EP1208021B1 - Steuergerät für personenrückhaltesystem - Google Patents

Steuergerät für personenrückhaltesystem Download PDF

Info

Publication number
EP1208021B1
EP1208021B1 EP00959554A EP00959554A EP1208021B1 EP 1208021 B1 EP1208021 B1 EP 1208021B1 EP 00959554 A EP00959554 A EP 00959554A EP 00959554 A EP00959554 A EP 00959554A EP 1208021 B1 EP1208021 B1 EP 1208021B1
Authority
EP
European Patent Office
Prior art keywords
signal
occupant
seat belt
modifier
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00959554A
Other languages
English (en)
French (fr)
Other versions
EP1208021A1 (de
Inventor
Alanna Marie Quail
Emmanuel Garcia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive Systems Inc
Original Assignee
Siemens VDO Automotive Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VDO Automotive Corp filed Critical Siemens VDO Automotive Corp
Publication of EP1208021A1 publication Critical patent/EP1208021A1/de
Application granted granted Critical
Publication of EP1208021B1 publication Critical patent/EP1208021B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/01516Passenger detection systems using force or pressure sensing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01556Child-seat detection systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01558Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use monitoring crash strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/0153Passenger detection systems using field detection presence sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/01544Passenger detection systems detecting seat belt parameters, e.g. length, tension or height-adjustment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/34Belt retractors, e.g. reels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/34Belt retractors, e.g. reels
    • B60R22/46Reels with means to tension the belt in an emergency by forced winding up

Definitions

  • the occupant restraint system includes a plurality of sensors that provide multiple input signals to a processing unit that has a fuzzy logic control system for processing the multiple input signals to generate multiple output signals that optimize deployment of the occupant restraint system.
  • Occupant sensing systems are used to provide information to optimize or suppress deployment of an airbag if an occupant is determined to be too close to the airbag. These systems typically use a single input to a controller to determine whether or not the airbag should be deployed. The input is usually based on measurement of the seat occupant's weight or monitoring of the occupant's position relative to the airbag deployment area. Based on this input, the controller sends an output signal to control airbag inflation or deflation if a collision occurs.
  • an occupant restraint control system that can utilize multiple inputs to provide multiple output signals to optimize deployment of the occupant restraint system including the operation of seat belt pretensioner and retractor mechanisms and the inflation/deflation rates of the airbag.
  • the system should be easy to install and maintain and should also be easily adaptable to any combination of sensors.
  • an occupant restraint system comprising the features of claim 1.
  • the occupant restraint system includes at least one modifier sensor for generating a modifier signal to enable or disable an occupant restraint system, an occupant sensor assembly for generating an occupant signal representing multiple occupant characteristics, and a collision sensor assembly for generating a collision signal representing vehicle collision characteristics.
  • the processing unit receives the input signals including the modifier, occupant, and collision signals and generates at least one output signal based on the input signals that optimizes deployment of the occupant restraint system.
  • the at least one modifier sensor can include various combinations of the following sensors: an occupant presence sensor for determining whether an occupant is present within a predetermined area within the vehicle; a child seat sensor for determining whether a child seat is properly positioned within the predetermined area; and a seat belt usage sensor for determining whether a seat belt harness is being utilized by the occupant.
  • the occupant presence sensor generates an occupant signal that is positive when the occupant is in the predetermined area and negative when the occupant is not in the predetermined area.
  • the child seat sensor generates a child seat signal that is positive when the child seat is properly positioned within the predetermined area and negative when the child seat is not present or improperly positioned within the predetermined area.
  • the seat belt usage sensor generates a seat belt signal that is positive when the seat belt harness is in an engaged position and negative when the seat belt harness is in a disengaged position.
  • the modifier signal is compiled from the combination of the occupant presence, child seat, and seat belt signals.
  • the occupant sensor assembly includes a weight sensor for generating a weight signal representing occupant weight and an occupant proximity sensor for generating an occupant proximity signal representing occupant position relative to a deployment area for the occupant restraint system. The occupant signal is compiled from the combination of the weight and proximity signals.
  • the collision sensor assembly includes a severity sensor for generating a severity signal representing collision characteristics occurring at the time of or just after collision and a pre-collision sensor for generating a pre-collision signal representing vehicle characteristics occurring just before collision. The collision signal is compiled from the combination of the severity and pre-collision signals.
  • the input to the processing unit is comprised of a plurality of input signals including the modifier signal comprised of an occupant presence signal, a child seat signal, and a seat belt usage signal, the occupant signal comprised of an occupant weight signal and an occupant proximity signal, and the collision signal comprised of a collision severity signal and a pre-collision signal.
  • the at least one output signal is comprised of a plurality of output signals. These output signals can be any of various combinations of the following signals: a multi-stage inflation control signal for controlling the profile of the airbag; a variable venting control signal for controlling deflation speed of the airbag; and a retractor control signal for controlling the retraction force of the seat belt retractor mechanism.
  • the processing unit preferably includes a fuzzy logic control system for optimizing the plurality of output signals based on the plurality of input signals.
  • the modifier, occupant, and collision signals are transmitted as multiple input signals to a processing unit and at least one output signal is generated based on the input signals to optimize deployment of the occupant restraint system.
  • One advantage of this system is that multiple inputs are used to specifically tailor multiple outputs for controlling the occupant restraint system. All of the inputs are combined and are necessary to produce the required outputs.
  • the application of a fuzzy logic control system to all of these independent and variable inputs produces the proper control signals for the airbag and seat belt restraint systems while optimizing the total system response in real time.
  • the tailored response of the occupant restraint system will have adapted to vehicle conditions sensed prior to and during the collision.
  • a vehicle is shown generally at 10 in Figure 1 with an occupant 12 seated in a seat having a seat back 14 supported with respect to a seat bottom 16.
  • the vehicle is equipped with an occupant restraint system that includes an airbag system 18 and a seat belt system 20 that are used to restrain occupants 12 within the vehicle 10 under certain predetermined deceleration requirements. If the vehicle decelerates suddenly, such as when a collision occurs, occupants 12 will tend to continue to move forward due to inertial effects.
  • An airbag controller 22 deploys an airbag 24 under predetermined collision circumstances to decelerate the occupants' impact speed before they contact a vehicle structure, such as a steering wheel or dashboard 26.
  • the seat belt system 20 typically includes a lap belt portion 28 and a harness portion 30 that are fastened with a buckle 32 to secure the occupant 12 in the seat.
  • the seat belt system 20 also includes a pretensioner mechanism 34 that provides a predetermined tension force on the occupant 12 via the harness portion 30 when the seat belt 20 is in the engaged position and a retractor mechanism 36 that retracts the harness portion 30 after the harness 30 has been extended. If an occupant 12 is buckled to the seat the pretensioner 34 and retractor 36 mechanisms also assist in controlling motion of the occupant 12 during a collision.
  • the pretensioner 34 and retractor 36 mechanisms are shown schematically in Figure 2 to indicate that any type of pretensioner 34 or retractor 36 mechanism known in the art can be used.
  • the deployment of the airbag 24 and the utilization of the seat belt mechanisms 34, 36 decrease the likelihood of serious injury for the occupants 12.
  • a child seat 38 could also be secured to the seat, shown in Figure 3. If the child seat 38 is facing rearward or is improperly positioned on the seat the airbag 24 should not be deployed. However, under certain predetermined conditions when the child seat 38 is facing forward as shown in Figure 3, it may be desirable to deploy the airbag 24 at a lower deployment force to prevent injury to the child.
  • the subject invention relates to a control system, shown generally at 40, that optimizes deployment of the occupant restraint system.
  • a plurality of sensors are used to provide multiple input signals that are processed by the control system 40 to produce multiple output signals for controlling the airbag inflation/deflation rates and the seat belt mechanism 34, 36.
  • a fuzzy logic control system is preferably used to process the multiple input signals and to generate the multiple output signals to optimize deployment of the occupant restraint system. This will be discussed in greater detail below.
  • the system includes an occupant presence sensor 42 that determines whether there is an occupant 12 positioned in a predetermined area that will be affected by the occupant restraint system. Any type of sensor 42 could be used including optical, contact, or non-contact type sensors for example.
  • the occupant presence sensor 42 generates an occupant presence signal 44 that is sent to a central processing unit (CPU) or a similar type central controller 46.
  • the occupant presence signal 44 will either be a positive signal indicating that the occupant 12 is in the predetermined area or a negative signal indicating the occupant 12 is not in the predetermined area. It should be understood that the terms "positive” and “negative” do not indicate a mathematical value and are simply descriptive terms to differentiate between two different signal designations, similar to an "on/off" designation, for example.
  • the system also includes a child seat sensor 48 for determining whether a child seat 38 is properly positioned within a predetermined area. Any type of sensor 48 could be used including optical, contact, or non-contact type sensors for example.
  • the child seat sensor 48 generates a child seat signal 50 that is sent to the CPU 46.
  • the child seat signal 50 will either be a positive signal indicating that the child seat 38 is present and is in a properly installed position, i.e., facing forward, or a negative signal indicating the child seat 38 is not in the predetermined area or is improperly positioned, i.e. facing rearward.
  • the terms "positive” and “negative” do not indicate a mathematical value and are simply descriptive terms to differentiate between two different signal designations. If the child seat 38 is properly positioned, additional input signals will be processed, but if the child seat 38 is properly positioned or is not present, the airbag 24 will not be deployed.
  • the system also includes a seat belt usage sensor 52 for determining whether the occupant 12 is utilizing a seat belt harness 30 and/or lap belt 28. Any type of seat belt usage sensor 52 known in the art could be used including optical, contact, or non-contact type sensors for example.
  • the seat belt usage sensor 52 generates a seat belt usage signal 54 that is sent to the CPU 46.
  • the seat belt usage signal 54 will either be a positive signal indicating that the seat belt 20 is engaged or a negative signal indicating the seat belt 20 is disengaged. As discussed above, the terms "positive” and “negative” do not indicate a mathematical value and are simply descriptive terms to differentiate between two different signal designations. If the seat belt 20 is engaged, additional input signals will be processed. If the seat belt 20 is disengaged additional input signals will be processed but the pretensioner 34 and retractor 36 mechanisms will not be deployed.
  • modifier sensors The occupant presence 42, child seat 48, and seat belt usage 52 sensors are referred to as modifier sensors because the sensors 42, 48, 52 are on/off type inputs that can enable or disable certain outputs.
  • the occupant presence 44, child seat 50, and seat belt usage 54 signals are referred to as modifier signals. Any combination of the above referenced modifier sensors and signals can be used as inputs to the CPU 46. Optionally, additional modifier sensors could be used to provide additional input to the CPU 46.
  • the system also includes a weight sensor 56 that generates a weight signal 58 representing occupant weight.
  • the weight sensor 56 can be any type of weight measuring sensor assembly known in the art and can include of a plurality of sensors, such as strain gages for example, to measure occupant weight.
  • An occupant proximity sensor 60 generates an occupant proximity signal 62 representing occupant position relative to a deployment area for the airbag 24. Any type of proximity sensor 60 can be used including optical, contact, or non-contact type sensors for example.
  • the weight 56 and proximity 60 sensors are referred to as occupant sensors. These sensors 56, 60 generate an occupant signal, comprised of the weight 58 and proximity 62 signals, that is sent to the CPU 46 as input for determining inflation/deflation rates for the airbag 24. Additional occupant sensors and occupant signals could also be used to provide additional input information to the CPU 46.
  • the system includes a collision sensor assembly with a severity sensor assembly 64 that generates a severity signal 66 representing vehicle collision characteristics occurring at the time of or just after collision. These characteristics can include vehicle speed, position, and/or braking data, for example.
  • the system can optionally include a pre-collision sensor assembly 68 for generating a pre-collision signal 70 representing vehicle characteristics occurring just before collision. These characteristics can include vehicle speed, orientation, and/or braking data, for example.
  • the severity 64 and pre-collision 68 sensor assemblies are preferably comprised of multiple sensors, well known in the art, for measuring and monitoring, vehicle speed, braking force, acceleration, deceleration, etc.
  • Multiple input signals comprised of any of various combinations of the occupant presence 44, child seat 50, seat belt usage 54, occupant weight 58, occupant proximity 62, severity, and/or pre-collision 70 signals are generated and transmitted to the CPU 46.
  • the CPU 46 receives and processes these input signals and generates multiple output signals that optimize control of the occupant restraint system.
  • the output signals are comprised of any of various combinations of the following signals.
  • a retractor control signal 72 controls deployment of the seat belt retractor mechanism 36 to reduce forward momentum of the occupant 12.
  • a multi-stage inflation control signal 74 is used to control the inflation profile of the airbag 24.
  • a variable venting control signal 76 is used to control deflation speed of the airbag 24.
  • Another output signal can include a seat belt pretensioner signal 78 that is used to control the tension force on the harness portion 30 of the seat belt 20.
  • the CPU 46 utilizes a fuzzy logic control system to optimize the plurality of output signals based on the plurality of input signals to provide optimal deployment of the airbag 24 and seat belt mechanisms 34, 36 based on the type of occupant 12, the position of the occupant 12, the proximity of the occupant 12 to the airbag 24, etc.
  • Fuzzy logic control systems are well known in the art.
  • the fuzzy logic control system encompasses and expands on Boolean logic.
  • Boolean logic events are designated with a "1" or "0" value.
  • fuzzy logic control system all values between "1” and "0” are used, allowing the choice of multiple values to describe or designate an event.
  • Fuzzy logic control systems also allow classification overlapping, which is strictly forbidden in a Boolean system.
  • the fuzzy logic system preferably includes the following features: membership functions, rules, rule evaluation, and defuzzification.
  • Membership functions equate linguistic names to the values between "0" and "1.”
  • the rules include "IF/THEN" statements that use predetermined specifications and data to control the system.
  • Rule evaluation involves the process of combining multiple inputs and applying multiple rules. Based on the input values, one or all of the rules can be used to control the system to some degree. During this step of the process, the rule results are distilled into one fuzzy shape. During the defuzzification step, the result is translated back into a single value that is used to control the airbag and/or seat belt mechanisms.
  • deployment of the airbag 24 and/or seat belt mechanisms 34, 36 can be specifically tailored to different occupants 12 based on size, weight, position, etc.
  • the occupant presence 42, child seat 48, and seat belt usage 52 sensors are referred to as modifiers 80 because these sensors 42, 48, 52 are on/off type inputs that can enable or disable certain outputs.
  • other sensors 82 could be used to provide additional input to the CPU 46.
  • the additional input includes the occupant weight sensor 56, the occupant position sensor 60 for generating an occupant position signal indicating the position and/or proximity of the occupant 12 relative to the airbag deployment area, the collision severity sensor 64 for measuring multiple collision characteristics occurring at the time of or just after collision, and the pre-collision sensor 68 for measuring vehicle characteristics occurring just before collision.
  • other sensors 84 could be used to provide additional input to the CPU 46.
  • the fuzzy logic control system is used to process the information and to generate the optimal output control decision.
  • Each of the variable data inputs i.e. the non-modifier inputs, has a descriptive membership function that describes ranges over their respective domain.
  • the fuzzy logic process combines all of the inputs and control values for the variable outputs.
  • the outputs include any combination of the multi-stage inflator signal 74, the retractor force signal 72, the pretensioner signal 78 and/or the variable venting signal 76. Additional output signals can also be generated such as a threshold signal 86, for example.
  • the multi-stage inflator signal 74 allows the system to control the airbag's pressure profile.
  • the airbag 24 can be initially inflated from 75% to 100% of the peak pressure.
  • the threshold signal 86 is the first stage of the multi-stage inflator and determines the firing of the first squib.
  • the retractor force signal 72 allows the seat belt 20 to control some of the occupant's forward momentum during the collision, and preferably applies a constant force to provide a smoother transition for the occupant 12.
  • the variable venting signal 76 allows the airbag 24 to deflate at different speeds to control the ridedown of the occupant 12 after airbag deployment.
  • the seat belt pretensioner signal 78 enables the pretensioner 34 via the seat belt usage sensor 52.
  • the other outputs i.e., the threshold 86, variable venting 76, and multi-stage inflator 74 signals preferably have calculated delays 88, associated within them to let the seat belt pretensioner 34 and retractor 36 mechanisms provide the initial control of the occupant's motion.
  • the modifiers 80 are processed.
  • the modifiers 80 can be processed in any order.
  • the first step is determining the occupant presence 90. If the occupant is present, then the next modifier is processed. If the occupant is not present then the airbag 24 is disabled 92.
  • the CPU 46 determines whether there is a child seat 38 present 94. If the child seat 38 is not present, then the next modifier is processed. If the child seat 38 is present, the CPU 46 determines whether the child seat 38 is properly positioned. If the child seat 38 is facing towards the rear of the vehicle or is otherwise determined to be improperly installed, the airbag 24 is disabled 92. If the child seat 38 is forward facing or otherwise determined to be properly positioned, then the next modifier is processed.
  • the CPU 46 determines whether or not the seat belt 20 is engaged 96. If the seat belt 20 is disengaged, then the pretensioner 34 and retractor 36 mechanisms are disabled 98. If the seat belt 20 is engaged, then any additional modifiers 80 would be processed. Once all of the modifiers 80 are processed, the variable data is processed 100.
  • the variable data includes the collision severity data 102, pre-collision data 104, occupant weight data 106, and occupant position/proximity data 108, plus any other additional variable data.
  • the CPU 46 utilizes a fuzzy logic control system to analyze the data 110 and based on this analysis generates an output signal to optimize deployment of the occupant restraint system 112.
  • the method for controlling the occupant restraint system includes the following steps. At least one modifier signal is generated to enable or disable an occupant restraint system based on satisfaction of a predetermined condition.
  • the modifier signal can be comprised of a single signal or a plurality of signals comprised of any combination of the following signals: the occupant presence signal 44, the child seat signal 50, or the seat belt usage signal 54.
  • a positive occupant presence signal 44 indicates that the occupant 12 is present in a predetermined area and a negative occupant presence signal 44 indicates that the occupant 12 is not in the predetermined area.
  • a positive child seat signal 50 indicates that the child seat 38 is properly installed within the predetermined area and a negative child seat signal indicates that the child seat 38 is not present or is improperly installed within the predetermined area.
  • a positive seat belt usage signal 54 indicates that the seat belt 20 is in an engaged position and a negative seat belt usage signal 54 indicates that the seat belt 20 is in a disengaged position.
  • An occupant signal is generated representing multiple occupant characteristics such occupant weight and proximity.
  • a collision signal is generated representing vehicle collision characteristics such as speed, position, and braking, for example.
  • the modifier, occupant, and collision signals are transmitted as multiple input signals to the processing unit and at least one output signal is generated based on the input signals to optimize deployment of the occupant restraint system. Additional steps include modifying the output signal to disable the occupant restraint system when either the negative occupant presence signal 44, the negative child seat signal 50, or the negative seat belt 54 usage signal is generated and continuing to process the output signal when either the positive occupant presence signal 44, the positive child seat signal 50, or the positive seat belt usage signal 54 is generated.
  • the output signal is used to control inflation and deflation of the airbag 24 and to control operation of the pretensioner mechanism 34 and retractor mechanism 36.
  • the output signal can control various functions of the airbag 24 and seat belt 20 systems.
  • a multi-stage inflation control signal 74 for controlling the pressure profile of the airbag 24, a variable venting control signal 76 for controlling deflation speed of the airbag 24, and a retractor control signal 72 for controlling the retraction force of the seat belt retractor mechanism 34 are just some of the output signals that can be generated by the CPU 46.
  • a fuzzy logic analysis process is used to generate the output signal based on the plurality of input signals.
  • the fuzzy logic analysis process includes the steps of creating membership functions by assigning names to predetermined values within a designated range; designating rules to be applied to the input signals; evaluating the rules and input signals to form an optimal control decision; and translating the optimal control decision into the output signal.
  • the CPU 46 can be programmed with a neural network for learning vehicle characteristics unique to vehicle type.
  • vehicle type has different passenger compartment characteristics.
  • sport utility vehicles have larger passenger compartments than compact cars.
  • further adaptability can be built into the system by using a neural network.
  • the addition of a neural network would create a neuro-fuzzy system that could learn about the specific vehicle type during the developmental stages such as testing.
  • the fuzzy logic analysis process could then be optimized for the specific vehicle type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)
  • Automotive Seat Belt Assembly (AREA)
  • Seats For Vehicles (AREA)

Claims (27)

  1. Personenrückhaltesystem (40), welches umfasst:
    wenigstens einen Modifikationssensor, welcher ein Modifikationssignal zum Freigeben oder Sperren eines Personenrückhaltesystems erzeugt;
    eine Personensensor-Baugruppe (56, 60), welche ein Personensignal erzeugt, das mehrere Personenkenngrößen repräsentiert;
    eine Kollisionssensor-Baugruppe (64), welche ein Kollisionssignal erzeugt, das Kollisionskenngrößen des Fahrzeugs repräsentiert; und
    eine Verarbeitungseinheit (110) zum Empfangen von Eingangsinformationen, die aus dem besagten Modifikations-, dem besagten Personen- und dem besagten Kollisionssignal bestehen, und zur Erzeugung wenigstens eines Ausgangssignals auf der Basis dieser Eingangsinformationen, welches die Auslösung des besagten Personenrückhaltesystems optimiert;
       dadurch gekennzeichnet, dass der besagte wenigstens eine Modifikationssensor einen Personenpräsenzsensor (42), um zu bestimmen, ob sich innerhalb eines vorgegebenen Bereiches im Fahrzeug eine Person befindet, umfasst, und wobei das besagte Modifikationssignal als ein positives Modifikationssignal erzeugt wird, wenn sich die Person in dem besagten vorgegebenen Bereich befindet, und als ein negatives Modifikationssignal erzeugt wird, wenn sich die Person nicht in dem besagten vorgegebenen Bereich befindet.
  2. System nach Anspruch 1, wobei die Übertragung des besagten negativen Modifikationssignals zu der besagten Verarbeitungseinheit bewirkt, dass das besagte Personenrückhaltesystem gesperrt wird.
  3. System nach Anspruch 1 oder 2, wobei der besagte wenigstens eine Modifikationssensor einen Kindersitzsensor (48), um zu bestimmen, ob innerhalb eines vorgegebenen Bereiches ein Kindersitz ordnungsgemäß angebracht ist, umfasst, und wobei das besagte Modifikationssignal als ein positives Modifikationssignal erzeugt wird, wenn der besagte Kindersitz ordnungsgemäß innerhalb des vorgegebenen Bereiches angebracht ist, und als ein negatives Modifikationssignal erzeugt wird, wenn der besagte Kindersitz nicht ordnungsgemäß innerhalb des vorgegebenen Bereiches angebracht ist.
  4. System nach Anspruch 3, wobei die Übertragung des besagten negativen Modifikationssignals zu der besagten Verarbeitungseinheit das besagte Personenrückhaltesystem sperrt.
  5. System nach Anspruch 3, wobei der besagte wenigstens eine Modifikationssensor einen Kindersitzsensor umfasst, der in der Lage ist zu bestimmen, ob ein Kindersitz dem vorderen Ende oder dem Heck des Fahrzeugs zugewandt ist.
  6. System nach einem der Ansprüche 1 bis 3, wobei der besagte wenigstens eine Modifikationssensor einen Sicherheitsgurtbenutzungssensor (52), um zu bestimmen, ob ein Sicherheitsgurt von der Person benutzt wird, umfasst, und wobei das besagte Modifikationssignal als ein positives Modifikationssignal erzeugt wird, wenn sich der besagte Sicherheitsgurt in einer angelegten Position befindet, und als ein negatives Modifikationssignal erzeugt wird, wenn sich der Sicherheitsgurt in einer nicht angelegten Position befindet.
  7. System nach Anspruch 6, wobei das besagte wenigstens eine Ausgangssignal ein Aufrollsteuersignal (72) zur Steuerung der Auslösung eines Sicherheitsgurt-Aufrollmechanismus, um den nach vorn gerichteten Impuls einer Person zu verringern, wenn die besagte Verarbeitungseinheit ein positives Modifikationssignal empfängt, und zum Sperren des besagten Sicherheitsgurt-Aufrollmechanismus, wenn die besagte Verarbeitungseinheit ein negatives Modifikationssignal empfängt, umfasst.
  8. System nach Anspruch 1, wobei der besagte wenigstens eine Modifikationssensor einen Personenpräsenzsensor (42), um zu bestimmen, ob sich innerhalb eines vorgegebenen Bereiches im Fahrzeug eine Person befindet, einen Kindersitzsensor (48), um zu bestimmen, ob innerhalb des besagten vorgegebenen Bereiches ein Kindersitz ordnungsgemäß angebracht ist, und einen Sicherheitsgurtbenutzungssensor (52), um zu bestimmen, ob ein Sicherheitsgurt von der Person benutzt wird, umfasst, und wobei der besagte Personenpräsenzsensor in der Lage ist, ein Personensignal zu erzeugen, welches positiv ist, wenn sich die Person in dem besagten vorgegebenen Bereich befindet, und negativ ist, wenn sich die Person nicht in dem besagten vorgegebenen Bereich befindet, wobei der besagte Kindersitzsensor in der Lage ist, ein Kindersitzsignal zu erzeugen, welches positiv ist, wenn der besagte Kindersitz ordnungsgemäß innerhalb des besagten vorgegebenen Bereiches angebracht ist, und negativ ist, wenn der besagte Kindersitz nicht ordnungsgemäß innerhalb des besagten vorgegebenen Bereiches angebracht ist, und wobei der besagte Sicherheitsgurtbenutzungssensor in der Lage ist, ein Sicherheitsgurtsignal zu erzeugen, welches positiv ist, wenn sich der besagte Sicherheitsgurt in einer angelegten Position befindet, und negativ ist, wenn sich der Sicherheitsgurt in einer nicht angelegten Position befindet, wobei das besagte Modifikationssignal aus dem besagten Personenpräsenzsignal, dem besagten Kindersitzsignal und dem besagten Sicherheitsgurtsignal besteht.
  9. System nach Anspruch 1, wobei die besagte Personensensor-Baugruppe einen Gewichtssensor (56) zur Erzeugung eines Gewichtssignals, welches das Gewicht des Insassen repräsentiert, und einen Personennäherungssensor zur Erzeugung eines Personennäherungssignals, welches die Position des Insassen relativ zu einem Auslösungsbereich für das besagte Personenrückhaltesystem repräsentiert, umfasst, wobei das besagte Personensignal aus dem besagten Gewichts- und dem besagten Näherungssignal besteht.
  10. System nach Anspruch 9, wobei die besagte Kollisionssensor-Baugruppe einen Heftigkeitssensor (64) zur Erzeugung eines Heftigkeitssignals, welches die Kollisionskenngrößen repräsentiert, die zum Zeitpunkt der Kollision oder unmittelbar danach vorliegen, und einen Vorkollisionssensor zur Erzeugung eines Vorkollisionssignals, welches die Kenngrößen des Fahrzeugs repräsentiert, die unmittelbar vor der Kollision vorliegen, umfasst, wobei das besagte Kollisionssignal aus dem besagten Heftigkeits- und dem besagten Vorkollisionssignal besteht.
  11. System nach Anspruch 10, wobei das besagte Vorkollisionssignal auf der Basis wenigstens der Geschwindigkeit und der Kenngrößen der Bremsung des Fahrzeugs, die vor einem Kollisionsereignis vorliegen, erzeugt wird.
  12. System nach einem der Ansprüche 1 bis 11, wobei das besagte Personenrückhaltesystem eine Airbag-Baugruppe mit einem Airbag-Steuergerät zum Aufblasen und Entlüften eines Airbags und eine Sicherheitsgurt-Baugruppe, die einen Sicherheitsgurt-Vorspannmechanismus und einen Sicherheitsgurt-Aufrollmechanismus aufweist, umfasst.
  13. System nach Anspruch 12, wobei die besagten Eingangsinformationen der besagten Verarbeitungseinheit aus einer Vielzahl von Eingangssignalen (44, 50, 54, 56, 62, 66, 70) bestehen, welche das besagte Modifikationssignal, welches aus einem Personenpräsenzsignal, einem Kindersitzsignal und einem Sicherheitsgurtbenutzungssignal besteht, das besagte Personensignal, welches aus einem Personengewichtssignal und einem Personennäherungssignal besteht, und das besagte Kollisionssignal, welches aus einem Kollisionsheftigkeitssignal und einem Vorkollisionssignal besteht, umfassen.
  14. System nach Anspruch 13, wobei das besagte wenigstens eine Ausgangssignal aus einer Vielzahl von Ausgangssignalen (72, 74, 76, 78) besteht, welche ein Steuersignal der variablen Entlüftung zur Steuerung der Entlüftungsgeschwindigkeit des besagten Airbags und ein Aufrollsteuersignal zur Steuerung der Aufrollkraft des besagten Sicherheitsgurt-Aufrollmechanismus umfassen.
  15. System nach Anspruch 12, welches ein Fuzzy-Logik-Steuerungssystem (110) zur Optimierung des-besagten Vielzahl von Ausgangssignalen auf der Basis der besagten Vielzahl von Eingangssignalen umfasst.
  16. Verfahren zur Steuerung eines Personenrückhaltesystems, welches die folgenden Schritte umfasst:
    (a) Erzeugen wenigstens eines Modifikationssignals (44, 50, 54, 56, 62, 66, 70), um auf der Basis der Erfüllung einer vorgegebenen Bedingung ein Personenrückhaltesystem freizugeben oder zu sperren;
    (b) Erzeugen eines Personensignals, welches mehrere Personenkenngrößen repräsentiert;
    (c) Erzeugen eines Kollisionssignals, welches Kollisionskenngrößen des Fahrzeugs repräsentiert;
    (d) Übertragen des Modifikations-, des Personen- und des Kollisionssignals als mehrere Eingangssignale zu einer Verarbeitungseinheit; und
    (e) Erzeugen wenigstens eines Ausgangssignals (72, 74, 76, 78) auf der Basis der Eingangssignale, um die Auslösung des Personenrückhaltesystems zu optimieren, dadurch gekennzeichnet, dass Schritt (a) die Schritte des Erzeugens eines ersten Modifikationssignals umfasst, welches entweder ein positives Personenpräsenzsignal, das anzeigt, dass sich eine Person in einem vorgegebenen Bereich befindet, oder ein negatives Personenpräsenzsignal, das anzeigt, dass sich die Person nicht in dem vorgegebenen Bereich befindet, aufweist.
  17. Verfahren nach Anspruch 16, wobei Schritt (a) die Schritte umfasst: Erzeugen eines zweiten Modifikationssignals, welches entweder ein positives Kindersitzsignal aufweist, das anzeigt, dass ein Kindersitz ordnungsgemäß innerhalb des vorgegebenen Bereiches angebracht ist, oder ein negatives Kindersitzsignal, das anzeigt, dass der Kindersitz innerhalb des vorgegebenen Bereiches nicht vorhanden oder nicht ordnungsgemäß angebracht ist; und Erzeugen eines dritten Modifikationssignals, welches entweder ein positives Sicherheitsgurtbenutzungssignal aufweist, das anzeigt, dass sich ein Sicherheitsgurt in einer angelegten Position befindet, oder ein negatives Sicherheitsgurtbenutzungssignal, das anzeigt, dass sich der Sicherheitsgurt in einer nicht angelegten Position befindet.
  18. Verfahren nach Anspruch 16, wobei Schritt (e) den Schritt der Änderung des Ausgangssignals, so dass das Personenrückhaltesystem gesperrt wird, wenn entweder das negative Personenpräsenzsignal oder das negative Kindersitzsignal oder das negative Sicherheitsgurtbenutzungssignal erzeugt worden ist, umfasst.
  19. Verfahren nach Anspruch 16, wobei Schritt (e) den Schritt der Fortsetzung der Verarbeitung des Ausgangssignals, wenn entweder das positive Personenpräsenzsignal oder das positive Kindersitzsignal oder das positive Sicherheitsgurtbenutzungssignal erzeugt worden ist, umfasst.
  20. Verfahren nach Anspruch 16, wobei Schritt (e) die Verwendung des Ausgangssignals, um das Aufblasen und die Entlüftung eines Airbags zu steuern und um die Funktion einer einen Sicherheitsgurt-Vorspannmechanismus und einen Sicherheitsgurt-Aufrollmechanismus aufweisenden Sicherheitsgurt-Baugruppe zu steuern, umfasst.
  21. Verfahren nach Anspruch 16, wobei Schritt (e) die Erzeugung einer Vielzahl von Ausgangsignalen umfasst, einschließlich der Erzeugung eines Steuersignals des mehrstufigen Aufblasens zur Steuerung des Druckprofils des Airbags, der Erzeugung eines Steuersignals der variablen Entlüftung zur Steuerung der Entlüftungsgeschwindigkeit des Airbags und der Erzeugung eines Aufrollsteuersignals zur Steuerung der Aufrollkraft des Sicherheitsgurt-Aufrollmechanismus.
  22. Verfahren nach Anspruch 21, welches die Programmierung der Verarbeitungseinheit mit einem Fuzzy-Logik-Analyseprozess umfasst, um die Vielzahl von Ausgangssignalen auf der Basis der Vielzahl von Eingangssignalen vor Schritt (e) zu erzeugen.
  23. Verfahren nach Anspruch 22, wobei Schritt (b) die Erzeugung eines Personengewichtssignals und eines Personennäherungssignals, welches die Position des Insassen relativ zum Airbag angibt, umfasst.
  24. Verfahren nach Anspruch 23, wobei Schritt (c) die Erzeugung eines Heftigkeitssignals, welches Kenngrößen des Fahrzeugs bei oder nach einer Kollision angibt, und die Erzeugung eines Vorkollisionssignals, welches Kenngrößen des Fahrzeugs vor einer Kollision angibt, umfasst.
  25. Verfahren nach Anspruch 16, welches den Schritt des Lernens von für den Fahrzeugtyp und die Fahrzeuggröße spezifischen Fahrzeugmerkmalen durch Verwendung eines Neuronennetzes umfasst.
  26. Verfahren nach Anspruch 16, welches den Schritt des Erzeugens eines Kindersitzpositionssignals umfasst, welches anzeigt, ob ein Kindersitz in einer dem vorderen Ende oder dem Heck des Fahrzeugs zugewandten Position angebracht ist.
  27. Verfahren nach Anspruch 16, welches die Verwendung eines Fuzzy-Logik-Analyseprozesses umfasst, um das Ausgangssignal auf der Basis der Vielzahl von Eingangssignalen vor Schritt (e) zu erzeugen, wobei der Fuzzy-Logik-Analyseprozess die Schritte des Erzeugens von Zugehörigkeitsfunktionen durch Zuordnen von Namen zu vorgegebenen Werten innerhalb eines bezeichneten Bereiches; des Angebens von auf die Eingangssignale anzuwendenden Regeln; des Auswertens der Regeln und Eingangssignale zur Erstellung einer optimalen Steuerungsentscheidung; und des Übersetzens der optimalen Steuerungsentscheidung in das Ausgangssignal umfasst.
EP00959554A 1999-09-03 2000-08-29 Steuergerät für personenrückhaltesystem Expired - Lifetime EP1208021B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15241899P 1999-09-03 1999-09-03
US152418P 1999-09-03
PCT/US2000/023687 WO2001017825A1 (en) 1999-09-03 2000-08-29 Controller for occupant restraint system

Publications (2)

Publication Number Publication Date
EP1208021A1 EP1208021A1 (de) 2002-05-29
EP1208021B1 true EP1208021B1 (de) 2003-10-15

Family

ID=22542832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00959554A Expired - Lifetime EP1208021B1 (de) 1999-09-03 2000-08-29 Steuergerät für personenrückhaltesystem

Country Status (5)

Country Link
EP (1) EP1208021B1 (de)
JP (1) JP2003508301A (de)
KR (1) KR20020029122A (de)
DE (1) DE60005977T2 (de)
WO (1) WO2001017825A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7236865B2 (en) 2004-09-08 2007-06-26 Ford Global Technologies, Llc Active adaptation of vehicle restraints for enhanced performance robustness
DE102007025702A1 (de) 2007-06-01 2008-12-04 Trw Automotive Gmbh Vorrichtung zum Schutz und Verfahren zum Schützen eines Fahrzeuginsassen in einem Kraftfahrzeug

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682094B1 (en) * 2000-08-25 2004-01-27 Ford Global Technologies, Llc Restraint system
DE502005003979D1 (de) * 2004-02-10 2008-06-19 Autoliv Dev Sicherheitsvorrichtung
GB2416896B (en) 2004-07-22 2009-03-11 Autoliv Dev Improvements in or relating to a safety arrangement
WO2006050740A1 (de) * 2004-11-10 2006-05-18 Daimlerchrysler Ag Kraftfahrzeug mit einer insassenrückhalteeinrichtung
JP4923559B2 (ja) * 2005-02-28 2012-04-25 タカタ株式会社 乗員拘束装置
DE202005003568U1 (de) * 2005-03-02 2006-07-13 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Steuerungsvorrichtung für eine Verstelleinrichtung eines Kraftfahrzeugteiles
JP2006264366A (ja) * 2005-03-22 2006-10-05 Aisin Seiki Co Ltd 車両の乗員判別装置
KR100718395B1 (ko) * 2005-12-21 2007-05-14 현대모비스 주식회사 차량의 승원분류 시스템 및 그 동작방법
DE102005058924B4 (de) 2005-12-09 2018-03-01 Trw Automotive Gmbh Verfahren und Vorrichtung zur Steuerung einer irreversiblen Sicherheitseinrichtung in einem Kraftfahrzeug
DE102006014915A1 (de) * 2006-03-30 2007-10-11 Siemens Ag Verfahren zum rechnergestützten Erstellen von Verarbeitungsvorschriften für die Steuerung von Kraftfahrzeuginsassen-Schutzsystemen
US10013815B2 (en) 2006-12-13 2018-07-03 Crown Equipment Corporation Information system for industrial vehicles
US11225404B2 (en) 2006-12-13 2022-01-18 Crown Equipment Corporation Information system for industrial vehicles
CA3107684C (en) 2006-12-13 2022-12-20 Crown Equipment Corporation Fleet management system
US10600256B2 (en) 2006-12-13 2020-03-24 Crown Equipment Corporation Impact sensing usable with fleet management system
KR100931162B1 (ko) * 2007-11-21 2009-12-10 대성전기공업 주식회사 차량 시트 벨트 장치 및 이의 제어 방법
DE102019103752A1 (de) * 2019-02-14 2020-08-20 Trw Automotive Safety Systems Gmbh Lenkvorrichtung, Gassackmodul für diese Lenkvorrichtung sowie Verfahren zur Auslösung eines Hupsignals bei einer solchen Lenkvorrichtung
CN116353532B (zh) * 2023-05-25 2023-10-20 一汽奔腾轿车有限公司 一种用于零重力座椅的乘员保护系统及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532408B1 (en) * 1997-05-29 2003-03-11 Automotive Technologies International, Inc. Smart airbag system
US5626359A (en) * 1993-12-02 1997-05-06 Trw Vehicle Safety Systems, Inc. Method and apparatus for controlling an actuatable restraining device in response to discrete control zones
DE19753163A1 (de) * 1997-11-29 1999-06-02 Bosch Gmbh Robert Verfahren und Vorrichtung zur Bildung eines Auslösekriteriums für ein Rückhaltesystem

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7236865B2 (en) 2004-09-08 2007-06-26 Ford Global Technologies, Llc Active adaptation of vehicle restraints for enhanced performance robustness
DE102007025702A1 (de) 2007-06-01 2008-12-04 Trw Automotive Gmbh Vorrichtung zum Schutz und Verfahren zum Schützen eines Fahrzeuginsassen in einem Kraftfahrzeug

Also Published As

Publication number Publication date
EP1208021A1 (de) 2002-05-29
DE60005977T2 (de) 2004-09-09
DE60005977D1 (de) 2003-11-20
JP2003508301A (ja) 2003-03-04
WO2001017825A1 (en) 2001-03-15
KR20020029122A (ko) 2002-04-17

Similar Documents

Publication Publication Date Title
US6804595B1 (en) Controller for occupant restraint system
EP1208021B1 (de) Steuergerät für personenrückhaltesystem
US6341252B1 (en) Method and apparatus for controlling an actuatable occupant protection device
US5748477A (en) Vehicle collision control system
US5071160A (en) Passenger out-of-position sensor
KR0151741B1 (ko) 탑승자 구속시스템의 제어장치 및 제어방법
US6416080B1 (en) Apparatus and method for protecting a vehicle occupant utilizing a correlation between an occupant-associated center and a distance to an occupant-associated surface
EP1278657B1 (de) Airbagsystem mit biomechanischen grauzonen
US6327528B1 (en) Method and apparatus for conditioning deployment of air bags on vehicle load
US20020008372A1 (en) Occupant-restraining system
US20040216939A1 (en) Occupant restraining system with a belt force limiting device
JP2877145B2 (ja) 乗員保護装置の制御装置
US6494284B1 (en) Seat arrangement for a vehicle having an actuatable occupant protection device
JP4161482B2 (ja) 乗員保護装置
US6913284B2 (en) Vehicle airbag system
KR100581044B1 (ko) 승원 구속 시스템
US7320478B2 (en) Smart airbag for vehicular applications
Chan A treatise on crash sensing for automotive air bag systems
EP1031474A2 (de) Rückhaltesystem für Fahrzeuginsassen
US20190100177A1 (en) Method for changing a forward displacement of an occupant of a vehicle during braking of the vehicle and control unit
JP2008519720A (ja) 乗員拘束装置を有する自動車
US8478488B2 (en) Impact event countermeasure control method and system for automotive vehicle
KR100187105B1 (ko) 자동차의 신경망 안전시스템
US20120032428A1 (en) Vehicle restraint system
KR100622124B1 (ko) 에어백 제어방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020802

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS VDO AUTOMOTIVE CORPORATION

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20031015

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031015

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60005977

Country of ref document: DE

Date of ref document: 20031120

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040829

26N No opposition filed

Effective date: 20040716

EN Fr: translation not filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040829

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120831

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60005977

Country of ref document: DE

Effective date: 20140301