EP1211706B1 - Appareillage de coupure électrique haute tension à double mouvement - Google Patents

Appareillage de coupure électrique haute tension à double mouvement Download PDF

Info

Publication number
EP1211706B1
EP1211706B1 EP01410154A EP01410154A EP1211706B1 EP 1211706 B1 EP1211706 B1 EP 1211706B1 EP 01410154 A EP01410154 A EP 01410154A EP 01410154 A EP01410154 A EP 01410154A EP 1211706 B1 EP1211706 B1 EP 1211706B1
Authority
EP
European Patent Office
Prior art keywords
contact
arcing
volume
permanent
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01410154A
Other languages
German (de)
English (en)
Other versions
EP1211706A1 (fr
Inventor
Vincent Schneider Electric Ind. SA Chareyron
Pierre Schneider Electric Ind. SA Chevrier
Georges Schneider Electric Ind. SA Gaudart
Fabrice Schneider Electric Ind. SA Jaillet
Mitsuru Schneider Electric Ind. SA Toyoda
Michel Schneider Electric Ind. SA Vinatier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Transmission and Distribution SA
Original Assignee
VA Tech Transmission and Distribution SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VA Tech Transmission and Distribution SA filed Critical VA Tech Transmission and Distribution SA
Publication of EP1211706A1 publication Critical patent/EP1211706A1/fr
Application granted granted Critical
Publication of EP1211706B1 publication Critical patent/EP1211706B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/904Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism characterised by the transmission between operating mechanism and piston or movable contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/76Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid wherein arc-extinguishing gas is evolved from stationary parts; Selection of material therefor
    • H01H33/78Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid wherein arc-extinguishing gas is evolved from stationary parts; Selection of material therefor wherein the break is in gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H2033/028Details the cooperating contacts being both actuated simultaneously in opposite directions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • H01H3/42Driving mechanisms, i.e. for transmitting driving force to the contacts using cam or eccentric

Definitions

  • the invention relates to an electrical switchgear high voltage double movement of the contacts.
  • Load switching devices, switches, disconnectors or circuit breakers are known for high voltage and in particular for very high voltage, comprising two separable aligned contacts and a control mechanism causing the displacement in translation of one of the contacts with respect to the voltage. 'other.
  • the stroke of the second contact after separation is completely independent of that of the first contact, since there is no mechanical connection between the contacts beyond the separation position.
  • the mechanism of drive command indicates a sectioning position, when in fact the sectioning distance is not respected.
  • a switchgear apparatus comprising a sealed envelope filled with dielectric gas.
  • First and second movable contacts are positioned within the envelope and are normally engaged to each other to allow current flow.
  • a rod and crank mechanism allows both contacts to be driven simultaneously in opposite directions relative to the envelope, with equal speeds. The speed of separation is greater than in switchgear allowing only the movement of one of the two contacts.
  • the connecting rod and crank mechanism ensures at all times a mechanical connection between the first and the second contact so that the position of the second contact is always related to the position of the first contact and that of the drive mechanism.
  • the power required is important because it is necessary to drive at any time the two mobile masses formed by the two contacts.
  • this device does not have arc contacts, which makes it inapplicable to high performance devices.
  • the links of the return mechanism pose a congestion problem inside the sealed envelope.
  • EP 313 813 is described a high voltage electrical switch comprising a sealed envelope filled with a dielectric gas and containing a movable contact member and a fixed contact member.
  • the movable contact member comprises a permanent contact and an arc contact integral with each other, and a nozzle of insulating material fixed to the permanent contact.
  • the movable contact member is driven axially in translation in the envelope by a drive mechanism.
  • the fixed contact member comprises a permanent contact which is fixed relative to the casing, and an axially sliding arc contact in a sliding contact making the electrical connection with the fixed permanent contact.
  • a rack and pinion transmission mechanism transmits the translational movement of the movable contact member to the sliding arc contact of the stationary contact member.
  • the arcing contact of the contact member fixes to a tubular shape so that when the switch is closed, the contact arc of the movable contact member penetrates deeply into the arc contact of the fixed contact member.
  • the moving permanent contact separates from the fixed permanent contact before the arcing contacts separate.
  • the separation of the arcing contacts occurs, they are driven relative to each other with a speed which is twice the speed of the moving permanent contact with respect to the fixed permanent contact.
  • the switch comprises a first contact member and a second contact member.
  • the first contact member comprises a permanent contact, an arc contact and a nozzle of insulating material forming a monobloc assembly mu directly by a drive mechanism.
  • the second contact member comprises a permanent contact and an arc contact integral with each other.
  • the movement of the arc contact of the first contact member is transmitted to the second contact member via a transmission mechanism comprising a movement reversal lever, a first link articulated on the nozzle and on the lever, and a second link articulated to the second contact member and the lever.
  • Moving mass is important since it includes both arc contacts and the two permanent contacts.
  • the drive mechanism must be dimensioned accordingly.
  • One of the critical cut-off tests is a low-intensity capacitive current cut-off test. To cut such currents, the distance between the arcing contacts must grow very quickly from their separation, while to cut the short-circuit currents, it suffices to reach a contact distance in less than half a second. -period of the current, and wait for the passage of current by zero. The device does not allow an optimization of the kinetic energy in this case.
  • US 5,578,806 discloses a switch having a first contact member and a second contact member.
  • the first contact member comprises a permanent contact, an arc contact and a nozzle of insulating material forming a monobloc assembly directly driven by a drive mechanism.
  • the second contact member comprises a permanent contact and an arc contact integral with each other.
  • the movement of the arcing contact of the first contact member is transmitted to the second contact member via a transmission mechanism comprising a transmission gear wheel, a rack integral with the nozzle and meshing with the toothed wheel, and a rod articulated on the one hand at a point of the circumference of the wheel and secondly on the second contact member.
  • the transmission mechanism is non-linear, which makes it possible to impose on the second contact member a low speed at the beginning of movement, during the separation of the permanent contacts, to rapidly increase the speed when the arcing contacts separate, then slow down the speed at the end of the opening stroke. It thus becomes possible to cut the capacitive currents without spending too much motive power.
  • the device does not optimize the kinetic energy of the system.
  • an apparatus comprising a first contact member consisting of a permanent contact, an arcing contact and an insulating nozzle forming a single-piece assembly driven directly by a drive mechanism, and a second contact member having a fixed permanent contact, an arc contact and a dielectric screen.
  • a transmission mechanism connects the nozzle to the arc contact of the second contact member.
  • This transmission mechanism comprises a movement reversing lever, a connecting rod connecting the lever to the arc contact and a rod fixed to the nozzle and sliding in a rectilinear groove of the lever.
  • the transmission mechanism is nonlinear in the sense that the ratio between the speed of the nozzle and the speed of the arc contact of the second contact member is not constant.
  • the speed of the nozzle remains much greater than the speed of the arc contact of the second contact member, while the moving mass integral with the nozzle, which also comprises the first member of contact, is much greater than the moving mass integral with the arc contact of the second contact member.
  • the kinetic energy of the mechanism is not optimized during the opening.
  • a circuit breaker of the self-blow type and self-compression having a first contact member consisting of a permanent contact, an arc contact and an insulating nozzle forming a set monoblock driven directly by a drive mechanism, and a second contact member having a fixed permanent contact and an arc contact.
  • a transmission mechanism connects the nozzle to the arc contact of the second contact member.
  • the first contact member forms a cylinder opening towards the nozzle through small diameter conduits, and closed on the opposite side by a fixed piston, so as to constitute a variable volume blowing chamber. As the first contact member moves, the piston enters the blowing chamber and the volume of the chamber decreases.
  • the movement of the first contact member causes an increase in the pressure in the blowing chamber.
  • the second arcing contact releases the orifice from the nozzle.
  • the volume of the blow chamber continues to decrease and gases escape from the blow chamber through the orifice, helping to extinguish the incipient arc between the arc contacts.
  • the blow In the case of an opening on a strong current, the blow must be continued in order to bring the relatively fresh gases contained in the blowing chamber continuously to the arc, until the arc goes out. In other words, the action of the piston is necessary during the entire opening movement.
  • the speed of the first contact member relative to the piston must therefore be sufficient for the pressure in the blowing chamber remains greater than the pressure at the nozzle.
  • the ratio of speeds remains constant during the opening stroke, which is well suited to the need of this type of circuit breaker, and in particular the need to blow continuously by compressing the blowing chamber.
  • the teaching of this document is difficult to transpose to a circuit breaker comprising a compression piston.
  • the invention therefore aims to overcome the drawbacks of the state of the art, so as to provide a compression high-voltage switchgear, which is efficient and which allows to obtain a fast and reliable opening, in a limited volume and with reduced maneuvering energy.
  • the reliability of the device is due to the fact that the kinematic connection provided by the transmission mechanism is permanent, so that the position of the first contact member and the position of the operating mechanism give a faithful picture of the position of the second arcing contact.
  • the imposed speed ratio between the closed position and the first indexed fugitive position makes it possible to rapidly accelerate the first contact member, which is the heaviest, at the very beginning of the opening, before the separation of the arcing contacts. It therefore makes it possible to devote all the energy available to the piston drive, which works to compress the gas contained in the compression volume.
  • the discharge valve opens, also allowing the increase in pressure of the arc expansion volume.
  • the pressure in the arc expansion volume is already high, which is favorable for the breaking of the capacitive currents.
  • the breakdown voltage between two electrodes carried at different potentials in a given gaseous medium that is to say the minimum voltage necessary for an electric arc appears between the electrodes in the gaseous medium considered
  • the minimum voltage necessary for an electric arc appears between the electrodes in the gaseous medium considered is a function of the product of the gas pressure by the distance separating the electrodes, given by the Paschen's law, and that beyond a minimum value, this function increases with the product of the pressure by the distance.
  • the gear ratio imposed during the passage of the first contact member by the second indexed fugitive position significantly reduces the energy of the moving assembly at a time when the speed acquired by the piston is sufficient and where it is useful to quickly increase the distance between the arcing contacts.
  • a first mobile unit constituted by the moving masses integral with the first contact and secondly a second mobile unit constituted by the moving masses integral with the second arcing contact, it is found that the first mobile unit has a mass M 1 higher than the mass M 2 of the second mobile unit. This is explained by the fact that the first contact is integral on the one hand with the nozzle and on the other hand with a part of the drive control mechanism.
  • the gear ratio imposed during the passage of the first contact member by the third indexed fugitive position allows to dedicate all the kinetic energy available at the end of the opening stroke to the first contact member connected to the piston, so as to favor the blowing of the arc at the nozzle, which is important for cutting off the overload currents, and also makes it possible to replace with fresh and clean gases hot gases and dirty during the cut.
  • the second indexed position P 5 is situated between the fugitive separation position of the first and second arcing contacts P 3 and the open position. This choice makes it possible to precisely optimize the kinetic energy of the device at the point of contact travel chosen for the extinction of the arcs connected to the capacitive currents.
  • the maximum value is greater than 1.5.
  • the increase in the relative speed of the arcing contacts is thus even more favored.
  • the second permanent contact member and the second arc contact member are integral with each other.
  • this solution has the effect of globally increasing the moving mass of the system, compared to a solution where only the second arc contact is movable.
  • this mobile mass supplement is not harmful in view of the desired effects. Indeed, the best performance of the mechanism is obtained for a ratio of velocities V 2 / V 1 equal to the ratio of the masses of the moving crews on either side of the transmission mechanism.
  • the ratio M 1 / M 2 will be very high, and it will become difficult in practice to produce a transmission mechanism whose structure is simple and which ensures such a maximum transmission ratio, while ensuring low values of the transmission ratio at the beginning and at the end of the race.
  • the first contact member and the nozzle together form a first movable mass element M 1
  • the second permanent contact member and the second arc contact member form a second mobile mass element M 2 and when the first member contact passes through the first indexed fugitive position, the gear ratio verifies the relation: 0 , 8 M 1 M two ⁇ V two V 1 ⁇ 1 , two M 1 M two .
  • This mechanism has the advantage of allowing, where appropriate, rectilinear guidance of the rod.
  • the nozzle comprises a neck forming a first gas flow path of the arc expansion volume to an expansion volume inside the enclosure, this first path being at least partially closed by the second contact arc as long as the first contact member is between the closed position and a fourth indexed fugitive position P 6 located between the fugitive position of separation of the first and second arcing contacts P 3 and the open position.
  • the apparatus comprises a second gas flow path between the expansion volume and the expansion volume of the chamber, provided with a delay valve which remains closed as long as the first contact member is between the closed position and a fifth indexed position P 4 , located between the fugitive separation position of the first and second arcing contacts P 3 and the open position.
  • the two gas circulation paths are in competition, which makes it possible to increase the flow rate of gas blowing.
  • the valve makes it possible to precisely determine the beginning of the opening of this gas flow path, after the separation of the arcing contacts. The time interval between the separation of the arcing contacts and the opening of the valve, is exploited to continue the increase in pressure in the expansion volume caused jointly by the piston and the arc pulled between the arc contacts at their separation.
  • the fourth indexed position P 6 is located between the fifth indexed position P 4 and the open position.
  • the opening of the second path precedes the opening of the first path during the opening sequence of the mechanism.
  • the second indexed position P 5 is located near the fourth indexed position P 6 and the fifth indexed position P 4 .
  • the first arc contact comprises a tube and the gas flow path passes through this tube.
  • a high-voltage circuit breaker in this case a circuit breaker for voltages exceeding 36kV, immersed in a chamber 10 filled with a high dielectric strength gas, for example sulfur hexafluoride SF 6 and comprising a first contact member 12 moved by an operating mechanism 14, a nozzle 16 integral with the first contact member 12 and a second contact member 18 kinematically connected to the nozzle 16 via a transmission mechanism movement 20.
  • the enclosure 10 allows to define a fixed reference geometric axis 22, which constitutes a translation axis for the moving parts.
  • the first contact member 12 is composed of a cylindrical tubular permanent contact 24 and an arc contact 26 arranged coaxially with the inside of the permanent contact 24.
  • the arc contact 26 is also tubular and is provided at its free end with a racking pin 28 composed of contact fingers arranged corolla.
  • the permanent contact 24 is provided with a cylindrical end plugging area 30 allowing its cooperation with the second contact member 18.
  • the arc contact 26 and the permanent contact 24 are integral with one another. other and jointly driven by the operating mechanism 14.
  • the nozzle 16 is constituted by a piece of insulating material for degassing in the presence of an electric arc, for example Teflon. It is fixed on an internal surface of the permanent contact 24 and is interposed between the cylindrical end plugging area 30 of the permanent contact and the clamp 28 of the arcing contact. The nozzle forms a neck 32 separating two chambers 34, 36.
  • an electric arc for example Teflon
  • the end plugging range 30 of the permanent contact 24 is extended by a cylindrical outer peripheral surface of a sliding contact wall 38 which slides axially inside a cylindrical collector 40 fixed with respect to the enclosure 10 serving to support and guide the contact member 12, the collector 40 being provided with a sliding contact ring 41 ensuring the electrical contact between the permanent contact 24 and the collector 40 during the translation of the permanent contact 24.
  • the cylindrical collector 40 delimits an internal compression volume 42 hermetically closed by a cylinder head 44.
  • the permanent contact 24 is provided, at its axial end penetrating into the manifold 40, with a piston 46 which separates the compression volume 42 from a volume arc expansion 48 delimited radially by the cylindrical wall 38 of the permanent contact 24 and, at its axial end opposite the piston 46, by the nozzle 16.
  • the piston 46 is provided with a discharge valve 50 opening as soon as the compression volume 42 is overpressurized with respect to the arc expansion volume 48.
  • the piston 46 is integral with the permanent contact 24 and the arc contact 26 and provides a current path between the permanent contact 24 and the arc contact 26.
  • the arc contact 26 forms a tube 52 which passes through the piston 46 and the cylinder head 44 and projects inside a volume 54 of expansion delimited by the sealed enclosure 10.
  • the expansion volume 54 occupies all the space available in the chamber, until the recess 36.
  • the end of the tube 52 is fixed to a rod 56 constituting the output member of the mechanism 14.
  • Lateral openings 58 are formed at the end of the tube 52, so that a gas flow path 60 is made between the arc expansion volume 48 and the expansion volume 54, passing through the inside of the tube 52.
  • a closure sleeve 61 secured to the cylinder head 44 acting as a delay valve hermetically covers the openings 58 in the closed position shown in FIG. 4.
  • the yoke 44 is provided with a filling valve 62 and a drain valve 64.
  • the filling valve 62 provides the communication of the expansion volume 54 to the compression volume 42, when the compression volume 42 is in position. depression relative to the expansion volume 54.
  • the drain valve 64 provides the communication of the compression volume 42 to the expansion volume 54, when the pressure difference between the compression volume 42 and the expansion volume 54 is greater than one. discharge threshold determined by a return spring 66 of the valve 64.
  • the second contact member 18, visible in detail in Figures 3 and 5, consists of a second permanent contact 70 and a second arc contact 72 integral with one another.
  • the permanent contact 70 is formed by a perforated tubular metal part, a free end of which is provided with a contact pincer 74 in the shape of a corolla.
  • the permanent contact 70 slides axially in a fixed collector 74 provided with a sliding contact 76 ensuring the electrical contact between the permanent contact 70 and the collector 74 during the translation of the permanent contact 74.
  • the second arcing contact 72 forms a finger metal 78.
  • the arc contact 72 and the permanent contact 70 are fixed to each other by means of a diametrical bar 82 also ensuring the flow of current between the two contacts 70, 72.
  • the motion transmission mechanism 20 is composed of a pivoting cam 84 cooperating with an axial end of the rod 80 of the arc contact 72 and with a transmission rod 86.
  • the cam 84 pivots about a geometric axis fixed pivot 89, perpendicular to the reference axis 22.
  • the rod 86 is articulated on the cam 84 and on a ring 88 fitted at an axial end of the nozzle 16.
  • the axial end of the arc contact 72 is provided a roller 90 having a slide function and cooperating with a track constituted by a curvilinear groove 92 in the shape of a serp, made in the cam 84.
  • a return spring end 94 recalls the bar 82 and the second contact member 18 to the closed position.
  • the apparatus operates in the following manner.
  • the clamp 74 of the second permanent contact 70 encloses the outer periphery 30 of the first permanent contact 24 and provides a current path passing through the first collector 40, the sliding contact 41, the first contact 24, the clamp 74, the second permanent contact 70, the sliding contact 76 and the second collector 76.
  • the finger 78 forming the end of the second arcing contact 72 penetrates deeply into the first arcing contact 26 and closes the tube 52.
  • the clamp 28 of the first arcing contact 26 encloses the finger 78 and forms a second current path between the first and second collectors.
  • the finger 78 closes the end of the tube 52 constituted by the arc contact 26, so that the gas column contained in the tube 52 is closed.
  • the finger 78 also occupies all the interior space of the neck 32, so that it also closes at least partially the arc expansion volume 48.
  • the operating mechanism 14 drives the first contact member 12 continuously and without stopping the closed position shown in Figures 4 and 5 to the open position shown in Figures 1 to 3.
  • the movement of the first contact member 12 is transmitted to the second contact member 18 via the nozzle 16 and the transmission mechanism 20.
  • FIG. 6 shows the curves representative of the speed of the first contact member 12 (curve A), the speed of the second contact member 18 (curve B), the ratio between the speed of the second contact member 12 and the speed of the first contact member 18 (curve C), as a function of the displacement of the first contact member 12 relative to the collector 40, carried on the abscissa.
  • the shape of the cam 84 is such that in a first step, the second contact member 18 remains substantially immobile, so that all the energy of the drive mechanism 14 serves to accelerate the first contact member 12.
  • the ratio V 2 / V 1 is close to zero, and in any case less than 0.5, as long as the first contact member is between the closed position and a first indexed transient position designated P 1 in the diagram.
  • P 1 the first contact member 12 reaches a position P 2 for separating the permanent contacts 24, 70, located at approximately 10% of its total travel.
  • the cam 84 has rotated a few degrees, so that the gear ratio V 2 / V 1 increases very rapidly to exceed 1.
  • the transmission cam 84 is shaped such that when the first contact member has passed about 50% of its opening stroke, the gear ratio V 2 / V 1 becomes less than 1 and decreases rapidly. When the first contact member passes through a fugitive position P 7 , the gear ratio becomes less than 0.5, to cancel at about 90% of the opening stroke.
  • the initial movement makes it possible to affect all the energy delivered by the drive mechanism 14 to the first contact member 12 and thus to initiate quickly a pumping effect. Indeed, as soon as the movement of the piston causes an overpressure of the compression volume 42 with respect to the arc expansion volume 48, the discharge valve 50 opens and the gas located in the compression volume 42 begins to penetrate in the arc expansion volume 48. The pressure in the arc expansion volume 48 then begins to increase since the contact finger 78 closes both the flow path 60 through the inside of the tube 52 arc contact and the flow path passing through the neck 32.
  • the current path passing through the permanent contacts 24, 70 is cut off.
  • the secondary current path passing through the arcing contacts 26, 72 remains because the finger 78 is still partially seated in the clamp 28, so that no electric arc is pulled between the permanent contacts 24, 70 before that the position P 3 of separation of the arcing contacts is reached.
  • the pressure in the arc expansion volume 48 continues to increase. From the position P 3 , the continuation of the opening depends essentially on the type of current flowing through the circuit breaker at the time of opening. Successively, the opening on a short-circuit current, the opening on an overload current and the opening on a capacitive current will be distinguished.
  • the piston 46 compresses the gas located in the compression volume 42 until it reaches the emptying threshold, beyond which the drain valve 64 opens, allowing the evacuation towards the the expansion volume 54 of the gas retained in the compression volume 42, so that the continuation of the opening movement is not impeded.
  • the arc goes out when the current passes through zero.
  • the pressure in the arc expansion volume 48 does not decrease fast enough to allow opening of the discharge valve 50 again.
  • the arc expansion volume 48 and the compression volume 42 remain separated until the end of the opening.
  • the gear ratio V 2 / V 1 becomes less than 1 and decreases rapidly.
  • the exhaust gas is deferred until the opening of the orifices 58 at the point P 4 .
  • the gas contained in the expansion volume escapes from the inside of the arc contact tube to the expansion volume.
  • the gas also escapes downwards from the nozzle 16.
  • the arc goes out when the current passes through zero. If the energy released by the arc has not been very large, the pressure in the arc expansion volume 48 decreases rapidly, allowing the discharge valve 50 to reopen.
  • the speed ratio V 2 / V 1 becomes less than 1 and decreases rapidly.
  • the available energy of the drive mechanism 14 thus serves to accelerate again in a privileged manner the first contact member 12 and thus the movement of the piston 46 in the compression volume 42.
  • Fresh and clean gases are therefore again directed from the compression volume 42 to the arc expansion volume 48 and to the arc contacts 26, 72, until the end of the opening, to prevent a reboot of the arc between Arc contacts.
  • the point P 5 corresponding to the maximum speed ratio V 2 / V 1 is located between the point P 3 of separation of the arcing contacts and the open position.
  • this point corresponds to a gear ratio greater than 1, which makes it possible to favor the speed increase of the lightest contact member, namely the second contact member 18, which does not support the nozzle 16 , relative to the displacement of the heavier contact member, namely the first contact member 12.
  • This bias allows, as has been shown previously, to maximize the relative speed V 1 + V 2 of the moving assembly for a given overall mechanical work provided by the mechanism 14.
  • the distance between the contacts is sufficient to avoid any reclasking of an arc under the conditions of the capacitive test.
  • the exhaust of the gases from the compression volume 42 to the arc expansion volume 48 continues until the end of the opening.
  • the closure proceeds in a reverse manner, noting that the filling valve 62 then becomes active to allow the filling of the compression volume 42. After the first 10% of the closing stroke, the second contact member 18 begins to close. move. The spring 94 then makes it possible to prevent any blockage of the transmission mechanism 20.
  • Opening of the orifices 58 by the delay valve 61 takes place after the separation of the contacts (at the point P 3 of the curve), and preferably before the opening of the neck of the nozzle (at the point P 6 ) because it is preferred to open first the gas flow path which has a smaller passage section, in this case the path 60.
  • the positioning of the points P 4 and P 6 relative to the point P 5 determining the maximum speed ratio is not critical, as long as these three points remain close to each other. According to a first alternative to the diagram of FIG. 6, the point P 6 can be between P 4 and P 5 . According to another alternative, the point P 4 can be between P 5 and P 6 . In some applications, it is possible to completely avoid the delay valve 61, so that the gas flow path 60 opens as soon as the finger 78 leaves the tube 58 at the point P3, knowing that the finger 78 mouth tube 52 in the closed position.
  • FIG. 7 represents a second embodiment detail, in which the transmission mechanism 120 comprises a cam 184 cooperating on the one hand with one end of the arc contact 80 and on the other hand with a rod 186.
  • the end Arc contact 80 is provided as in the first embodiment of a roller 190a having a sliding function and cooperating with a track 192a constituted by a curvilinear groove formed in the cam 184.
  • the rod 184 is provided with its end of a roller 190b having a sliding function and cooperating with track 192b constituted by a second curvilinear groove in the form of butt in the cam 184.
  • the shape of the two tracks 192a and 192b is chosen so as to obtain speed ratios of the same type as those described for the first embodiment.
  • the other elements of the circuit breaker according to the second embodiment are identical to those of the first mode.
  • valve closing the tube near the contact finger in place of the sleeve 61, so as to further promote the increase in pressure in the expansion volume at the beginning of the opening, especially in the conditions of the capacitive test.
  • the permanent contact 70 is movable and integral with the arcing contact 72. It is also conceivable to provide a fixed permanent contact 70 and a single arcing contact 72 driven by the transmission mechanism 20.

Landscapes

  • Circuit Breakers (AREA)

Description

    DOMAINE TECHNIQUE DE L'INVENTION
  • L'invention est relative à un appareillage électrique de coupure haute tension à double mouvement des contacts.
  • ETAT DE LA TECHNIQUE
  • On connaît des appareillages de coupure en charge, interrupteurs, sectionneurs ou disjoncteurs, pour haute tension et en particulier pour très haute tension, comprenant deux contacts alignés séparables et un mécanisme de commande provoquant le déplacement en translation d'un des contacts par rapport à l'autre.
  • Il a été proposé dans le document FR 1 448 854 de prévoir deux contacts mobiles en translation dans une enceinte étanche. Un premier contact est entraîné par un mécanisme de commande et est muni d'un moyen d'entraînement du deuxième contact, pour provoquer un déplacement uniforme des deux contacts au début de la course d'ouverture, de sorte que les contacts ne se séparent pas immédiatement. Des moyens de déverrouillage positif provoquent la désolidarisation des deux contacts en un endroit prédéterminé de leur course et un ressort de rappel entraîne le deuxième contact vers sa position originelle pendant que le premier contact poursuit sa course après la séparation des deux contacts. Un tel dispositif offre l'avantage d'accroître la vitesse de séparation des contacts pour une course de séparation donnée, de manière à rapidement allonger l'arc électrique naissant entre les contacts au moment de leur séparation. Mais elle nécessite un mécanisme d'entraînement puissant, puisque celui-ci doit prendre en charge, au début de la course d'ouverture, la compression du ressort de rappel. De plus, la course du deuxième contact après la séparation est totalement indépendante de celle du premier contact, puisqu'il n'existe plus de liaison mécanique entre les contacts au-delà de la position de séparation. En cas de dysfonctionnement du mécanisme de rappel du deuxième contact vers sa position de repos, il peut arriver que le deuxième contact reste coincé dans sa position intermédiaire de désolidarisation, alors que le premier contact se trouve entraîné par le mécanisme de commande d'entraînement jusqu'à sa position ouverte. Dans ce cas, le mécanisme de commande d'entraînement indique une position de sectionnement, alors qu'en fait la distance de sectionnement n'est pas respectée.
  • Dans le document US 3 896 282 est décrit un appareillage de coupure électrique comprenant une enveloppe étanche remplie de gaz diélectrique. Un premier et un second contacts mobiles sont positionnés dans l'enveloppe et sont normalement engagés l'un dans l'autre pour permettre le passage du courant. Pour ouvrir les contacts et interrompre le courant, un mécanisme à bielles et manivelle permet d'entraîner simultanément les deux contacts dans des directions opposées par rapport à l'enveloppe, avec des vitesses égales. La vitesse de séparation est plus importante que dans les appareillages de coupure ne permettant le mouvement que d'un des deux contacts. De plus, le mécanisme à bielle et manivelle assure à tout moment une liaison mécanique entre le premier et le deuxième contact de sorte que la position du deuxième contact est toujours liée à la position du premier contact et à celle du mécanisme d'entraînement. Toutefois, la puissance nécessaire, notamment au début de l'ouverture, est importante car il est nécessaire d'entraîner à tout moment les deux masses mobiles constituées par les deux contacts. De plus, ce dispositif ne comporte pas de contacts d'arc, ce qui le rend inapplicable à des appareillages de performances élevées. Enfin, les bielles du mécanisme de renvoi posent un problème d'encombrement à l'intérieur de l'enveloppe étanche.
  • Dans le document EP 313 813 est décrit un interrupteur électrique haute tension comprenant une enveloppe étanche remplie d'un gaz diélectrique et renfermant un organe de contact mobile et un organe de contact fixe. L'organe de contact mobile comporte un contact permanent et un contact d'arc solidaires l'un de l'autre, ainsi qu'une tuyère en matériau isolant fixée au contact permanent. L'organe de contact mobile est entraîné axialement en translation dans l'enveloppe par un mécanisme d'entraînement. L'organe de contact fixe comporte un contact permanent qui est fixe par rapport à l'enveloppe, et un contact d'arc coulissant axialement dans un contact glissant faisant la liaison électrique avec le contact permanent fixe. Un mécanisme de transmission à pignon et crémaillère permet de transmettre au contact d'arc coulissant de l'organe de contact fixe, le mouvement de translation de l'organe de contact mobile. Le contact d'arc de l'organe de contact fixe à une forme tubulaire de sorte que lorsque l'interrupteur est fermé, le contact d'arc de l'organe de contact mobile pénètre profondément dans le contact d'arc de l'organe de contact fixe. Lors de l'ouverture de l'interrupteur, le contact permanent mobile se sépare du contact permanent fixe avant que les contacts d'arc ne se séparent. Lorsque intervient la séparation des contacts d'arc, ceux-ci sont entraînés l'un par rapport à l'autre avec une vitesse qui est le double de la vitesse du contact permanent mobile par rapport au contact permanent fixe. Ce dispositif permet de limiter la masse en mouvement, puisque l'un des contacts permanents reste fixe par rapport à l'enveloppe. Toutefois, il nécessite un mécanisme d'entraînement ayant une grande course, puisque la distance de sectionnement entre les contacts permanents en position ouverte est obtenue uniquement par le déplacement du contact permanent mobile.
  • Dans le document DE 196 31 323 est décrit un appareillage dérivé des précédents. L'interrupteur comporte un premier organe de contact et un deuxième organe de contact. Le premier organe de contact comporte un contact permanent, un contact d'arc et une tuyère en matériau isolant formant un ensemble monobloc mu directement par un mécanisme d'entraînement. Le deuxième organe de contact comporte un contact permanent et un contact d'arc solidaires l'un de l'autre. Le mouvement du contact d'arc du premier organe de contact est transmis au deuxième organe de contact par l'intermédiaire d'un mécanisme de transmission comportant un levier d'inversion de mouvement, une première bielle articulée sur la tuyère et sur le levier, et une deuxième bielle articulée au deuxième organe de contact et au levier. Lors de l'ouverture de l'interrupteur, les contacts d'arc se séparent avec des vitesses opposées, dont les modules sont égaux. La masse en mouvement est importante puisqu'elle inclut les deux contacts d'arc et les deux contacts permanents. Le mécanisme d'entraînement doit être dimensionné en conséquence. L'un des essais de coupure critiques est un essai de coupure de courant capacitif de faible intensité. Pour couper de tels courant, la distance entre les contacts d'arc doit croître très rapidement à partir de leur séparation, alors que pour couper les courants de court-circuit, il suffit d'atteindre une distance entre contact en moins d'une demi-période du courant, et d'attendre le passage du courant par zéro. Le dispositif ne permet pas une optimisation de l'énergie cinétique dans ce cas.
  • Dans le document US 5 578 806 est décrit un interrupteur comportant un premier organe de contact et un deuxième organe de contact. Le premier organe de contact comporte un contact permanent, un contact d'arc et une tuyère en matériau isolant formant un ensemble monobloc mû directement par un mécanisme d'entraînement. Le deuxième organe de contact comporte un contact permanent et un contact d'arc solidaires l'un de l'autre. Le mouvement du contact d'arc du premier organe de contact est transmis au deuxième organe de contact par l'intermédiaire d'un mécanisme de transmission comportant une roue dentée de transmission, une crémaillère solidaire de la tuyère et engrenant avec la roue dentée, et une bielle articulée d'une part en un point de la circonférence de la roue et d'autre part sur le deuxième organe de contact. Le mécanisme de transmission est non linéaire, ce qui permet d'imposer au deuxième organe de contact une vitesse faible en début de mouvement, lors de la séparation des contacts permanents, de faire croître rapidement la vitesse lorsque les contacts d'arc se séparent, puis de ralentir la vitesse en fin de course d'ouverture. Il devient ainsi possible de couper les courants capacitifs sans dépenser une énergie motrice trop importante. Toutefois, le dispositif ne permet pas d'optimiser l'énergie cinétique du système.
  • Dans le document EP 809 269 est décrit un appareillage comportant un premier organe de contact constitué d'un contact permanent, d'un contact d'arc et d'une tuyère isolante formant un ensemble monobloc entraîné directement par un mécanisme d'entraînement, et un deuxième organe de contact comportant un contact permanent fixe, un contact d'arc et un écran diélectrique. Un mécanisme de transmission relie la tuyère au contact d'arc du deuxième organe de contact. Ce mécanisme de transmission comporte un levier d'inversion de mouvement, une bielle reliant le levier au contact d'arc et une tringle fixée à la tuyère et coulissant dans une rainure rectiligne du levier. Le mécanisme de transmission est non linéaire au sens où le rapport entre la vitesse de la tuyère et la vitesse du contact d'arc du deuxième organe de contact n'est pas constant. Toutefois, durant toute la course d'ouverture, la vitesse de la tuyère reste très supérieure à la vitesse du contact d'arc du deuxième organe de contact, alors que la masse en mouvement solidaire de la tuyère, qui comprend également le premier organe de contact, est bien supérieure à la masse en mouvement solidaire du contact d'arc du deuxième organe de contact. Globalement, l'énergie cinétique du mécanisme n'est pas optimisée durant l'ouverture.
  • Dans le document FR 2 491 675 est décrit un disjoncteur du type à auto-soufflage et auto-compression comportant un premier organe de contact constitué d'un contact permanent, d'un contact d'arc et d'une tuyère isolante formant un ensemble monobloc entraîné directement par un mécanisme d'entraînement, et un deuxième organe de contact comportant un contact permanent fixe et un contact d'arc. Un mécanisme de transmission relie la tuyère au contact d'arc du deuxième organe de contact. Le premier organe de contact forme un cylindre s'ouvrant vers la tuyère par des conduits de faible diamètre, et fermé du côté opposé par un piston fixe, de manière à constituer une chambre de soufflage de volume variable. Lorsque le premier organe de contact se déplace, le piston pénètre dans la chambre de soufflage et le volume de la chambre diminue. Au début de l'ouverture, tant que le deuxième contact d'arc bouche l'orifice de la tuyère, le mouvement du premier organe de contact provoque une augmentation de la pression dans la chambre de soufflage. Dès que les contacts d'arc se séparent, le deuxième contact d'arc libère l'orifice de la tuyère. Le volume de la chambre de soufflage continue à se réduire et les gaz s'échappent de la chambre de soufflage par l'orifice, contribuant à éteindre l'arc naissant entre les contacts d'arc. Dans le cas d'une ouverture sur un fort courant, le soufflage doit impérativement se poursuivre afin d'amener continûment vers l'arc les gaz relativement frais contenus dans la chambre de soufflage, et ceci jusqu'à extinction de l'arc. En d'autres termes, l'action du piston est nécessaire durant tout le mouvement d'ouverture. La vitesse du premier organe de contact par rapport au piston doit donc être suffisante pour que la pression dans la chambre de soufflage reste supérieure à la pression au niveau de la tuyère. Dans ce document, il a été proposé de mettre en oeuvre un mécanisme de transmission donnant au contact portant la tuyère une vitesse inférieure ou égale à la vitesse du contact ne portant pas la tuyère, afin de diminuer l'énergie cinétique du système. Le rapport des vitesses reste constant durant la course d'ouverture, ce qui est bien adapté au besoin de ce type de disjoncteur, et notamment à la nécessité de souffler continûment en comprimant la chambre de soufflage. Par contre, l'enseignement de ce document est difficilement transposable à un disjoncteur comportant un piston de compression. Dans ce cas en effet, il est nécessaire d'obtenir une vitesse du piston élevée d'une part en début de course d'ouverture pour augmenter rapidement la pression dans la chambre d'expansion d'arc, et d'autre part en fin de course d'ouverture, pour souffler plus efficacement l'arc. Comme le piston est habituellement solidaire du contact supportant la tuyère, c'est lui qui impose la vitesse de la tuyère.
  • EXPOSE DE L'INVENTION
  • L'invention vise donc remédier aux inconvénients de l'état de la technique, de manière à proposer un appareillage de coupure haute tension à effet de compression, qui soit performant et qui permette d'obtenir une ouverture rapide et fiable, dans un volume restreint et avec une énergie de manoeuvre réduite.
  • Selon l'invention, cet objectif est atteint grâce à un appareillage électrique de coupure en charge haute tension comportant, à l'intérieur d'une enceinte étanche remplie d'un gaz à haute tenue diélectrique et définissant un axe géométrique de référence :
    • un support fixe délimitant un volume de compression,
    • un premier organe de contact mobile par rapport au support et comportant :
      • un premier contact permanent,
      • une tuyère en matériau électriquement isolant, solidaire du premier contact permanent,
      • un piston solidaire du premier contact permanent et coulissant dans le support, de manière à délimiter avec la tuyère un volume d'expansion d'arc, et à séparer le volume d'expansion d'arc du volume de compression, le piston étant muni d'une soupape de refoulement du volume de compression vers le volume d'expansion d'arc, qui s'ouvre lorsque le volume de compression est en surpression par rapport au volume d'expansion d'arc,
      • un premier contact d'arc solidaire du premier contact permanent et faisant saillie à l'intérieur du volume d'expansion d'arc ;
    • un deuxième organe de contact comportant un deuxième contact permanent et un deuxième contact d'arc mobile par rapport à l'enceinte ;
    • un mécanisme d'entraînement pour entraîner le premier organe de contact d'une position fermée à une position ouverte avec un mouvement de translation axiale le long de l'axe de référence, en passant par une position fugitive de séparation des premier et deuxième contacts permanents P2 dans laquelle les premier et deuxième contacts permanents perdent contact l'un avec l'autre, et en passant par une position fugitive de séparation des premier et deuxième contacts d'arc P3 dans laquelle les premier et deuxième contacts d'arc perdent contact l'un avec l'autre, située entre la position fugitive de séparation des premier et deuxième contacts permanents P2 et la position ouverte ;
    • un mécanisme de transmission constituant une liaison cinématique permanente entre la tuyère et le deuxième contact d'arc pour transmettre un mouvement de la tuyère au deuxième contact d'arc,
    le mécanisme de transmission étant tel que lorsque le premier organe de contact se déplace axialement dans un sens avec une vitesse ayant un module V 1, le deuxième contact d'arc se déplace en translation suivant l'axe de référence en sens opposé avec une vitesse ayant un module V 2 qui est dans un rapport V 2/V 1 avec le module V 1, le rapport V 2/ V 1 étant variable en fonction de la position du premier organe de contact par rapport à l'enceinte de telle manière que :
    • le rapport V 2/ V 1 reste inférieur à une valeur de 0,5 tant que le premier organe de contact se trouve entre la position fermée et une première position indexée P1 située entre la position fermée et la position fugitive de séparation du premier et du deuxième contact d'arc P3,
    • le rapport V 2/ V 1 passe par une valeur maximale supérieure à 1 lorsque le premier organe de contact passe par une deuxième position fugitive indexée P5 située entre la position fugitive de séparation des premier et deuxième contacts permanents P2 et la position ouverte,
    • le rapport V 2/ V 1 reste inférieur à une valeur de 0,5 tant que le premier organe de contact se trouve entre une troisième position indexée P7 située entre la deuxième position indexée P5 et la position ouverte d'une part, et la position ouverte d'autre part.
  • La fiabilité du dispositif tient au fait que la liaison cinématique assurée par le mécanisme de transmission est permanente, de sorte que la position du premier organe de contact et la position du mécanisme de manoeuvre donnent une image fidèle de la position du deuxième contact d'arc.
  • Le rapport de vitesses imposé entre la position fermée et la première position fugitive indexée permet d'accélérer rapidement le premier organe de contact, qui est le plus lourd, au tout début de l'ouverture, avant la séparation des contacts d'arc. Elle permet donc de consacrer toute l'énergie disponible à l'entraînement du piston, qui travaille pour comprimer le gaz contenu dans le volume de compression. Dès que la pression dans le volume de compression augmente, la soupape de refoulement s'ouvre, permettant également la montée en pression du volume d'expansion d'arc. Lorsque a lieu la séparation des contacts d'arc, la pression dans le volume d'expansion d'arc est déjà élevée, ce qui est favorable pour la coupure des courants capacitifs. En effet, on sait que la tension disruptive entre deux électrodes portées à des potentiels différents dans un milieu gazeux donné, c'est-à-dire la tension minimale nécessaire pour qu'apparaisse un arc électrique entre les électrodes dans le milieu gazeux considéré, est une fonction du produit de la pression du gaz par la distance séparant les électrodes, donnée par la loi de Paschen, et qu'au-delà d'une valeur minimale, cette fonction croît avec le produit de la pression par la distance. En augmentant la pression dans le volume d'expansion, on augmente donc la tension disruptive et l'on évite le claquage d'un arc entre les contacts d'arc.
  • Le rapport de vitesses imposé lors du passage du premier organe de contact par la deuxième position fugitive indexée permet de diminuer notablement l'énergie de l'ensemble mobile à un moment où la vitesse acquise par le piston est suffisante et où il est utile d'augmenter rapidement la distance séparant les contacts d'arc. En effet, si l'on considère d'une part un premier équipage mobile constitué par les masses en mouvement solidaires du premier contact, et d'autre part un deuxième équipage mobile constitué par les masses en mouvement solidaires du deuxième contact d'arc, on constate que le premier équipage mobile a une masse M 1 plus élevée que la masse M 2 du deuxième équipage mobile. Ceci s'explique par le fait que le premier contact est solidaire d'une part de la tuyère et d'autre part d'une partie du mécanisme de commande d'entraînement. En imposant à la vitesse V 2 du deuxième contact de dépasser la vitesse V 1 du premier contact, on réduit l'énergie cinétique de l'ensemble de la masse mobile. On obtient ainsi une vitesse de séparation V 1 + V 2 avec un très bon rendement énergétique. Cette disposition est particulièrement intéressante pour éviter un claquage d'arc dans le cas d'un essai de coupure de courants capacitifs.
  • Le rapport de vitesses imposé lors du passage du premier organe de contact par la troisième position fugitive indexée permet de consacrer de nouveau toute l'énergie cinétique disponible en fin de course d'ouverture au premier organe de contact lié au piston, de manière à favoriser le soufflage de l'arc au niveau de la tuyère, ce qui est important pour couper les courants de surcharge, et permet en outre de remplacer par des gaz frais et propres les gaz échauffés et salis lors de la coupure.
  • Préférentiellement, la deuxième position indexée P5 est située entre la position fugitive de séparation du premier et du deuxième contact d'arc P3 et la position ouverte. Ce choix permet de précisément optimiser l'énergie cinétique du dispositif à l'endroit de la course des contacts choisi pour l'extinction des arcs liés aux courants capacitifs.
  • Préférentiellement, la valeur maximale est supérieure à 1,5. L'augmentation de la vitesse relative des contacts d'arc est ainsi encore plus favorisée.
  • Préférentiellement, le deuxième organe de contact permanent et le deuxième organe de contact d'arc sont solidaires l'un de l'autre. Certes, cette solution a pour effet d'augmenter globalement la masse en mouvement du système, par rapport à une solution où seul le deuxième contact d'arc serait mobile. Toutefois, il apparaît que ce supplément de masse mobile n'est pas néfaste eu égard aux effets recherchés. En effet, le meilleur rendement du mécanisme est obtenu pour un rapport de vitesses V 2/V 1 égal au rapport des masses des équipages mobiles de part et d'autre du mécanisme de transmission. Si la masse M 2 de l'équipage mobile du deuxième organe de contact est très faible, le rapport M 1/M 2 sera très élevé, et il deviendra difficile en pratique de réaliser un mécanisme de transmission dont la structure soit simple et qui assure un tel rapport de transmission maximal, tout en assurant des valeurs faibles du rapport de transmission en début et en fin de course.
  • Avantageusement, le premier organe de contact et la tuyère forment ensemble un premier équipage mobile de masse M 1, le deuxième organe de contact permanent et le deuxième organe de contact d'arc forment un deuxième équipage mobile de masse M 2 et lorsque le premier organe de contact passe par la première position fugitive indexée, le rapport de vitesses vérifie la relation : 0 , 8 M 1 M 2 V 2 V 1 1 , 2 M 1 M 2 .
    Figure imgb0001
  • On a intérêt à ce que le maximum du rapport V 2/V 1 soit aussi proche que possible du rapport M 1 sur M 2, afin de minimiser l'énergie cinétique du système dans la phase d'éloignement rapide des contacts d'arc. De manière optimale, lorsque le premier organe de contact passe par la première position fugitive indexée, le rapport de vitesses vérifie la relation : V 2 V 1 = M 1 M 2 .
    Figure imgb0002
  • Selon un mode de réalisation, le mécanisme de transmission comporte :
    • une came pivotant autour d'un axe géométrique fixe par rapport à l'enceinte et comportant une piste curviligne,
    • un coulisseau solidaire du deuxième contact d'arc et coopérant avec la piste, et
    • un bielle articulée sur la came et sur une pièce solidaire de la tuyère.
  • En choisissant opportunément la forme de la piste curviligne, il est possible d'obtenir très simplement les rapports de vitesse recherchés pendant la course d'ouverture et de fermeture.
  • Selon un autre mode de réalisation, le mécanisme de transmission comporte ;
    • une came pivotant autour d'un axe géométrique fixe par rapport à l'enceinte et comportant une première piste curviligne et une deuxième piste curviligne,
    • un premier coulisseau solidaire du deuxième contact d'arc et coopérant avec la première piste, et
    • une tringle solidaire de la tuyère et comportant un deuxième coulisseau coopérant avec la deuxième piste.
  • Ce mécanisme a l'avantage de permettre le cas échéant un guidage rectiligne de la tringle.
  • Avantageusement, la tuyère comporte un col formant un premier chemin de circulation de gaz du volume d'expansion d'arc vers un volume de détente à l'intérieur de l'enceinte, ce premier chemin étant est fermé au moins partiellement par le deuxième contact d'arc tant que le premier organe de contact se trouve entre la position fermée et une quatrième position fugitive indexée P6 située entre la position fugitive de séparation des premier et deuxième contacts d'arc P3 et la position ouverte.
  • Préférentiellement, l'appareillage comporte un deuxième chemin de circulation de gaz entre le volume d'expansion et le volume de détente de l'enceinte, muni d'une soupape de retardement qui reste fermée tant que le premier organe de contact se trouve entre la position fermée et une cinquième position indexée P4, située entre la position fugitive de séparation des premier et deuxième contacts d'arc P3 et la position ouverte. Les deux chemins de circulation de gaz sont en concurrence, ce qui permet d'accroître le débit de soufflage du gaz. La soupape permet de précisément déterminer le début de l'ouverture de ce chemin de circulation de gaz, après la séparation des contacts d'arc. L'intervalle de temps s'écoulant entre la séparation des contacts d'arc et l'ouverture de la soupape, est mis à profit pour poursuivre la montée en pression dans le volume d'expansion provoquée conjointement par le piston et de l'arc tiré entre les contacts d'arc à leur séparation. Avantageusement, la quatrième position indexée P6 est située entre la cinquième position indexée P4 et la position ouverte. En d'autres termes, l'ouverture du deuxième chemin précède l'ouverture du premier chemin lors de la séquence d'ouverture du mécanisme. Préférentiellement, la deuxième position indexée P5 est située à proximité de la quatrième position indexée P6 et de la cinquième position indexée P4.
  • Selon un mode de réalisation préférentiel, le premier contact d'arc comporte un tube et le chemin de circulation de gaz passe par ce tube.
  • BREVE DESCRIPTION DES FIGURES
  • D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, et représentés aux dessins annexés sur lesquels :
    • la figure 1 représente une vue schématique d'ensemble d'un disjoncteur selon un premier mode de réalisation de l'invention, en position ouverte ;
    • la figure 2 représente une partie haute du disjoncteur de la figure 1 en coupe axiale en position ouverte ;
    • la figure 3 représente une partie basse du disjoncteur de la figure 1 en coupe axiale en position ouverte ;
    • la figure 4 représente une partie haute du disjoncteur de la figure 1 en coupe axiale en position fermée;
    • la figure 5 représente une partie basse du disjoncteur de la figure 1 en coupe axiale en position fermée ;
    • la figure 6 représente un diagramme où sont portées différentes courbes de vitesse en fonction de la position d'un organe de contact ;
    • la figure 7 représente un détail d'un second mode de réalisation de l'invention.
    DESCRIPTION DETAILLEE D'UN MODE DE REALISATION
  • En référence aux figures 1 à 5, un disjoncteur haute tension, en l'espèce un disjoncteur destiné à des tensions dépassant 36kV, immergé dans une enceinte 10 remplie d'un gaz à haute tenue diélectrique, par exemple de l'hexafluorure de soufre SF6 et comportant un premier organe de contact 12 mû par un mécanisme de manoeuvre 14, une tuyère 16 solidaire du premier organe de contact 12 et un deuxième organe de contact 18 relié cinématiquement à la tuyère 16 par l'intermédiaire d'un mécanisme de transmission du mouvement 20. L'enceinte 10 permet de définir un axe géométrique de référence fixe 22, qui constitue un axe de translation pour les parties mobiles.
  • Le premier organe de contact 12, visible en détails sur les figures 2 et 4, est composé d'un contact permanent tubulaire cylindrique 24 et d'un contact d'arc 26 disposé coaxialement à l'intérieur du contact permanent 24. Le contact d'arc 26 est également tubulaire et est pourvu à son extrémité libre d'une pince d'embrochage 28 composée de doigts de contact disposés en corolle. Le contact permanent 24 est quant à lui pourvu d'une plage d'embrochage cylindrique d'extrémité 30 permettant sa coopération avec le deuxième organe de contact 18. Le contact d'arc 26 et le contact permanent 24 sont solidaires l'un de l'autre et entraînés conjointement par le mécanisme de manoeuvre 14.
  • La tuyère 16 est constituée par une pièce en matériau isolant permettant un dégazage en présence d'un arc électrique, par exemple en téflon. Elle est fixée sur une surface interne du contact permanent 24 et s'interpose entre la plage d'embrochage cylindrique d'extrémité 30 du contact permanent et la pince 28 du contact d'arc. La tuyère forme un col 32 séparant deux chambrages 34, 36.
  • La plage d'embrochage d'extrémité 30 du contact permanent 24 se prolonge par une surface périphérique extérieure cylindrique d'une paroi de contact glissant 38 qui coulisse axialement à l'intérieur d'un collecteur cylindrique 40 fixe par rapport à l'enceinte 10 servant de support et de guidage à l'organe de contact 12, le collecteur 40 étant muni d'une bague de contact glissant 41 assurant le contact électrique entre le contact permanent 24 et le collecteur 40 lors de la translation du contact permanent 24. Le collecteur cylindrique 40 délimite un volume de compression intérieur 42 hermétiquement fermé par une culasse 44. Le contact permanent 24 est muni, à son extrémité axiale pénétrant dans le collecteur 40, d'un piston 46 qui sépare le volume de compression 42 d'un volume d'expansion d'arc 48 délimité radialement par la paroi cylindrique 38 du contact permanent 24 et, à son extrémité axiale opposée au piston 46, par la tuyère 16. Le piston 46 est pourvu d'une soupape de refoulement 50 s'ouvrant dès que le volume de compression 42 est en surpression par rapport au volume d'expansion d'arc 48. Le piston 46 est solidaire du contact permanent 24 et du contact d'arc 26 et assure un chemin de courant entre le contact permanent 24 et le contact d'arc 26. Le contact d'arc 26 forme un tube 52 qui traverse le piston 46 et la culasse 44, et fait saillie à l'intérieur d'un volume 54 de détente délimitée par l'enceinte étanche 10. Le volume de détente 54 occupe tout l'espace disponible dans l'enceinte, jusqu'au chambrage 36. L'extrémité du tube 52 est fixée à une tige 56 constituant l'organe de sortie du mécanisme d'entraînement 14. Des ouvertures latérales 58 sont pratiquées à l'extrémité du tube 52, de sorte qu'est réalisé un chemin de circulation de gaz 60 entre le volume d'expansion d'arc 48 et le volume de détente 54, passant par l'intérieur du tube 52. Toutefois, un manchon d'obturation 61 solidaire de la culasse 44 faisant office de soupape de retardement, recouvre hermétiquement les ouvertures 58 dans la position fermée représentée sur la figure 4.
  • La culasse 44 est pourvue d'un clapet de remplissage 62 et d'un clapet de vidange 64. Le clapet de remplissage 62 assure la communication du volume de détente 54 vers le volume de compression 42, lorsque le volume de compression 42 se trouve en dépression par rapport au volume de détente 54. Le clapet de vidange 64 assure la communication du volume de compression 42 vers le volume de détente 54, lorsque la différence de pression entre le volume de compression 42 et le volume de détente 54 est supérieure à un seuil de vidange déterminé par un ressort de rappel 66 du clapet 64.
  • Le deuxième organe de contact 18, visible en détails sur les figures 3 et 5, est constitué d'un deuxième contact permanent 70 et d'un deuxième contact d'arc 72 solidaires l'un de l'autre. Le contact permanent 70 est formé par une pièce métallique tubulaire ajourée, dont une extrémité libre est pourvue d'une pince de contact 74 en forme de corolle. Le contact permanent 70 coulisse axialement dans un collecteur fixe 74 muni d'un contact glissant 76 assurant le contact électrique entre le contact permanent 70 et le collecteur 74 lors de la translation du contact permanent 74. Le deuxième contact d'arc 72 forme un doigt métallique 78 au diamètre intérieur du col de la tuyère, prolongé par une tige métallique 80. Le contact d'arc 72 et le contact permanent 70 sont fixés l'un à l'autre par l'intermédiaire d'une barre diamétrale 82 assurant également le passage du courant entre les deux contacts 70, 72.
  • Le mécanisme de transmission du mouvement 20 est composé d'une came pivotante de renvoi 84 coopérant avec une extrémité axiale de la tige 80 du contact d'arc 72 et avec une biellette de transmission 86. La came 84 pivote autour d'un axe géométrique de pivotement fixe 89, perpendiculaire à l'axe de référence 22. La biellette 86 est articulée sur la came 84 et sur une couronne 88 emmanchée à une extrémité axiale de la tuyère 16. L'extrémité axiale du contact d'arc 72 est pourvue d'un galet 90 ayant fonction de coulisseau et coopérant avec une piste constituée par une rainure curviligne 92 en forme de serpe, pratiquée dans la came 84. Un ressort de rappel de fin de course 94 rappelle la barre 82 et le deuxième organe de contact 18 vers la position fermée.
  • L'appareillage fonctionne de la manière suivante.
  • En position fermée, sur les figures 4 et 5, la pince 74 du deuxième contact permanent 70 enserre la périphérie extérieure 30 du premier contact permanent 24 et assure un chemin de courant passant par le premier collecteur 40, le contact glissant 41, le premier contact permanent 24, la pince 74, le deuxième contact permanent 70, le contact glissant 76 et le deuxième collecteur 76. Le doigt 78 formant l'extrémité du deuxième contact d'arc 72 pénètre profondément dans le premier contact d'arc 26 et bouche le tube 52. La pince 28 du premier contact d'arc 26 enserre le doigt 78 et forme un deuxième chemin de courant entre le premier et le deuxième collecteurs. Le doigt 78 bouche l'extrémité du tube 52 constitué par le contact d'arc 26, de sorte que la colonne de gaz contenue dans le tube 52 est obturée. Le doigt 78 occupe également tout l'espace intérieur du col 32, de sorte qu'il ferme également à ce niveau au moins partiellement le volume d'expansion d'arc 48.
  • Lors de l'ouverture de l'appareil, le mécanisme de manoeuvre 14 entraîne le premier organe de contact 12 continûment et sans arrêt de la position fermée représentée sur les figures 4 et 5 à la position ouverte représentée sur les figures 1 à 3. Le mouvement du premier organe de contact 12 est transmis au deuxième organe de contact 18 par l'intermédiaire de la tuyère 16 et du mécanisme de transmission 20.
  • Afin de décrire plus précisément la cinématique de l'ouverture, on a représenté sur la figure 6 les courbes représentatives de la vitesse du premier organe de contact 12 (courbe A), de la vitesse du deuxième organe de contact 18 (courbe B), du rapport entre la vitesse du deuxième organe de contact 12 et la vitesse du premier organe de contact 18 (courbe C), en fonction du déplacement du premier organe de contact 12 par rapport au collecteur 40, porté en abscisse.
  • La forme de la came 84 est telle que dans un premier temps, le deuxième organe de contact 18 reste pratiquement immobile, de sorte que toute l'énergie du mécanisme d'entraînement 14 sert à accélérer le premier organe de contact 12. En d'autres termes, si l'on considère le module V 1 de la vitesse du premier organe de contact 12 et le module V 2 de la vitesse du deuxième organe de contact 18, le rapport V 2 / V 1 est proche de zéro, et en tous cas inférieur à 0,5, tant que le premier organe de contact se trouve entre la position fermée et une première position fugitive indexée désignée par P1 sur le diagramme. Au-delà de P1, le premier organe de contact 12 atteint une position P2 de séparation des contacts permanents 24, 70, situé approximativement à 10% de sa course totale. La came 84 a pivoté de quelques degrés, de sorte que le rapport de transmission des vitesses V 2/V 1 augmente très rapidement pour dépasser 1. Lorsque le premier organe de contact 12 atteint une position P3 dans laquelle il se sépare du deuxième contact d'arc 72, il a couvert environ 30% de la course d'ouverture, et le rapport de vitesses dépasse 1,5. La vitesse relative de séparation des contacts d'arc, qui vaut V 1 + V 2, est alors très élevée. Le rapport V 2 / V 1 reste supérieur à 1,5 pendant environ 0,5 à 3 ms, permettant une séparation très rapide des contacts d'arc 26, 72, et passe par un maximum lorsque le premier organe de contact atteint une position P5. Tant que le rapport de vitesses V 2/ V 1 reste supérieur à 1, on privilégie l'augmentation de vitesse de l'organe de contact le plus léger, à savoir le deuxième organe de contact 18, qui ne supporte pas la tuyère 16, par rapport au déplacement de l'organe de contact le plus lourd, à savoir le premier organe de contact 12. Ce parti pris permet, dans cette phase de séparation des contacts d'arc, de maximiser la vitesse relative V 1 + V 2 de l'ensemble mobile pour un travail mécanique global donné fourni par le mécanisme 14. En effet, si l'on considère un modèle simplifié du système mécanique considéré, la vitesse maximale est obtenue pour :
    d ( V 1 + V 2 ) d t = 0 ,
    Figure imgb0003
    soit dV 1=-dV 2
    En première approximation, le travail minimal est obtenu pour :
    dW=M 1 V 1 dV 1 +M 2 V 2 dV 2 =0
    M 1 est la masse des pièces en mouvement solidaires du premier organe de contact 12, c'est-à-dire en première approximation, la somme des masses du contact permanent 24, du contact d'arc 26, de la tige 56, de la tuyère 16 et de la couronne 88, et où M 2 est la masse des pièces en mouvement solidaires du deuxième organe de contact 18, à savoir le contact permanent 70, le contact d'arc 72 et la barre 82.
  • On obtient alors :
    M 1 V 1 - M 2 V 2 = 0
    soit encore
    V 2 V 1 = M 1 M 2
    Figure imgb0004
  • Ce modèle simplifié, qui ne tient pas compte des masses mobiles du mécanisme de transmission du mouvement, indique donc que l'on a intérêt, si l'on veut maximiser la vitesse relative V 1 + V 2 tout en minimisant l'énergie cinétique, à faire en sorte que le rapport des vitesses V 2 / V 1 soit proche du rapport M 1 / M 2 des masses mobiles des équipages mobiles du premier et du deuxième organe de contact. En pratique, la masse M 1 du premier équipage mobile, qui comprend également la tuyère, est toujours supérieure à la masse M 2 du deuxième équipage mobile. Le rapport M 1 / M 2 sera souvent relativement élevé, de l'ordre de 1,5 à 2, de sorte qu'il sera difficile d'obtenir un rapport V 2 / V 1 égal au rapport des masses. On se contentera donc d'un rapport V 2 / V 1 supérieur à 1,2 - ou mieux, supérieur à 1,5 - durant quelques millisecondes après la séparation des contacts d'arc.
  • La came de transmission 84 est conformée de telle manière que lorsque le premier organe de contact a franchi environ 50% de sa course d'ouverture, le rapport de vitesses V 2/ V 1 redevient inférieur à 1 et diminue rapidement. Lorsque le premier organe de contact passe par une position fugitive P7, le rapport de vitesses redevient inférieur à 0,5, pour s'annuler à environ 90% de la course d'ouverture.
  • Cette description purement cinématique de l'ouverture permet de distinguer différentes phases.
  • Le mouvement initial, en deçà de P1, permet d'affecter toute l'énergie délivrée par le mécanisme d'entraînement 14 au premier organe de contact 12 et d'amorcer ainsi rapidement un effet de pompage. En effet, dès que le mouvement du piston engendre une surpression du volume de compression 42 par rapport au volume d'expansion d'arc 48, la soupape de refoulement 50 s'ouvre et le gaz situé dans le volume de compression 42 commence à pénétrer dans le volume d'expansion d'arc 48. La pression dans le volume d'expansion d'arc 48 commence alors à augmenter puisque le doigt de contact 78 obture à la fois le chemin d'écoulement 60 par l'intérieur du tube 52 du contact d'arc et le chemin d'écoulement passant par le col 32.
  • Lorsque les contacts permanents 24, 70 se séparent, en P2, le chemin de courant passant par les contacts permanents 24, 70 est coupé. Toutefois, le chemin de courant secondaire passant par les contacts d'arc 26, 72 subsiste car le doigt 78 est encore partiellement embroché dans la pince 28, de sorte qu'aucun arc électrique n'est tiré entre les contacts permanents 24, 70 avant que ne soit atteinte la position P3 de séparation des contacts d'arc. La pression dans le volume d'expansion d'arc 48 continue d'augmenter. A partir de la position P3, la suite de l'ouverture dépend essentiellement du type de courant traversant le disjoncteur au moment de l'ouverture. On distinguera successivement l'ouverture sur un courant de court-circuit, l'ouverture sur un courant de surcharge et l'ouverture sur un courant capacitif.
  • Lorsque le disjoncteur s'ouvre sur un courant alternatif de court-circuit, un arc électrique très énergétique naît entre les contacts d'arc 26, 72 dès leur séparation et occupe tout l'espace disponible de sorte que la pression augmente considérablement dans le volume d'expansion d'arc 48. De plus, l'arc électrique provoque un dégazage du matériau gazogène de la tuyère 16, induisant une augmentation supplémentaire de la pression dans le volume d'expansion d'arc 48. Au moment de la séparation des contacts d'arc 26, 72, la soupape de retardement 61 recouvre encore les orifices 58, de sorte que le gaz est prisonnier dans le volume d'expansion d'arc 48, favorisant encore davantage la montée en pression. Après quelques centimètres de course supplémentaire, les orifices 58 arrivent à découvert au point P4 de la courbe de la figure 6, et le gaz contenu dans le volume d'expansion s'échappe par l'intérieur du tube 52 du contact d'arc 26 vers le volume de détente 54. Dès que le contact d'arc 72 est descendu au-delà du col 32, en un point P6 de la courbe de la figure 6, le doigt 78 qui bouchait jusque là le col, libère un autre chemin de circulation pour le gaz du volume d'expansion d'arc 48 vers le volume de détente 54, passant par le col 32. Ces échappements sont toutefois insuffisants pour diminuer notablement la pression dans le volume d'expansion d'arc 48 de sorte que la pression dans le volume d'expansion d'arc 48 dépasse la pression dans le volume de compression 42 et que la soupape de refoulement 50 se referme. Lorsque le mouvement d'ouverture se poursuit, le piston 46 comprime le gaz situé dans le volume de compression 42 jusqu'à atteindre le seuil de vidange, au-delà duquel le clapet de vidange 64 s'ouvre, permettant l'évacuation vers le volume de détente 54 du gaz retenu dans le volume de compression 42, de sorte que la poursuite du mouvement d'ouverture n'est pas entravée. L'arc s'éteint lors du passage du courant par zéro. Toutefois, la pression dans le volume d'expansion d'arc 48 ne diminue pas assez rapidement pour permettre de nouveau l'ouverture de la soupape de refoulement 50. Dans ce mode de fonctionnement, le volume d'expansion d'arc 48 et le volume de compression 42 restent donc séparés jusqu'à la fin de l'ouverture. Lorsque le premier organe de contact a franchi environ 50% de sa course d'ouverture, le rapport de vitesses V 2/V 1 redevient inférieur à 1 et diminue rapidement.
  • Lorsque le disjoncteur s'ouvre sur un courant alternatif de surcharge, un arc électrique énergétique naît entre les contacts d'arc dès leur séparation, à la position P3. Du fait de la pression élevée régnant dans le volume d'expansion d'arc 48 à la fin de la phase précédente, l'arc électrique est soumis à une constriction importante. De plus, le gaz comprimé offre une capacité calorifique supérieure au gaz non comprimé, permettant un soufflage plus efficace des gaz chauds générés par l'arc électrique. L'arc électrique dégage une énergie importante, qui provoque un dégazage du matériau gazogène de la tuyère 16, induisant une augmentation supplémentaire de la pression dans le volume d'expansion d'arc 48, de sorte que la soupape de refoulement 50 se referme. L'échappement du gaz est différé jusqu'à l'ouverture des orifices 58, au point P4. Le gaz contenu dans le volume d'expansion s'échappe par l'intérieur du tube du contact d'arc vers le volume de détente. Dès que le contact d'arc est descendu au-delà du col, au delà du point P6, le gaz s'échappe également vers le bas de la tuyère 16. L'arc s'éteint lors du passage du courant par zéro. Si l'énergie dégagée par l'arc n'a pas été très importante, la pression dans le volume d'expansion d'arc 48 diminue rapidement, permettant la réouverture de la soupape de refoulement 50. Lorsque le premier organe de contact a franchi environ 50% de sa course d'ouverture, le rapport de vitesses V 2/ V 1 redevient inférieur à 1 et diminue rapidement. Dans cette phase, l'énergie disponible du mécanisme d'entraînement 14 sert donc à accélérer de nouveau de manière privilégiée le premier organe de contact 12 et donc le mouvement du piston 46 dans le volume de compression 42. Des gaz frais et propres sont donc de nouveau dirigés du volume de compression 42 vers le volume d'expansion d'arc 48 et vers les contacts d'arc 26, 72, jusqu'à la fin de l'ouverture, permettant d'éviter un réamorçage de l'arc entre les contacts d'arc.
  • Lorsque les contacts d'arc, en se séparant en P3, ouvrent un circuit capacitif traversé par un faible courant, suivant les conditions d'un essai capacitif, un arc relativement faible est tiré entre les contacts d'arc 26, 72. Cet arc s'éteint presque immédiatement de lui-même grâce à la bonne qualité du gaz diélectrique. Le courant s'interrompt et la tension entre les organes de contact 12, 18 commence à augmenter très rapidement. Du fait du mouvement du piston 46 dans le volume de compression 42, un flux continu de gaz frais pénètre dans le volume d'expansion d'arc 48 où la pression augmente. Dès que les orifices 58 ne sont plus obturés par le manchon 61 (point P4), les gaz s'évacuent au travers du tube 52 vers le volume de détente 54. Pour éviter un reclaquage de l'arc électrique entre les organes de contact 12, 18, il est essentiel que la tension entre les contacts 12, 18 reste inférieure à la tension disruptive. Or dans la plage de fonctionnement considérée, la loi de Paschen indique que la tension disruptive est une fonction croissante du produit de la pression du gaz par la distance séparant les contacts. Il est donc essentiel qu'au moment de l'extinction de l'arc, la tension disruptive soit élevée et augmente très rapidement, plus rapidement en tous cas que la tension entre les contacts d'arc.
  • C'est justement ce que permet la caractéristique cinématique décrite précédemment. En effet, le point P5 correspondant au maximum du rapport de vitesses V 2/ V 1 est situé entre le point P3 de séparation des contacts d'arc et la position ouverte. De plus, ce point correspond à un rapport de vitesses supérieur à 1, qui permet de privilégier l'augmentation de vitesse de l'organe de contact le plus léger, à savoir le deuxième organe de contact 18, qui ne supporte pas la tuyère 16, par rapport au déplacement de l'organe de contact le plus lourd, à savoir le premier organe de contact 12. Ce parti pris permet, comme on l'a montré précédemment, de maximiser la vitesse relative V 1 + V 2 de l'ensemble mobile pour un travail mécanique global donné fourni par le mécanisme 14.
  • Dans cette phase, on est donc conduit à privilégier l'augmentation de la vitesse relative de séparation V 1+V 2 des contacts d'arc par rapport à l'augmentation de la vitesse V 1 du piston 46. En d'autres termes, si l'on se réfère à la loi de Paschen, on privilégie l'augmentation de la distance entre les contacts par rapport à l'augmentation de la pression. Remarquons toutefois que le mouvement du piston 46 à l'intérieur du volume de compression 42 est suffisant pour maintenir, voire augmenter un peu, la surpression du volume d'expansion d'arc 48 par rapport au volume de détente 54, malgré le flux continu de gaz par le tube 52 du contact d'arc 26 vers le volume de détente 54, car la surface active du piston 46 est supérieure à la section intérieure du tube 52. Mais l'augmentation de pression dans le volume d'expansion est entravée par les chemins d'écoulement, au plus tard lorsque le doigt de contact 78 s'échappe du col 32 de la tuyère et ouvre le deuxième chemin de circulation des gaz passant par le col 32.
  • Quand le premier organe de contact a atteint 50% de sa course d'ouverture, la distance entre les contacts est suffisante pour éviter tout reclaquage d'un arc dans les conditions de l'essai capacitif. L'échappement des gaz du volume de compression 42 vers le volume d'expansion d'arc 48 se poursuit jusqu'à la fin de l'ouverture.
  • Au-delà du point P7 et dans toutes les conditions d'ouverture, des gaz frais et propres sont dirigés du volume de compression 42 vers le volume d'expansion d'arc 48 et vers les contacts d'arc 26, 72, jusqu'à la fin de l'ouverture, permettant d'éviter un réamorçage de l'arc entre les contacts d'arc. Par ailleurs, la fin du mouvement du deuxième organe de contact est utilisée pour comprimer le ressort 94.
  • La fermeture se déroule de manière inverse, en remarquant que le clapet de remplissage 62 devient alors actif pour permettre le remplissage du volume de compression 42. Après les premiers 10% de la course de fermeture, le deuxième organe de contact 18 commence à se déplacer. Le ressort 94 permet alors d'éviter tout blocage du mécanisme de transmission 20.
  • Naturellement, diverses modifications sont possibles.
  • L'ouverture des orifices 58 par la soupape de retardement 61 (au point P4) a lieu après la séparation des contact (au point P3 de la courbe), et de préférence avant l'ouverture du col de la tuyère (au point P6) car on préfère ouvrir en premier le chemin de circulation de gaz qui a une section de passage plus faible, en l'occurrence le chemin 60. Le positionnement des points P4 et P6 par rapport au point P5 déterminant le maximum du rapport de vitesses n'est pas critique, pour autant que ces trois points restent proches les uns des autres. Selon une première alternative au schéma de la figure 6, le point P6 peut se trouver entre P4 et P5. Selon une autre alternative, le point P4 peut se trouver entre P5 et P6. Dans certaines applications, il est possible de se passer tout à fait de la soupape de retardement 61, de sorte que le chemin de circulation de gaz 60 s'ouvre dès que le doigt 78 sort du tube 58 au point P3, sachant que le doigt 78 bouche le tube 52 en position fermée.
  • On peut prévoir un mécanisme de transmission de structure différente, pour obtenir une courbe de vitesse identique à celle du premier mode de réalisation. La figure 7 représente un détail deuxième mode de réalisation, dans lequel le mécanisme de transmission 120 comporte une came 184 coopérant d'une part avec une extrémité du contact d'arc 80 et d'autre part avec une tringle 186. L'extrémité du contact d'arc 80 est pourvu comme dans le premier mode de réalisation d'un galet 190a ayant fonction de coulisseau et coopérant avec une piste 192a constituée par une rainure curviligne pratiquée dans la came 184. De même, la tringle 184 est pourvue à son extrémité d'un galet 190b ayant fonction de coulisseau et coopérant avec piste 192b constituée par une deuxième rainure curviligne en forme de crosse pratiquée dans la came 184. La forme des deux pistes 192a et 192b est choisie de manière à obtenir des rapports de vitesse du même type que ceux décrits pour le premier mode de réalisation. Les autres éléments du disjoncteur selon le deuxième mode de réalisation sont identiques à ceux du premier mode.
  • Par ailleurs, il est possible de prévoir un clapet fermant le tube à proximité du doigt de contact à la place du manchon 61, de manière à favoriser encore plus l'augmentation de pression dans le volume d'expansion au début de l'ouverture, notamment dans les conditions de l'essai capacitif.
  • Dans les exemples de réalisation décrits, le contact permanent 70 est mobile et solidaire du contact d'arc 72. Il est également envisageable de prévoir un contact permanent fixe 70 et un contact d'arc 72 seul entraîné par le mécanisme de transmission 20.

Claims (15)

  1. Appareillage électrique de coupure en charge haute tension comportant, à l'intérieur d'une enceinte étanche (10) remplie d'un gaz à haute tenue diélectrique et définissant un axe géométrique de référence (22) :
    - un support (40) fixe délimitant un volume de compression (42),
    - un premier organe de contact (12) mobile par rapport au support (40) et comportant :
    - un premier contact permanent (24),
    - une tuyère (16) en matériau électriquement isolant, solidaire du premier contact permanent (24),
    - un piston (46) solidaire du premier contact permanent (24) et coulissant dans le support (40), de manière à délimiter avec la tuyère (16) un volume d'expansion d'arc (48), et à séparer le volume d'expansion d'arc (48) du volume de compression (42), le piston (46) étant muni d'une soupape de refoulement (50) du volume de compression (42) vers le volume d'expansion d'arc (48), qui s'ouvre lorsque le volume de compression (42) est en surpression par rapport au volume d'expansion d'arc (48),
    - un premier contact d'arc (26) solidaire du premier contact permanent (24) et faisant saillie à l'intérieur du volume d'expansion d'arc (48) ;
    - un deuxième organe de contact (18) comportant un deuxième contact permanent (70) et un deuxième contact d'arc (72) mobile par rapport à l'enceinte ;
    - un mécanisme d'entraînement (14) pour entraîner le premier organe de contact (12) d'une position fermée à une position ouverte avec un mouvement de translation axiale le long de l'axe de référence (22), en passant par une position fugitive de séparation des premier et deuxième contacts permanents (P2) dans laquelle les premier et deuxième contacts permanents perdent contact l'un avec l'autre, et en passant par une position fugitive de séparation des premier et deuxième contacts d'arc (P3) dans laquelle les premier et deuxième contacts d'arc perdent contact l'un avec l'autre, située entre la position fugitive de séparation des premier et deuxième contacts permanents (P2) et la position ouverte ;
    - un mécanisme de transmission (20) constituant une liaison cinématique permanente entre la tuyère (16) et le deuxième contact d'arc (72) pour transmettre un mouvement de la tuyère (16) au deuxième contact d'arc (72),
    caractérisé en ce que le mécanisme de transmission (20) est tel que lorsque le premier organe de contact (12) se déplace axialement dans un sens avec une vitesse ayant un module V 1, le deuxième contact d'arc se déplace en translation suivant l'axe de référence (22) en sens opposé avec une vitesse ayant un module V 2 qui est dans un rapport V 2/V 1 avec le module V 1, le rapport V 2/V 1 étant variable en fonction de la position du premier organe de contact (12) par rapport à l'enceinte (10) de telle manière que :
    - le rapport V 2/V 1 reste inférieur à une valeur de 0,5 tant que le premier organe de contact (12) se trouve entre la position fermée et une première position indexée (P1) située entre la position fermée et la position fugitive de séparation du premier et du deuxième contact d'arc (P3),
    - le rapport V 2/ V 1 passe par une valeur maximale supérieure à 1 lorsque le premier organe de contact (12) passe par une deuxième position fugitive indexée (P5) située entre la position fugitive de séparation des premier et deuxième contacts permanents (P2) et la position ouverte,
    - le rapport V 2/ V 1 reste inférieur à une valeur de 0,5 tant que le premier organe de contact se trouve entre une troisième position indexée (P7) située entre la deuxième position indexée (P5) et la position ouverte d'une part, et la position ouverte d'autre part.
  2. Appareillage électrique de coupure en charge selon la revendication 1, caractérisé en ce que la deuxième position indexée (P5) est située entre la position fugitive de séparation du premier et du deuxième contact d'arc (P3) et la position ouverte.
  3. Appareillage électrique de coupure en charge selon l'une quelconque des revendications précédentes, caractérisé en ce que la valeur maximale du rapport V 2/V 1 est supérieure à 1,5.
  4. Appareillage électrique de coupure en charge selon l'une quelconque des revendications précédentes, caractérisé en ce que le deuxième organe de contact permanent (70) et le deuxième organe de contact d'arc (72) sont solidaires l'un de l'autre.
  5. Appareillage électrique de coupure en charge selon la revendication 4, caractérisé en ce que :
    - le premier organe de contact (12) et la tuyère (16) forment ensemble un premier équipage mobile de masse M 1
    - le deuxième organe de contact permanent (70) et le deuxième organe de contact d'arc (72) forment un deuxième équipage mobile de masse M 2 ;
    - lorsque le premier organe de contact (12) passe par la première position fugitive indexée, le rapport de vitesses vérifie la relation : 0 , 8 M 1 M 2 V 2 V 1 1 , 2 M 1 M 2
    Figure imgb0005
  6. Appareillage électrique de coupure en charge selon la revendication 5, caractérisé en ce que lorsque le premier organe de contact passe par la première position fugitive indexée, le rapport de vitesses vérifie la relation : V 2 V 1 = M 1 M 2
    Figure imgb0006
  7. Appareillage électrique de coupure en charge selon l'une quelconque des revendications précédentes, caractérisé en ce que le mécanisme de transmission (20) comporte :
    - une came (84) pivotant autour d'un axe géométrique (88) fixe par rapport à l'enceinte (10) et comportant une piste curviligne (92),
    - un coulisseau (90) solidaire du deuxième contact d'arc (72) et coopérant avec la piste (92), et
    - un bielle (86) articulée sur la came (84) et sur une pièce (88) solidaire de la tuyère (16).
  8. Appareillage électrique de coupure en charge selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le mécanisme de transmission comporte :
    - une came (184) pivotant autour d'un axe géométrique fixe par rapport à l'enceinte et comportant une première piste curviligne (192a) et une deuxième piste curviligne (192b),
    - un premier coulisseau (190a) solidaire du deuxième contact d'arc (72) et coopérant avec la première piste (192a), et
    - une tringle solidaire de la tuyère (16) et comportant un deuxième coulisseau (190b) coopérant avec la deuxième piste (192b).
  9. Appareillage électrique de coupure en charge selon l'une quelconque des revendications précédentes, caractérisé en ce que la tuyère comporte un col formant un premier chemin de circulation de gaz du volume d'expansion d'arc (48) vers un volume de détente (54) à l'intérieur de l'enceinte, ce premier chemin étant est fermé au moins partiellement par le deuxième contact d'arc (72) tant que le premier organe de contact (12) se trouve entre la position fermée et une quatrième position fugitive indexée (P6) située entre la position fugitive de séparation des premier et deuxième contacts d'arc (P3) et la position ouverte.
  10. Appareillage électrique de coupure en charge selon la revendication 9, caractérisé en ce qu'il comporte un deuxième chemin de circulation de gaz (60) entre le volume d'expansion (48) et le volume de détente (54) de l'enceinte (10).
  11. Appareillage électrique de coupure en charge selon la revendication 9, caractérisé en ce que le deuxième chemin de circulation de gaz (60) est muni d'une soupape de retardement (61) qui reste fermée tant que le premier organe de contact (12) se trouve entre la position fermée et une cinquième position indexée (P4), située entre la position fugitive de séparation des premier et deuxième contacts d'arc (P3) et la position ouverte.
  12. Appareillage électrique de coupure en charge selon la revendication 11, caractérisé en ce que la quatrième position indexée (P6) est située entre la cinquième position indexée (P4) et la position ouverte.
  13. Appareillage électrique de coupure en charge selon la revendication 12, caractérisé en ce que la deuxième position indexée (P5) est située à proximité de la quatrième position indexée (P6) et de la cinquième position indexée (P4).
  14. Appareillage électrique de coupure en charge selon la revendication 11, caractérisé en ce que le premier contact d'arc comporte un tube et en ce que le chemin de circulation de gaz passe par ce tube.
  15. Appareillage électrique de coupure en charge selon la revendication 14, caractérisé en ce que tant que le premier organe de contact se trouve entre la position fermée et la position de séparation des premier et deuxième contacts d'arc, le deuxième contact d'arc bouche le tube.
EP01410154A 2000-11-30 2001-11-27 Appareillage de coupure électrique haute tension à double mouvement Expired - Lifetime EP1211706B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0015525 2000-11-30
FR0015525A FR2817389B1 (fr) 2000-11-30 2000-11-30 Appareillage de coupure electrique haute tension a double mouvement

Publications (2)

Publication Number Publication Date
EP1211706A1 EP1211706A1 (fr) 2002-06-05
EP1211706B1 true EP1211706B1 (fr) 2006-06-21

Family

ID=8857093

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01410154A Expired - Lifetime EP1211706B1 (fr) 2000-11-30 2001-11-27 Appareillage de coupure électrique haute tension à double mouvement

Country Status (6)

Country Link
EP (1) EP1211706B1 (fr)
JP (1) JP4084035B2 (fr)
CN (1) CN1186793C (fr)
DE (1) DE60120885T2 (fr)
FR (1) FR2817389B1 (fr)
TW (1) TW518624B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932476B2 (en) 2006-12-06 2011-04-26 Abb Technology Ag Transmission for an electrical circuit breaker
DE102012205224A1 (de) 2012-03-30 2013-10-02 Alstom Technology Ltd. Druckgasschalter

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630841B1 (fr) * 2004-08-23 2010-10-06 ABB Technology AG Chambre de commutation et disjoncteur-limiteur
ATE463039T1 (de) 2005-07-13 2010-04-15 Siemens Ag Antriebsmechanismus und schaltverfahren für ein schaltgerät
FR2906642B1 (fr) * 2006-09-29 2008-12-19 Areva T & D Sa Actionnement par came cylindrique des contacts d'une chambre de coupure a double mouvement.
EP1933348B1 (fr) * 2006-12-11 2010-07-21 ABB Technology AG Disjoncteur à haute tension avec un dispositif de transmission avec un point mort
DE102007031948A1 (de) * 2007-07-06 2009-01-08 Siemens Ag Schaltgeräteanordnung mit einem Abströmkanal
JP5178644B2 (ja) * 2009-06-29 2013-04-10 株式会社東芝 投入抵抗接点付きガス遮断器及びその投入、遮断方法
JP5865670B2 (ja) * 2011-10-24 2016-02-17 株式会社東芝 ガス遮断器
DE102013200913A1 (de) * 2013-01-22 2014-07-24 Siemens Aktiengesellschaft Schaltanordnung
DE102013200914A1 (de) * 2013-01-22 2014-07-24 Siemens Aktiengesellschaft Schaltverfahren und Schalteinrichtung
DE102013200918A1 (de) * 2013-01-22 2014-07-24 Siemens Aktiengesellschaft Schaltgeräteanordnung
WO2014121483A1 (fr) * 2013-02-07 2014-08-14 厦门华电开关有限公司 Mécanisme de transmission de commutateur et commutateur de puissance
JP6069510B2 (ja) * 2013-08-29 2017-02-01 株式会社日立製作所 ガス遮断器
JP6289856B2 (ja) 2013-10-16 2018-03-07 株式会社東芝 ガス遮断器
JP6364358B2 (ja) * 2015-02-03 2018-07-25 株式会社日立製作所 ガス遮断器
EP3082144B1 (fr) 2015-04-15 2017-10-18 Siemens Aktiengesellschaft Dispositif de commutation électrique à came bi-piste
DE102016214750A1 (de) 2016-05-19 2017-11-23 Siemens Aktiengesellschaft Verfahren zur Herstellung eines keramischen Isolators
CN109192597B (zh) * 2018-10-11 2020-02-04 西安西电开关电气有限公司 断路器及其双动传动装置
DE102020104258B4 (de) * 2020-02-18 2022-09-29 Schaltbau Gmbh Schaltgerät mit zumindest zwei miteinander kommunizierenden Löschbereichen
WO2022178965A1 (fr) * 2021-02-25 2022-09-01 Jst Power Equipment, Inc. Système de commutation moyenne tension à commande de rupture monophasée

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2491675A1 (fr) * 1980-10-07 1982-04-09 Alsthom Atlantique Dispositif de coupure a double mouvement des contacts
CH675175A5 (fr) * 1987-10-27 1990-08-31 Bbc Brown Boveri & Cie
DE19622460C2 (de) * 1996-05-24 1998-04-02 Siemens Ag Hochspannungs-Leistungsschalter mit zwei antreibbaren Schaltkontaktstücken
FR2762925B1 (fr) * 1997-05-02 1999-07-09 Gec Alsthom T & D Sa Disjoncteur a haute tension a double mouvement des contacts d'arc

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932476B2 (en) 2006-12-06 2011-04-26 Abb Technology Ag Transmission for an electrical circuit breaker
DE102012205224A1 (de) 2012-03-30 2013-10-02 Alstom Technology Ltd. Druckgasschalter
EP2645396A1 (fr) 2012-03-30 2013-10-02 Alstom Technology Ltd Disjoncteur à gaz comprimé

Also Published As

Publication number Publication date
CN1357901A (zh) 2002-07-10
FR2817389B1 (fr) 2003-01-03
CN1186793C (zh) 2005-01-26
JP4084035B2 (ja) 2008-04-30
EP1211706A1 (fr) 2002-06-05
DE60120885D1 (de) 2006-08-03
TW518624B (en) 2003-01-21
JP2002208336A (ja) 2002-07-26
FR2817389A1 (fr) 2002-05-31
DE60120885T2 (de) 2007-01-18

Similar Documents

Publication Publication Date Title
EP1211706B1 (fr) Appareillage de coupure électrique haute tension à double mouvement
EP1974363B1 (fr) Disjoncteur sectionneur d'alternateur de structure compacte
EP1943657B1 (fr) Chambre de coupure de courant a double chambre de compression
EP1870916B1 (fr) Actionnement par came cylindrique d'un disjoncteur sectionneur d'alternateur
EP1369888A1 (fr) Dispositif interrupteur pour haute ou moyenne tension, à coupure mixte par vide et gaz
CH634949A5 (fr) Dispositif d'insertion d'une resistance a la seule fermeture d'un appareil d'interruption.
FR2868197A1 (fr) Dispositif de commande pour l'actionnement coordonne d'au moins deux appareils de commutation dont un est a coupure dans le vide
EP0684622B1 (fr) Disjoncteur à autocompression réduite
EP2045827A1 (fr) Chambre de coupure de disjoncteur à double volume de compression
FR2790592A1 (fr) Disjoncteur haute tension a double mouvement
EP0877405A1 (fr) Disjoncteur avec sectionneur
EP2943967A1 (fr) Sectionneur a contact d'arc rotatif
EP0693763B1 (fr) Interrupteurs électriques moyenne tension
EP2510530B1 (fr) Disjoncteur a haute tension a ecran amovible pour l'amelioration du gradient de champ
EP0986081B1 (fr) Interrupteur avec un système d'insertion d'une résistance à longue durée d'insertion
EP1267374B1 (fr) Appareillage électrique de coupure à pont de contact mobile
EP0664552A1 (fr) Disjoncteur à auto-soufflage et à double mouvement
EP0458236B1 (fr) Disjoncteur à moyenne tension
EP0647955A1 (fr) Disjoncteur à haute tension capable de couper des courants de défaut à passage par zéro retardé
EP0785562A1 (fr) Disjoncteur à double mouvement des contacts
FR2459543A1 (fr) Disjoncteur a haute tension a arc tournant et autosoufflage
EP0008546B1 (fr) Interrupteur à auto-soufflage magnétique et pneumatique de l'arc
BE1007340A7 (fr) Disjoncteur de haute tension.
FR2839193A1 (fr) Dispositif interrupteur a haute tension a coupure mixte par vide et gaz
EP3234976A1 (fr) Disjoncteur comprenant un capot d'echappement de gaz a ouverture obturable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020830

AKX Designation fees paid

Designated state(s): CH DE IT LI SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VA TECH TRANSMISSION & DISTRIBUTION SA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060621

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60120885

Country of ref document: DE

Date of ref document: 20060803

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS AKTIENGESELLSCHAFT

Free format text: SIEMENS TRANSMISSION & DISTRIBUTION#1 RUE DE LA NEVA#3800 GRENOBLE (FR) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE)

Ref country code: CH

Ref legal event code: PFA

Owner name: SIEMENS TRANSMISSION & DISTRIBUTION

Free format text: VA TECH TRANSMISSION & DISTRIBUTION SA#1, RUE DE LA NEVA#38000 GRENOBLE (FR) -TRANSFER TO- SIEMENS TRANSMISSION & DISTRIBUTION#1 RUE DE LA NEVA#3800 GRENOBLE (FR)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151126

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20151105

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160120

Year of fee payment: 15

Ref country code: CH

Payment date: 20160202

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60120885

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601