TCP Gleitfensters
DE69417583T2 (de) Dataverbindungsschnittstelle fur paketvermittlungsnetzwerk
DE69927243T2 (de) Verfahren und Vorrichtung für Telekommunikationen mit Internet-Protokoll
DE60119780T2 (de) System und verfahren für eine übertragungsratensteuerung
DE69328044T2 (de) Verfahren zur verbindung von lokalen netzen oder netzsegmenten und einer lokalen netzwerkbrücke
DE60307505T2 (de) Verfahren zur verbesserung der qualität einer medienstromübertragung
DE69126604T2 (de) Anpassungseinrichtung und Verfahren zur wirksamen Verbindung von Datenverarbeitungseinrichtungen und Netzwerken
EP0929884B1 (de) Verfahren zur übertragung von daten in einem telekommunikationsnetz und switch zur durchführung des verfahrens
DE19645368C2 (de) Verfahren und Kommunikationseinrichtung zur Übertragung von Daten in einem Telekommunikationsnetz
DE60211322T2 (de) Empfängerinitiierte Inkrementierung der Übertragungsrate
EP1451980A1 (de) Verfahren zur uebertragung von daten von applikationen mit unterschiedlicher qualität
DE102006027708B3 (de) Verfahren zur Optimierung einer Kommunikationsverbindung in einem paketvermittelten Sprachdatennetzwerk
DE10050447A1 (de) Verfahren und Vorrichtung zum Optimieren der Paketlänge in ToL-Netzwerken
WO2001095583A2 (de) Verfahren zum übertragen von sprachinformationen über ein internetprotokoll
EP1398907B1 (de) Verfahren zur Kontrolle von Übertragungsressourcen eines paketorientierten Kommunikationsnetzes bei Topologieänderungen
DE602004007399T2 (de) Bereitstellen einer rückmeldung unter verwendung von general nack-report-blocks and loss-rle-report blocks
EP1301000B1 (de) Kanalzuweisung von Kontrolldaten und Nutzdaten in drahtlosen Kommunikationssystemen
EP2686995A1 (de) Verfahren zum aufbau einer kommunikationsverbindung
DE19910023C2 (de) System zur Datenübertragung von einem Anbieter zu einem Benutzer
DE69938479T2 (de) Verfahren zur Übertragung von Signalisierungsdaten
DE69931132T2 (de) Funkstrecke mit dynamischer Anpassung
EP1782589B1 (de) Verfahren zum umschalten einer kommunikationsverbindung von einem ersten verbindungsweg auf einen zweiten verbindungsweg
DE102019125799A1 (de) Vermeidung der IP-Datenfragmentierung für TCP beim internationalen Datenroaming
EP2016719B1 (de) Verfahren, netzagent und bandbreitenbroker zum verwalten der verfügbaren bandbreite für verbindungen zwischen endgeräten eines paketorientierten kommunikationsnetzes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020404

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20050201

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060906

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50013437

Country of ref document: DE

Date of ref document: 20061019

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061031

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101021

Year of fee payment: 11

Ref country code: IT

Payment date: 20101029

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111103

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20111216

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20121025 AND 20121031

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS ENTERPRISE COMMUNICATIONS GMBH & CO. K, DE

Effective date: 20130108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50013437

Country of ref document: DE

Representative=s name: FRITZSCHE PATENT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50013437

Country of ref document: DE

Owner name: SIEMENS ENTERPRISE COMMUNICATIONS GMBH & CO. K, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

Effective date: 20130313

Ref country code: DE

Ref legal event code: R082

Ref document number: 50013437

Country of ref document: DE

Representative=s name: FRITZSCHE PATENT, DE

Effective date: 20130313

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121019

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121019

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50013437

Country of ref document: DE

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121019

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: UNIFY GMBH & CO.KG, DE

Effective date: 20140429