EP1218960B1 - Patch antenna - Google Patents

Patch antenna Download PDF

Info

Publication number
EP1218960B1
EP1218960B1 EP00966373A EP00966373A EP1218960B1 EP 1218960 B1 EP1218960 B1 EP 1218960B1 EP 00966373 A EP00966373 A EP 00966373A EP 00966373 A EP00966373 A EP 00966373A EP 1218960 B1 EP1218960 B1 EP 1218960B1
Authority
EP
European Patent Office
Prior art keywords
patch
patch antenna
ridge waveguide
accordance
waveguide segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00966373A
Other languages
German (de)
French (fr)
Other versions
EP1218960A1 (en
Inventor
Marco Munk
Ulrich Mahr
Uwe Oehler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telent GmbH
Original Assignee
Marconi Communications GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marconi Communications GmbH filed Critical Marconi Communications GmbH
Publication of EP1218960A1 publication Critical patent/EP1218960A1/en
Application granted granted Critical
Publication of EP1218960B1 publication Critical patent/EP1218960B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the present invention relates to a patch antenna with a feed line connected to it, which feeds a signal to be emitted.
  • Patch antennas of this type are frequently used interconnected to form antenna groups, the spacing of the individual patch antennas within the group being predetermined by the desired antenna characteristics and generally being less than a wavelength in free space. For reasons of space, it makes sense to use the space under each patch antenna for its associated high-frequency circuits, which are often implemented using microstrip or waveguide technology.
  • the waveguides of such circuits usually run in planes perpendicular to the antenna plane, so that it is desirable to be able to couple directly from the patch antenna into these conductors, i.e. to effectively transmit a high-frequency excitation between a patch arranged on a surface of a substrate and a high-frequency signal line which is on the opposite surface.
  • a plurality of arrangements are known in which a patch antenna is coupled to a line running perpendicular to the antenna plane.
  • coaxially coupled patch antennas with plated-through holes are expensive to manufacture because, on the one hand, they require complex through-plating through the substrate and, moreover, a transition piece to the feed line is required.
  • Patch antennas which are coupled to a feed line designed as a waveguide via a diaphragm or a slot in a metallic ground plane formed on the rear side of the substrate, go from M. Kanda et. al., The Characteristics of Iris-Fed Millimeter-Wave Rectangular Microstrip Patch Antennas, IEEE Transactions on Electromagnetic Compatibility, Volume EMC-27 No. 4, November 1985, pages 212 to 220 and Min-Hua Ho, Wave Guide Excited Microstrip Patch Antenna, Theory and Experiment, IEEE Transactions on Antennas and Propagation Volume 42, No. 8, August 1994, pages 1114 to 1125.
  • Such antennas allow a good impedance matching of the slot to the patch, but only in a narrow frequency band, and the overall transmission of high-frequency energy from the waveguide to the patch is limited due to the small cross section of the slot. Since the slot operates below its cutoff frequency, it cannot be used as an adjustment line. It always makes an inductive contribution to the input impedance of the antenna.
  • connection is designed as a ridge waveguide segment. Since the number of geometric parameters that can be optimized for the dimensioning of the inner cross section of such a ridge waveguide segment is greater than in the case of a simple slot, it is possible to choose the dimensions of the inner cross section so that there is an impedance match between the waveguide segment and the patch, without this this requires an aperture whose shape differs from that of the waveguide.
  • the conventional ground plane with a coupling slot on the back of the substrate is therefore superfluous due to the use of the ridge waveguide segment.
  • the web section of the ridge waveguide replaces the conventional coupling slot and at the same time represents an electrical adaptation line to the impedance level of the patch antenna.
  • the shape of the patch to be optimized for the desired radiation properties of the patch antenna, and then the dimensions of the ridge waveguide segment independently of it.
  • a shape and dimensioning of the patch suitable for circularly polarized radiation in a predetermined frequency range can first be determined, and then the shape of the ridge waveguide segment can be optimized for this frequency range with the aim of a good impedance matching to the patch.
  • a waveguide is coupled to the ridge waveguide segment as the feed line.
  • Such a waveguide can run perpendicular to the surface of the patch antenna and thus provide the possibility of arranging circuits which supply or process the high-frequency signal in the immediate vicinity of the antenna, preferably behind it.
  • One or more transformation stages in (web) waveguide technology can be provided between the feed line and the waveguide segment.
  • a microstrip line can also be inserted as a feed line into the web section of the web waveguide segment.
  • the mutually opposite side walls of the web section have electrical contact with the conductor track and or ground area of the microstrip line. They ensure that the feed line is securely fixed in the middle of the waveguide and perpendicular to the antenna substrate.
  • the dimensions of the web section are preferably selected so that the impedance level of the waveguide section is matched to that of the patch.
  • the patch expediently has edges which run at angles of +/- 45 ° to the edges of a web section. This orientation of the edges makes it possible to excite edges of the patch which are oriented at right angles to one another by means of an electrical field oriented in a uniform direction and excited in the waveguide section.
  • the resonance frequencies of edges oriented orthogonally to one another differ slightly, so that in the frequency range between the two resonance frequencies the one group of edges is inductive and the other is capacitive Represents load for the radio frequency signal.
  • This can be achieved, for example, by designing the patch at right angles with different edge lengths, or by using a square patch in which two opposite edges have cutouts.
  • Figure 1 shows schematically the structure of the patch antenna according to the invention.
  • the actual metallic patch 1 is applied to a dielectric substrate 2.
  • the back of the substrate 2 opposite the patch is not metallized. This simplifies the manufacture of the substrate; Problems with the alignment of otherwise required metallic structures on the back of the substrate in relation to patch 1 are eliminated.
  • the back of the substrate 2 is in direct contact with a ridge waveguide segment 3.
  • the substrate 2 and ridge waveguide segment 3 are connected over a large area and in a load-bearing manner by gluing the surfaces in contact with one another.
  • the ridge waveguide segment 3 essentially has the shape of a plate of thickness L with an approximately H-shaped waveguide cutout 5 (see also FIG. 2).
  • a further waveguide section 4 which can be a feed line that couples the patch to circuit elements arranged behind the substrate, not shown in the figure, or a transformer stage that can be used for an impedance matching during the transition of the high-frequency signal from the Feed line on the ridge waveguide segment 3 ensures.
  • the thickness L can be selected so that residual reflections occurring at the entrance and exit surface of the ridge waveguide segment interfere destructively, so as to improve the efficiency of the coupling between the patch and the feed line.
  • FIG. 2 shows the ridge waveguide segment 3 in a perspective view.
  • the substrate 2 is omitted in FIG. 2, only the patch 1 arranged on this substrate is shown as a dashed outline.
  • the patch antenna is provided to be operated in an arrangement together with a plurality of antennas of the same type, for example in a satellite, the distance between the individual patch antennas being given by the lateral dimensions of the ridge waveguide segment 3.
  • the waveguide cutout 5 has the basic shape of a rectangle with a width a and a height b, with projections 6 with a width w engaging in the cutout from the middle of the long sides of the rectangle and narrowing it in the middle to a gap-shaped web section 7 of width s ,
  • the dimensions a, b and w determine the cutoff frequency and thus the frequency-dependent impedance of the ridge waveguide segment 3.
  • the patch 1 here has the shape of a square with edges rotated by 45 ° to the edges of the waveguide cutout 5.
  • Two opposite edges 8 of the patch 1 each have a central recess 9.
  • the cutouts 9 cause the resonance frequency of the interrupted edges 8 to shift relative to that of the continuous edges 10 of the patch 1 lying at right angles thereto.
  • the edges 8, 10 Upon excitation with a high-frequency signal, the frequency of which lies in the middle between the two resonance frequencies, the edges 8, 10 each excited to radiate with a phase shift of 90 °, whereby the contributions of the different edges to the radiation of the antenna overlap to form a circularly polarized beam.
  • FIG. 3 shows a modification of the patch antenna according to the invention, which differs from that described with reference to FIGS. 1 and 2 in the manner in which the high-frequency signal is coupled in.
  • the waveguide section 4 is replaced by a microstrip line 14, that is to say a dielectric substrate which has a surface on one Conductor 15 and on the opposite (hidden in the figure) surface carries a metallic ground surface.
  • the microstrip line is shown in FIG. 3 with the same width w as the projections 6 of the ridge waveguide segment, but it can also be wider, for example extending over the entire width a of the waveguide section 5. Only the width of the rear metallization, which forms the ground surface, should not be greater than the width w of the projections 6.
  • the mechanical insertion of the microstrip line 14 into the web section 7 results in a mechanically resilient anchoring in a simple manner.
  • the high-frequency circuit being constructed on a printed circuit board which integrally merges into the microstrip line 14 inserted into the web section.
  • the width S of the web section is twice the width of a soldering gap greater than the thickness of the microstrip line 14, so that the microstrip line 14 can be easily inserted into the web section 7 and soldered to the end faces of the projections 6 delimiting the web section. In this way, a robust connection between the patch antenna and the microstrip line 14 is created in a simple manner, which is aligned exactly perpendicular to the surface of the patch 1.
  • the shape of the patch 1 is the same as that of the antenna of FIGS. 1 and 2.
  • the dimensions w and s of the gap, which are required for good impedance matching in the frequency range in which the antenna can radiate in a circularly polarized manner, can be one of them of the previous embodiment differ.
  • the invention is of course not limited to the form of the patch shown here by way of example.
  • the decisive factor is the possibility of radially polarized radiation.
  • Such a patch could, for example, also have the shape of a rectangle with different edge lengths or a square in which two opposite edges have cutouts.

Landscapes

  • Waveguide Aerials (AREA)
  • Medicinal Preparation (AREA)
  • Electrotherapy Devices (AREA)

Abstract

The invention relates to a patch antenna, comprising a patch (1) located on one side of a substrate (2) and a connection for a supply conductor (14) on the opposite side of the substrate (2). According to the invention, the connection is configured as a segment of a ridge waveguide (3). The patch antenna is particularly suitable for emitting and receiving circular polarised radiation.

Description

Die vorliegende Erfindung betrifft eine Patchantenne mit einer daran angeschlossenen Speiseleitung, die ein abzustrahlendes Signal zuführt.The present invention relates to a patch antenna with a feed line connected to it, which feeds a signal to be emitted.

Derartige Patchantennen werden häufig zu Antennengruppen zusammengeschaltet eingesetzt, wobei der Abstand der einzelnen Patchantennen innerhalb der Gruppe durch die gewünschte Antennencharakteristik vorgegeben ist und im allgemeinen kleiner als eine Wellenlänge im freien Raum ist. Aus Platzgründen ist es sinnvoll, den Raum unter jeder Patchantenne für ihr zugeordnete Hochfrequenzschaltungen zu nutzen, die oft in Microstripoder Hohlleitertechnik realisiert werden. Die Wellenleiter solcher Schaltungen verlaufen zumeist in Ebenen senkrecht zur Antennenebene, so daß es wünschenswert ist, von der Patchantenne direkt in diese Leiter einkoppeln zu können, das heißt eine Hochfrequenzanregung wirksam zwischen einem auf einer Oberfläche eines Substrats angeordneten Patch und einer Hochfrequenzsignalleitung zu übertragen, die sich an der gegenüberliegenden Oberfläche befindet.Patch antennas of this type are frequently used interconnected to form antenna groups, the spacing of the individual patch antennas within the group being predetermined by the desired antenna characteristics and generally being less than a wavelength in free space. For reasons of space, it makes sense to use the space under each patch antenna for its associated high-frequency circuits, which are often implemented using microstrip or waveguide technology. The waveguides of such circuits usually run in planes perpendicular to the antenna plane, so that it is desirable to be able to couple directly from the patch antenna into these conductors, i.e. to effectively transmit a high-frequency excitation between a patch arranged on a surface of a substrate and a high-frequency signal line which is on the opposite surface.

Es ist eine Mehrzahl von Anordnungen bekannt, bei denen eine Patchantenne mit einer senkrecht zur Antennenebene verlaufenden Leitung gekoppelt ist. So sind zum einen koaxial angekoppelte Patchantennen mit Durchkontaktierung bekannt. Diese sind kostspielig in der Fertigung, weil sie einerseits eine aufwendige Durchkontaktierung durch das Substrat hindurch benötigen und darüber hinaus ein Übergangsstück zu der Speiseleitung erforderlich ist.A plurality of arrangements are known in which a patch antenna is coupled to a line running perpendicular to the antenna plane. For one thing known coaxially coupled patch antennas with plated-through holes. These are expensive to manufacture because, on the one hand, they require complex through-plating through the substrate and, moreover, a transition piece to the feed line is required.

Schlitzgekoppelte Patchantennen mit Microstrip-Anschlüssen sind aus D.M. Pozar, Practical Excitations, Workshop on Analytical and Numerical Techniques for Microchip Circuits and Antennas, Montreux 15-18 März 1988 und N.I. Herscovici and D.M. Pozar, Full-Wave Solution for an Aperture-Coupled Patch Fed by Perpendicular Coplanar Strips, IEEE transactions on Antennas and Propagation, Band 42 Nr. 4, April 1994, Seiten 544 bis 547 bekannt. Die aus der ersten Quelle bekannte Konstruktion benötigt eine "stumpfe" Anlötung von Leiterbahn und Massefläche der Speiseleitung an die beiden Ränder des Koppelschlitzes. Diese Konstruktion ist kritisch in der Fertigung und von geringer mechanischer Stabilität. Die bei der zweiten Schrift beschriebene Konstruktion erfordert eine partielle Freiätzung der Metallisierung der Speiseleitung und, wegen der Notwendigkeit eines parallel zur Ebene des Patch verlaufenden Speiseleitung, relativ viel Platz.Slot-coupled patch antennas with microstrip connections are made of D.M. Pozar, Practical Excitations, Workshop on Analytical and Numerical Techniques for Microchip Circuits and Antennas, Montreux March 15-18, 1988 and N.I. Herscovici and D.M. Pozar, Full-Wave Solution for an Aperture-Coupled Patch Fed by Perpendicular Coplanar Strips, IEEE transactions on Antennas and Propagation, Volume 42 No. 4, April 1994, pages 544 to 547. The construction known from the first source requires a "blunt" soldering of the conductor track and ground surface of the feed line to the two edges of the coupling slot. This construction is critical in manufacturing and of low mechanical stability. The construction described in the second document requires a partial etching-free of the metallization of the feed line and, because of the necessity of a feed line running parallel to the plane of the patch, a relatively large amount of space.

Patchantennen, die über eine Blende beziehungsweise einen Schlitz in einer an der Rückseite des Substrats ausgebildeten metallischen Massefläche an eine als Hohlleiter ausgebildete Speiseleitung angekoppelt sind, gehen aus M. Kanda et. al., The Characteristics of Iris-Fed Millimeter-Wave Rectangular Microstrip Patch Antennas, IEEE Transactions on Electromagnetic Compatibility, Band EMC-27 Nr. 4, November 1985, Seiten 212 bis 220 und Min-Hua Ho, Wave Guide Excited Microstrip Patch Antenna, Theory and Experiment, IEEE Transactions on Antennas and Propagation Band 42, Nr. 8, August 1994, Seiten 1114 bis 1125 hervor. Derartige Antennen erlauben zwar eine gute Impedanzanpassung des Schlitzes an den Patch, allerdings nur in einem engen Frequenzband, und die Gesamttransmission von Hochfrequenzenergie vom Hohlleiter zum Patch ist infolge des kleinen Querschnitts des Schlitzes begrenzt. Da der Schlitz unterhalb seiner Cutoff-Frequenz betrieben wird, kann er nicht als Anpassungsleitung benutzt werden. Er liefert immer einen induktiven Beitrag zur Eingangsimpedanz der Antenne.Patch antennas, which are coupled to a feed line designed as a waveguide via a diaphragm or a slot in a metallic ground plane formed on the rear side of the substrate, go from M. Kanda et. al., The Characteristics of Iris-Fed Millimeter-Wave Rectangular Microstrip Patch Antennas, IEEE Transactions on Electromagnetic Compatibility, Volume EMC-27 No. 4, November 1985, pages 212 to 220 and Min-Hua Ho, Wave Guide Excited Microstrip Patch Antenna, Theory and Experiment, IEEE Transactions on Antennas and Propagation Volume 42, No. 8, August 1994, pages 1114 to 1125. Such antennas allow a good impedance matching of the slot to the patch, but only in a narrow frequency band, and the overall transmission of high-frequency energy from the waveguide to the patch is limited due to the small cross section of the slot. Since the slot operates below its cutoff frequency, it cannot be used as an adjustment line. It always makes an inductive contribution to the input impedance of the antenna.

Vorteile der ErfindungAdvantages of the invention

Erfindungsgemäß ist bei einer Patchantenne mit einem auf einer Seite eines Substrats angeordneten Patch und einem Anschluß für eine Speiseleitung an der gegenüberliegenden Rückseite des Substrats vorgesehen, daß der Anschluß als ein Steghohlleitersegment ausgebildet ist. Da die Zahl der für die Dimensionierung des Innenquerschnitts eines solchen Steghohlleitersegments optimierbaren geometrischen Parameter größer ist als im Falle eines einfachen Schlitzes, ist es möglich, die Abmessungen des Innenquerschnitts so zu wählen, daß sich eine Impedanzanpassung zwischen dem Hohlleitersegment und dem Patch ergibt, ohne daß hierfür noch eine Blende erforderlich ist, deren Gestalt von der des Hohlleiters abweicht.According to the invention, in the case of a patch antenna with a patch arranged on one side of a substrate and a connection for a feed line on the opposite rear side of the substrate, it is provided that the connection is designed as a ridge waveguide segment. Since the number of geometric parameters that can be optimized for the dimensioning of the inner cross section of such a ridge waveguide segment is greater than in the case of a simple slot, it is possible to choose the dimensions of the inner cross section so that there is an impedance match between the waveguide segment and the patch, without this this requires an aperture whose shape differs from that of the waveguide.

Die herkömmliche Massefläche mit Koppelschlitz an der Rückseite des Substrats wird durch die Verwendung des Steghohlleitersegments somit überflüssig. Der Stegabschnitt des Steghohlleiters ersetzt den herkömmlichen Koppelschlitz und stellt gleichzeitig eine elektrische Anpassungsleitung an das Impedanzniveau der Patchantenne dar.The conventional ground plane with a coupling slot on the back of the substrate is therefore superfluous due to the use of the ridge waveguide segment. The web section of the ridge waveguide replaces the conventional coupling slot and at the same time represents an electrical adaptation line to the impedance level of the patch antenna.

Dies erlaubt es, für gewünschte Abstrahlungseigenschaften der Patchantenne zunächst die Gestalt des Patches und dann unabhängig davon die Abmessungen des Steghohlleitersegments zu optimieren. So kann zum Beispiel zunächst eine für zirkular polarisierte Abstrahlung in einem vorgegebenen Frequenzbereich geeignete Form und Bemessung des Patches ermittelt und dann die Form des Steghohlleitersegments mit dem Ziel einer guten Impedanzanpassung an den Patch für diesen Frequenzbereich optimiert werden.This allows the shape of the patch to be optimized for the desired radiation properties of the patch antenna, and then the dimensions of the ridge waveguide segment independently of it. For example, a shape and dimensioning of the patch suitable for circularly polarized radiation in a predetermined frequency range can first be determined, and then the shape of the ridge waveguide segment can be optimized for this frequency range with the aim of a good impedance matching to the patch.

Gemäß einer bevorzugten Ausgestaltung ist als Speiseleitung ein Hohlleiter an das Steghohlleitersegment angekoppelt. Ein solcher Hohlleiter kann senkrecht zur Oberfläche der Patchantenne verlaufen und so die Möglichkeit liefern, Schaltkreise, die das Hochfrequenzsignal liefern oder verarbeiten, in unmittelbarer Nachbarschaft der Antenne, vorzugsweise hinter dieser, anzuordnen.According to a preferred embodiment, a waveguide is coupled to the ridge waveguide segment as the feed line. Such a waveguide can run perpendicular to the surface of the patch antenna and thus provide the possibility of arranging circuits which supply or process the high-frequency signal in the immediate vicinity of the antenna, preferably behind it.

Zwischen der Speiseleitung und dem Hohlleitersegment können eine oder mehrere Transformationsstufen in (Steg-)Hohlleitertechnik vorgesehen sein.One or more transformation stages in (web) waveguide technology can be provided between the feed line and the waveguide segment.

Es kann auch eine Microstripleitung als Speiseleitung in den Stegabschnitt des Steghohlleitersegments eingeführt sein. Bei einer solchen Gestaltung der Patchantenne haben die einander gegenüberliegenden Seitenwände des Stegabschnitts elektrischen Kontakt zur Leiterbahn und beziehungsweise Massefläche der Microstripleitung. Sie sorgen für eine sichere Fixierung der Speiseleitung in der Mitte des Hohlleiters und senkrecht zum Antennensubstrat.A microstrip line can also be inserted as a feed line into the web section of the web waveguide segment. With such a configuration of the patch antenna, the mutually opposite side walls of the web section have electrical contact with the conductor track and or ground area of the microstrip line. They ensure that the feed line is securely fixed in the middle of the waveguide and perpendicular to the antenna substrate.

Um Reflexionen bei der Kopplung gering zu halten, sind die Abmessungen des Stegabschnitts vorzugsweise so gewählt, daß das Impedanzniveau des Hohlleiterabschnitts an die des Patchs angepaßt ist.In order to keep reflections during the coupling low, the dimensions of the web section are preferably selected so that the impedance level of the waveguide section is matched to that of the patch.

Der Patch weist zweckmäßigerweise Kanten auf, die unter Winkeln von +/-45° zu den Kanten eines Stegabschnitts verlaufen. Diese Orientierung der Kanten erlaubt es, durch ein in einer einheitlichen Richtung orientiertes, in dem Hohlleiterabschnitt angeregtes elektrisches Feld Kanten des Patch zum Strahlen anzuregen, die im rechten Winkel zueinander orientiert sind.The patch expediently has edges which run at angles of +/- 45 ° to the edges of a web section. This orientation of the edges makes it possible to excite edges of the patch which are oriented at right angles to one another by means of an electrical field oriented in a uniform direction and excited in the waveguide section.

Um mit Hilfe eines solchen Patches zirkular polarisiert abstrahlen zu können, ist es erforderlich, daß die Resonanzfrequenzen von jeweils orthogonal zueinander orientierten Kanten sich geringfügig unterscheiden, so daß im Frequenzbereich zwischen den zwei Resonanzfrequenzen jeweils die eine Gruppe von Kanten eine induktive und die andere eine kapazitive Last für das Hochfrequenzsignal darstellt. Dies kann zum Beispiel erreicht werden, indem der Patch rechtwinklig mit unterschiedlichen Kantenlängen ausgebildet ist, oder indem ein quadratischer Patch verwendet wird, bei dem zwei gegenüberliegende Kanten Aussparungen aufweisen.In order to be able to emit circularly polarized radiation with the aid of such a patch, it is necessary that the resonance frequencies of edges oriented orthogonally to one another differ slightly, so that in the frequency range between the two resonance frequencies the one group of edges is inductive and the other is capacitive Represents load for the radio frequency signal. This can be achieved, for example, by designing the patch at right angles with different edge lengths, or by using a square patch in which two opposite edges have cutouts.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen mit Bezug auf die Figuren.Further features and advantages of the invention result from the following description of exemplary embodiments with reference to the figures.

Zeichnungdrawing

Figur 1Figure 1
zeigt eine Patchantenne mit daran angeschlossenem Hohlleiter gemäß einer ersten Ausgestaltung der Erfindung in einem Längsschnitt;shows a patch antenna with connected waveguide according to a first embodiment of the invention in a longitudinal section;
Figur 2Figure 2
zeigt eine perspektivische Ansicht des Steghohlleitersegments der Patchantenne aus Figur 1; undshows a perspective view of the ridge waveguide segment of the patch antenna from FIG. 1; and
Figur 3Figure 3
zeigt das Steghohlleitersegment einer Patchantenne gemäß einer zweiten Ausgestaltung der Erfindung.shows the ridge waveguide segment of a patch antenna according to a second embodiment of the invention.
Beschreibung der AusführungsbeispieleDescription of the embodiments

Figur 1 zeigt schematisch den Aufbau der erfindungsgemäßen Patchantenne. Der eigentliche metallische Patch 1 ist auf einem dielektrischem Substrat 2 aufgebracht. Die dem Patch gegenüberliegende Rückseite des Substrats 2 ist nicht metallisiert. Dies vereinfacht die Herstellung des Substrats; Probleme bei der Ausrichtung von sonst erforderlichen metallischen Strukturen auf der Rückseite des Substrats im Bezug auf den Patch 1 entfallen. Die Rückseite des Substrats 2 befindet sich in unmittelbarem Kontakt mit einem Steghohlleitersegment 3. Substrat 2 und Steghohlleitersegment 3 sind durch eine Klebung der einander berührenden Flächen großflächig und belastbar verbunden. Das Steghohlleitersegment 3 weist im wesentlichen die Form einer Platte der Dicke L mit einem in etwa H-förmigen Hohlleiterausschnitt 5 auf (siehe auch Figur 2). An die Rückseite des Steghohlleitersegments 3 schließt ein weiterer Hohlleiterabschnitt 4 an, bei dem es sich um eine Speiseleitung, die den Patch an hinter dem Substrat angeordnete, in der Figur nicht dargestellte Schaltungselemente koppelt, oder um eine Transformatorstufe handeln kann, die für eine Impedanzanpassung beim Übergang des Hochfrequenzsignals von der Speiseleitung auf das Steghohlleitersegment 3 sorgt.Figure 1 shows schematically the structure of the patch antenna according to the invention. The actual metallic patch 1 is applied to a dielectric substrate 2. The back of the substrate 2 opposite the patch is not metallized. This simplifies the manufacture of the substrate; Problems with the alignment of otherwise required metallic structures on the back of the substrate in relation to patch 1 are eliminated. The back of the substrate 2 is in direct contact with a ridge waveguide segment 3. The substrate 2 and ridge waveguide segment 3 are connected over a large area and in a load-bearing manner by gluing the surfaces in contact with one another. The ridge waveguide segment 3 essentially has the shape of a plate of thickness L with an approximately H-shaped waveguide cutout 5 (see also FIG. 2). To the back of the ridge waveguide segment 3 connects a further waveguide section 4, which can be a feed line that couples the patch to circuit elements arranged behind the substrate, not shown in the figure, or a transformer stage that can be used for an impedance matching during the transition of the high-frequency signal from the Feed line on the ridge waveguide segment 3 ensures.

Die Dicke L kann so gewählt werden, daß an Ein- und Austrittsfläche des Steghohlleitersegments auftretende Restreflexionen destruktiv interferieren, um so die Effizienz der Kopplung zwischen Patch und Speiseleitung zu verbessern.The thickness L can be selected so that residual reflections occurring at the entrance and exit surface of the ridge waveguide segment interfere destructively, so as to improve the efficiency of the coupling between the patch and the feed line.

Die dreidimensionale Gestaltung der Komponenten wird deutlicher aus Figur 2, die das Steghohlleitersegment 3 in einer perspektivischen Ansicht zeigt. Das Substrat 2 ist in Figur 2 fortgelassen, allein der auf diesem Substrat angeordnete Patch 1 ist als gestrichelter Umriß dargestellt. Die Patchantenne ist vorgesehen, um in einer Anordnung zusammen mit einer Mehrzahl gleichartiger Antennen, zum Beispiel in einem Satelliten, betrieben zu werden, wobei der Abstand der einzelnen Patchantennen voneinander durch die seitlichen Abmessungen des Steghohlleitersegments 3 gegeben ist. Der Hohlleiterausschnitt 5 hat die Grundform eines Rechtecks mit einer Breite a und einer Höhe b, wobei jeweils von den Mitten der Längsseiten des Rechtecks Vorsprünge 6 mit einer Breite w in den Ausschnitt eingreifen und ihn in der Mitte auf einen spaltförmigen Stegabschnitt 7 der Breite s verengen. Die Abmessungen a,b und w bestimmen die Grenzfrequenz und damit die frequenzabhängige Impedanz des Steghohlleitersegments 3.The three-dimensional design of the components becomes clearer from FIG. 2, which shows the ridge waveguide segment 3 in a perspective view. The substrate 2 is omitted in FIG. 2, only the patch 1 arranged on this substrate is shown as a dashed outline. The patch antenna is provided to be operated in an arrangement together with a plurality of antennas of the same type, for example in a satellite, the distance between the individual patch antennas being given by the lateral dimensions of the ridge waveguide segment 3. The waveguide cutout 5 has the basic shape of a rectangle with a width a and a height b, with projections 6 with a width w engaging in the cutout from the middle of the long sides of the rectangle and narrowing it in the middle to a gap-shaped web section 7 of width s , The dimensions a, b and w determine the cutoff frequency and thus the frequency-dependent impedance of the ridge waveguide segment 3.

Der Patch 1 hat hier die Gestalt eines Quadrats mit zu den Kanten des Hohlleiterausschnitts 5 um 45° verdrehten Kanten. Zwei gegenüberliegende Kanten 8 des Patch 1 weisen jeweils eine mittige Aussparung 9 auf. Die Aussparungen 9 bewirken eine Verschiebung der Resonanzfrequenz der unterbrochenen Kanten 8 gegenüber der der jeweils im rechten Winkel dazu liegenden durchgehenden Kanten 10 des Patches 1. Bei Anregung mit einem Hochfrequenzsignal, dessen Frequenz in der Mitte zwischen den zwei Resonanzfrequenzen liegt, werden die Kanten 8,10 jeweils zum Strahlen mit einer Phasenverschiebung von 90° angeregt, wodurch sich die Beiträge der verschiedenen Kanten zur Abstrahlung der Antenne zu einem zirkular polarisierten Strahl überlagern.The patch 1 here has the shape of a square with edges rotated by 45 ° to the edges of the waveguide cutout 5. Two opposite edges 8 of the patch 1 each have a central recess 9. The cutouts 9 cause the resonance frequency of the interrupted edges 8 to shift relative to that of the continuous edges 10 of the patch 1 lying at right angles thereto. Upon excitation with a high-frequency signal, the frequency of which lies in the middle between the two resonance frequencies, the edges 8, 10 each excited to radiate with a phase shift of 90 °, whereby the contributions of the different edges to the radiation of the antenna overlap to form a circularly polarized beam.

Bei den herkömmlichen Bauarten von Patchantennen ist es äußerst schwierig, Abmessungen des Patch 1 einerseits und des Hohlleiters andererseits zu finden, die eine gute Impedanzanpassung aufweisen und damit eine effiziente Anregung des Patch bei der Frequenz beziehungsweise in dem Frequenzbereich ermöglichen, in dem dieser zirkular polarisiert abstrahlen kann. Bei der hier dargestellten Antenne ist eine solche Anpassung durch Optimierung der Abmessungen der Vorsprünge 6 zu erreichen.In the conventional types of patch antennas, it is extremely difficult to find dimensions of the patch 1 on the one hand and the waveguide on the other hand, which have a good impedance matching and thus enable the patch to be excited efficiently at the frequency or in the frequency range in which it radiates in a circularly polarized manner can. In the antenna shown here, such an adaptation can be achieved by optimizing the dimensions of the projections 6.

Figur 3 zeigt eine Abwandlung der erfindungsgemäßen Patchantenne, die sich von der mit Bezug auf Figuren 1 und 2 beschriebenen durch die Art und Weise der Einkopplung des Hochfrequenzsignals unterscheidet. Bei dieser Ausgestaltung ist der Hohlleiterabschnitt 4 ersetzt durch eine Microstripleitung 14, das heißt ein dielektrisches Substrat, das auf einer Oberfläche eine Leiterbahn 15 und auf der gegenüberliegenden (in der Figur verdeckten) Oberfläche eine metallische Massefläche trägt. Die Microstripleitung ist in Figur 3 mit der gleichen Breite w wie die Vorsprünge 6 des Steghohlleitersegments dargestellt, sie kann aber auch breiter sein, zum Beispiel sich über die gesamte Breite a des Hohlleiterausschnitts 5 erstrecken. Lediglich die Breite der rückwärtigen Metallisierung, die die Massefläche bildet, sollte nicht größer sein als die Breite w der Vorsprünge 6.FIG. 3 shows a modification of the patch antenna according to the invention, which differs from that described with reference to FIGS. 1 and 2 in the manner in which the high-frequency signal is coupled in. In this embodiment, the waveguide section 4 is replaced by a microstrip line 14, that is to say a dielectric substrate which has a surface on one Conductor 15 and on the opposite (hidden in the figure) surface carries a metallic ground surface. The microstrip line is shown in FIG. 3 with the same width w as the projections 6 of the ridge waveguide segment, but it can also be wider, for example extending over the entire width a of the waveguide section 5. Only the width of the rear metallization, which forms the ground surface, should not be greater than the width w of the projections 6.

Durch die mechanische Einfügung der Microstripleitung 14 in den Stegabschnitt 7 ergibt sich auf einfache Weise eine mechanisch belastbare Verankerung. So läßt sich auf diese Weise eine sehr kompakte Anordnung aus einer Patchantenne mit einer Hochfrequenzschaltung realisieren, wobei die Hochfrequenzschaltung auf einer Leiterplatte aufgebaut ist, die einstückig in die in den Stegabschnitt eingefügte Microstripleitung 14 übergeht. Die Breite S des Stegabschnitts ist um die doppelte Breite eines Lötspalts größer als die Stärke der Microstripleitung 14, so daß die Microstripleitung 14 bequem in den Stegabschnitt 7 einschiebbar und an den Stirnseiten der den Stegabschnitt begrenzenden Vorsprünge 6 verlötbar ist. So wird auf einfache Weise eine robuste Verbindung zwischen der Patchantenne und der Microstripleitung 14 geschaffen, die exakt senkrecht zur Oberfläche des Patches 1 ausgerichtet ist.The mechanical insertion of the microstrip line 14 into the web section 7 results in a mechanically resilient anchoring in a simple manner. In this way, a very compact arrangement of a patch antenna with a high-frequency circuit can be realized, the high-frequency circuit being constructed on a printed circuit board which integrally merges into the microstrip line 14 inserted into the web section. The width S of the web section is twice the width of a soldering gap greater than the thickness of the microstrip line 14, so that the microstrip line 14 can be easily inserted into the web section 7 and soldered to the end faces of the projections 6 delimiting the web section. In this way, a robust connection between the patch antenna and the microstrip line 14 is created in a simple manner, which is aligned exactly perpendicular to the surface of the patch 1.

Durch ihren Kontakt mit den Stirnflächen der Vorsprünge 6 des Steghohlleitersegments werden die Leiterbahn 15 und die Massefläche der Microstripleitung 14 kurzgeschlossen.Due to their contact with the end faces of the projections 6 of the ridge waveguide segment, the conductor track 15 and the ground area of the microstrip line 14 are short-circuited.

Die Form des Patches 1 ist die gleiche wie bei der Antenne aus Figur 1 und 2. Die Abmessungen w und s des Spalts, die für eine gute Impedanzanpassung in dem Frequenzbereich, in dem die Antenne zirkular polarisiert strahlen kann, erforderlich sind, können von denen des vorherigen Ausführungsbeispiels abweichen.The shape of the patch 1 is the same as that of the antenna of FIGS. 1 and 2. The dimensions w and s of the gap, which are required for good impedance matching in the frequency range in which the antenna can radiate in a circularly polarized manner, can be one of them of the previous embodiment differ.

Die Erfindung ist selbstverständlich nicht auf die hier beispielhaft dargestellte Form des Patches beschränkt. Entscheidend ist die Möglichkeit, zirkular polarisiert abzustrahlen. Ein solcher Patch könnte zum Beispiel auch die Form eines Rechtecks mit unterschiedlichen Kantenlängen oder die eines Quadrates haben, bei dem zwei gegenüberliegende Kanten Aussparungen aufweisen.The invention is of course not limited to the form of the patch shown here by way of example. The decisive factor is the possibility of radially polarized radiation. Such a patch could, for example, also have the shape of a rectangle with different edge lengths or a square in which two opposite edges have cutouts.

Claims (9)

  1. A patch antenna having a patch (1) arranged at one side of a substrate (2) and a connection for a feed line (4; 14) at an opposite side of the substrate (2), characterised in that the connection is made as a ridge waveguide segment (3).
  2. A patch antenna in accordance with claim 1, characterised in that a microstrip line (14) is inserted as a feed line into the ridge section (7) of the ridge waveguide segment (3).
  3. A patch antenna in accordance with claim 1, characterised in that a waveguide (4) is coupled to the ridge waveguide segment (3) as a feed line.
  4. A patch antenna in accordance with any one of the preceding claims, characterised in that the ridge waveguide (3) is adhesively bonded to the side of the substrate (2) remote from the patch (1).
  5. A patch antenna in accordance with any one of the preceding claims, characterised in that the shape of the patch (1) is selected such that a frequency range exists in which the patch (1) is in a position to radiate in a circularly polarised manner; and in that the dimensions (w, s) of the ridge section (7) are selected such that the impedance level of the ridge waveguide (3) is matched to that of the patch (1) and to that of the high frequency line (4, 14) for the frequency range.
  6. A patch antenna in accordance with claim 5, characterised in that the length (L) of the ridge waveguide segment (3) is selected such that reflections of a high frequency signal interfere destructively at opposed ends of the ridge waveguide segment (3).
  7. A patch antenna in accordance with any one of the preceding claims, characterised in that the patch (1) has edges (8, 10) which extend at angles of +/-45° to the edges of the waveguide segment (5) of the ridge waveguide segment (3).
  8. A patch antenna in accordance with any one of the preceding claims, characterised in that the patch (1) is rectangular with different edge lengths.
  9. A patch antenna in accordance with claim 7, characterised in that the patch (1) is square, with two opposite edges (8) having cut-outs (9).
EP00966373A 1999-10-05 2000-10-05 Patch antenna Expired - Lifetime EP1218960B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19947783A DE19947783A1 (en) 1999-10-05 1999-10-05 Patch antenna
DE19947783 1999-10-05
PCT/IB2000/001504 WO2001026177A1 (en) 1999-10-05 2000-10-05 Patch antenna

Publications (2)

Publication Number Publication Date
EP1218960A1 EP1218960A1 (en) 2002-07-03
EP1218960B1 true EP1218960B1 (en) 2004-12-29

Family

ID=7924460

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00966373A Expired - Lifetime EP1218960B1 (en) 1999-10-05 2000-10-05 Patch antenna

Country Status (5)

Country Link
EP (1) EP1218960B1 (en)
AT (1) ATE286305T1 (en)
AU (1) AU7680700A (en)
DE (2) DE19947783A1 (en)
WO (1) WO2001026177A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830987A1 (en) * 2001-10-11 2003-04-18 Thomson Licensing Sa Waveguide-fed antenna, for microwave or millimeter wave communications, has metallic surface at end of guide with at least one central
DE102016007434A1 (en) 2016-06-07 2017-12-07 Audi Ag Antenna device for a radar detector with at least two radiation directions and motor vehicle with at least one radar detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793263A (en) * 1996-05-17 1998-08-11 University Of Massachusetts Waveguide-microstrip transmission line transition structure having an integral slot and antenna coupling arrangement
US5831581A (en) * 1996-08-23 1998-11-03 Lockheed Martin Vought Systems Corporation Dual frequency band planar array antenna

Also Published As

Publication number Publication date
WO2001026177A1 (en) 2001-04-12
ATE286305T1 (en) 2005-01-15
EP1218960A1 (en) 2002-07-03
DE19947783A1 (en) 2001-08-16
AU7680700A (en) 2001-05-10
DE50009138D1 (en) 2005-02-03

Similar Documents

Publication Publication Date Title
DE60009874T2 (en) V-slot antenna for circular polarization
DE69821327T2 (en) Shorted stripline antenna and device with it
EP1842262B1 (en) Aperture-coupled antenna
EP0766099B1 (en) Doppler radar module
EP1842263B1 (en) Planar multiband antenna
DE4407251C2 (en) Dielectric waveguide
DE102007005928B4 (en) Transmission line transition
EP1547192B1 (en) Device for transmitting or emitting high-frequency waves
WO1998026642A2 (en) Wide band planar radiator
DE60128843T2 (en) Microstrip conductor and microwave device provided therewith
EP3440738B1 (en) Antenna device
DE112013001764T5 (en) Antenna field device with slotted waveguide
DE10124142A1 (en) Laminate pattern antenna and wireless communication device equipped with such a device
DE112018007422B4 (en) WAVEGUIDE SLOT GROUP ANTENNA
EP1370886B1 (en) Antenna with coplanar waveguide feed for the transmission and/or reception of radar beams
EP1218960B1 (en) Patch antenna
DE3700886A1 (en) SEMICONDUCTOR SLOT AERIAL FOR DOPPLER NAVIGATORS
DE10146354A1 (en) Antenna device for a circularly polarized wave
DE3409460A1 (en) ANTENNA
DE60015692T2 (en) Oscillator and radio
DE60016311T2 (en) High frequency circuit arrangement and communication device using this arrangement
DE102004050598A1 (en) Micro strip line antenna for use in automobile industry for transmitting and receiving e.g. circularly polarized satellite radio signal, has resonant unit enclosing recesses whose form deviates from rectangular form
EP0989627B1 (en) Dual frequency antenna
DE102004032175A1 (en) Apparatus and method for transmitting / receiving electromagnetic RF signals
EP3540852B1 (en) Multi-range antenna for a receiving and/or transmitting device for mobile use, especially for vehicles, comprising a double copper-clad circuit board

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50009138

Country of ref document: DE

Date of ref document: 20050203

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050329

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050329

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050409

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

BERE Be: lapsed

Owner name: *MARCONI COMMUNICATIONS G.M.B.H.

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071030

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20071029

Year of fee payment: 8

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141027

Year of fee payment: 15

Ref country code: DE

Payment date: 20141029

Year of fee payment: 15

Ref country code: FR

Payment date: 20141017

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50009138

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151005

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102