WO2001027448A1 - Circuit oscillant pour eau de refroidissement - Google Patents

Circuit oscillant pour eau de refroidissement Download PDF

Info

Publication number
WO2001027448A1
WO2001027448A1 PCT/EP2000/009966 EP0009966W WO0127448A1 WO 2001027448 A1 WO2001027448 A1 WO 2001027448A1 EP 0009966 W EP0009966 W EP 0009966W WO 0127448 A1 WO0127448 A1 WO 0127448A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
component
coolant
heat
along
Prior art date
Application number
PCT/EP2000/009966
Other languages
German (de)
English (en)
Inventor
Dieter Grafl
Alfred Weiss
Original Assignee
Reinz-Dichtungs-Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reinz-Dichtungs-Gmbh & Co. Kg filed Critical Reinz-Dichtungs-Gmbh & Co. Kg
Priority to EP00972722A priority Critical patent/EP1220976B1/fr
Priority to DE50007401T priority patent/DE50007401D1/de
Publication of WO2001027448A1 publication Critical patent/WO2001027448A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P2011/205Indicating devices; Other safety devices using heat-accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/46Engine parts temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • F01P2060/045Lubricant cooler for transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed

Definitions

  • the present invention relates to a device with a heat-generating unit and with a cooling system, such as internal combustion engines, fuel cells and / or gearboxes.
  • Devices with heat-generating units such as internal combustion engines, which are operated at an elevated operating temperature, usually have a cooling system, for example a cooling water circuit, in which the cooling medium is circulated through the device for dissipating the heat generated there.
  • a cooling system for example a cooling water circuit
  • the cooling medium is circulated through the device for dissipating the heat generated there.
  • water is usually used as the cooling medium for internal combustion engines and the water circuit is driven by a water pump.
  • the water pump starts operating when the engine is started and pumps cooling water through the engine from the start.
  • DE 38 13 217 C2 discloses a temperature-dependent controlled electromagnetic diaphragm water pump, which is only put into operation at a cylinder cooling water temperature of 80 ° C. As a result, cooling by means of the cooling water circuit is not carried out during the cold start.
  • a disadvantage of this method is that heat-generating units, such as internal combustion engines, already have an uneven heat distribution and so-called "hot spots", for example in the area of the exhaust valves, in which the engine is heated extremely quickly even during the warm-up phase. Switching off the cooling circuit leads to very local overheating of the engine and possibly to the destruction of the exhaust valves. A complete shutdown of the water pump, as disclosed in DE 38 13 217 C2, is therefore not sensible.
  • the object of the present invention is therefore to provide a device with a heat-generating unit, in which cooling of the unit which is adapted to the respective operating state of the device is brought about without having to accept local overheating.
  • the device has a heat generating unit and a cooling system with a cooling medium which flows in or along the unit, for example through an engine block.
  • the flow rate of the cooling medium in or on the unit can be modulated in size and / or direction, the flow rate being controllable in two ways.
  • a first component can be set which corresponds to the effective flow rate on average over time, which causes coolant to be transported through or along the heat-generating unit and thus causes heat to be removed.
  • it is possible to switch the cooling water circuit on or off, ie to operate it with a first component 0 or a certain value not equal to 0, or to regulate the cooling water circuit between these values, adapted to the temperature and heat generation of the unit.
  • a second periodic component of the flow rate can be set, the time average of which is 0, ie does not result in an effective coolant transport.
  • This second component which is superimposed as "modulation" of the first component, only leads to an even distribution of the heat within the unit.
  • the total time averages can advantageously be determined over a period of the modulation of the second component or any multiple thereof.
  • other temporal means are also possible.
  • Cooling of the "hot spots” is ensured. All in all, this causes the unit to warm up very quickly at start-up, avoiding the dreaded "hot spots” when the cooling water circuit is at a standstill or slow.
  • the flow rate of the cooling medium can be periodically modulated (undulated) by means of the second component.
  • the temperature difference between the inlet and the outlet of the coolant in or on the unit can be further reduced.
  • the flow rate of the cooling medium can also be modulated or undulated with different amplitudes of the second component.
  • the modulation amplitude of the second components can be increased for a short time regardless of the size of the first component in order to cool the "hot spots" more effectively and to achieve an effective homogenization of the heat distribution in the unit.
  • controllable electric pumps are suitable for the cooling water circuit, for example, which are advantageously switchable from flow to return.
  • Controllable mechanical pumps with only one pump direction can also be used, provided that a corresponding mechanical changeover switch, for example a rotary valve, is connected downstream.
  • a corresponding mechanical changeover switch for example a rotary valve
  • approximately rectangular courses of the flow rate of the cooling medium can be generated, while any courses of the flow rate of the cooling medium, for example of sinusoidal ones, can be realized with a controllable electric pump.
  • the control of the modulation of the second component can be controlled via a time program, for example for cold start operation, via a temperature sensor at any point, for example in the cylinder head gasket, in the vicinity of which the "hot spots" in internal combustion engines are located.
  • this device can be developed in such a way that a latent heat store is provided, via which a certain proportion of the cooling medium is heated before or during the cold start phase and then, optionally oscillating, is generated in the heat Unit is transported.
  • a latent heat store is provided, via which a certain proportion of the cooling medium is heated before or during the cold start phase and then, optionally oscillating, is generated in the heat Unit is transported.
  • the heat storage device can be arranged such that the cooling medium is passed from the unit m to the heat storage device and back to the unit m.
  • the latent heat store is ideally located in the middle of the flow path or the flow path of the cooling medium within the heat-generating unit.
  • Figure 1 shows a heat generating device
  • Figure 2 shows a further heat generating device with latent heat storage
  • FIG. 1 shows a device according to the invention with a heat-generating unit 1, a coolant pump 2 and a rotary valve 3.
  • the coolant flows from the coolant pump 2 via the feed lines
  • the feed line 11 is connected to the heat-generating unit 1.
  • the coolant enters the rotary valve 3 from the heat-generating unit 1 via a discharge line 10, an inlet 20 and flows through the rotary valve 3 via a connecting line 20 to its outlet 21, from where it is via a discharge line
  • FIG. 2 shows a further device in which corresponding components are provided with corresponding reference numerals as in FIG. 1 and the description thereof is therefore omitted.
  • a latent heat store 30 is present in FIG. which, the coolant from the heat-generating unit 1 is supplied via a coolant supply 31, which leaves the latent heat store again via a coolant discharge line 32 and is returned to the heat-generating unit 1. If, during or before the cold start operation and the warm-up phase, the coolant pump 2 and the rotary valve 3 cause a uniformly oscillating coolant flow in the lines 10 and 11, the mean flow rate of the coolant being equal to zero, the hatched line in FIG.
  • the latent heat store can be decoupled from the cooling water circuit by appropriately arranged valves (not shown here).
  • FIG. 3 shows a further device, several heat-generating units 1.1 and 1.2 being provided in FIG. 3. Each of these units is assigned its own rotary valve 3.1 or 3.2 for independent control of the modulation (first component) and flow rate (second component) of the cooling medium for each of the heat-generating units 1.1 and 1.2.
  • the function of the individual components in FIG. 3 corresponds to the function of the components in FIG. 1, so that they are designated with corresponding reference numerals and reference is made to the description of FIG. 1 for the description of the function.
  • FIG. 4 shows various forms of the periodic change in the speed v of the coolant in or on the heat-generating unit, as is the case with can be generated for example with the device of Figure 1.
  • Figure 4A shows a smooth back and forth movement of the coolant, the average speed v of the coolant, i.e. their first
  • Component is zero. This operation is carried out, for example, at the beginning of the cold start phase.
  • the speed of the coolant is constant in one valve position and is reversed when the valve is turned to the next valve position. In this operation, almost all of the heat of the heat-generating unit 1 remains within this unit 1, but an equal heat distribution is brought about in the unit and so-called "hot spots" are cooled.
  • Figure 4B shows an asymmetrical speed distribution of the coolant, whereby an average speed v, i.e. the first component of the refrigerant's rate of dilution is greater than 0.
  • the rotary valve is left in one of the positions for a longer time than in the other position, so that the flow speed is maintained longer in one direction than in the other.
  • Such operation can occur, for example, in the transition from the cold start phase of an internal combustion engine to the continuous operation phase.
  • FIG. 4C shows such a transition of a heat-generating unit 1 from the cold start phase until the operating temperature is reached.
  • the coolant flow rate reciprocates as shown in Figure 4A, leaving the heat in the heat generating unit and cooling only the "hot spots".
  • the rotary valve is brought into a position and held there, in which a constant coolant flow, which corresponds to a positive first component, takes place through the heat-generating unit.
  • the size of the first component was also changed over time, the second periodic component of the flow rate being regulated independently of this.
  • FIG. 4D shows the control of the coolant flow in a further example.
  • the corresponding critical temperatures of the "hot spots" or of the heat-generating unit 1, for example of an internal combustion engine, can be detected, for example, by temperature sensors which can be arranged in the cylinder head gasket. This data is then used to control the rotary valves and thus to regulate the coolant flow.
  • FIG. 5 shows various forms of modulating the speed v (i.e. its direction and amount) of the coolant in or on the heat-generating unit, such as can be generated by means of an electrically controllable pump instead of a mechanical pump with a rotary valve.
  • FIG. 5A shows a uniform oscillating reciprocating movement of the coolant, the average speed " v of the coolant being zero. This operation is carried out, for example, at the beginning of the
  • Cold start phase carried out in order to leave the heat generated in the heat-generating unit 1 within the unit 1, but to bring about an equal heat distribution in the unit and to effectively cool so-called "hot spots".
  • FIG. 5B shows the operation during the normal operating state with the operating temperature, with an even flow of the coolant with v> 0, i.e. a modulation on the first component or part of the flow rate, i.e. a second component or portion of the flow rate is applied.
  • a modulation on the first component or part of the flow rate i.e. a second component or portion of the flow rate is applied.
  • FIG. 5C shows the modulation of a uniform coolant flow with v> 0 with different amplitude.
  • Such an amplitude modulation is useful, for example, if increased heat generation in the engine, for example at increased power, the "hot spots" have to be cooled more without actually requiring an increased flow of coolant through the heat-generating unit.
  • FIG. 5D describes the transition of a heat-generating unit, for example an internal combustion engine, from the cold start to when the operating temperature is reached.
  • there is an effective mean coolant flow i.e. v> 0 which, however, in turn has a slight modulation, i.e. has second component for equalizing the temperatures within the engine block.
  • Figure 5E shows the modulation of the coolant flow in a temperature-dependent control.
  • the mean directional flow v of the cooling medium is reduced, but a modulation is applied to this flow to cool the "hot spots". If the temperature T exceeds the limit temperature T G , the flow velocity "v of the coolant is increased in order to dissipate a maximum of the heat generated, and the modulation is omitted.
  • the heat-generating unit can be warmed quickly with all the associated advantages, for example in the case of the internal combustion engine in terms of fuel yield and pollutant emissions, in the case of a fuel cell in terms of efficiency or in the case of a transmission in terms of the viscosity of the transmission oil and thus also of efficiency.
  • local overheating within the unit is effectively avoided and the overall temperature level within the heat-generating unit is leveled and the temperature difference between the inlet and the outlet of the coolant is reduced in continuous operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Dispositif qui comporte une unité (1) produisant de la chaleur, à température augmentée dans une phase de fonctionnement, et un système de refroidissement (2, 10, 11, 12, 13) contenant un fluide de refroidissement qui circule dans ladite unité (1) ou sur l'extérieur de ladite unité. La vitesse d'écoulement du fluide de refroidissement dans l'unité (1) ou sur l'extérieur de cette unité peut être modulée pour ce qui est de sa grandeur et/ou de son orientation.
PCT/EP2000/009966 1999-10-11 2000-10-10 Circuit oscillant pour eau de refroidissement WO2001027448A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00972722A EP1220976B1 (fr) 1999-10-11 2000-10-10 Circuit oscillant pour eau de refroidissement
DE50007401T DE50007401D1 (de) 1999-10-11 2000-10-10 Oszillierender kühlwasserkreislauf

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19948890A DE19948890A1 (de) 1999-10-11 1999-10-11 Oszillierender Kühlwasserkeislauf
DE19948890.8 1999-10-11

Publications (1)

Publication Number Publication Date
WO2001027448A1 true WO2001027448A1 (fr) 2001-04-19

Family

ID=7925203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/009966 WO2001027448A1 (fr) 1999-10-11 2000-10-10 Circuit oscillant pour eau de refroidissement

Country Status (3)

Country Link
EP (1) EP1220976B1 (fr)
DE (2) DE19948890A1 (fr)
WO (1) WO2001027448A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312401A1 (fr) * 2016-10-21 2018-04-25 MAN Truck & Bus AG Circuit de refroidissement pour un véhicule automobile
DE102020213093A1 (de) 2020-10-16 2022-04-21 Avl Software And Functions Gmbh Kühlvorrichtung für ein Kühlen von wenigstens zwei elektrischen Komponenten eines Elektroantriebs eines Fahrzeugs

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532911B2 (en) * 2000-07-26 2003-03-18 Toyota Jidosha Kabushiki Kaisha Internal combustion engine having heat accumulator, control of heat supply system and control method of internal combustion engine
DE10211060B4 (de) * 2002-03-13 2005-03-17 Siemens Ag Verfahren und Vorrichtung zur Regelung des Kühlmittelvolumenstromes in einer Brennkraftmaschine
DE10226928A1 (de) * 2002-06-17 2004-01-08 Siemens Ag Verfahren zum Betrieb einer flüssigkeitsgekühlten Brennkraftmaschine
KR100589140B1 (ko) * 2003-09-20 2006-06-12 현대자동차주식회사 차량의 냉각시스템 제어방법
DE102004039417A1 (de) * 2004-08-13 2006-02-23 Daimlerchrysler Ag Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
DE102007017172A1 (de) * 2007-04-12 2008-10-16 Bayerische Motoren Werke Aktiengesellschaft Kühlsystem für eine kühlbedürftige Einheit
DE102020127420A1 (de) 2020-10-19 2022-04-21 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Kühlkreislaufs sowie Kraftfahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005148A1 (fr) * 1989-10-04 1991-04-18 Group Lotus Plc Refroidissement des moteurs
DE3813217C2 (fr) 1988-04-20 1993-03-25 Wolfgang 2361 Bark De Meinhard
DE4207403A1 (de) * 1992-03-09 1993-09-30 Goetze Ag Zylinderkopfdichtung für Verbrennungskraftmaschinen
JPH08338245A (ja) * 1995-06-08 1996-12-24 Hino Motors Ltd エンジン・クーリング・システム
US5701852A (en) * 1995-08-31 1997-12-30 Nippondenso Co., Ltd. Coolant temperature control system for vehicles
DE19925986A1 (de) * 1999-06-08 2000-12-14 Bosch Gmbh Robert Kühlkreislauf zum Kühlen eines Verbrennungsmotors

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE136289C (fr) *
DE2656361A1 (de) * 1976-12-13 1978-06-15 Skf Kugellagerfabriken Gmbh Vorrichtung zur kuehlung von verbrennungskraftmaschinen
DD216984A1 (de) * 1983-07-26 1985-01-02 Seefahrt Inghochschule Verfahren und einrichtung zur reduzierung der thermischen motorbauteilbelastung
DE8805218U1 (de) * 1988-04-20 1988-08-25 Meinhard, Wolfgang, 2308 Preetz Temperaturabhängige, elektromagnetisch gesteuerte Membranwasserpumpe für Kraftfahrzeuge
DE4431351A1 (de) * 1994-09-02 1996-03-07 Bayerische Motoren Werke Ag Kraftfahrzeug mit einer Brennkraftmaschine, einem Getriebe sowie einem Wärmespeicher
DE19540591C2 (de) * 1995-10-31 1999-05-20 Behr Gmbh & Co Verfahren zur Regelung der Volumenstromverteilung in einem Kühlmittelkreislauf für Kraftfahrzeuge mit Motor und Vorrichtung zur Durchführung des Verfahrens
DE19601319A1 (de) * 1996-01-16 1997-07-17 Wilo Gmbh Kühler eines Kraftfahrzeugmotors
DE19809123B4 (de) * 1998-03-04 2005-12-01 Daimlerchrysler Ag Wasserpumpe für den Kühlkreislauf einer Brennkraftmaschine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3813217C2 (fr) 1988-04-20 1993-03-25 Wolfgang 2361 Bark De Meinhard
WO1991005148A1 (fr) * 1989-10-04 1991-04-18 Group Lotus Plc Refroidissement des moteurs
DE4207403A1 (de) * 1992-03-09 1993-09-30 Goetze Ag Zylinderkopfdichtung für Verbrennungskraftmaschinen
JPH08338245A (ja) * 1995-06-08 1996-12-24 Hino Motors Ltd エンジン・クーリング・システム
US5701852A (en) * 1995-08-31 1997-12-30 Nippondenso Co., Ltd. Coolant temperature control system for vehicles
DE19925986A1 (de) * 1999-06-08 2000-12-14 Bosch Gmbh Robert Kühlkreislauf zum Kühlen eines Verbrennungsmotors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 04 30 April 1997 (1997-04-30) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312401A1 (fr) * 2016-10-21 2018-04-25 MAN Truck & Bus AG Circuit de refroidissement pour un véhicule automobile
DE102020213093A1 (de) 2020-10-16 2022-04-21 Avl Software And Functions Gmbh Kühlvorrichtung für ein Kühlen von wenigstens zwei elektrischen Komponenten eines Elektroantriebs eines Fahrzeugs

Also Published As

Publication number Publication date
EP1220976A1 (fr) 2002-07-10
EP1220976B1 (fr) 2004-08-11
DE19948890A1 (de) 2001-04-19
DE50007401D1 (de) 2004-09-16

Similar Documents

Publication Publication Date Title
DE4434831C2 (de) Anlage zur kombinierten Energieerzeugung
EP1925806B1 (fr) Système doté d'un cycle organique de Rankine destiné à l'entraînement d'au moins une machine d'expansion, échangeur thermique destiné à l'entraînement d'une machine d'expansion, procédé de fonctionnement d'au moins une machine d'expansion
DE102004034443B4 (de) Kühlsystem für einen Verbrennungsmotor und Verfahren zum Steuern eines solchen Kühlsystems
EP0054792A2 (fr) Dispositif de refroidissement pour refroidir un moteur à combustion et la charge
EP1111214A2 (fr) Circuit pour refroidissement et chauffage avec deux radiateurs
DE102005024074A1 (de) Thermoelektrisches Energie-Erzeugungssystem
DE10318744B4 (de) Kühlsystem
DE102004036224B4 (de) Kraftmaschinensystem mit einer thermischen Speichervorrichtung und Kraftmaschinentemperaturerhöhungsverfahren
EP1220976B1 (fr) Circuit oscillant pour eau de refroidissement
EP2345803B1 (fr) Circuit de refroidissement d'un moteur à combustion interne et procédé de travail pour le fonctionnement d'un circuit de refroidissement
DE3226429C2 (de) Verfahren zum Erzeugen von elektrischer Energie und Heizwärme sowie kombiniertes Wärmepumpenheizkraftwerk zur Durchführung des Verfahrens
DE3245026A1 (de) Verfahren und waermetauscheranordnung zur temperierung bei kraftfahrzeugen mit verbrennungsmotor
WO2003106825A1 (fr) Procede pour faire fonctionner un moteur a combustion interne a refroidissement liquide
DE9013459U1 (de) Kühlsystem für Brennkraftmaschinen
DE19629165C1 (de) Kraftstoffanlage mit einem Kraftstoffbehälter
DE19521292A1 (de) Kreislauf für eine Wärmeübertragungsflüssigkeit einer mit einem Wärmespeicher zusammenarbeitenden Brennkraftmaschine
DE10301797A1 (de) Brennkraftmaschine mit einem Kühlmittelkreislauf
DE102015216650A1 (de) Verfahren zum Bereitstellen von warmem Trinkwasser, ein System und ein Wärmeerzeuger hierzu
EP1523612B1 (fr) Procede et dispositif de reglage de la temperature d'un fluide de refroidissement d'un moteur a combustion interne
DE60214515T2 (de) Einrichtung und verfahren zur kühlung einer steuervorrichtung einer brennkraftmaschine
DE102019208161A1 (de) Elektrische Maschine, insbesondere eine elektrische Maschine für ein Kraftfahrzeug
EP3354991A1 (fr) Réseau de répartition thermique et procédé de répartition thermique
DE10023508A1 (de) Kühlanlage eines flüssigkeitsgekühlten Verbrennungsmotors
DE10211060B4 (de) Verfahren und Vorrichtung zur Regelung des Kühlmittelvolumenstromes in einer Brennkraftmaschine
DE3817579A1 (de) Verdampfungsvorrichtung mit vorheizer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000972722

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000972722

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2000972722

Country of ref document: EP