EP1220976B1 - Circuit oscillant pour eau de refroidissement - Google Patents

Circuit oscillant pour eau de refroidissement Download PDF

Info

Publication number
EP1220976B1
EP1220976B1 EP00972722A EP00972722A EP1220976B1 EP 1220976 B1 EP1220976 B1 EP 1220976B1 EP 00972722 A EP00972722 A EP 00972722A EP 00972722 A EP00972722 A EP 00972722A EP 1220976 B1 EP1220976 B1 EP 1220976B1
Authority
EP
European Patent Office
Prior art keywords
cooling medium
unit
component
cooling
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00972722A
Other languages
German (de)
English (en)
Other versions
EP1220976A1 (fr
Inventor
Dieter Grafl
Alfred Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reinz Dichtungs GmbH
Original Assignee
Reinz Dichtungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reinz Dichtungs GmbH filed Critical Reinz Dichtungs GmbH
Publication of EP1220976A1 publication Critical patent/EP1220976A1/fr
Application granted granted Critical
Publication of EP1220976B1 publication Critical patent/EP1220976B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P2011/205Indicating devices; Other safety devices using heat-accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/46Engine parts temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • F01P2060/045Lubricant cooler for transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed

Definitions

  • the present invention relates to a device with a heat generating unit and with a cooling system, such as internal combustion engines, Fuel cells and / or transmissions.
  • a cooling system for example one Cooling water circuit in which the cooling medium in the circuit through the device for removing the there resulting heat is conducted.
  • a water pump the water pump with the Starting the engine and pumping up Start on cooling water by the engine.
  • DE 38 13 217 discloses C2 a temperature-controlled electromagnetic Diaphragm water pump, which only at a cylinder cooling water temperature of 80 ° C put into operation becomes. This avoids the during cold start Cooling by means of the cooling water circuit.
  • a disadvantage of this method is that heat generating units, such as internal combustion engines, even during the warm-up phase an uneven heat distribution and so-called "hot spots", for example in the area of Have exhaust valves in which the engine is extremely is heated quickly.
  • a shutdown of the cooling circuit here leads to a very local overheating of the engine and possibly to destroy the exhaust valves.
  • a complete shutdown of the water pump, as disclosed in DE 38 13 217 C2 is therefore not meaningful.
  • the object of the present invention is therefore a Device with a heat generating unit for To make available one of the respective operating status adapted to the device cooling the Unit is effected without local overheating to accept.
  • the device has a heat generating unit and a cooling system with a cooling medium that flows in or along the unit, for example by an engine block.
  • the flow rate of the cooling medium in or on the unit in size and / or direction can be modulated, the flow rate can be regulated twice.
  • a first component the effective flow rate on average over time, which is a coolant transport through or along the heat-generating Unit and thus heat dissipation, corresponds, adjustable.
  • it is possible to switch the cooling water circuit on or off, i.e. with a first component 0 or operate a certain value other than 0 or adjusted the cooling water circuit between these values the temperature and heat generation of the unit, to regulate.
  • the flow rate of the cooling medium can continue with different amplitude of the second component can be modulated or undulated.
  • the modulation amplitude of the second components for a short time regardless of the size of the first component be increased to make the "hot spots" more effective cool and to effectively equalize the To achieve heat distribution in the unit.
  • adjustable electric pumps which advantageously switchable from forward to reverse are.
  • adjustable mechanical pumps with only one Pumping direction can be used provided they a corresponding mechanical switch, for example a rotary valve, is connected downstream.
  • a corresponding mechanical switch for example a rotary valve
  • Controlling the modulation of the second component can be via a time program, for example for the Cold start operation, via a temperature sensor on any Location, for example in the cylinder head gasket, in their surroundings the "hot spots" Internal combustion engines are controlled.
  • this device to be further trained in that a latent heat storage is provided over the front or a certain percentage during the cold start phase the cooling medium is heated and then possibly oscillating, in the heat generating Unit is transported.
  • the latent Heat stores not the cooling medium of the whole Cooling water circuit, but only one Fraction of the cooling medium to be heated. This makes possible a higher efficiency of the latent heat storage.
  • the heat accumulator can be arranged in this way be that the cooling medium from the unit into the heat accumulator and headed back to the unit becomes.
  • the coolant flows from the coolant pump 2 via the feed lines 12 to the rotary valve 3 and there via an inlet 22, a passage 15 and an outlet 23 to a supply line 11.
  • the supply line 11 is connected to the heat generating unit 1.
  • the coolant enters the rotary valve 3 from the heat-generating unit 1 via a discharge line 10, an inlet 20 and flows through the rotary valve 3 via a connecting line 20 to its outlet 21, from where it flows back to the coolant pump 2 via a discharge line 13. If the coolant pump 2 is now put into operation, there is a constant coolant flow through the heat-generating unit 1.
  • the volume of the coolant hatched in FIG. 1 is oscillated back and forth since the rotary valve 3 the flow direction in lines 10 and 11 periodically reverses. Depending on the speed of the rotary valve, the oscillation is faster or slower. If the individual positions of the rotary valve continue to be maintained for different lengths of time, an average flow rate can occur v (first component of the flow rate) in a direction in which an oscillating movement (second component of the flow rate) of the coolant is modulated.
  • FIG. 2 shows a further device in the corresponding Components with corresponding reference numerals are provided as in Figure 1 and their description is therefore omitted.
  • a latent heat store 30 is present in FIG. 2, the coolant from the heat generating unit 1 is supplied via a coolant supply 31, the the latent heat storage via a coolant drain 32 leaves again and to the heat generating Unit 1 is returned.
  • Figure 3 shows a further device, wherein in Figure 3 several heat generating units 1.1 and 1.2 are provided. Each of these units is unique Rotary valve 3.1 or 3.2 for independent control the modulation (first component) and flow velocity (second component) of the cooling medium for assigned to each of the heat generating units 1.1 and 1.2.
  • the function of the individual components in Figure 3 corresponds to the function of the components in Figure 1, so that they have corresponding reference numerals are designated and for the description of the function reference is made to the description of FIG. 1.
  • FIG. 4 shows various forms of periodic change in speed of the coolant in or on the heat-generating unit, as can be generated for example with the device according to FIG. 1.
  • FIG. 4A shows a smooth back and forth movement of the coolant, the average speed v of the coolant, ie its first component is zero. This operation is carried out, for example, at the beginning of the cold start phase. The speed of the coolant is constant in one valve position and is reversed when the valve is turned to the next valve position. In this operation, almost all of the heat of the heat-generating unit 1 remains within this unit 1, but an equal heat distribution is brought about in the unit and so-called "hot spots" are cooled.
  • FIG. 4B shows an asymmetrical speed distribution of the coolant, which results in an average speed v , that is, the first component of the dilution rate of the coolant is greater than 0.
  • the rotary valve is left in one of the positions for a longer time than in the other position, so that the flow rate is maintained longer in one direction than in the other. This results in a certain heat removal from the heat generating unit 1, but due to the periodic fluctuations in the flow rate, ie its second component, good cooling of the "hot spots" is achieved.
  • Such operation can occur, for example, in the transition from the cold start phase of an internal combustion engine to the continuous operation phase.
  • Figure 4C shows such a transition of heat generating unit 1 from the cold start phase to Reaching the operating temperature.
  • This example was made over time also resized the first component, where the second periodic component of flow rate was regulated independently of this.
  • FIG. 4D shows the control of the coolant flow in FIG another example.
  • the corresponding critical temperatures of the "hot spots "or the heat generating unit 1, for example an internal combustion engine, for example through temperature sensors in the cylinder head gasket can be arranged, detected.
  • This data is then used to control the rotary valves and thus used to control the coolant flow.
  • Figure 5 shows various forms of speed modulation (ie its direction and amount) of the coolant in or on the heat-generating unit, as can be generated for example by means of an electrically controllable pump instead of a mechanical pump with a rotary valve.
  • Figure 5A shows a smooth oscillating reciprocation of the coolant, the mean speed v of the coolant is zero. This operation is carried out, for example, at the beginning of the cold start phase in order to leave the heat generated in the heat-generating unit 1 within the unit 1, but to bring about a uniform heat distribution in the unit and to effectively cool so-called "hot spots".
  • FIG. 5B shows the operation during the normal operating state with the operating temperature, with here an even flow of the coolant v > 0, ie a modulation, ie a second component or part of the flow rate, is applied to the first component or part of the flow rate.
  • FIG. 5C shows the modulation of a uniform coolant flow v > 0 with different amplitudes.
  • Such an amplitude modulation is useful, for example, when the "hot spots" have to be cooled more by increased heat generation in the engine, for example with increased power, without actually requiring an increased flow of coolant through the heat-generating unit.
  • FIG. 5D describes the transition of a heat-generating unit, for example an internal combustion engine, from a cold start to when the operating temperature is reached.
  • the operating temperature is reached, there is an effective mean coolant flow, ie v > 0 which in turn, however, has a slight modulation, ie a second component for equalizing the temperatures within the engine block.
  • Figure 5E shows the modulation of the coolant flow with a temperature-dependent control.
  • the mean directional flow v of the cooling medium, but modulation is applied to this flow to cool the "hot spots". If the temperature T exceeds the limit temperature T G , the flow rate becomes v of the coolant is increased to dissipate a maximum of heat generated and the modulation is omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Claims (18)

  1. Dispositif, comprenant une unité thermogène (1) avec une température de fonctionnement accrue dans une première phase de fonctionnement, et un circuit de refroidissement (2, 10, 11, 12, 13) avec un frigorigène qui s'écoule dans ou à proximité de l'unité (1),
       caractérisé en ce qu'il est possible de superposer à une première composante du débit du frigorigène, qui correspond à la moyenne dans le temps du transport de frigorigène à travers ou le long de l'unité (1), une deuxième composante du débit périodiquement variable en grandeur et/ou direction, qui ne provoque aucun transport de frigorigène en moyenne dans le temps à travers ou le long de l'unité, la deuxième composante pouvant être commandée en direction et/ou en grandeur indépendamment de la direction ou de la grandeur de la première composante.
  2. Dispositif selon la revendication précédente, caractérisé en ce que la première composante présente une valeur de 0 m/s, est variable entre 0 m/s et une valeur prédéterminée ou présente une certaine valeur différente de 0.
  3. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le débit est modulable par une pompe dont la direction de pompage peut être commutée et/ou un dispositif de commutation pour la direction d'écoulement.
  4. Dispositif selon la revendication précédente, caractérisé en ce que le dispositif de commutation est une valve rotative.
  5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la direction d'écoulement du frigorigène peut être inversée en alternance et/ou la vitesse d'écoulement du frigorigène peut être réduite ou augmentée en alternance.
  6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il présente un régulateur thermique à changement d'état pour réchauffer une certaine quantité d'agent de refroidissement avant et/ou pendant l'échauffement de l'unité à la température de fonctionnement.
  7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un capteur de température est disposé sur ou dans l'unité thermogène.
  8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'unité thermogène est une machine à combustion interne.
  9. Dispositif selon la revendication précédente, caractérisé en ce que la machine à combustion interne présente un bloc-cylindres, une tête de cylindre et un joint de culasse disposé entre le bloc-cylindres et la tête de cylindre.
  10. Dispositif selon la revendication précédente, caractérisé en ce qu'un capteur de température est disposé dans ou sur le joint de culasse.
  11. Procédé de refroidissement d'une unité thermogène, qui présente pendant une première phase de fonctionnement une température de fonctionnement accrue, dans lequel un agent de refroidissement s'écoule dans ou à proximité de l'unité pour le refroidissement,
       caractérisé en ce que la vitesse d'écoulement est réglée de telle sorte qu'elle présente une première composante correspondant à la moyenne dans le temps du transport de frigorigène à travers ou le long de l'unité (1) ainsi qu'une deuxième composante périodiquement variable en grandeur et/ou en direction qui ne provoque aucun transport de frigorigène à travers ou le long de l'unité (1) en moyenne dans le temps, et dans lequel la deuxième composante est réglée en grandeur et en direction indépendamment de la grandeur et de la direction de la première composante.
  12. Procédé selon la revendication précédente, caractérisé en ce que pendant une phase de démarrage à froid, l'unité est réchauffée à la température de fonctionnement, au moins pendant une partie de la phase de démarrage à froid, la première composante de la vitesse d'écoulement étant réglée sur 0 m/s.
  13. Procédé selon l'une quelconque des deux revendications précédentes, caractérisé en ce que pendant au moins une partie de la phase de démarrage à froid, la vitesse d'écoulement est inversée en alternance de telle sorte que la part de frigorigène s'écoulant dans ou à proximité de l'unité (1) est stationnaire en moyenne dans le temps.
  14. Procédé selon l'une quelconque des revendications 11 à 13, caractérisé en ce qu'avant ou pendant la phase de démarrage à froid, une quantité prédéterminée d'agent de refroidissement est réchauffée et s'écoule ensuite dans ou à proximité de l'unité.
  15. Procédé selon la revendication précédente, caractérisé en ce que la quantité prédéterminée d'agent de refroidissement est réchauffée par un dispositif de chauffage séparé, par exemple un régulateur thermique à changement d'état.
  16. Procédé selon l'une quelconque des revendications 11 à 15, caractérisé en ce que pendant la phase de fonctionnement, la vitesse d'écoulement est diminuée ou augmentée en alternance et/ou la direction d'écoulement est inversée en alternance, au moins temporairement.
  17. Procédé selon l'une quelconque des revendications 11 à 16, caractérisé en ce que la période et/ou l'amplitude de la deuxième composante est commandée par un programme chronologique et/ou un capteur de température dans/sur l'unité et/ou dans/sur l'agent de refroidissement.
  18. Utilisation d'un dispositif selon l'une quelconque des revendications 1 à 10 et/ou d'un procédé selon l'une quelconque des revendications 11 à 17 pendant la phase de démarrage à froid et/ou pendant la phase de fonctionnement pour refroidir une machine à combustion interne, une cellule de combustible et/ou une boíte de vitesses en tant que dispositif thermogène.
EP00972722A 1999-10-11 2000-10-10 Circuit oscillant pour eau de refroidissement Expired - Lifetime EP1220976B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19948890 1999-10-11
DE19948890A DE19948890A1 (de) 1999-10-11 1999-10-11 Oszillierender Kühlwasserkeislauf
PCT/EP2000/009966 WO2001027448A1 (fr) 1999-10-11 2000-10-10 Circuit oscillant pour eau de refroidissement

Publications (2)

Publication Number Publication Date
EP1220976A1 EP1220976A1 (fr) 2002-07-10
EP1220976B1 true EP1220976B1 (fr) 2004-08-11

Family

ID=7925203

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00972722A Expired - Lifetime EP1220976B1 (fr) 1999-10-11 2000-10-10 Circuit oscillant pour eau de refroidissement

Country Status (3)

Country Link
EP (1) EP1220976B1 (fr)
DE (2) DE19948890A1 (fr)
WO (1) WO2001027448A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532911B2 (en) * 2000-07-26 2003-03-18 Toyota Jidosha Kabushiki Kaisha Internal combustion engine having heat accumulator, control of heat supply system and control method of internal combustion engine
DE10211060B4 (de) * 2002-03-13 2005-03-17 Siemens Ag Verfahren und Vorrichtung zur Regelung des Kühlmittelvolumenstromes in einer Brennkraftmaschine
DE10226928A1 (de) * 2002-06-17 2004-01-08 Siemens Ag Verfahren zum Betrieb einer flüssigkeitsgekühlten Brennkraftmaschine
KR100589140B1 (ko) * 2003-09-20 2006-06-12 현대자동차주식회사 차량의 냉각시스템 제어방법
DE102004039417A1 (de) * 2004-08-13 2006-02-23 Daimlerchrysler Ag Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
DE102007017172A1 (de) * 2007-04-12 2008-10-16 Bayerische Motoren Werke Aktiengesellschaft Kühlsystem für eine kühlbedürftige Einheit
DE102016012629A1 (de) * 2016-10-21 2018-04-26 Man Truck & Bus Ag Kühlkreislauf für ein Kraftfahrzeug
DE102020213093A1 (de) 2020-10-16 2022-04-21 Avl Software And Functions Gmbh Kühlvorrichtung für ein Kühlen von wenigstens zwei elektrischen Komponenten eines Elektroantriebs eines Fahrzeugs
DE102020127420A1 (de) 2020-10-19 2022-04-21 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Kühlkreislaufs sowie Kraftfahrzeug

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE136289C (fr) *
DE2656361A1 (de) * 1976-12-13 1978-06-15 Skf Kugellagerfabriken Gmbh Vorrichtung zur kuehlung von verbrennungskraftmaschinen
DD216984A1 (de) * 1983-07-26 1985-01-02 Seefahrt Inghochschule Verfahren und einrichtung zur reduzierung der thermischen motorbauteilbelastung
DE8805218U1 (de) * 1988-04-20 1988-08-25 Meinhard, Wolfgang, 2308 Preetz Temperaturabhängige, elektromagnetisch gesteuerte Membranwasserpumpe für Kraftfahrzeuge
DE3813217A1 (de) 1988-04-20 1989-11-02 Wolfgang Meinhard Temperaturabhaengige, elektromagnetisch gesteuerte membranwasserpumpe fuer kraftfahrzeuge
GB8922399D0 (en) * 1989-10-04 1989-11-22 Lotus Group Plc Cooling engines
DE4207403A1 (de) * 1992-03-09 1993-09-30 Goetze Ag Zylinderkopfdichtung für Verbrennungskraftmaschinen
DE4431351A1 (de) * 1994-09-02 1996-03-07 Bayerische Motoren Werke Ag Kraftfahrzeug mit einer Brennkraftmaschine, einem Getriebe sowie einem Wärmespeicher
JPH08338245A (ja) * 1995-06-08 1996-12-24 Hino Motors Ltd エンジン・クーリング・システム
JP3555269B2 (ja) * 1995-08-31 2004-08-18 株式会社デンソー 車両用冷却水温度制御システム
DE19540591C2 (de) * 1995-10-31 1999-05-20 Behr Gmbh & Co Verfahren zur Regelung der Volumenstromverteilung in einem Kühlmittelkreislauf für Kraftfahrzeuge mit Motor und Vorrichtung zur Durchführung des Verfahrens
DE19601319A1 (de) * 1996-01-16 1997-07-17 Wilo Gmbh Kühler eines Kraftfahrzeugmotors
DE19809123B4 (de) * 1998-03-04 2005-12-01 Daimlerchrysler Ag Wasserpumpe für den Kühlkreislauf einer Brennkraftmaschine
DE19925986A1 (de) * 1999-06-08 2000-12-14 Bosch Gmbh Robert Kühlkreislauf zum Kühlen eines Verbrennungsmotors

Also Published As

Publication number Publication date
DE19948890A1 (de) 2001-04-19
WO2001027448A1 (fr) 2001-04-19
EP1220976A1 (fr) 2002-07-10
DE50007401D1 (de) 2004-09-16

Similar Documents

Publication Publication Date Title
EP1925806B1 (fr) Système doté d'un cycle organique de Rankine destiné à l'entraînement d'au moins une machine d'expansion, échangeur thermique destiné à l'entraînement d'une machine d'expansion, procédé de fonctionnement d'au moins une machine d'expansion
DE102004034443B4 (de) Kühlsystem für einen Verbrennungsmotor und Verfahren zum Steuern eines solchen Kühlsystems
DE2932448C2 (fr)
EP1220976B1 (fr) Circuit oscillant pour eau de refroidissement
DE102005024074A1 (de) Thermoelektrisches Energie-Erzeugungssystem
DE10318744B4 (de) Kühlsystem
DE102004036224B4 (de) Kraftmaschinensystem mit einer thermischen Speichervorrichtung und Kraftmaschinentemperaturerhöhungsverfahren
DE10319762A1 (de) Kreislauf zur Kühlung von Ladeluft und Verfahren zum Betreiben eines derartigen Kreislaufs
EP2345803A1 (fr) Circuit de refroidissement d'un moteur à combustion interne et procédé de travail pour le fonctionnement d'un circuit de refroidissement
DE10226928A1 (de) Verfahren zum Betrieb einer flüssigkeitsgekühlten Brennkraftmaschine
DE3341097A1 (de) Brennkraftmaschine fuer fahrzeuge, insbesondere personenkraftfahrzeuge
EP2565334B1 (fr) Engin doté d'un générateur refroidi par huile
WO2017125196A1 (fr) Système de refroidissement après arrêt du moteur et procédé permettant de faire fonctionner un tel système
DE3517567A1 (de) Antriebsanlage fuer geraete und fahrzeuge, insbesondere kraftfahrzeuge
EP1523612B1 (fr) Procede et dispositif de reglage de la temperature d'un fluide de refroidissement d'un moteur a combustion interne
DE102014108175B4 (de) Kühlmittelsteuerungsverfahren für ein Fahrzeug zur Getriebetemperaturregelung
DE60214515T2 (de) Einrichtung und verfahren zur kühlung einer steuervorrichtung einer brennkraftmaschine
DE10211060B4 (de) Verfahren und Vorrichtung zur Regelung des Kühlmittelvolumenstromes in einer Brennkraftmaschine
DD280252A1 (de) Verfahren und einrichtung zum steuern von kontinuierlich arbeitenden temperiermaschinen
DE10023508A1 (de) Kühlanlage eines flüssigkeitsgekühlten Verbrennungsmotors
DE3708192A1 (de) Feder- oder daempfervorrichtung fuer ein fahrzeug mit drosselstellen durchstroemenden betriebsmittel
DE102019208161A1 (de) Elektrische Maschine, insbesondere eine elektrische Maschine für ein Kraftfahrzeug
DE19719487A1 (de) Kraftfahrzeug mit einer motorunabhängigen, elektrisch betriebenen Heizvorrichtung
DE3817579A1 (de) Verdampfungsvorrichtung mit vorheizer
DE102020127420A1 (de) Verfahren zum Betreiben eines Kühlkreislaufs sowie Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020502

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20031007

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: REINZ-DICHTUNGS-GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040811

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040811

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50007401

Country of ref document: DE

Date of ref document: 20040916

Kind code of ref document: P

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040811

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071130

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071017

Year of fee payment: 8

Ref country code: GB

Payment date: 20071029

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081010

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081010