EP1206984A2 - Gradientenwerkstoff-Formkörper - Google Patents
Gradientenwerkstoff-Formkörper Download PDFInfo
- Publication number
- EP1206984A2 EP1206984A2 EP01125434A EP01125434A EP1206984A2 EP 1206984 A2 EP1206984 A2 EP 1206984A2 EP 01125434 A EP01125434 A EP 01125434A EP 01125434 A EP01125434 A EP 01125434A EP 1206984 A2 EP1206984 A2 EP 1206984A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- molded body
- alloy
- cast
- gradient material
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims description 40
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 62
- 239000000956 alloy Substances 0.000 claims abstract description 62
- 238000005266 casting Methods 0.000 claims abstract description 59
- 238000009749 continuous casting Methods 0.000 claims abstract description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 15
- 229910001315 Tool steel Inorganic materials 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 5
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract 11
- 229910052804 chromium Inorganic materials 0.000 claims abstract 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 25
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 229910001018 Cast iron Inorganic materials 0.000 claims description 8
- 238000005275 alloying Methods 0.000 claims description 8
- 239000000155 melt Substances 0.000 claims description 7
- 238000000227 grinding Methods 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 5
- 239000011265 semifinished product Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000010953 base metal Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 230000005496 eutectics Effects 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 238000004886 process control Methods 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 claims 1
- 239000011651 chromium Substances 0.000 abstract description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 abstract 1
- 239000011733 molybdenum Substances 0.000 abstract 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 abstract 1
- 239000010937 tungsten Substances 0.000 abstract 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 21
- 238000000465 moulding Methods 0.000 description 12
- 239000007788 liquid Substances 0.000 description 11
- 230000003068 static effect Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 9
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000009750 centrifugal casting Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 229910001060 Gray iron Inorganic materials 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 230000029142 excretion Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 238000010120 permanent mold casting Methods 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000002631 hypothermal effect Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000007514 turning Methods 0.000 description 2
- 229910000952 Be alloy Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000013017 mechanical damping Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/124—Accessories for subsequent treating or working cast stock in situ for cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12458—All metal or with adjacent metals having composition, density, or hardness gradient
Definitions
- the invention relates to a gradient material molded body and a method for Production of a gradient material molded body.
- roller body of a roller over a hard, wear-resistant surface and one against it softer, machinable core.
- the roller body will For example, made of forged steel, the surface of which is additional is subjected to a hardening process, for example inductive hardening.
- roller bodies such as the Invention preferred, but not exclusively concerned, are static Chill casting, centrifugal casting and composite casting were introduced.
- Static gravity die casting uses liquid iron or a liquid Fe-based alloy encapsulated in a thick-walled form made of metal.
- a fast Cooling in the edge area i.e. in close proximity to the metal mold, can at suitable alloy lead to a white solidification of the iron, i.e. the Carbon of the alloy remains between the lattice sites of the iron crystal.
- the such strained grating is very hard.
- At the core of the roller falls at slower Cooling the carbon off as graphite.
- a bi-metal body is created in one casting with the desired properties.
- Centrifugal casting differs essentially from static Chill casting by rotating the mold. This offers the possibility of using different casting alloys to work with.
- a possibly with Chromium and nickel alloy shell iron is filled into the mold where it can be seen through the Centrifugal forces arranged on the mold inner wall and solidified. Then the remaining mold space filled with the so-called core iron. If suitable Adjusting the temperatures melt the core iron and that Shell iron, so that a bi-metal body is also created.
- Two Fe-based alloys are also used for composite casting.
- shape is static. After filling the entire form with the shell iron is waited until a solidified shell has formed. Then the still liquid core through an opening in the lower mold area drained. After closing the drain opening, the shape with the Core iron refilled. There is also a variant that is still liquid Shell iron is displaced by refilling with core iron.
- the rotating mold In centrifugal casting, the rotating mold is usually made up of a tube forged, temperature-resistant steel and is also expensive. For each Roll diameter to be supplied requires at least one shape. Since the Rolls of different lengths may even be several Forms with graded length economical. It is then poured into the shortest possible shape, and it will the unneeded roller piece from the solidified Cast body separated.
- US Pat. No. 6,089,309 describes the production of gradient materials in one Continuous mold casting from two cast together in a mold Alloys described.
- In the strand is a cross to the direction of the strand Temperature field set so that a strong atomic diffusion in the liquid State and in the high temperature range of the solid state takes place to cross to the strand a continuous change in the material composition receive.
- the process is used for the production of steel and Semi-finished products made of Fe-based alloys proposed.
- the invention has recognized that continuous mold casting for an inexpensive Production of moldings with a property gradient is suitable.
- the Shaped body gets its final shape in the continuous casting without downstream Forming processes.
- none is used as molded article in the sense of the invention Understand semi-finished product, which is still plastic for the production of a molded body must be reshaped.
- Material-removing processing after casting it should not be excluded.
- the gradient material molded body of the Invention can even be cast with an addition of material and after casting directly to a material-removing unit that may still be required Processing, for example polishing, grinding, turning, milling and / or Drilling operations are subjected to a functional component for a machine receive.
- a material-reducing surface finishing after casting advantageously only for setting a predetermined surface quality made, which is required for the prefabricated component.
- the default The surface roughness can in particular be the surface roughness.
- can worked on a predetermined wettability of the surface of the prefabricated component be the surface for example for a subsequent one To prepare the coating process with a coating material.
- a post-processing if such is necessary at all, preferably serves to maintain a predetermined roughness depth.
- material-removing processing after casting serve to avoid any form errors that result from the casting can, i.e. procedural imperfections to eliminate. So he can Moldings obtained directly from the casting may be slightly crooked, one Bulky or have several indentations or constrictions, which by a turning process or, if the shape errors are very small, by grinding be eliminated.
- the Cast a prefabricated component close to the final shape received.
- the Molded body so close to the final contour that a material-removing Surface processing can only be carried out with the proviso that a predetermined surface quality, for example the roughness, is set.
- the Shaped body according to the invention has as a result all material properties and all geometrical properties, preferably except for those for the finished component applicable tolerances.
- the continuous Chilled cast iron can thus be used for prefabricated components that were previously used in static Chill casting has been obtained, while continuous casting has so far only for the production of semi-finished products and always with the aim of the total homogeneous structure was used.
- the invention aims to provide one with respect to the Gradient property at least equivalent, preferably even superior to create an alternative for such moldings, which were previously only cast statically become.
- Particularly preferred exemplary embodiments of such shaped articles are Roll body of rolls for the processing of sheet-like materials, for example for calenders for paper production, or also Wear castings, in particular grinding media, friction bodies and crushing bodies, for example for crushing granular substances. Can use such wear castings in the food industry, Coating industry, the cement and brick industry and the Find coal milling to name just a few preferred uses call.
- Such functional components are advantageously machinable. On the other hand, these functional components must have a wear-resistant surface in order to be able to fulfill your actual function as an active body. So had the invention in particular also a hard chilled cast of cylindrical Rotational bodies in the continuous casting process to the object.
- thermodynamic Equilibrium By alloying a metallic base melt in such a way that appropriate tempering when casting outside the thermodynamic Equilibrium solidifies to form one or more elimination phases, can be a gradient material molded body from a single starting melt getting produced.
- An elaborate casting from several starting melts different composition is not necessary, but should not be excluded.
- casting around one on it Surface preferably already stabilized core at the same time Forced cooling from the outside also for solidification of the shell outside the thermodynamic equilibrium will be beneficial.
- the core and the shell can be poured together, which is also continuous cast core after leaving its mold until it enters the mold Subsequent mold for the casting already superficially as mentioned is stabilized.
- the core can also be formed by a foreign core, which previously otherwise formed, for example independently cast.
- a preferred one Application for the encapsulation of a foreign core is the production of a fiber-reinforced composite molded body.
- such a Composite moldings are formed with a wound Al-B core, which in continuous mold casting is poured, preferably with that in the casting formed gradients.
- a cast body is a continuous one Chill casting a much more intensive tempering, especially one more severe hypothermia, accessible.
- a cooling medium can directly on the cast body moving in the strand act. The cooling outside the mold enables intensive cooling of the rug in the outer area of the strand.
- Cast body does not have to be made, but can additionally be provided. So the matrix of the cast body can be replaced by Warming and thereby allowing diffusion processes to be conditioned create a structural state in the cast body shell that is closer to thermodynamic equilibrium is considered immediately after casting.
- castings are made from a carbon-containing Fe base melt Carbides are even more finely distributed in the shell to pass through in this state repeated cooling to be preserved.
- the one for an afterthought Heating required energy can already due to the invention existing, advantageous microstructure can be kept low.
- a core of the molded body is in the thermodynamic equilibrium freezes.
- the gradient is preferably in a transition area between the core and the shell.
- grinding media of a grinder can be the same or one Similar structure to the static structure known for such bodies Casting process can be obtained.
- continuous casting significantly higher heat dissipation rates on the surface of the Cast body than with a static casting and therefore a particularly fine Graininess can be adjusted in the bowl.
- the at least one base melt can be an Al, Ti, Ni or Cu base alloy his. It is preferably an Fe-based alloy. Although that Basically, only one alloy element can be alloyed the base melt, however, preferably with at least two alloy elements formed, with each alloyed element in the base melt a share that extends to at most the nearest ternary eutectic. This also applies to the alloying of more than two alloy elements, where C as Alloy element is counted.
- the at least one base melt is preferably a cast alloy, i.e. a Alloy of metals in which the final workpiece shape of if necessary relatively minor postprocessing to be carried out as a result is obtained that the alloy in the liquid state in a suitable mold is filled, as is the case with static molding.
- the casting alloy has good casting properties. This requirement comes thermodynamically subcoolable and therefore metastable quenchable alloys the preferred casting alloys for the invention Are gradient materials. Alloys are also composed eutectically preferred gradient materials, in particular for moldings in which particularly fine-grained structure right down to the core of the cast component be required.
- the Cast alloy of the invention is in an even more preferred embodiment a typical cast alloy modified so that the formation of Excretions are favored.
- a preferred alloying element for each of the The base metal is Zr as a strong glass former.
- Al in particular Si comes as Alloy element in question, preferably in combination with Zr.
- Cu based alloys contain particularly preferably as an alloying element or more of the elements Zr, B and Ti.
- Hardness gradients are alloys based on Fe that are continuously Cast the shell in chilled cast iron, unalloyed or alloyed, the Cr and / or Mo elements are preferred alloy elements for hard cast alloys are.
- a particularly preferred Fe base melt is compared to a typical one Cast iron preferably undersilicated and has a silicon content of at least 0.1 and at most 1.2% by weight, preferably at most 0.8%, on. Otherwise, the alloy corresponds to cast iron alloys.
- the silicon content the Fe base melt is preferably higher, the higher the cooling rate or Cooling speed of the cast body is. It also follows that the Silicon content advantageously depending on the cross section of the Cast body obtained directly from the continuous casting becomes. In the case of a cast body with a circular cylindrical cross section, for example the silicon content of the base melt with increasing diameter within of the range mentioned. The following applies to non-circular cylindrical cross sections this analogously.
- An Fe base melt of carbon is preferably supersaturated, the Carbon content of 0.2 to at most 5% by weight, preferably at most 4% is enough.
- the melt can also advantageously be used in addition to Carbon supersaturation may be oversaturated on another alloy element.
- the carbon supersaturation and undersilicate can each individually Application, but are particularly advantageous in combination for Excretion of carbides in the shell with simultaneous stable solidification in a core area of the cast body.
- Another preferred Fe base melt is by a Tool steel alloy with a C content of at least 0.8 and at most 1.5% by weight, a Cr content of at least 5 and at most 12% by weight and at least one of the primary carbide formers V, Mo and W are formed. Will only if one of the primary carbide formers is added, then in the case of V the V content at least 5 and at most 10% by weight, in the case of Mo the Mo content at least 0.5 and at most 1.5% by weight, and the W content in the case of W is at most 1% by weight.
- the lower limits per alloying element can also be primary carbide formers be undercut.
- the levels of C and the primary carbide formers are selected within the specified limits so that the carbon through the or the plurality of primary carbide formers is used up by carbide formation.
- the alloy element Cr begins the tolerance C, i.e. ultimately not entirely inaccuracy of the addition of C to be avoided due to chromium carbide formation. If necessary, Zr and / or Y can also be alloy components. Si the tool steel alloy preferably does not have.
- the molded body has the C content mentioned and, if appropriate, also the content of the others Alloy elements in cross section due to the gradient on average.
- Preferred gradient material moldings used in continuous mold casting obtained from the tool steel alloy are roll bodies for rolling of films or roll bodies for film calenders, in particular for high-strength, filled plastic films.
- Another example of a preferred one Gradient material moldings are screw sets for extruders Manufacture of plastic profiles.
- Rotational bodies in particular roller bodies, with one over the Roller body length defined Young's modulus, hereinafter abbreviated as modulus of elasticity.
- modulus of elasticity So for a roller body made of tool steel for a foil calendar, a modulus of elasticity that is constant over the entire length of the roll body of, for example, 210 GPa.
- the setting of a defined E-module can also be used with roller bodies made of cast iron and basically used in all gradient material moldings according to the invention become.
- the continuous mold casting also enables controlled variation of the modulus of elasticity over the molded body length.
- such targeted adjustment of the modulus of elasticity in continuous casting the radial rigidity of a Roller body for a calender, for example a paper calender, in the axial Direction can be set so that a gap between two rolling Roll bodies for web treatment is formed in the axial direction has a constant gap width. That in the load case without such compensation expected variation of the gap width is thus already in the casting corresponding variation of the modulus of elasticity in the axial direction is taken into account.
- process parameters become continuous Chill casting, such as in particular strand withdrawal speed and cooling of the Strand surface, selected in accordance with the modulus of elasticity.
- Adjustment of the modulus of elasticity is preferably a controlled casting process Commitment.
- the modulus of elasticity is determined indirectly during the casting, for example by means of ultrasound measurement and / or magnetostriction measurement on the strand during solidification. In the case of an ultrasonic measurement, by determination the speed of sound of the modulus of elasticity is determined. The speed of sound forms in this case the controlled variable of the regulation for the casting process.
- the core area of the cast body can be fully cylindrical or hollow cylindrical.
- the continuous casting of a hollow cylindrical casting has the advantage that an internal blow problem does not arise.
- a cylindrical cast body is obtained by that a base alloy, for example an Fe base alloy with a certain carbon content and a certain silicon content and if necessary, further alloying elements in a continuous caster cast a continuous, preferably straight, vertical strand becomes.
- a base alloy for example an Fe base alloy with a certain carbon content and a certain silicon content and if necessary, further alloying elements in a continuous caster cast a continuous, preferably straight, vertical strand becomes.
- An average withdrawal speed of the strand from a continuous casting mold preferably satisfies the relation 10 Rel V m 7 7 x 10 7 x D -z .
- the average pulling speed v m results from this in mm / min.
- D is the outside diameter of the body in mm
- z is a dimensionless factor with a value in the range between 1.9 and 2.0.
- the average pulling speed 10 mm / min v v m 140 140 mm / min.
- the metallurgical length is preferably less than or at most equal to 2/3 of the strand length.
- the strand can exit at a constant speed Continuous casting mold are removed. In this case it is a momentary Pull-off speed constant and equal to the average pull-off speed.
- the current pull-off speed can fluctuate, with the Fluctuations or changes in the current pulling speed are periodic. Within the periodicity, the current Peel speed may even be zero, with the resulting The standstill phases are each no longer than 5 seconds.
- the invention allows for an extensive and expensive mold park to be dispensed with. It is also only necessary to provide as much liquid alloy become, as is necessary for the length of the molded body to be produced.
- the subcooling of the Strands particularly well on the desired gradient during the stripping be adjusted.
- the possibilities for action and the intensity are opposite the static cast significantly expanded.
- the Pulling speed and cooling of the strand is the Solidification process in the strand specifically in relation to the desired gradient affected.
- the thickness and the uniformity of the shell formation are so controllable.
- the fine grain of the structure is improved and with it the Strength and hardness of the surface.
- the Hypothermia, nucleation and crystallization of the melt can be influenced that alloys far out of thermodynamic equilibrium arise.
- Mechanical and physical properties such as for example the hardness, tensile strength, thermal conductivity, the mechanical Damping behavior and / or the heat storage capacity can be achieved in the case of a chill casting and a centrifugal casting, not or only to a significant extent higher technical effort can be achieved. This is for the Usage properties as well as the wear and corrosion resistance of Advantage.
- the invention allows the targeted production of a multi-phase Gradient material with a continuous, but still defined Transition between a hard shell and a softer one Single base alloy core.
- the invention particularly allows one targeted manufacture of a bi-metallic body by a metastable solidifying alloyed base melt.
- two molds are on the way of the strand one behind the other, in particular one below the other.
- the in The downward mold has a larger diameter than the upstream mold Mold.
- a core strand is formed in the upward mold, which is formed by the led down mold and around the one in the down mold Shell alloy is poured. This makes it possible in one continuous casting process from a cylindrical bi-metal body To produce gradient material, the gradient material being replaced by a first Alloy for the core and a different, second alloy for the shell is formed.
- Figure 1 shows a schematic representation of a continuous casting plant for production of a cylindrical molded body made of chilled cast iron.
- a warming device 1 of the continuous caster is a liquid Iron alloy with a carbon content in the range between 2 and 5 % By weight and a silicon content in the range between 0.2 and 1.2 % By weight, preferably 0.2 and 0.6%, based on the Total alloy mass, recorded.
- a continuous casting mold 2 is arranged.
- Between the mold 2 and the platform 3 is a cooling device 5 or around the strand 4 optionally arranged several cooling devices.
- the cooling device or Cooling devices 5 have or have blowing nozzles for a cooling gas and / or Spray nozzles for a coolant.
- the liquid iron alloy is removed from the holding device 1 of the mold 2 fed.
- the melt solidifies on the surface in a thin supporting skin the cooled mold 2.
- the strand thus stabilized passes 4 the cooling device 5 and is cooled in a controlled manner after it leaves the Area of effect of the mold 2 has been lowered.
- the forced cooling begins close to the mold, preferably immediately behind the mold outlet.
- a rugged cooling system is used performed in which within an outer shell of the strand and later shaped body excreted in finely dispersed carbides and that fine-grained structure is frightened. Radially under the hard so formed The shell solidifies, i.e. the thermodynamically stable is formed Graphite phase.
- the strand 4 rests on the platform 3.
- the Pull-off speed v of strand i.e. the speed at which the Strand 4 is withdrawn from the mold 2 and passed through the cooling device 5, is equal to the lowering speed of the platform 3.
- the lowering device 10 supports and guides the platform 3.
- the platform 3 is preferably designed as a hydraulic lift.
- the strand 4 can in the case of a circular cylindrical strand when casting one Fe-based alloy have a diameter of up to 2000 mm.
- a Cu-based alloy can Strand diameter because of the better thermal conductivity of Cu be even bigger.
- the silicon content of an Fe base melt is preferred Embodiments increased with the strand diameter. With thin strands, of, for example, about 200 mm, the silicon content can be up to 0.7%, while the silicon content of the base melt is lower for thicker strands should and with a strand diameter of about 2000 mm preferably up to Is reduced by 0.1%. Gradient formation is achieved by sub-siliciding supported.
- the outer shell solidified outside of the thermodynamic equilibrium is preferably the thicker, the larger the diameter of the cast body is not lastly by the larger material addition required in the case of larger diameters In case of machining post-processing of the surface.
- the thickness of the quench layer Roll bodies preferably about 100 mm.
- the thickness of the fright layer is advantageously between 1% and 10% of the Diameter of the cast body, the thickness over the circumference of the Cast body is adjusted as evenly as possible.
- the thickness of the quench layer can also be targeted over the circumference can be varied.
- a hollow cylinder can be with a core or with a Inner mold can be worked.
- a core it is one Design of the platform advantageous in such a way that the platform with the Bottom of the core is connected.
- the core itself is preferred a lifting or lowering device attached to the mold.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Abstract
Description
Claims (28)
- Gradientenwerkstoff-Formkörper, der aus wenigstens einer Metalllegierung, die in einer äußeren Schale des Formkörpers außerhalb des thermodynamischen Gleichgewichts erstarrt ist, in einem kontinuierlichen Kokillenguss nicht als Halbzeug, sondern als endkonturnahes Fertigbauteil erhalten wurde.
- Gradientenwerkstoff-Formkörper nach Anspruch 1, dadurch gekennzeichnet, dass der Formkörper in einem Kern stabil bzw. im thermodynamischen Gleichgewicht erstarrt ist.
- Gradientenwerkstoff-Formkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Metalllegierung eine Gusslegierung ist.
- Gradientenwerkstoff-Formkörper nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Metalllegierung keine Knetlegierung ist.
- Gradientenwerkstoff-Formkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Metalllegierung eine Gusseisenlegierung ist.
- Gradientenwerkstoff-Formkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Metalllegierung eine Werkzeugstahllegierung mit einem C-Gehalt von wenigstens 0.8 bis höchstens 1.5% im Mittel und einem Cr-Gehalt von wenigstens 5 und höchstens 12% ist, die als weiteres Legierungselement wenigstens eines der Elemente V, Mo und W enthält, wobei der V-Gehalt höchstens 10%, der Mo-Gehalt höchstens 1.5% und der W-Gehalt höchstens 1% beträgt.
- Gradientenwerkstoff-Formkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Formkörper ein Funktionsbauteil, vorzugsweise ein zylindrischer Rotationskörper, für eine Ver- oder Bearbeitungsmaschine ist.
- Gradientenwerkstoff-Formkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Formkörper ein Walzenkörper zur Bearbeitung eines bahnförmigen Materials oder ein Verschleißgusskörper zum Zerkleinern, Quetschen, Mahlen oder Reiben ist.
- Gradientenwerkstoff-Formkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die äußere Schale eine Dicke aufweist, die zwischen 1% und 20% des mittleren Abstands der Schalenoberfläche von einer Mittellängsachse des Formkörpers beträgt.
- Gradientenwerkstoff-Formkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine weiß erstarrte Fe-Basislegierung die Schale bildet.
- Gradientenwerkstoff-Formkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Formkörper aus einer einzigen Metalllegierung, vorzugsweise eine Fe-Basislegierung, gegossen ist. '
- Gradientenwerkstoff-Formkörper nach einem Ansprüche 1-10, dadurch gekennzeichnet, dass die Schale und ein Kern des Formkörpers durch unterschiedliche Metalllegierungen gebildet werden, wobei die Metalllegierungen vorzugsweise je Fe-Basislegierungen sind.
- Gradientenwerkstoff-Formkörper nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Formkörper ein Verbundformkörper mit von der Metalllegierung umgossenen, sich in Längsrichtung des Formkörpers erstreckenden Fasern ist.
- Verfahren zur Herstellung eines Gradientenwerkstoff-Formkörpers, bei dem der Formkörper aus wenigstens einer übersättigt legierten Metallschmelze in einem kontinuierlichen Kokillenguss in seine Endform gegossen und bei dem Gießen eine äußere Formkörperschale in ihr Kristallgitter eingeschreckt wird.
- Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Formkörper in einem senkrechten Strang gegossen wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Metallschmelze mit einem Basismetall und wenigstens zwei Legierungselementen gebildet wird, wobei die Legierungselemente je in einem Anteil zulegiert sind, der bis höchstens zum nächstgelegenen ternären Eutektikum reicht.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Basismetall Al, Ti, Fe, Ni oder Cu ist und die Legierungselemente zu der Gruppe umfassend B, C, Si, P, S, Ti, V, Cr, Mn, Ni, Cu, Co, Zr, Mo und W gehören.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Metallschmelze eine untersilizierte Fe-Basisschmelze ist mit einem Siliziumgehalt von wenigstens 0.1% und höchstens 1.2%.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Metallschmelze an Kohlenstoff übersättigt ist mit einem Kohlenstoffgehalt von wenigstens 0.2% bis höchstens 5%.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Metallschmelze eine Werkzeugstahllegierung mit einem C-Gehalt von wenigstens 0.8 und höchstens 1.5%, einem Cr-Gehalt von wenigstens 5 und höchstens 12% ist, die als weiteres Legierungselement wenigstens eines der Elemente V, Mo und W enthält, wobei der V-Gehalt höchstens 10%, der Mo-Gehalt höchstens 1.5% und der W-Gehalt höchstens 1% beträgt.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren so durchgeführt wird, dass sich in Querschnitten des Formkörpers, vorzugsweise in allen Querschnitten des Formkörpers, ein über dem jeweiligen Querschnitt gemittelter, vorgegebener Elastizitäts-Modul einstellt.
- Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass während des Gusses eine physikalische Kenngröße des Gusskörpers gemessen und als Regelgröße zu einer Verfahrensregelung zurückgeführt wird, wobei die physikalische Kenngröße so gewählt ist, dass aus ihr auf den sich einstellenden Elastizitäts-Modul geschlossen werden kann.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Metallschmelze in einer Stranggießanlage (1, 2, 5, 10) zu einem kontinuierlichen Strang (4) vergossen wird und eine mittlere Abziehgeschwindigkeit (vm) des Strangs (4) der Relation vm ≤ 7 x 107 x D-z genügt, wobei vm die mittlere Abziehgeschwindigkeit in mm/min, D der Außendurchmesser des Formkörpers in mm und z ein dimensionsloser Faktor mit einem Wert zwischen 1,9 und 2,0 ist.
- Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass eine momentane Abziehgeschwindigkeit (v) periodisch geändert wird.
- Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass sich ergebende Stillstandsphasen des Strangs (4) eine Dauer von höchstens 5 Sekunden aufweisen.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Metallschmelze als Schale um einen zuvor ebenfalls in einem kontinuierlichen Kokillenguss gebildeten Kern oder um einen Fremdkern gegossen wird.
- Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Kern aus einer Schmelze kontinuierlich gegossen wird und die Schmelze für den Kern eine andere Legierungszusammensetzung als die Schmelze für die Schale aufweist.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein in einer ersten Kokille kontinuierlich gegossener Kernstrang durch eine zweite Kokille geführt und in der zweiten Kokille mit der Schale umgossen wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10055449 | 2000-11-09 | ||
DE10055449A DE10055449A1 (de) | 2000-11-09 | 2000-11-09 | Gradientenwerkstoff-Formkörper |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1206984A2 true EP1206984A2 (de) | 2002-05-22 |
EP1206984A3 EP1206984A3 (de) | 2003-02-05 |
EP1206984B1 EP1206984B1 (de) | 2004-12-29 |
Family
ID=7662637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01125434A Expired - Lifetime EP1206984B1 (de) | 2000-11-09 | 2001-11-02 | Gradientenwerkstoff-Walzenkörper zur Bearbeitung eines bahnförmigen Materials und sein Herstellungsverfahren |
Country Status (4)
Country | Link |
---|---|
US (2) | US20020096309A1 (de) |
EP (1) | EP1206984B1 (de) |
JP (1) | JP2002161345A (de) |
DE (2) | DE10055449A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103817297B (zh) * | 2014-01-18 | 2015-07-22 | 辽宁工业大学 | 一种强制冷却铜管内铝液制备铜包铝复合铸锭的方法及其装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5973150A (ja) * | 1982-10-18 | 1984-04-25 | Kawasaki Steel Corp | 複合鋼塊の製造方法 |
US4602416A (en) * | 1983-03-01 | 1986-07-29 | Societe Anonyme Dite: Acieries Thome Cromback | High strength crushing bar and a process for manufacturing |
EP0365757A2 (de) * | 1988-10-25 | 1990-05-02 | Emitec Gesellschaft für Emissionstechnologie mbH | Verfahren zur Herstellung von Einzelnocken aus Gusswerkstoff |
US6089309A (en) * | 1997-04-15 | 2000-07-18 | South China University Of Technology | Method for manufacturing gradient material by continuous and semi-continuous casting |
WO2001058622A1 (de) * | 2000-02-07 | 2001-08-16 | Inteco Internationale Technische Beratung Ges.M.B.H. | Verfahren und anordnung zum herstellen von gusskörpern aus metall |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5830382B2 (ja) * | 1979-10-26 | 1983-06-29 | 株式会社クボタ | 高クロムワ−クロ−ル |
US4357394A (en) * | 1980-07-14 | 1982-11-02 | Abex Corporation | Centrifugal casting |
US4900410A (en) * | 1985-05-07 | 1990-02-13 | Eltech Systems Corporation | Method of installing a cathodic protection system for a steel-reinforced concrete structure |
CH667285A5 (de) * | 1986-02-14 | 1988-09-30 | Sulzer Ag | Walze mit harter mantelflaeche. |
US5230382A (en) * | 1988-10-25 | 1993-07-27 | Emitec Gesellschaft Fur Emissionstechnologie Mbh | Process of producing individual eccentric cams from cast metal |
JP2841276B2 (ja) * | 1994-06-29 | 1998-12-24 | 川崎製鉄株式会社 | 熱間圧延用ロール外層材及び熱間圧延用ロールの製造方法 |
JP3124557B2 (ja) * | 1996-06-18 | 2001-01-15 | 川崎製鉄株式会社 | 耐摩耗性に優れ、炭化物の偏析の少ない熱間圧延用ロール |
-
2000
- 2000-11-09 DE DE10055449A patent/DE10055449A1/de not_active Withdrawn
-
2001
- 2001-11-02 EP EP01125434A patent/EP1206984B1/de not_active Expired - Lifetime
- 2001-11-02 DE DE50104958T patent/DE50104958D1/de not_active Expired - Fee Related
- 2001-11-07 US US10/008,664 patent/US20020096309A1/en not_active Abandoned
- 2001-11-08 JP JP2001343770A patent/JP2002161345A/ja active Pending
-
2004
- 2004-04-19 US US10/827,146 patent/US20040197592A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5973150A (ja) * | 1982-10-18 | 1984-04-25 | Kawasaki Steel Corp | 複合鋼塊の製造方法 |
US4602416A (en) * | 1983-03-01 | 1986-07-29 | Societe Anonyme Dite: Acieries Thome Cromback | High strength crushing bar and a process for manufacturing |
EP0365757A2 (de) * | 1988-10-25 | 1990-05-02 | Emitec Gesellschaft für Emissionstechnologie mbH | Verfahren zur Herstellung von Einzelnocken aus Gusswerkstoff |
US6089309A (en) * | 1997-04-15 | 2000-07-18 | South China University Of Technology | Method for manufacturing gradient material by continuous and semi-continuous casting |
WO2001058622A1 (de) * | 2000-02-07 | 2001-08-16 | Inteco Internationale Technische Beratung Ges.M.B.H. | Verfahren und anordnung zum herstellen von gusskörpern aus metall |
Non-Patent Citations (4)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 008, no. 180 (M-318), 18. August 1984 (1984-08-18) & JP 59 073150 A (KAWASAKI SEITETSU KK), 25. April 1984 (1984-04-25) * |
SCHREWE, HANS: "Stranggiessen von Stahl" 1987 , VERLAG STAHLEISEN , D]SSELDORF XP002219857 * Seite 119 - Seite 121 * * |
SCHUMANN, HERMANN: "Metallographie" , VEB DEUTSCHER VERLAG F]R GRUNSTOFFINDUSTRIE , LEIPZIG XP002219858 * Seite 231 * * |
SCHWERDTFEGER, KLAUS: "Metallurgie des Stranggiessens" 1992 , VERLAG STAHLEISEN , D]SSELDORF XP002219859 * Seite 333 - Seite 336 * * |
Also Published As
Publication number | Publication date |
---|---|
DE10055449A1 (de) | 2002-05-23 |
DE50104958D1 (de) | 2005-02-03 |
EP1206984B1 (de) | 2004-12-29 |
EP1206984A3 (de) | 2003-02-05 |
JP2002161345A (ja) | 2002-06-04 |
US20040197592A1 (en) | 2004-10-07 |
US20020096309A1 (en) | 2002-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102009004562B4 (de) | Walzenkörper für eine Walze zur Behandlung eines Materials und Verfahren zur Herstellung eines Walzenkörpers | |
DE3882636T2 (de) | Verschleissfeste verbundwalze und verfahren zu ihrer herstellung. | |
DE69306615T2 (de) | Verbundwalze und Verfahren zu ihrer Herstellung | |
DE69024762T2 (de) | Verschleissfeste Verbundwalze | |
DE4106605A1 (de) | Verfahren zur herstellung eines massiven, erstarrten amorphen legierungsmaterials | |
EP1965939A1 (de) | Bauteil eines stahlwerks, wie stranggussanlage oder walzwerk, verfahren zur herstellung eines solchen bauteils sowie anlage zur erzeugung oder verarbeitung von metallischen halbzeugen | |
DE60107690T2 (de) | Verfahren und vorrichtung zur herstellung von metall-legierungs-gussteilen | |
EP1341937B1 (de) | Verfahren zum erzeugen eines warmbandes aus einem einen hohen mangan-gehalt aufweisenden stahl | |
EP1716942A2 (de) | Verfahren zum Giessen von Monoblock-Zylinderkurbelgehäusen und Druckgiessanlage zur Durchführung des Verfahrens | |
DE2919477C2 (de) | Verschleißfester Verbundwerkstoff, Verfahren zu seiner Herstellung und Verwendung des Verbundwerkstoffes | |
EP0935504B1 (de) | Verfahren zur herstellung eines metallprofilstranges | |
DE69127623T2 (de) | Laminierte walze zum walzen und deren herstellung | |
DE69118455T2 (de) | Verschleissfester Gusseisenwerkstoff für eine Arbeitswalze und Verbundwalze | |
DE69213608T2 (de) | Verbundwalze und Verfahren zur Herstellung derselben | |
DE60125562T2 (de) | Herstellungsverfahren von angeforderten stahlbändern | |
DE69410952T2 (de) | Verfahren zur Herstellung thixotroper Metalllegierungen | |
EP2386660B1 (de) | Gusskörper | |
EP1412113B1 (de) | Sintermetallteile mit homogener verteilung nicht homogen schmelzender komponenten, sowie verfahren zu ihrer herstellung | |
DE4106420C2 (de) | Verfahren zur Herstellung einer verschleißfesten Verbundwalze | |
DE3836328C2 (de) | ||
EP2483014B1 (de) | Verfahren zum bandgiessen von stahl und anlage zum bandgiessen | |
EP1206984B1 (de) | Gradientenwerkstoff-Walzenkörper zur Bearbeitung eines bahnförmigen Materials und sein Herstellungsverfahren | |
DE10302265A1 (de) | Verfahren und Vorrichtung zur Erzeugung von stranggegossenen Stahlbrammen | |
DE3440235C2 (de) | Verfahren und Vorrichtung zum Bandstranggießen von Metallen, insbesondere von Stahl | |
DE69029467T2 (de) | Stranggussform und Stranggussverfahren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20030221 |
|
17Q | First examination report despatched |
Effective date: 20030408 |
|
AKX | Designation fees paid |
Designated state(s): DE FI FR GB SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: ROLLER BODY FROM GRADED INDEX MATERIAL FOR WORKING A WEB MATERIAL AND ITS MANUFACTURING METHOD |
|
RTI1 | Title (correction) |
Free format text: ROLLER BODY FROM GRADED INDEX MATERIAL FOR WORKING A WEB MATERIAL AND ITS MANUFACTURING METHOD |
|
RTI1 | Title (correction) |
Free format text: ROLLER BODY FROM GRADED INDEX MATERIAL FOR WORKING A WEB MATERIAL AND ITS MANUFACTURING METHOD |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FI FR GB SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041229 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041229 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041229 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50104958 Country of ref document: DE Date of ref document: 20050203 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050329 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20041229 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050930 |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060601 |