EP1212522A1 - Verfahren und vorrichtung zur abgasnachbehandlung des von einem verbrennungsmotor erzeugten abgases - Google Patents

Verfahren und vorrichtung zur abgasnachbehandlung des von einem verbrennungsmotor erzeugten abgases

Info

Publication number
EP1212522A1
EP1212522A1 EP00969193A EP00969193A EP1212522A1 EP 1212522 A1 EP1212522 A1 EP 1212522A1 EP 00969193 A EP00969193 A EP 00969193A EP 00969193 A EP00969193 A EP 00969193A EP 1212522 A1 EP1212522 A1 EP 1212522A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
hydrogen
internal combustion
combustion engine
hydrolysis unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00969193A
Other languages
English (en)
French (fr)
Inventor
Nikolaus Benninger
Horst Harndorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1212522A1 publication Critical patent/EP1212522A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/029Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles by adding non-fuel substances to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/04Adding substances to exhaust gases the substance being hydrogen

Definitions

  • the invention relates to a method and a device for exhaust gas aftertreatment, in particular for lean-burn engines in motor vehicles, for. B. directly injecting diesel engines and gasoline engines as well as maintaining the functionality of NO x storage catalysts in gasoline and diesel engines and particle filters in diesel engines.
  • N0 2 is required for the continuous oxidation-regeneration process of the soot particles.
  • the desired NO 2 storage is reduced due to the SO x deposits in the NO x adsorber which arise from the fuel sulfur until the system is completely inactive.
  • the breakdown of this sulfur compound regeneration of the storage catalytic converter is possible by briefly applying increased exhaust gas temperatures (a temperature greater than 650 ° C is used in gasoline direct injection engines). The realization of such exhaust gas temperatures in diesel engines is not considered promising in the prior art.
  • Particulate filters that use the CRT process mentioned above require exhaust gas temperatures that exceed 230 ° C for the continuous regeneration process. These conditions cannot always be met with the direct-injection diesel engine. As a result, a critical filter loading can occur, which may lead to the destruction of the particle filter.
  • the object of the invention is to avoid the above-mentioned difficulties in exhaust gas aftertreatment in modern lean-burn engines, in particular gasoline and diesel engines with direct injection in motor vehicles, and to provide a method and a device for exhaust gas aftertreatment of the exhaust gas generated by an internal combustion engine so that if necessary the Exhaust gas temperature increases, overall exhaust gas quality and especially under certain operating conditions of the internal combustion engine improved, at the same time the engine acoustics do not deteriorate and regeneration of a storage catalytic converter and / or a particle filter at regular intervals and / or after sulfur poisoning at the oxidation levels of a NO x storage catalyst and particle filter are made possible.
  • a hydrolysis unit for the production of hydrogen is provided, which is connected on the one hand to a water reservoir and on the other hand to a metering device for metering in the amount of hydrogen supplied to the raw exhaust gas and / or the exhaust gas treated by an oxidation catalyst
  • Dependency on a requirement for hydrogen occurring in certain operating states and / or catalyst functions is set up.
  • the amount of hydrogen required in each case can be d. H. discontinuously generated in the hydrolysis unit and then made available directly for metering.
  • a hydrogen reservoir can be provided, which temporarily stores a certain amount of the hydrogen generated by the hydrolysis unit.
  • the size of the hydrogen reservoir and thus the amount of temporarily stored hydrogen can be dimensioned such that it is sufficient to heat and regenerate a NO x storage catalytic converter.
  • the reservoir can be represented by the inner lumen of the pipeline.
  • the temperature of the raw exhaust gas, the ⁇ value and also certain operating states of the catalyst system are preferably recorded.
  • the method according to the invention can be used to restore a sufficient conversion rate after sulfur poisoning at the oxidation levels of a NO x storage catalytic converter or a particle filter by regenerating the oxidation levels of the storage catalytic converter or the particle filter by means of hydrogen reduction.
  • the regeneration by adding hydrogen can be activated whenever a decrease in the conversion rate of the NO x storage catalytic converter or the particulate filter is detected.
  • the exhaust gas temperature can be raised by the addition of hydrogen according to the invention, in order to ensure the regeneration conditions in the low-load range during operation of a particle filter.
  • a hydrolysis unit and a metering device connected to it via a hydrogen line for metered addition of the hydrogen to the raw exhaust gas and / or to the exhaust gas treated by an oxidation catalyst and a control and regulating unit is provided which is functionally connected to the hydrolysis unit and the metering device in order to control or regulate the generation of hydrogen in the hydrolysis unit and the metering device depending on specific operating states of the internal combustion engine and on detected parameters of the exhaust system.
  • the metering device is preferably a metering and shut-off valve.
  • the control unit preferably has a catalyst monitoring function that is functionally connected to an exhaust gas sensor system.
  • Figure 1 shows schematically in the form of functional blocks, a first embodiment in which the inventive method for exhaust aftertreatment is used in an internal combustion engine equipped with NO x storage catalyst in the exhaust system.
  • FIG. 2 also shows schematically, in the form of a functional block diagram, a second exemplary embodiment in which the inventive method for exhaust gas aftertreatment is used in an internal combustion engine equipped with a CRT particle filter in the exhaust system.
  • FIG. 1 schematically shows blocks which illustrate the essential functions and elements of a first exemplary embodiment of the method according to the invention.
  • a hydrolysis unit 10 From water removed from a water tank 19, a hydrolysis unit 10 generates hydrogen (H 2 ) in a certain amount on request, which is passed through a hydrogen line 17 via a pressure reducing valve 14 to a metering and Shut-off valve 15 and from there the raw exhaust gas is mixed at a point ⁇ and / or the exhaust gas treated by an oxidation catalytic converter 3 is added at a point 7 in an exhaust pipe 2 leading from an internal combustion engine 1.
  • the arrow A indicates the direction of flow of the exhaust gas.
  • a NO x storage catalytic converter 4 is located in the exhaust pipe 2, downstream of the oxidation catalytic converter 3.
  • the H 2 gas which is generated by the hydrolysis unit 10 can either be generated in the amount required in each case on request, or a hydrogen reservoir 11 can be connected between the hydrolysis unit 10 and the pressure reducing valve 14, from which a condensate return RK via Shut-off valve 16 leads to water tank 19.
  • a pressure sensor 13 is connected to the hydrogen reservoir 11 serving as an intermediate store.
  • a safety valve 12 is attached to the hydrogen reservoir 11.
  • the hydrogen reservoir 11 can also be represented by the inner lumen of the H 2 line 17.
  • the metering and shut-off valve can be designed such that, if required, the hydrogen flowing to point 6, ie the hydrogen portion added to the raw exhaust gas and the hydrogen portion added to the exhaust gas after the oxidation catalyst 3 (at point 7), can be metered separately.
  • FIG. 1 also shows that a control unit 18 has an interface which is connected to the hydrolysis unit 10, the pressure sensor 13 of the hydrogen reservoir 11, the metering and shut-off valve 15, the shut-off valve 16 and a temperature sensor 5 measuring the exhaust gas temperature T A stands.
  • the control unit 18 is set up to control and regulate the generation of hydrogen in the hydrolysis unit 10 and the metering device 15 as a function of certain operating states of the internal combustion engine 1 and of detected parameters of the exhaust system, which includes the exhaust gas temperature T A.
  • FIG. 2 shows a second embodiment in which the inventive method in a motor vehicle engine equipped with a CRT particle filter, for. B. a diesel engine with direct injection is used for exhaust gas aftertreatment.
  • a particle filter 8 as shown in FIG. 2 is contained in the exhaust pipe 2 of the direct-injection diesel engine 1.
  • An oxidation catalytic converter 3 is connected upstream of the CRT particle filter 8.
  • the hydrogen generated by the hydrolysis unit 10 and dosed in an appropriate amount by the metering and shut-off valve 15 is mixed at point 6 with the raw exhaust gas which flows through the exhaust pipe 2 (arrow A). All other apparatus details of the device shown in FIG. 2 are identical to those of the device described above and shown in FIG. 1.
  • H 2 is added to the raw exhaust gas to represent the regeneration phases of the particle filter 8, if an internal engine HC generation not possible.
  • the regeneration is controlled in analogy to the NO x catalyst control in gasoline direct injection engines.
  • the method according to the invention can be used to restore a sufficient conversion rate after sulfur poisoning of the particle filter 8 by the method according to the invention. This is e.g. B. required after a few hours of operation depending on the sulfur content of the fuel.
  • the control of the regeneration of the particle filter 8 can start after a recognized decrease in the conversion rate, for which purpose a catalyst monitoring function is integrated in the control unit 18.
  • the exhaust gas temperature can be raised by the introduction of hydrogen according to the invention to ensure the regeneration conditions during operation of the particle filter 8 in temperature-critical low-load areas.
  • H 2 reservoir 11 is only optionally available, and instead an H 2 tube with sufficient inner lumen can replace the H 2 reservoir 11 serving as a buffer.
  • the method according to the invention for the aftertreatment of the exhaust gas of an internal combustion engine serves to increase the exhaust gas and catalyst temperature, which is particularly the case with Cold start and in low load operation is required.
  • hydrogen can be generated “on-board” and in transient operation and, depending on the need and application, can be added to the catalyst or particle filter via the metering and shutoff valve 15.
  • the exhaust gas quality, in particular the particle rate, and the engine acoustics are not additionally deteriorated.
  • the response behavior of the systems is much faster when hydrogen is added.
  • Metering of the amount of hydrogen supplied to the raw exhaust gas (A) and / or the exhaust gas treated by an oxidation catalytic converter (3) depends on a need for hydrogen occurring in certain operating states and / or catalytic converter functions.
  • Device for aftertreatment of the exhaust gas of an internal combustion engine (1) in particular in a motor vehicle, characterized in that a hydrolysis unit (10) and a metering device (15) connected to it via a hydrogen line (17) for metered addition of hydrogen to the raw exhaust gas ( A) and / or to the exhaust gas treated by an oxidation catalyst (3) and a control / regulating unit (18) are provided, which is in functional connection with the hydrolysis unit (10) and the metering device (15) in order to generate hydrogen in to control or regulate the hydrolysis unit (10) and the metering device (15) depending on specific operating states of the internal combustion engine (1) and on detected parameters of the exhaust system.
  • the metering device (15) is a metering and shut-off valve.
  • control / regulating unit (18) has a catalyst monitoring function which is in functional connection with an exhaust gas sensor system (5).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Nachbehandlung des Abgases eines Verbrennungsmotors (1), insbesondere in einem Kraftfahrzeug, und ist dadurch gekennzeichnet, dass eine Hydrolyseeinheit (10) und eine über eine Wasserstoffleitung (17) mit ihr verbundene Dosiereinrichtung (15) zur dosierten Zugabe von Wasserstoff zum Rohabgas (A) und/oder zu dem durch einen Oxidationskatalysator (3) behandelten Abgas und eine Steuer/Regeleinheit (18) vorgesehen sind, die in funktioneller Verbindung mit der hydrolyseeinheit (10) und der Dosiereinrichtung (15) steht, um die Wasserstofferzeugung in der Hydrolyseeinheit (10) und die Dosiereinrichtung (15) abhängig von bestimmten Betriebszuständen des Verbrennungsmotors (1) und von erfassten Parametern des Abgassystems zu steuern bzw. zu regeln.

Description

VERFAHREN UND VORRICHTUNG ZUR ABGASNACHBEHANDLUNG DES VON EINEM VERBRENNUNGSMOTOR ERZEUGTEN ABGASES
Stand der Technik
Die Erfindung befasst sich mit einem Verfahren und einer Vorrichtung zur Abgasnachbehandlung insbesondere für Magermotoren in Kraftfahrzeugen, z. B. direkt einspritzenden Dieselmotoren und Benzinmotoren sowie mit der Erhaltung der Funktionsfähigkeit von NOx-Speicher- katalysatoren in Benzin- und Dieselmotoren und Partikelfiltern in Dieselmotoren.
Bei den im Abgasrohr eines modernen Benzin- oder Dieselmotors mit Direkteinspritzung sitzenden Oxidationskatalysator verschlechtern SOx-Ablagerungen im Oxidationskatalysator die gewünschte N02-Bildung bis hin zur Inaktivität des Katalysatorsystems. N02 wird bei NOx-
Speicherkatalysatoren für den Einlagerungsprozess benötigt. Bei Partikelfiltern, die nach dem CRT-Verfahren
(CRT: Continuously Regeneration Trap) arbeiten, wird N02 für den kontinuierlich ablaufenden Oxidations-Regenera- tions-Prozess der Rußpartikel benötigt. Im Falle der Schwefelkontaminierung des NOx-Speicherkatalysators wird die gewünschte N02-Speicherung aufgrund der SOx- Ablagerungen im NOx-Adsorber, die aus dem Kraftstoffschwefel hervorgehen bis zur völligen Inaktivität des Systems verringert. Der Abbau dieser Schwefelverbindung durch Regenerierung des Speicherkatalysators ist durch ein kurzzeitiges Aufprägen erhöhter Abgastemperaturen möglich (bei Benzin-Direkteinspritzungsmotoren wird eine Temperatur größer 650° C verwendet) . Die Realisierung solcher Abgastemperaturen bei Dieselmotoren wird im Stand der Technik als nicht aussichtsreich angesehen. Partikelfilter, die nach dem oben erwähnten CRT-Verfahren arbeiten, benötigen für den kontinuierlich verlaufenden Regenerationsprozess Abgastemperaturen, die 230° C über- steigen. Diese Bedingungen können beim direkt einspritzenden Dieselmotor nicht immer erfüllt werden. In Folge kann sich eine kritische Filterbeladung einstellen, die unter Umständen zur Zerstörung des Partikelfilters führen kann.
Für den Regenerationsprozess von NOx-Speicher- katalysatoren muss C0, das aus dem Kraftstoff-Kohlenwasserstoff stammt, zugegeben und zugleich eine fette Abgaszusammensetzung (λ<l) erzeugt werden. Die innermotorische Bereitstellung der für eine Regenerierung erforderlichen Kohlenwasserstoffe (HC) ist bei Dieselmotoren jedoch prinzipbedingt untypisch und äußerst kritisch und auch mit hohen Verbrauchseinbußen verbunden. Im Unterschied zum Benzinmotor sind beim Dieselmotor die Prozessgasdurchsätze nämlich sehr viel höher, und dadurch können die zur Regenerierung erforderlichen Temperaturen nicht in allen Betriebspunkten erreicht werden. Ebenso gestaltet sich die nachmotorische Bereitstellung einer "fetten" Abgaszusammensetzung beim Dieselmotor problematisch, da ein Oxidationskatalysator für die C0- Bildung notwendig, ein Abgastemperaturprofil teilweise unzureichend ist und Zyklen mit fettem Abgas nur über ein Bypasssystem erreichbar sind.
Aufgabe und Vorteile der Erfindung
Aufgabe der Erfindung ist es, die oben erwähnten Schwierigkeiten bei der Abgasnachbehandlung in modernen Magermotoren, insbesondere Benzin- und Dieselmotoren mit Direkteinspritzung in Kraftfahrzeugen, zu vermeiden und ein Verfahren und eine Vorrichtung zur Abgasnachbehandlung des von einem Verbrennungsmotor erzeugten Abgases so anzugeben, dass bei Bedarf die Abgastemperatur erhöht, die Abgasqualität insgesamt und besonders bei bestimmten Betriebsbedingungen des Verbrennungsmotors verbessert, gleichzeitig die Motorakkustik nicht verschlechtert und eine Regenerierung eines Speicherkatalysators und/oder eines Partikelfilters in regelmäßigen Intervallen und/oder nach einer Schwefelver- giftung an den Oxidationsstufen eines NOx-Speicher- katalysators und Partikelfilters ermöglicht werden.
Diese Aufgabe wird anspruchsgemäß gelöst. Gemäß einem wesentlichen Aspekt wird bei dem erfindungsgemäßen Verfahren zur Abgasnachbehandlung eine Hydrolyseeinheit zur Gewinnung von Wasserstoff bereitgestellt, die einerseits mit einem Wasserreservoir und andererseits mit einer Dosiereinrichtung verbunden ist, die zur Dosierung der dem Rohabgas und/oder dem durch einen Oxidationskatalysator behandelten Abgas zugeführten Wasserstoffmenge in Abhängigkeit von einem, bei bestimmten Betriebszuständen und/oder Katalysator- funktionen auftretenden Bedarf an Wasserstoff eingerichtet ist.
Bei einer Ausführungsform des Verfahrens kann die jeweils benötigte Wasserstoffmenge auf Anforderung d. h. dis- kontinuierlich in der Hydrolyseeinheit erzeugt und dann direkt für die Dosierung zur Verfügung gestellt werden.
Bei einer alternativen Ausführungsform des Verfahrens kann ein Wasserstoffreservoir vorgesehen sein, der eine bestimmte Menge des von der Hydrolyseeinheit erzeugten Wasserstoffs zwischenspeichert.
Dabei kann die Größe des Wasserstoffreservoirs und damit die Menge des zwischengespeicherten Wasserstoffs so bemessen sein, dass sie zur Erwärmung und Regenerierung eines NOx-Speicherkatalysators ausreicht.
Bei entsprechender Auslegung der Verbindungsrohre zwischen der Dosiereinrichtung und der Hydrolyseeinheit kann das Reservoir durch das Innenlumen der Rohrleitung dargestellt sein.
Bevorzugt werden zur Dosierung des zuzuführenden Wasserstoffs die Temperatur des Rohabgases, der λ-Wert und außerdem bestimmte Betriebszustände des Katalysatorsystems erfasst.
Im Falle eines Dieselmotors, insbesondere mit Direkt- einspritzung, wird die Zugabe von Wasserstoff zum Abgas aktiviert, wenn eine innermotorische Kohlenwasserstoff- erzeugung nicht möglich ist.
Im Falle eines Benzinmotors, insbesondere eines solchen mit Direkteinspritzung, wird die Zugabe von Wasserstoff zum Abgas aktiviert, wenn der momentane Motorbetriebspunkt eine innermotorische Kohlenwasserstoffbereitstellung bei ausreichender Temperatur nicht zuläßt.
Das erfindungsgemäße Verfahren läßt sich zur Wiederherstellung einer ausreichenden Konvertierungsrate nach einer Schwefelvergiftung an den Oxidationsstufen eines NOx-Speicherkatalysators oder eines Partikelfilters durch die Regenerierung der Oxidationsstufen des Speicher- katalysators bzw. des Partikelfilters mittels Wasserstoffreduktion verwenden. Dabei kann die Regenerierung durch Wasserstoffzugäbe immer dann aktiviert werden, wenn eine Abnahme der Konvertierungsrate NOx-Speicher- katalysators bzw. des Partikelfilters erfasst wird. Im temperaturkritischen Schwachlastbetrieb eines Verbrennungsmotors kann durch die erfindungsgemäß erfolgende Wasserstoffzugäbe die Abgastemperatur angehoben werden, um im Schwachlastbereich die Regenerierungsbedingungen beim Betrieb eines Partikelfilters zu gewährleisten.
Bei einer die obige Aufgabe lösenden Vorrichtung zur Nachbehandlung des Abgases eines Verbrennungsmotors, insbesondere im Kraftfahrzeug, sind eine Hydrolyseeinheit und eine über eine Wasserstoffleitung mit ihr in Verbindung stehende Dosiereinrichtung zur dosierten Zugabe des Wasserstoffs zum Rohabgas und/oder zu dem durch einen Oxidationskatalysator behandelten Abgas und eine Steuer- und Regeleinheit vorgesehen, die mit der Hydrolyseeinheit und der Dosiereinrichtung in funktioneller Verbindung steht, um die Wasserstofferzeugung in der Hydrolyseeinheit und die Dosiereinrichtung abhängig von bestimmten Betriebszuständen des Verbrennungsmotors und von erfassten Parametern des Abgassystems zu steuern bzw. zu regeln.
Die Dosiereinrichtung ist bevorzugt ein Dosier- und Absperrventil .
Bevorzugt weist die Steuer/Regeleinheit eine mit einer Abgassensorik in funktioneller Verbindung stehende Katalysator-Überwachungsfunktion auf .
Die obigen und weitere vorteilhafte Merkmale des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung werden in der nachstehenden Beschreibung bevorzugter Ausführungsbeispiele des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung unter Bezugnahme auf die Zeichnungsfiguren erläutert.
Zeichnung
Figur 1 zeigt schematisch in Form von Funktionsblöcken ein erstes Ausführungsbeispiel, bei dem das erfindungsgemäße Verfahren zur Abgasnachbehandlung Verwendung bei einem mit NOx-Speicherkatalysator im Abgassystem ausgestatteten Verbrennungsmotor findet.
Figur 2 zeigt ebenfalls schematisch in Form eines Funktionsblockschaltbildes ein zweites Ausführungsbeispiel, bei dem das erfindungsgemäße Verfahren zur Abgasnachbehandlung bei einem mit einem CRT-Partikel- filter im Abgassystem ausgestatteten Verbrennungsmotor Anwendung findet .
Ausführungsbeispiele
Figur 1 zeigt schematisch Blöcke, die die wesentlichen Funktionen und Elemente eines ersten Ausführungsbeispiels des erfindungsgemäßen Verfahrens veranschaulichen. Aus von einem Wassertank 19 entnommenem Wasser erzeugt eine Hydrolyseeinheit 10 auf Anforderung Wasserstoff (H2) in einer bestimmten Menge, der durch eine Wasserstoffleitung 17 über ein Druckreduzierventil 14 zu einem Dosier- und Absperrventil 15 und von dort dem Rohabgas an einem Punkt β beigemischt wird und/oder dem von einem Oxidationskatalysator 3 behandelten Abgas an einem Punkt 7 in einer von einem Verbrennungsmotor 1 führenden Abgasleitung 2 zugegeben wird. Der Pfeil A deutet die Strömungsrichtung des Abgases an. Im Abgasrohr 2 liegt, dem Oxidationskatalysator 3 nachgeschaltet, ein NOx- Speicherkatalysator 4.
Das H2-Gas, das von der Hydrolyseeinheit 10 erzeugt wird, kann entweder in der jeweils benötigten Menge auf Anforderung erzeugt werden, oder es kann ein Wasserstoffreservoir 11 zwischen die Hydrolyseeinheit 10 und das Druckreduzierventil 14 geschaltet sein, von dem ein Kondensatrücklauf RK über ein Absperrventil 16 zum Wasserbehälter 19 führt. Verbunden mit dem als Zwischenspeicher dienenden Wasserstoffreservoir 11 ist ein Drucksensor 13. Ferner ist ein Sicherheitsventil 12 am Wasserstoffreservoir 11 angebracht. Gegebenenfalls kann das Wasserstoffreservoir 11 auch durch das Innenlumen der H2-Leitung 17 dargestellt sein.
Das Dosier- und Absperrventil kann so ausgelegt sein, dass bei Bedarf der zum Punkt 6 strömende Wasserstoff, d. h. der dem Rohabgas beigemischte Wasserstoffanteil und der nach dem Oxidationskatalysator 3 (am Punkt 7) dem Abgas beigemischte Wasserstoffanteil getrennt dosiert werden können. Figur 1 zeigt ferner, dass eine Steuer/Regeleinheit 18 eine Schnittstelle aufweist, die mit der Hydrolyseeinheit 10, dem Drucksensor 13 des Wasserstoffreservoirs 11, dem Dosier- und Absperrventil 15, dem Absperrventil 16 und mit einem die Abgastemperatur TA messenden Temperatursensor 5 in Verbindung steht. Die Steuer/Regeleinheit 18 ist dazu eingerichtet, die Wasserstofferzeugung in der Hydrolyseeinheit 10 und die Dosiereinrichtung 15 abhängig von bestimmten Betriebszuständen des Verbrennungsmotors 1 und von erfassten Parametern des Abgassystems, wozu die Abgastemperatur TA gehört, zu steuern und regeln.
Wenn der mit der erfindungsgemäßen Vorrichtung zur Nachbehandlung des Abgases ausgerüstete Verbrennungsmotor 1 z. B. ein direkt einspritzender Benzinmotor ist, läßt sich das erfindungsgemäße Verfahren auf -verschiedene Weisen anwenden:
1. Zugabe von H2 in das Rohabgas (am Punkt 6) zur Darstellung der Regenerierungsphasen beim NOx-Speicher- katalysator 4 (Abstand ungefähr 1 x pro Minute) , falls der momentane Motorbetriebspunkt eine motorseitige Bereitstellung von HC bei ausreichender Temperatur nicht zuläßt. Die Steuerung der Regenerierung durch die Steuer/Regeleinheit 18 erfolgt in Analogie zur NOx- Katalysatorsteuerung beim Benzin-Direkteinspritzmotor.
2. Wiederherstellung einer ausreichenden Konvertierungsrate nach einer Schwefelvergiftung an den Oxidationsstufen des NOx-Speicherkatalysators 4. Dies ist, z. B. nach einigen Betriebsstunden, in Abhängigkeit vom Schwefelgehalt des Kraftstoffs erforderlich. Die Steuerung der Regenerierung durch die Steuer/Regeleinheit 18 erfolgt nach erkannter Abnahme der Konvertierungsrate. Dazu hat die Steuer/Regeleinheit 18, die mit einer entsprechenden Katalysatorsensorik in Verbindung steht, eine Katalysatorüberwachungsfunktion .
Figur 2 stellt ein zweites Ausführungsbeispiel dar, bei dem das erfindungsgemäße Verfahren bei einem mit einem CRT-Partikelfilter ausgestatteten Kraftfahrzeugmotor, z. B. einem Dieselmotor mit Direkteinspritzung, zur Abgasnachbehandlung verwendet wird. Ein derartiger Partikelfilter 8, wie er in Figur 2 gezeigt ist, ist im Abgasrohr 2 des direkt einspritzenden Dieselmotors 1 enthalten. Dem CRT-Partikelfilter 8 ist ein Oxidationskatalysator 3 vorgeschaltet. Der von der Hydrolyseeinheit 10 erzeugte und durch das Dosier- und Absperrventil 15 in entsprechender Menge dosierte Wasserstoff wird am Punkt 6 dem Rohabgas zugemischt, das durch das Abgasrohr 2 strömt (Pfeil A) . Sämtliche anderen apparativen Details der dargestellten Vorrichtung sind in Figur 2 gleichartig wie bei der oben beschriebenen, in Figur 1 dargestellten Vorrichtung.
Auch hier werden mehrere Anwendungsfälle unterschieden:
1. Beim Dieselmotor wird H2 dem Rohabgas zur Darstellung der Regenerierungsphasen des Partikelfilters 8 zugegeben, falls eine innermotorische HC-Generierung nicht möglich ist. Die Regenerierung wird in Analogie zur NOx-Katalysatorsteuerung bei Benzin-Direkteinspritzungs- motoren gesteuert.
2. Beim Dieselmotor kann mit dem erfindungsgemäßen Verfahren eine ausreichende Konvertierungsrate nach einer Schwefelvergiftung des Partikelfilters 8 durch das erfindungsgemäße Verfahren wieder hergestellt werden. Dies ist z. B. nach einigen Betriebsstunden in Abhängig- keit vom Schwefelgehalt des Kraftstoffs erforderlich. Die Steuerung der Regenerierung des Partikelfilters 8 kann nach erkannter Abnahme der Konvertierungsrate einsetzen, wozu in der Steuer/Regeleinheit 18 eine Katalysatorüberwachungsfunktion integriert ist.
3. Die Abgastemperatur kann durch die erfindungsgemäße Einleitung von Wasserstoff zur Gewährleistung der Regenerationsbedingungen beim Betrieb des Partikelfilters 8 in temperaturkritischen Schwachlastgebieten angehoben werden.
Auch in Figur 2 gilt, dass das H2-Reservoir 11 lediglich optioneil vorhanden ist, und statt dessen ein H2-Rohr mit ausreichendem Innenlumen das als Zwischenspeicher dienende H2-Reservoir 11 ersetzen kann.
Zusammengenommen dient das erfindungsgemäße Verfahren zur Nachbehandlung des Abgases eines Verbrennungsmotors, insbesondere im Kraftfahrzeug, der Erhöhung von Abgas- und Katalysatortemperatur, was insbesondere beim Kaltstart und im Schwachlastbetrieb erforderlich ist. Ferner kann mit dem erfindungsgemäßen Verfahren Wasserstoff "On-Board" und im transienten Betrieb erzeugt und je nach Bedarf und Anwendungsfall über das Dosier- und Absperrventil 15 dem Katalysator bzw. Partikelfilter zugesetzt werden. Im Gegensatz zur innermotorischen HC- Generierung, die ein "Common Rail" Einspritzsystem voraussetzt, werden die Abgasqualität, insbesondere die Partikelrate, und die Motorakkustik nicht zusätzlich verschlechtert. Zudem ist das Ansprechverhalten der Systeme bei der Zugabe von Wasserstoff ungleich schneller.
PATENTANSPRÜCHE
1. Verfahren zur Abgasnachbehandlung des von einem Verbrennungsmotor (1), insbesondere in einem Kraftfahrzeug, erzeugten Abgases, gekennzeichnet durch
Bereitstellen einer mit einem Wasserreservoir (19) verbundenen Hydrolyseeinheit (10) zur Gewinnung von Wasserstoff, und
Dosierung der dem Rohabgas (A) und/oder dem durch einen Oxidationskatalysator (3) behandelten Abgas zugeführten Wasserstoffmenge abhängig von einem bei bestimmten Betriebszuständen und/oder Katalysatorfunk- tionen auftretenden Bedarf an Wasserstoff.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die jeweils benötigte Wasserstoffmenge auf Anforderung in der Hydrolyseeinheit (10) erzeugt und direkt für die Dosierung zur Verfügung gestellt wird.
3. Verfahren nach Anspruch 1, gekennzeichnet durch die
Bereitstellung eines Wasserstoffreservoirs (11) , das eine bestimmte Menge des von der Hydrolyseeinheit (10) erzeugten Wasserstoffs speichert.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Menge des Wasserstoffs im Reservoir (11) so bemessen ist, dass sie zur Erwärmung und Regenerierung eines NOx-Speicherkatalysators (4) ausreicht. 5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Temperatur (TA) des Rohabgases (A) und bestimmte Betriebszustände des Kata- lysatorsystems (3, 4) erfasst werden.
6. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 5 zur Darstellung von Regenerierungsphasen bei einem NOx-Speicherkatalysator, wobei Wasserstoff in bestimmten Zeitintervallen und in jeweils erforderlicher Menge dem Rohabgas zugesetzt wird.
7. Verwendung nach Anspruch 6, dadurch gekennzeichnet, dass im Falle eines Dieselmotors die Zugabe von Wasser- stoff zum Abgas aktiviert wird, wenn eine innermotorische Kohlenwasserstofferzeugung nicht möglich ist.
8. Verwendung nach Anspruch 6, dadurch gekennzeichnet, dass im Falle eines Benzinmotors die Zugabe von Wasser- stoff zum Abgas aktiviert wird, wenn der momentane Motorbetriebspunkt eine innermotorische Kohlenwasser- stoffbereitstellung bei ausreichender Temperatur nicht zuläßt .
9. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 5 zur Wiederherstellung einer ausreichenden Konvertierungsrate nach einer Schwefelvergiftung an den Oxidationsstufen eines NOx-Speicherkatalysators (4) oder eines Partikelfilters (8) durch Regenerierung der Oxidationsstufen des Speicherkatalysators (4) bzw. des Partikelfilters (8) mittels Wasserstoffreduktion .
10. Verwendung nach Anspruch 9, dadurch gekennzeichnet, dass die Regenerierung nach einer Erfassung der Abnahme der Konvertierungsrate des NOx-Speicherkatalysators (4) bzw. des Partikelfilters (8) aktiviert wird.
11. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 5 zur Anhebung der Abgastemperatur (TÄ) , um die
Regenerierungsbedingungen beim Betrieb eines Partikelfilters (8) im temperaturkritischen Schwachlastbetrieb zu gewährleisten.
12. Vorrichtung zur Nachbehandlung des Abgases eines Verbrennungsmotors (1) , insbesondere in einem Kraftfahrzeug, dadurch gekennzeichnet, dass eine Hydrolyseeinheit (10) und eine über eine Wasserstoffleitung (17) mit ihr verbundene Dosiereinrichtung (15) zur dosierten Zugabe von Wasserstoff zum Rohabgas (A) und/oder zu dem durch einen Oxidationskatalysator (3) behandelten Abgas und eine Steuer/Regeleinheit (18) vorgesehen sind, die in funktioneller Verbindung mit der Hydrolyseeinheit (10) und der Dosiereinrichtung (15) steht, um die Wasser- Stofferzeugung in der Hydrolyseeinheit (10) und die Dosiereinrichtung (15) abhängig von bestimmten Betriebszuständen des Verbrennungsmotors (1) und von erfassten Parametern des Abgassystems zu steuern bzw. zu regeln. 13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Dosiereinrichtung (15) ein Dosier- und Absperrventil ist.
14. Vorrichtung nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass der Hydrolyseeinheit (10) ein WasserstoffZwischenspeicher (11) nachgeschaltet ist, um eine bestimmte Menge Wasserstoff zu speichern.
15. Vorrichtung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Steuer/Regeleinheit (18) eine in funktioneller Verbindung mit einer Abgassensorik (5) stehende Katalysator-Überwachungsfunktion aufweist.
EP00969193A 1999-08-21 2000-08-18 Verfahren und vorrichtung zur abgasnachbehandlung des von einem verbrennungsmotor erzeugten abgases Withdrawn EP1212522A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19939807A DE19939807C2 (de) 1999-08-21 1999-08-21 Verfahren und Vorrichtung zur Abgasnachbehandlung des von einem Verbrennungsmotor erzeugten Abgases und dessen Verwendung
DE19939807 1999-08-21
PCT/DE2000/002833 WO2001014697A1 (de) 1999-08-21 2000-08-18 Verfahren und vorrichtung zur abgasnachbehandlung des von einem verbrennungsmotor erzeugten abgases

Publications (1)

Publication Number Publication Date
EP1212522A1 true EP1212522A1 (de) 2002-06-12

Family

ID=7919238

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00969193A Withdrawn EP1212522A1 (de) 1999-08-21 2000-08-18 Verfahren und vorrichtung zur abgasnachbehandlung des von einem verbrennungsmotor erzeugten abgases

Country Status (5)

Country Link
US (1) US6810657B1 (de)
EP (1) EP1212522A1 (de)
JP (1) JP2003507631A (de)
DE (1) DE19939807C2 (de)
WO (1) WO2001014697A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128414A1 (de) 2001-06-12 2002-12-19 Daimler Chrysler Ag Abgasreinigungsanlage mit Reduktionsmittelversorgung
DE10161696A1 (de) 2001-12-15 2003-06-26 Bayerische Motoren Werke Ag Verfahren zur katalytischen Abgasnachbehandlung von motorischen Verbrennungsabgasen
US7021048B2 (en) * 2002-01-25 2006-04-04 Arvin Technologies, Inc. Combination emission abatement assembly and method of operating the same
DE10203034A1 (de) * 2002-01-26 2003-07-31 Ballard Power Systems Verfahren und Vorrichtung zur Reduzierung von Stickoxiden im Abgas einer Brennkraftmaschine
FR2838770B1 (fr) * 2002-04-17 2005-11-25 Renault Sa Systeme de depollution de gaz d'echappement d'un moteur diesel et procede de mise en oeuvre
DE10219799A1 (de) * 2002-05-03 2003-11-13 Bosch Gmbh Robert Verbrennungsvorrichtung mit einer Abgasreinigungsvorrichtung
DE10244883B4 (de) 2002-09-26 2005-02-17 J. Eberspächer GmbH & Co. KG Heizsystem für ein Fahrzeug
DE10308288B4 (de) * 2003-02-26 2006-09-28 Umicore Ag & Co. Kg Verfahren zur Entfernung von Stickoxiden aus dem Abgas eines mager betriebenen Verbrennungsmotors und Abgasreinigungsanlage hierzu
DE10326055B4 (de) * 2003-06-10 2006-02-02 Audi Ag Abgasnachbehandlungsvorrichtung einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, und entsprechendes Kraftfahrzeug
US20040265201A1 (en) * 2003-06-25 2004-12-30 Norman Dale Brinkman NOx removal system
DE10341143A1 (de) * 2003-09-06 2005-04-07 Fev Motorentechnik Gmbh Partikelfilterregeneration
JP5013034B2 (ja) * 2004-09-07 2012-08-29 トヨタ自動車株式会社 燃料電池システム
DE102004061247B4 (de) 2004-12-20 2024-03-21 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102005025045A1 (de) 2005-05-30 2006-12-14 J. Eberspächer GmbH & Co. KG Abgasanlage
US7302795B2 (en) * 2005-07-11 2007-12-04 Jan Vetrovec Internal combustion engine/water source system
DE102006023035A1 (de) * 2005-12-20 2007-06-28 Kirchhoff, Reinhold, Dr.-Ing. Verfahren zur Entfernung von Kohlenstoffdioxiden aus Abgasströmen
FR2902828B1 (fr) 2006-06-27 2008-09-26 Renault Sas Ligne d'echappement d'un moteur diesel et procede de desulfatation.
DE102007039081A1 (de) * 2007-08-18 2009-02-19 J. Eberspächer GmbH & Co. KG Brennkraftmaschinensystem
RU2508457C2 (ru) * 2009-03-05 2014-02-27 Мак Тракс, Инк. Система дизельного двигателя и способ обработки отработавших газов
JP5776176B2 (ja) 2010-12-16 2015-09-09 いすゞ自動車株式会社 排気管噴射システム
JP6474685B2 (ja) * 2015-05-20 2019-02-27 株式会社Soken 内燃機関の排気浄化装置及び粒子状物質検出装置
CN110678632B (zh) * 2017-04-04 2022-10-04 巴斯夫公司 氢在车上产生和在排气料流中的使用
KR102568461B1 (ko) * 2017-04-04 2023-08-21 바스프 코포레이션 촉매작용에 의한 오염 저감을 위한 수소 환원제

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272871A (en) * 1991-05-24 1993-12-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Method and apparatus for reducing nitrogen oxides from internal combustion engine
DE4201018A1 (de) 1992-01-16 1993-07-22 Daimler Benz Ag Verfahren zur nachbehandlung von abgasen
DE4208609C2 (de) 1992-03-18 1994-12-15 Daimler Benz Ag Verfahren zur Reduzierung der Zeitdauer bis zum Erreichen der Betriebstemperatur einer im Abgassystem einer Brennkraftmaschine angeordneten Abgasreinigungsvorrichtung
JP2780596B2 (ja) 1993-04-20 1998-07-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3899534B2 (ja) * 1995-08-14 2007-03-28 トヨタ自動車株式会社 ディーゼル機関の排気浄化方法
DE19600558C2 (de) * 1996-01-09 1998-10-22 Daimler Benz Ag Verfahren zur Verringerung von Stickoxiden in Abgasen von Dieselmotoren
JP4034375B2 (ja) * 1997-04-03 2008-01-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3353650B2 (ja) 1997-06-20 2002-12-03 トヨタ自動車株式会社 内燃機関の触媒被毒再生装置
EP0991852A2 (de) 1997-06-27 2000-04-12 Lynntech, Inc. Verfahren und vorrichtung zum einspritzen von wasserstoff in einen katalytischen umwandler
US6122909A (en) * 1998-09-29 2000-09-26 Lynntech, Inc. Catalytic reduction of emissions from internal combustion engines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0114697A1 *

Also Published As

Publication number Publication date
DE19939807A1 (de) 2001-03-01
US6810657B1 (en) 2004-11-02
JP2003507631A (ja) 2003-02-25
WO2001014697A1 (de) 2001-03-01
DE19939807C2 (de) 2001-11-29

Similar Documents

Publication Publication Date Title
DE19939807C2 (de) Verfahren und Vorrichtung zur Abgasnachbehandlung des von einem Verbrennungsmotor erzeugten Abgases und dessen Verwendung
DE102012001251B4 (de) Verfahren und vorrichtung zur an-bord-überwachung der leistungsfähigkeit eines oxidationskatalysators
DE102015212485B4 (de) Abgastrakt mit gegen eine Strömungsrichtung spritzende Dosiereinrichtung, Verfahren zum Betrieb eines Abgastraktes sowie Fahrzeug mit Abgastrakt
DE102007044610B4 (de) Verfahren zur Detektion der minimalen Öffnungszeit einer Reduktionsmittelzuführeinrichtung in einem Abgasnachbehandlungssystem mit einem SCR-Katalysator
DE102005062120A1 (de) Verfahren und Vorrichtung zur Überwachung eines Abgasnachbehandlungssystems
WO2010066564A1 (de) Verfahren und vorrichtung zur adaption der injektionsmittelzufuhr in einem injektionssystem sowie abgasnachbehandlungssystem
DE102013212801A1 (de) Anordnung zur Abgasnachbehandlung für einen Verbrennungsmotor sowie Verfahren zum Betreiben eines Verbrennungsmotors
EP1108862B1 (de) Verfahren und Vorrichtung zum Reduzieren schädlicher Bestandteile im Abgas einer Brennkraftmaschine
DE102009038835A1 (de) Abgasreinigungsanlage für eine Brennkraftmaschine
DE102012010991A1 (de) Verfahren zum Betreiben einer Reduktionsmitteldosierung eines SCR-Katalysatorsystems sowie SCR-Katalysatorsystem
DE102016222010A1 (de) Verfahren zum Steuern einer Brennkraftmaschine mit einem Niederdruck-Abgasrückführungssystem
DE19600558C2 (de) Verfahren zur Verringerung von Stickoxiden in Abgasen von Dieselmotoren
DE102016202235B4 (de) Verfahren zum Eindosieren eines Reduktionsmittels in einen Abgasstrang einer Verbrennungskraftmaschine
DE102007039588B4 (de) Vorrichtung und Verfahren zur Reinigung von Abgasen für eine Brennkraftmaschine
DE112018006545T5 (de) Abgasreinigungsvorrichtung für einen verbrennungsmotor
DE102009043087A1 (de) Brennkraftmaschine mit Sekundärluftzuführung sowie ein Verfahren zum Betreiben dieser
DE102014213890A1 (de) Verfahren zum Betreiben einer Reduktionsmitteldosierung eines SCR-Katalysatorsystems sowie entsprechendes SCR-Katalysatorsystem
DE112017000463T5 (de) Systeme und Verfahren zur Wiederherstellung selektiver katalytischer Reduktionssysteme
EP2238333B1 (de) Verfahren und vorrichtung zur schaltdruckberechnung bei einem dosierventil
WO2017092839A1 (de) Verfahren zur abgasnachbehandlung und abgasanlage
DE102011002500A1 (de) Verfahren und Vorrichtung zum Betreiben einer Abgasreinigungsanlage
DE10361220B4 (de) Verfahren zum Regenerieren eines Partikelfilters
DE102016112363B4 (de) Abgasnachbehandlungssystem
DE102012222040A1 (de) Eindosierungsvorrichtung
DE102023116770A1 (de) Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060530