EP1206627A1 - Turbine and method for discharging leakage fluid - Google Patents

Turbine and method for discharging leakage fluid

Info

Publication number
EP1206627A1
EP1206627A1 EP00956463A EP00956463A EP1206627A1 EP 1206627 A1 EP1206627 A1 EP 1206627A1 EP 00956463 A EP00956463 A EP 00956463A EP 00956463 A EP00956463 A EP 00956463A EP 1206627 A1 EP1206627 A1 EP 1206627A1
Authority
EP
European Patent Office
Prior art keywords
turbine
fluid
rotor
area
leakage fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00956463A
Other languages
German (de)
French (fr)
Other versions
EP1206627B1 (en
Inventor
Stefan Sasse
Rainer Tamme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP00956463A priority Critical patent/EP1206627B1/en
Publication of EP1206627A1 publication Critical patent/EP1206627A1/en
Application granted granted Critical
Publication of EP1206627B1 publication Critical patent/EP1206627B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam

Definitions

  • the invention relates to a turbine, in particular a steam turbine with a rotor, which has a blading area for rotor blades and a thrust compensation piston, which thrust compensation piston has a hot side facing the blading area and a cold side facing away from the blading area.
  • the invention further relates to a method for removing leakage fluid flowing over the thrust compensation piston.
  • the German utility model 6809708 from December 3, 1968 describes a multi-shell axial, throttle-controlled steam turbine for high pressures and temperatures.
  • the steam turbine here has an inner housing part and a guide vane carrier, which are structurally combined to form a single inner shell divided on the axis plane.
  • the inner shell is surrounded by a pot-type outer casing.
  • the inner shell in turn encloses a turbine shaft, also known as a rotor, which has a blading area with rotor blades.
  • Shaft seals are provided between the rotor and the outer housing at each of the opposite ends of the rotor.
  • the steam flowing through the steam turbine enters the blading area and sets the rotor in a rotational movement about its axis of rotation.
  • the now at least partially relaxed steam emerges from the blading area and the steam turbine. The steam pushes the Rotor off. To counteract this surge, the
  • German patent 281 253 specifies a device for relieving a ship's turbine.
  • the turbine has a forward and a reverse turbine with constant pressure and positive pressure sets, which are housed in a single housing and are relieved by a drum wall.
  • a divided relief area is provided between the forward control tower and a shaft bearing. This enables the blade thrust and the thrust of the ship's propeller to be relieved both when the ship is moving forwards and backwards.
  • the German Offenlegungssch ⁇ ft DE 197 01 020 describes a steam turbine with a high-pressure and a medium-pressure partial tower with a reaction rate that changes over the turbine stages.
  • the medium and high pressure sub-towers can be accommodated in a single housing, each of the sub-towers then being single-flow.
  • a thrust compensating piston is provided to accommodate an axial thrust of a medium-pressure partial tower constructed in a drum construction. This is arranged between a shaft bearing and the high-pressure partial tower. At the the thrust compensating piston is applied to the shaft bearing side with steam from the exhaust steam area of the medium-pressure part-tower and on the side assigned to the high-pressure part tower with steam from the exhaust-gas area of the high-pressure part tower.
  • the partial towers can also be accommodated in two separate housings. In the case of a single-flow version, a thrust compensation piston is also provided.
  • the object of the invention is to provide a turbine with a thrust compensation arrangement for high temperatures of a working medium driving the turbine.
  • Another object of the invention is to provide a method for removing leakage steam from a thrust compensation arrangement.
  • the object directed to a turbine is achieved by a turbine having a rotor which has a blading area for rotor blades and a thrust compensation piston, which thrust compensation piston has a hot side facing the blading area and a cold side facing away from the blading area, and a mixing area in the eme Mouth associated supply for sealing fluid and eme leakage fluid supply connected to the blading area in terms of flow technology and branch off from the eme discharge line.
  • a thrust compensation piston is understood here to mean a thrust compensation arrangement that is mechanically connected to the rotor of the turbine, for example is made in one piece with it, in particular forged or cast, or welded, screwed or otherwise mechanically firmly connected.
  • the thrust compensating piston has surfaces that are em
  • a total force is generated on the thrust compensation piston, which counteracts the thrust impressed by the working medium on the rotor in the direction of its axis of rotation
  • a flow connection between two parts or two areas means that a fluid can flow from one area (part) to the other.
  • Eme flow connection is such.
  • the invention is based on the consideration that the thrust compensation piston, hereinafter referred to as the piston, comes into contact with the working medium.
  • This working medium can flow between the piston and a stationary turbine part, for example an inner housing.
  • This leakage flow can be reduced by seals; Complete sealing is not possible with non-contact seals.
  • the leakage flow can have high temperatures, up to 600 C for steam turbines and even higher for gas turbines.
  • the hot leakage steam flow can therefore hit turbo parts that are not designed for such high temperatures. To avoid this, turbo parts outside the flow area of the hot working medium also had to be machined, often expensive and more difficult to process, for such high temperatures Materials.
  • a further sealing area could also be arranged at the end of the piston facing away from the flow area of the hot working medium, hereinafter also called the cold side.
  • a suction device could be provided for suctioning off the leakage flow.
  • the leakage current through the piston would be inversely proportional to the flow resistances of the additional sealing area and the suction pipes contained in the suction device. A complete seal and thus a prevention that hot leakage fluid hits turbine components outside the flow area of the working medium cannot be achieved by this.
  • a mixing of the hot leakage fluid with a colder sealing fluid is provided, so that after the two fluids have been mixed, a fluid mixture is present.
  • the fluid mixture can then exit the mixing area via the discharge. This ensures that the fluid mixture, which is colder than the leakage fluid, is discharged in a controlled manner into corresponding turbine areas.
  • a complete sealing of the piston is thus achieved with regard to the leakage fluid.
  • Eme leakage flow outside the piston, e.g. B. along the rotor, is thereby safely avoided.
  • the temperature of the fluid mixture is preferably below the permissible operating temperature of turbine parts outside the flow range of the hot working medium.
  • the mixing area on the cold side of the col- arranged This allows between the hot side of the
  • a delivery device for generating a radially outward flow of the sealing fluid is provided on the cold side of the piston, the delivery device being connected in terms of flow technology to the supply for sealing fluid.
  • the conveying device has a plurality of flow guidance elements, such as radial grooves, radial bores, guide plates or shapes and geometries having the same effect.
  • Such a conveying device represents a radial fan.
  • the sealing fluid is already delivered in the direction of the mixing area by the rotation of the rotor.
  • the sealing fluid m reaches the mixing area without any additional devices.
  • a flow of the sealing fluid generated by the conveying device is therefore preferably opposite to the flow of the leakage fluid.
  • the conveyor device is preferably made in one piece with the thrust compensation piston.
  • the flow guide elements are welded to the cold side of the piston or fastened there in a similar manner.
  • the turbine is preferably a steam turbine, in particular a medium-pressure partial turbine.
  • the turbine is furthermore designed to be elaborate.
  • the turbine preferably has an outer housing in which the inner housing is arranged.
  • the inner housing surrounds the rotor, the leakage fluid supply having a radial gap being formed between the thrust compensation piston and the inner housing.
  • a contactless seal is preferably arranged in such a gap.
  • the object of the method is achieved by a method for removing hot leakage fluid, in which the leakage fluid in a turbine flows through a radial gap between a thrust compensating piston of a rotor and a stationary turbine part, the hot leakage fluid with a colder sealing fluid is mixed and discharged.
  • the leakage fluid is preferably mixed with the sealing fluid on the thrust compensation piston, in particular on the cold side.
  • the flow of the sealing fluid is preferably generated by rotation of the rotor. This is done in particular by means of a conveying device arranged on the thrust compensation piston.
  • the flow of the sealing fluid is preferably directed radially outwards.
  • the sealing fluid is forced radially outwards by the delivery device.
  • Steam is preferably used as the sealing fluid when the leakage fluid is hot steam, the sealing fluid being colder steam. This is particularly the case in a steam turbine.
  • a gas for example cooling air, is preferably used as the sealing fluid.
  • FIG. 1 shows a longitudinal section through a high-pressure steam turbine
  • FIG. 2 shows a section of a longitudinal section through an steam turbine in the area of a thrust compensation piston
  • FIG. 3 shows a spatial section in the area of a thrust compensation piston.
  • Fig. 1 shows a longitudinal section eme turbine 1, here a high-pressure steam turbine m pot type.
  • the turbine 1 has a rotor 2 which extends along an axis of rotation 19.
  • the rotor 2 is surrounded by an inner housing 11, which in turn is surrounded by an outer housing 10.
  • the rotor 2 is mounted on both sides of the outer housing 10 with a respective shaft bearing 22.
  • a wave seal 24 provided at each of the two end regions 25 of the outer housing 10 from which the rotor 2 protrudes.
  • the rotor 2 has between one
  • the rotor 2 has rotor blades 4 which are axially spaced apart from one another.
  • a row of guide vanes 23 is attached to the inner housing 11 between axially adjacent rotor blades 4.
  • the rotor 2 has a thrust compensation piston 5, the flow region 21 being arranged axially between the blading region 3 and the thrust compensation piston 5. Facing the flow area 21, the leveling piston 5, in short the piston 5, has a hot side 6 and the flow area 21 faces a cold side 7.
  • the action medium 26 flows into the flow region 21 em, flows through the blading area 3 and leaves the turbine 1 through the evaporation area 20.
  • the action medium 26 exerts force on the moving blades 4 and thus on the rotor 2 on. This creates a thrust in the direction of the axis of rotation 19.
  • This thrust is counteracted by the thrust compensation piston 5.
  • the piston 5 has, on the cold side 7 and the hot side 6, surfaces of the same or different sizes which are not shown in greater detail and which are subjected to the same pressure or different pressures. The difference between the products of pressure and relevant area on the cold side 7 and the hot side 6 results in an axial force which counteracts the thrust.
  • the turbine 1 flows part of the action fluid 26 as leak fluid 17 (see.
  • the amount of leakage fluid 17 is kept small by a non-contact seal, not shown.
  • FIG. 2 shows a detail of a longitudinal section through a turbine 1, in particular a single-flow medium-pressure steam turbine.
  • a rotor 2 extending along an axis of rotation 19 has a thrust compensation piston 5.
  • the rotor 2 and thus also the piston 5 is surrounded by an inner housing 11.
  • the piston 5 has a hot side 6 facing a blading area 3 (not shown) and a cold side 7 facing away from it.
  • a hot fluid supply 12 is assigned to the hot side 6. This forms, at least in some areas, a radial gap between the piston 5 and the inner housing 11.
  • a supply 14 for sealing fluid 15 is provided on the cold side 7.
  • a mixing area 13 At the end of the piston 5 facing the cold side 7, a mixing area 13, a chamber or the like is provided. Both the leakage fluid feed 12 and the feed 14 for the sealing fluid 15 flow into the mixing area 13. A drain 16 leads from the mixing area 13 into the inner housing 11.
  • a delivery device 8 with a plurality of flow guide elements 9 (see FIG. 3) is arranged on the piston 5. When the rotor 2 rotates, this conveyor device 8 acts as a radial fan. In this way, a flow of the sealing fluid 15 into the mixing area 13 is achieved without any additional devices.
  • hot leak fluid 17, hot steam is mixed with the colder sealing fluid 15, colder steam.
  • the fluid mixture 18 of leakage fluid 17 and sealing fluid 15 flowing out of the mixing area 13 via the discharge line 16 thus also has a lower temperature than the leakage fluid 17.
  • two things are achieved: on the one hand, no hot leakage fluid 17 emerges via the piston 5, since the sealing fluid 15 flows opposite the leakage fluid 17.
  • the turbine parts coming into contact with the fluid mixture 18 are therefore not subjected to as much thermal stress as the turbine parts coming into contact with the working medium 26.
  • FIG. 3 shows a perspective elevation through a turbine 1 according to FIG. 2 in the area of the piston 5.
  • radial depressions are provided which form the flow elements 9 of the conveying device 8.

Abstract

The invention relates to a turbine (1) equipped with a rotor (2) which comprises a blade area (3) for accommodating moving blades (4) and comprises a thrust balance piston (5). The thrust balance piston (5) has a hot side (6) that faces the blade area (3) and has a cold side (7) that faces away from said blade area (3). Both a feed (14), which is provided for sealing fluid (15) and which is assigned to the cold side (7), as well as a leakage fluid feed (12), which is fluidically connected to the blade area (3), open into a mixing area (13) on one side, and a discharge line (16) branches off from the mixing area on the other side. The invention also relates to a method for discharging hot leakage fluid (17). The leakage fluid (17) enters a turbine (1) through a radial gap (12), which is located between a thrust balance piston (5) of a rotor (2) and a stationary turbine part (11), is mixed with a cooler sealing fluid (15) and is discharged.

Description

Beschreibung description
Turbine sowie Verfahren zur Abfuhrung von LeckfluidTurbine and method for removing leakage fluid
Die Erfindung betrifft eine Turbine, insbesondere eine Dampfturbine mit einem Rotor, welcher einen Beschaufelungsbereich für Laufschaufeln sowie einen Schubausgleichskolben aufweist, welcher Schubausgleichskolben eine dem Beschaufelungsbereich zugewandte Heißseite und eine dem Beschaufelungsbereich abgewandte Kaltseite aufweist. Die Erfindung betrifft weiterhin ein Verfahren zur Abfuhrung von über den Schubausgleichkolben hinweg strömenden Leckfluid.The invention relates to a turbine, in particular a steam turbine with a rotor, which has a blading area for rotor blades and a thrust compensation piston, which thrust compensation piston has a hot side facing the blading area and a cold side facing away from the blading area. The invention further relates to a method for removing leakage fluid flowing over the thrust compensation piston.
In dem deutschen Gebrauchsmuster 6809708 vom 03.12.1968 ist eine mehrschalige axiale, drosselgeregelte Dampfturbine für hohe Drucke und Temperaturen beschrieben. Die Dampfturbine weist hierbei ein Innengehauseteil und einen Leitschaufel- trager auf, die zu einer einzigen, m Achsebene geteilten Innenschale baulich zusammengefaßt sind. Die Innenschale ist von einem in Topfbauart ausgeführten Aussengehause umgeben. Die Innenschale umschließt ihrerseits eine Turbinenweile, auch als Rotor bezeichnet, die einen Beschaufelungsbereich mit Laufschaufeln besitzt. An jedem der sich gegenüberliegenden Enden des Rotors sind Wellendichtungen zwischen Rotor und Aussengehause vorgesehen. An einem Ende des Rotors tritt der die Dampfturbine durchströmende Dampf in den Beschaufelungsbereich ein und versetzt den Rotor in eine Rotationsbewegung um seine Rotationsachse. Am gegenüberliegenden Ende tritt der nunmehr zumindest teilweise entspannte Dampf aus dem Beschaufelungsbereich und der Dampfturbine aus. Der Dampf übt hierbei einen Schub auf den Rotor aus. Um diesem Schub entgegenzuwirken, weist derThe German utility model 6809708 from December 3, 1968 describes a multi-shell axial, throttle-controlled steam turbine for high pressures and temperatures. The steam turbine here has an inner housing part and a guide vane carrier, which are structurally combined to form a single inner shell divided on the axis plane. The inner shell is surrounded by a pot-type outer casing. The inner shell in turn encloses a turbine shaft, also known as a rotor, which has a blading area with rotor blades. Shaft seals are provided between the rotor and the outer housing at each of the opposite ends of the rotor. At one end of the rotor, the steam flowing through the steam turbine enters the blading area and sets the rotor in a rotational movement about its axis of rotation. At the opposite end, the now at least partially relaxed steam emerges from the blading area and the steam turbine. The steam pushes the Rotor off. To counteract this surge, the
Rotor an dem Ende, an dem der Dampf einströmt, eine Aus- gleichskolbenanordnung auf. Diese zeichnet sich durch ein dem Beschaufelungsbereich zugewandte Stirnflache aus, die eine größere Flache als eine gegenüber einer dem Beschaufelungsbereich abgewandten Stπnflache hat. Eine ähnliche Dampfturbine m Topfbauart ist m der US-Patentschrift 3,754,833 beschrieben.Rotor at the end at which the steam flows in, a compensating piston arrangement. This is characterized by an end face facing the blading area, which has a larger area than an end face facing away from the blading area. A similar pot-type steam turbine is described in US Pat. No. 3,754,833.
In der deutschen Patenschrift 281 253 ist eine Einrichtung zur Entlastung einer Schiffsturbine angegeben. Die Turbine weist eine Vorwärts- und ein Ruckwartsturbme mit Gleich- druck- und Überdrucksatzen auf, die m einem einzigen Gehäuse untergebracht sind und durch eine Trommelwand entlastet sind. Zur Entlastung der Turbine ist eine unterteilte Entlastungsflache zwischen der Vorwartsturbme und einem Wellenlager vorgesehen. Hierdurch wird sowohl bei Vorwärts- als auch bei Rückwärtsfahrt des Schiffes eine Entlastung des Schaufelschubes sowie des Schubes des Schiffspropellers ermöglicht.German patent 281 253 specifies a device for relieving a ship's turbine. The turbine has a forward and a reverse turbine with constant pressure and positive pressure sets, which are housed in a single housing and are relieved by a drum wall. In order to relieve the load on the turbine, a divided relief area is provided between the forward control tower and a shaft bearing. This enables the blade thrust and the thrust of the ship's propeller to be relieved both when the ship is moving forwards and backwards.
In der deutschen Offenlegungsschπft DE 197 01 020 ist eine Dampfturbine mit einer Hochdruck- und einer Mitteldruckteilturbme mit einem sich über die Turbinenstufen ändernden Reaktionsgrad beschrieben. Die Mittel- und Hochdruckteilturbme können hierbei in einem einzigen Gehäuse untergebracht sein, wobei jede der Teilturbmen dann einflutig ausgeführt ist. Zur Aufnahme eines axialen Schubes einer in Trommelbauweise ausgeführten Mitteldruckteilturbme ist ein Schubausgleichskolben vorgesehen. Dieser ist zwischen einem Wellenlager und der Hochdruckteilturbme angeordnet. An der dem Wellenlager zugeordneten Seite wird der Schubausgleichskolben mit Dampf aus dem Abdampfbereich der Mitteldruckteilturbme und an der der Hochdruckteilturbme zugeordneten Seite mit Dampf aus dem Abdampfbereich der Hochdruckteilturbme beaufschlagt. Die Teilturbmen können auch in zwei seperaten Gehäusen untergebracht sein. Bei einflutiger Ausfuhrung ist dann ebenfalls em Schubausgleichskolben vorgesehen.The German Offenlegungsschπft DE 197 01 020 describes a steam turbine with a high-pressure and a medium-pressure partial tower with a reaction rate that changes over the turbine stages. The medium and high pressure sub-towers can be accommodated in a single housing, each of the sub-towers then being single-flow. A thrust compensating piston is provided to accommodate an axial thrust of a medium-pressure partial tower constructed in a drum construction. This is arranged between a shaft bearing and the high-pressure partial tower. At the the thrust compensating piston is applied to the shaft bearing side with steam from the exhaust steam area of the medium-pressure part-tower and on the side assigned to the high-pressure part tower with steam from the exhaust-gas area of the high-pressure part tower. The partial towers can also be accommodated in two separate housings. In the case of a single-flow version, a thrust compensation piston is also provided.
Aufgabe der Erfindung ist es, eme Turbine mit einer Schubausgleichsanordnung für hohe Temperaturen eines die Turbine antreibenden Arbeitsmediums anzugeben. Eme weitere Aufgabe der Erfindung besteht darin, e Verfahren zur Abfuhrung von Leckdampf einer Schubausgleichsanordnung anzugeben.The object of the invention is to provide a turbine with a thrust compensation arrangement for high temperatures of a working medium driving the turbine. Another object of the invention is to provide a method for removing leakage steam from a thrust compensation arrangement.
Erfmdungsgemaß wird die auf eme Turbine gerichtete Aufgabe gelost durch eme Turbine mit einem Rotor, welcher einen Beschaufelungsbereich für Laufschaufeln sowie einen Schubausgleichskolben aufweist, welcher Schubausgleichskolben eme dem Beschaufelungsbereich zugewandte Heißseite und eme dem Beschaufelungsbereich abgewandte Kaltseite aufweist, und mit einem Mischbereich, in den eme der Kaltseite zugeordnete Zufuhrung für Dichtfluid und eme mit dem Beschaufelungsbereich stromungstechnisch verbundene Leckfluidzufuhrung munden und von dem eme Abfuhrleitung abzweigt.According to the invention, the object directed to a turbine is achieved by a turbine having a rotor which has a blading area for rotor blades and a thrust compensation piston, which thrust compensation piston has a hot side facing the blading area and a cold side facing away from the blading area, and a mixing area in the eme Mouth associated supply for sealing fluid and eme leakage fluid supply connected to the blading area in terms of flow technology and branch off from the eme discharge line.
Unter einem Schubausgleichkolben wird hierbei eme Schub- ausgleichsanordnung verstanden, die mechanisch mit dem Rotor der Turbine in Verbindung steht, beispielsweise mit diesem emstuckig hergestellt ist, insbesondere geschmiedet oder gegossen, oder mit diesem verschweißt, verschraubt oder anders mechanisch fest verbunden ist. Insbesondere weist der Schubausgleichskolben Flachen auf, die durch emA thrust compensation piston is understood here to mean a thrust compensation arrangement that is mechanically connected to the rotor of the turbine, for example is made in one piece with it, in particular forged or cast, or welded, screwed or otherwise mechanically firmly connected. In particular, the thrust compensating piston has surfaces that are em
Medium, wie Dampf oder Gas, beaufschlagbar sind, so dass mMedium, such as steam or gas, can be acted on, so that m
Summe eine Kraft auf den Schubausgleichkolben erzeugt wird, die dem von dem Arbeitsmedium auf den Rotor Richtung dessen Rotationsachse aufgeprägten Schub entgegengerichtetA total force is generated on the thrust compensation piston, which counteracts the thrust impressed by the working medium on the rotor in the direction of its axis of rotation
Eme stromungstechnische Verbindung zweier Teile oder zweier Bereiche bedeutet, dass em Fluid von einem Bereich (Teil) zum anderen strömen kann. Eme stromungstechnische Verbindung ist z. B. über eme Fluidleitung, eine Öffnung oder ahnliches gegeben.A flow connection between two parts or two areas means that a fluid can flow from one area (part) to the other. Eme flow connection is such. B. given eme fluid line, an opening or the like.
Die Erfindung geht hierbei von der Überlegung aus, dass der Schubausgleichskolben, im folgenden Kolben genannt, mit Arbeitsmedium Kontakt gelangt. Dieses Arbeitsmedium kann zwischen dem Kolben und einem feststehendem Turbinenteil, beispielsweise einem Innengehause, hmdurchstromen. Hierdurch entsteht eme Leckstromung des Arbeitsmediums. Diese Leckstromung kann zwar durch Dichtungen reduziert werden; eme vollständige Abdichtung ist aber durch beruhrungslose Dichtungen nicht möglich. Die Leckstromung kann hohe Temperaturen aufweisen, bei Dampfturbinen bis zu 600 C und bei Gasturbinen noch hoher. Die heiße LeckdampfStrömung kann somit auf Turb enteile treffen, die nicht für so hohe Temperaturen ausgelegt sind. Um dies zu vermeiden, mußten auch Turbmeteile ausserhalb des Stromungsbereiches des heißen Arbeitsmediums mit für solch hohe Temperaturen geeigneten, häufig teueren und schwieriger zu bearbeitenden Werkstoffen ausgeführt werden. Alternativ konnte auch em weiterer Dichtungsbereich am dem Stromungsbereich des heißen Arbeitsmediums abgewandten Ende des Kolbens, im folgenden auch Kaltseite genannt, angeordnet werden. Zusätzlich oder alternativ hierzu konnte eme Absaugvornch- tung zur Absaugung der Leckstromung vorgesehen sein. Der Leckstrom über den Kolben wäre m diesem Fall umgekehrt proportional zu den Stromungswiderstanden des zusätzlichen Dichtungsbereiches und der m der Absaugvorrichtung enthaltenen Absaugrohre. Eme vollständige Abdichtung und damit eme Verhinderung, dass heißes Leckagefluid auf Turbmen- bauteile ausserhalb des Stromungsbereiches des Arbeitsmediums trifft, ist hierdurch allerdings auch nicht erreichbar .The invention is based on the consideration that the thrust compensation piston, hereinafter referred to as the piston, comes into contact with the working medium. This working medium can flow between the piston and a stationary turbine part, for example an inner housing. This creates a leakage flow of the working medium. This leakage flow can be reduced by seals; Complete sealing is not possible with non-contact seals. The leakage flow can have high temperatures, up to 600 C for steam turbines and even higher for gas turbines. The hot leakage steam flow can therefore hit turbo parts that are not designed for such high temperatures. To avoid this, turbo parts outside the flow area of the hot working medium also had to be machined, often expensive and more difficult to process, for such high temperatures Materials. Alternatively, a further sealing area could also be arranged at the end of the piston facing away from the flow area of the hot working medium, hereinafter also called the cold side. In addition or as an alternative to this, a suction device could be provided for suctioning off the leakage flow. In this case, the leakage current through the piston would be inversely proportional to the flow resistances of the additional sealing area and the suction pipes contained in the suction device. A complete seal and thus a prevention that hot leakage fluid hits turbine components outside the flow area of the working medium cannot be achieved by this.
Gemäß der Erfindung ist eme Vermischung des heißen Leck- fluides mit einem kälteren Dichtfluid vorgesehen, so dass nach Mischung der beiden Fluide em Fluidgemisch vorliegt. Das Fluidgemisch kann dann über die Abfuhrung aus dem Mischbereich austreten. Hierbei wird gewahrleistet, dass das gegenüber dem Leckfluid kältere Fluidgemisch kontrolliert in entsprechende Turbinenbereiche abgeführt wird. Somit ist in bezug auf das Leckfluid eme vollständige Abdichtung des Kolbens erreicht. Eme Leckstromung ausserhalb des Kolbens, z. B. entlang dem Rotor, ist hierdurch sicher vermieden. Die Temperatur des Fluidgemisches liegt dabei vorzugsweise unter der zulassigen Einsatztemperatur von Turbinenteilen ausserhalb des Stromungsbereiches des heißen Arbeitsmediums.According to the invention, a mixing of the hot leakage fluid with a colder sealing fluid is provided, so that after the two fluids have been mixed, a fluid mixture is present. The fluid mixture can then exit the mixing area via the discharge. This ensures that the fluid mixture, which is colder than the leakage fluid, is discharged in a controlled manner into corresponding turbine areas. A complete sealing of the piston is thus achieved with regard to the leakage fluid. Eme leakage flow outside the piston, e.g. B. along the rotor, is thereby safely avoided. The temperature of the fluid mixture is preferably below the permissible operating temperature of turbine parts outside the flow range of the hot working medium.
Vorzugweise ist der Mischbereich an der Kaltseite des Kol- bens angeordnet. Hierdurch kann zwischen der Heißseite desThe mixing area on the cold side of the col- arranged. This allows between the hot side of the
Kolbens und dem Mischbereich der Leckfluidzufuhrung emPiston and the mixing area of the leakage fluid supply em
Dichtbereich, mit beispielsweise einer beruhrungslosenSealing area, for example with a non-contact
Dichtung vorgesehen sein.Seal should be provided.
Vorzugsweise ist an der Kaltseite des Kolbens eme Fordervorrichtung zur Erzeugung einer radial nach außen gerichteten Strömung des Dichtfluides vorgesehen, wobei die Fordervorrichtung stromungstechnisch mit der Zufuhrung für Dichtfluid verbunden ist. Insbesondere weist die Fordervorrichtung eine Mehrzahl von Stromungsfuhrungselementen, wie radiale Nuten, radiale Bohrungen, Leitbleche oder gleich- wirkende Formen und Geometrien auf. Eine solche Fordervorrichtung stellt einen Radialventilator dar.Preferably, a delivery device for generating a radially outward flow of the sealing fluid is provided on the cold side of the piston, the delivery device being connected in terms of flow technology to the supply for sealing fluid. In particular, the conveying device has a plurality of flow guidance elements, such as radial grooves, radial bores, guide plates or shapes and geometries having the same effect. Such a conveying device represents a radial fan.
Mit der Fordervorrichtung erfolgt insbesondere eme Forderung des Dichtfluides m Richtung des Mischbereiches bereits durch die Rotation des Rotors. Somit gelangt ohne weitere Zusatzeinrichtungen das Dichtfluid m den Mischbereich. Eme durch die Fodervorrichtung erzeugte Strömung des Dichtfluides ist der Strömung des Leckfluides somit vorzugsweise entgegengerichtet.With the delivery device, in particular, the sealing fluid is already delivered in the direction of the mixing area by the rotation of the rotor. Thus, the sealing fluid m reaches the mixing area without any additional devices. A flow of the sealing fluid generated by the conveying device is therefore preferably opposite to the flow of the leakage fluid.
Vorzugweise ist die Fordervorrichtung mit dem Schubausgleichskolben einteilig hergestellt. Insbesondere sind die Stromungsfuhrungselemente an die Kaltseite des Kolbens angeschweißt oder auf ähnliche Weise dort befestigt.The conveyor device is preferably made in one piece with the thrust compensation piston. In particular, the flow guide elements are welded to the cold side of the piston or fastened there in a similar manner.
Vorzugsweise ist die Turbine eme Dampfturbine, insbesondere eme Mitteldruck-Teilturbme. Weiter bevorzugt ist die Turbine emflutig ausgeführt. Vorzugsweise weist die Turbine em Außengehause auf, m dem em Innengehause angeordnet ist. Das Innengehause umgibt den Rotor, wobei zwischen dem Schubausgleichskolben und dem Innengehause die Leckfluidzufuhrung mit einem radialen Spalt gebildet ist. In einem solchen Spalt ist vorzugsweise eme beruhrungslose Dichtung angeordnet.The turbine is preferably a steam turbine, in particular a medium-pressure partial turbine. The turbine is furthermore designed to be elaborate. The turbine preferably has an outer housing in which the inner housing is arranged. The inner housing surrounds the rotor, the leakage fluid supply having a radial gap being formed between the thrust compensation piston and the inner housing. A contactless seal is preferably arranged in such a gap.
Die auf em Verfahren gerichtete Aufgabe wird erfmdungs- gemaß gelost durch em Verfahren zur Abfuhrung von heißem Leckfluid, bei dem das Leckfluid in einer Turbine durch einen radialen Spalt zwischen einem Schubausgleichskolben eines Rotors und einem feststehendem Turbmenteil strömt, wobei das heiße Leckfluid mit einem kälteren Dichtfluid vermischt und abgeführt wird. Bezüglich der Vorteile und der Wirkungsweise des Verfahrens wird auf die obigen Ausfuhrungen zur konstruktiven Gestaltung der Turbine verwiesen.According to the invention, the object of the method is achieved by a method for removing hot leakage fluid, in which the leakage fluid in a turbine flows through a radial gap between a thrust compensating piston of a rotor and a stationary turbine part, the hot leakage fluid with a colder sealing fluid is mixed and discharged. With regard to the advantages and the mode of operation of the method, reference is made to the above explanations regarding the structural design of the turbine.
Durch die Mischung des Leckfluides mit dem Dichtfluid entsteht em Fluidgemisch, dass ebenfalls kalter als das Leckfluid ist. Durch geeignete Wahl des Ortes, an dem das Vermischen stattfindet, kann eme vollständige Abdichtung des Kolbens erreicht werden. Hierbei wird das Leckfluid vorzugsweise an dem Schubausgleichskolben, insbesondere an der Kaltseite, mit dem Dichtfluid vermischt.Mixing the leakage fluid with the sealing fluid creates a fluid mixture that is also colder than the leakage fluid. By a suitable choice of the place where the mixing takes place, a complete sealing of the piston can be achieved. The leakage fluid is preferably mixed with the sealing fluid on the thrust compensation piston, in particular on the cold side.
Eme Strömung des Dichtfluids wird vorzugsweise durch eme Rotation des Rotors erzeugt. Dies geschieht insbesondere mittels einer an dem Schubausgleichskolben angeordneten Fordervorrichtung. Die Strömung des Dichtfluides ist vor- zugsweise radial nach außen gerichtet. Durch die Fodervor- richtung wird das Dichtfluid radial nach außen gefordert.The flow of the sealing fluid is preferably generated by rotation of the rotor. This is done in particular by means of a conveying device arranged on the thrust compensation piston. The flow of the sealing fluid is preferably directed radially outwards. The sealing fluid is forced radially outwards by the delivery device.
Als Dichtfluid wird vorzugsweise dann Dampf verwendet, wenn das Leckfluid heißer Dampf ist, wobei das Dichtfluid kälterer Dampf ist. Dies ist insbesondere m einer Dampfturbine der Fall. Bei einer Gasturbine wird vorzugsweise als Dichtfluid em Gas, beispielsweise Kuhlluft verwendet.Steam is preferably used as the sealing fluid when the leakage fluid is hot steam, the sealing fluid being colder steam. This is particularly the case in a steam turbine. In a gas turbine, a gas, for example cooling air, is preferably used as the sealing fluid.
Anhand der der Zeichnung dargestellten Ausfuhrungsbei- spiele werden die Turbme und das Verfahren zur Abfuhrung von Leckfluid beispielhaft erläutert. Es zeigen:On the basis of the exemplary embodiments shown in the drawing, the turbines and the method for removing leakage fluid are explained by way of example. Show it:
Fig. 1 einen Längsschnitt durch eine Hochdruckdampfturbine, Fig. 2 einen Ausschnitt eines Längsschnittes durch eme Dampfturbine im Bereich eines Schubausgleichskolbens und Fig. 3 einen räumlichen Ausschnitt im Bereich eines Schubausgleichskolbens .1 shows a longitudinal section through a high-pressure steam turbine, FIG. 2 shows a section of a longitudinal section through an steam turbine in the area of a thrust compensation piston, and FIG. 3 shows a spatial section in the area of a thrust compensation piston.
In den Figuren 1 bis 3 haben gleiche Bezugszeichen jeweils die gleiche Bedeutung.In Figures 1 to 3, the same reference numerals each have the same meaning.
Fig. 1 zeigt in einem Längsschnitt eme Turbine 1, hier eine Hochdruckdampfturbine m Topfbauart. Die Turbine 1 weist einen Rotor 2 auf, der sich entlang einer Rotationsachse 19 erstreckt. Der Rotor 2 ist von einem Innengehause 11 umgeben, welches seinerseits von einem Außengehause 10 umgeben ist. Beiderseits des Außengehauses 10 ist der Rotor 2 mit einem jeweiligen Wellenlager 22 gelagert. An den beiden Endbereichen 25 des Außengehauses 10 aus denen der Rotor 2 hinausragt, ist jeweils eme Wellen- dichtung 24 vorgesehen. Der Rotor 2 weist zwischen einemFig. 1 shows a longitudinal section eme turbine 1, here a high-pressure steam turbine m pot type. The turbine 1 has a rotor 2 which extends along an axis of rotation 19. The rotor 2 is surrounded by an inner housing 11, which in turn is surrounded by an outer housing 10. The rotor 2 is mounted on both sides of the outer housing 10 with a respective shaft bearing 22. At each of the two end regions 25 of the outer housing 10 from which the rotor 2 protrudes, a wave seal 24 provided. The rotor 2 has between one
Emstrombereich 21 und einem Abdampfbereich 20 für e heißes Aktionsmedium 26, hier Heißdampf, einen Beschaufelungsbereich 3 auf. In dem Beschaufelungsbereich 3 weist der Rotor 2 axial voneinander beabstandete Laufschaufeln 4 auf. Zwischen axial benachbarten Laufschaufeln 4 ist jeweils eme Reihe von Leitschaufeln 23 an dem Innengehause 11 angebracht.Emstrombereich 21 and an evaporation area 20 for a hot action medium 26, here superheated steam, a blading area 3. In the blading area 3, the rotor 2 has rotor blades 4 which are axially spaced apart from one another. A row of guide vanes 23 is attached to the inner housing 11 between axially adjacent rotor blades 4.
Der Rotor 2 weist einen Schubausgleichskolben 5 auf, wobei der Emstrombereich 21 axial zwischen dem Beschaufelungsbereich 3 und dem Schubausgleichskolben 5 angeordnet ist. Dem Emstrombereich 21 zugewandt weist der Schaubaus- gleichskolben 5, kurz der Kolben 5, eme Heißseite 6 und dem Emstrombereich 21 abgewandt eme Kaltseite 7 auf.The rotor 2 has a thrust compensation piston 5, the flow region 21 being arranged axially between the blading region 3 and the thrust compensation piston 5. Facing the flow area 21, the leveling piston 5, in short the piston 5, has a hot side 6 and the flow area 21 faces a cold side 7.
Bei Betrieb der Turbine 1 strömt das Aktionsmedium 26 in den Emstrombereich 21 em, durchströmt den Beschaufelungsbereich 3 und verlaßt die Turbine 1 durch den Abdampfbereich 20. Bei Durchströmen des Beschaufelungsbereiches 3 übt das Aktionsmedium 26 em Kraft auf die Laufschaufeln 4 und somit auf den Rotor 2 auf. Hierdurch entsteht em Schub in Richtung der Rotationsachse 19. Diesem Schub wird durch den Schubausgleichskolben 5 entgegengewirkt. Der Kolben 5 weist hierfür an der Kaltseite 7 und der Heißseite 6 nicht naher dargestellte Flachen gleicher oder unterschiedlicher Grosse auf, die mit dem gleichen Druck oder unterschiedlichen Drucken beaufschlagt werden. Aus der Differenz der Produkte aus Druck und relevanter Flache an der Kaltseite 7 und der Heißseite 6 ergibt sich eme axiale Kraft, die dem Schub entgegenwirkt. Wahrend des Betriebes der Turbine 1 strömt e Teil des Aktionsfluides 26 als Leckfluid 17 (s.When the turbine 1 is in operation, the action medium 26 flows into the flow region 21 em, flows through the blading area 3 and leaves the turbine 1 through the evaporation area 20. When flowing through the blading area 3, the action medium 26 exerts force on the moving blades 4 and thus on the rotor 2 on. This creates a thrust in the direction of the axis of rotation 19. This thrust is counteracted by the thrust compensation piston 5. For this purpose, the piston 5 has, on the cold side 7 and the hot side 6, surfaces of the same or different sizes which are not shown in greater detail and which are subjected to the same pressure or different pressures. The difference between the products of pressure and relevant area on the cold side 7 and the hot side 6 results in an axial force which counteracts the thrust. During the operation of the turbine 1 flows part of the action fluid 26 as leak fluid 17 (see.
Fig.2) m axialer Richtung über den Kolben 5 hinweg, insbesondere wenn zwischen Kaltseite 7 und Heißseite 6 emeFig. 2) in the axial direction over the piston 5, in particular if between the cold side 7 and hot side 6 eme
Druckdifferenz herrscht. Die Menge des Leckfluides 17 wird durch eme nicht dargestellte beruhrungslose Dichtung klein gehalten.There is a pressure difference. The amount of leakage fluid 17 is kept small by a non-contact seal, not shown.
In Fig. 2 ist em Ausschnitt eines Längsschnittes durch eme Turbine 1, insbesondere einer einflutige Mitteldruck- Dampfturbine, gezeigt. Em sich entlang einer Rotationsachse 19 erstreckender Rotor 2 weist einen Schubausgleichskolben 5 auf. Zur Erläuterung der Wirkungsweise sei auf die Ausfuhrungen zu Fig. 1 verwiesen. Der Rotor 2 und damit auch der Kolben 5 ist von emem Innengehause 11 umgeben. Der Kolben 5 weist eme einem nicht dargestellten Beschaufelungsbereich 3 zugewandte Heißseite 6 und einem diesem abgewandte Kaltseite 7 auf. Zwischen dem Innengehause 11 und dem Kolben 5 ist der Heißeite 6 zugeordnet eme Leckfluidzufuhrung 12 gebildet. Diese bildet zumindest bereichsweise eme radialen Spalt zwischen dem Kolben 5 und dem Innengehause 11. An der Kaltseite 7 ist eme Zufuhrung 14 für Dichtfluid 15 vorgesehen. An dem der Kaltseite 7 zugewandten Ende des Kolbens 5 ist em Mischbereich 13, eme Kammer oder ahnliches vorgesehen. In den Mischbereich 13 munden sowohl die Leckfluidzufuhrung 12 als auch die Zufuhrung 14 für das Dichtfluid 15. Von dem Mischbereich 13 fuhrt eine Abfuhrung 16 in das Innengehause 11 hmem. An der Kaltseite 7 ist an dem Kolben 5 eme Fordervorrichtung 8 mit einer Mehrzahl von Stromungsfuhrungselementen 9 (s. Fig. 3) angeordnet. Bei Rotation des Rotors 2 wirkt diese Födervorrichtung 8 als Radialventilator. Hierdurch wird ohne weitere Zusatzeinrichtungen eine Strömung des Dichtfluides 15 in den Mischbereich 13 hinein erreicht. In dem Mischbereich erfolgt dadurch eine Vermischung von heissem Leckfluid 17, heissem Dampf, mit dem kälteren Dichtfluid 15, kälterer Dampf. Das aus dem Mischbereich 13 über die Abführleitung 16 abströmende Fluidgemisch 18 aus Leckfluid 17 und Dichtfluid 15 hat somit auch eine geringere Temperatur als das Leckfluid 17. Hierdurch wird zweierlei erreicht: Zum einen tritt kein heisses Leckfluid 17 über den Kolben 5 aus, da das Dichtfluid 15 dem Leckfluid 17 entgegengesetzt strömt. Zum anderen tritt in das Innengehäuse 11 ein Fluidgemisch 18 ein, das eine geringere Temperatur als das Leckfluid 17 besitzt. Die mit dem Fluidgemisch 18 in Berührung kommenden Turbinenteile werden daher nicht so stark thermisch belastet, wie die mit dem Arbeitsmedium 26 in Berührung kommenden Turbinenteile. Für die mit dem Fluidgemsich 18 in Berührung kommenden Turbinenteile können daher thermisch weniger belastbare Werkstoffe, d.h. billigere und ggf. leichter verarbeitbare Werkstoffe gefahrlos eingesetzt werden.2 shows a detail of a longitudinal section through a turbine 1, in particular a single-flow medium-pressure steam turbine. A rotor 2 extending along an axis of rotation 19 has a thrust compensation piston 5. To explain the mode of operation, reference is made to the explanations relating to FIG. 1. The rotor 2 and thus also the piston 5 is surrounded by an inner housing 11. The piston 5 has a hot side 6 facing a blading area 3 (not shown) and a cold side 7 facing away from it. Between the inner housing 11 and the piston 5, a hot fluid supply 12 is assigned to the hot side 6. This forms, at least in some areas, a radial gap between the piston 5 and the inner housing 11. A supply 14 for sealing fluid 15 is provided on the cold side 7. At the end of the piston 5 facing the cold side 7, a mixing area 13, a chamber or the like is provided. Both the leakage fluid feed 12 and the feed 14 for the sealing fluid 15 flow into the mixing area 13. A drain 16 leads from the mixing area 13 into the inner housing 11. On the cold side 7, a delivery device 8 with a plurality of flow guide elements 9 (see FIG. 3) is arranged on the piston 5. When the rotor 2 rotates, this conveyor device 8 acts as a radial fan. In this way, a flow of the sealing fluid 15 into the mixing area 13 is achieved without any additional devices. In the mixing area, hot leak fluid 17, hot steam, is mixed with the colder sealing fluid 15, colder steam. The fluid mixture 18 of leakage fluid 17 and sealing fluid 15 flowing out of the mixing area 13 via the discharge line 16 thus also has a lower temperature than the leakage fluid 17. In this way, two things are achieved: on the one hand, no hot leakage fluid 17 emerges via the piston 5, since the sealing fluid 15 flows opposite the leakage fluid 17. On the other hand, a fluid mixture 18, which has a lower temperature than the leakage fluid 17, enters the inner housing 11. The turbine parts coming into contact with the fluid mixture 18 are therefore not subjected to as much thermal stress as the turbine parts coming into contact with the working medium 26. For the turbine parts coming into contact with the fluid mixture 18, it is therefore possible to use materials which are less thermally stable, that is to say cheaper and possibly easier to process materials.
Fig. 3 zeigt einen perspektivischen Aufriss durch eine Turbine 1 gemäß Fig.2 im Bereich des Kolbens 5. An der Kaltseite 7 sind radiale Vertiefungen vorgesehen, die die Strömungselemente 9 der Fördervorrichtung 8 bilden. 3 shows a perspective elevation through a turbine 1 according to FIG. 2 in the area of the piston 5. On the cold side 7, radial depressions are provided which form the flow elements 9 of the conveying device 8.

Claims

Patentansprüche claims
1. Turbine (1) mit einem Rotor (2), welcher einen Beschaufelungsbereich (3) für Laufschaufeln (4) sowie einen Schubausgleichskolben (5) aufweist, welcher Schubausgleichskolben (5) eme dem Beschaufelungsbereich (3) zugewandte Heißseite (6) und eme dem Beschaufelungsbereich (3) abgewandte Kaltseite (7) aufweist, und mit einem Mischbereich1. Turbine (1) with a rotor (2), which has a blading area (3) for moving blades (4) and a thrust compensation piston (5), which thrust compensation piston (5) eme the hot side (6) facing the blading area (3) and eme has the cold side (7) facing away from the blading area (3), and with a mixing area
(13), in den eme der Kaltseite (7) zugeordnete Zufuhrung (14) für Dichtfluid (15) und eme mit dem Beschaufelungsbereich (3) stromungstechnisch verbundene Leckfluidzufuhrung (12) munden und von dem eme Abfuhrleitung (16) abzweigt .(13), into the feeder (14) for sealing fluid (15) assigned to the cold side (7) and leakage fluid feeder (12) connected to the blading area (3) in terms of flow technology, and branches off from the discharge line (16).
2. Turbine (1) nach Anspruch 1, bei der an der Kaltseite (7) eine Fordervorrichtung (8) zur Erzeugung einer radial nach außen gerichteten Strömung des Dichtfluides (15) vorgesehen ist, wobei die Fordervorrichtung (8) stromungstechnisch mit der Zufuhrung (14) für Dichtfluid (15) verbunden ist.2. Turbine (1) according to claim 1, in which on the cold side (7) a delivery device (8) for generating a radially outward flow of the sealing fluid (15) is provided, the delivery device (8) in terms of flow technology with the feed ( 14) for sealing fluid (15) is connected.
3. Turbine (1) nach Anspruch 1 oder 2, bei die Fordervorrichtung (8) eme Mehrzahl von Stromungsfuhrungselemen- ten (9), wie radiale Nuten, radiale Bohrungen oder Leitbleche aufweist.3. Turbine (1) according to claim 1 or 2, in which the conveying device (8) has a plurality of flow guidance elements (9), such as radial grooves, radial bores or guide plates.
4. Turbine (1) nach einem der Ansprüche 1 bis 3, bei der die Fordervorrichtung (8) mit dem Schubausgleichskolben (5) einteilig hergestellt ist. 4. Turbine (1) according to one of claims 1 to 3, wherein the conveying device (8) with the thrust compensating piston (5) is made in one piece.
5. Turbine (1) nach einem der Ansprüche 1 bis 4, die als5. Turbine (1) according to one of claims 1 to 4, which as
Dampfturbine, insbesondere als Mitteldruck-Teilturbme, ausgeführt ist.Steam turbine, in particular as a medium-pressure partial turbine.
6. Turbine (1) nach einem der vorhergehenden Ansprüche, mit einem Außengehause (10) in dem em Innengehause (11) angeordnet ist, wobei das Innengehause (11) den Rotor (2) umgibt und zwischen dem Schubausgleichskolben (5) und dem Innengehause (11) die Leckfluidzufuhrung (12) mit einem radialen Spalt gebildet ist.6. Turbine (1) according to one of the preceding claims, with an outer housing (10) in the em inner housing (11) is arranged, the inner housing (11) surrounding the rotor (2) and between the thrust compensating piston (5) and the inner housing (11) the leakage fluid supply (12) is formed with a radial gap.
7. Turbine (1) nach einem der vorhergehenden Ansprüche, die einflutig ausgeführt ist.7. Turbine (1) according to one of the preceding claims, which is single-flow.
8. Verfahren zur Abfuhrung von heißem Leckfluid (17), welches Leckfluid (17) in einer Turbine (1) durch einen radialen Spalt (12) zwischen emem Schubausgleichskolben (5) eines Rotors (2) und einem feststehendem Turb enteil (11) strömt, wobei das heiße Leckfluid (17) mit einem kälteren Dichtfluid (15) vermischt und abgeführt wird.8. A method for removing hot leakage fluid (17), which leakage fluid (17) in a turbine (1) through a radial gap (12) between emem thrust compensating piston (5) of a rotor (2) and a fixed turbine (11) flows , wherein the hot leakage fluid (17) is mixed with a colder sealing fluid (15) and discharged.
9. Verfahren nach Anspruch 8, bei dem das Leckfluid (17) an dem Schubausgleichskolben (5) mit dem Dichtfluid (15) vermischt wird.9. The method according to claim 8, wherein the leakage fluid (17) on the thrust compensation piston (5) is mixed with the sealing fluid (15).
10. Verfahren nach Anspruch 8 oder 9, bei dem das Dichtfluid (15) durch eme Rotation des Rotors (2) mittels einer an dem Schubausgleichskolben (5) angeordneten Fordervorrichtung (8) radial nach außen gefordert wird. 10. The method according to claim 8 or 9, wherein the sealing fluid (15) by eme rotation of the rotor (2) by means of a on the thrust compensating piston (5) arranged delivery device (8) is demanded radially to the outside.
11. Verfahren nach einem der Ansprüche 8 bis 10, bei dem das Leckfluid (17) heißer Dampf und das Dichtfluid (15) kälterer Dampf ist. 11. The method according to any one of claims 8 to 10, wherein the leakage fluid (17) is hot steam and the sealing fluid (15) is colder steam.
EP00956463A 1999-08-27 2000-08-18 Turbine and method for discharging leakage fluid Expired - Lifetime EP1206627B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00956463A EP1206627B1 (en) 1999-08-27 2000-08-18 Turbine and method for discharging leakage fluid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP99116939 1999-08-27
EP99116939 1999-08-27
EP00956463A EP1206627B1 (en) 1999-08-27 2000-08-18 Turbine and method for discharging leakage fluid
PCT/EP2000/008089 WO2001016467A1 (en) 1999-08-27 2000-08-18 Turbine and method for discharging leakage fluid

Publications (2)

Publication Number Publication Date
EP1206627A1 true EP1206627A1 (en) 2002-05-22
EP1206627B1 EP1206627B1 (en) 2004-12-22

Family

ID=8238879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00956463A Expired - Lifetime EP1206627B1 (en) 1999-08-27 2000-08-18 Turbine and method for discharging leakage fluid

Country Status (7)

Country Link
US (1) US6695575B1 (en)
EP (1) EP1206627B1 (en)
JP (1) JP4522633B2 (en)
KR (1) KR20020028221A (en)
CN (1) CN1171006C (en)
DE (1) DE50009046D1 (en)
WO (1) WO2001016467A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1806476A1 (en) * 2006-01-05 2007-07-11 Siemens Aktiengesellschaft Turbine for a thermal power plant

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630360B1 (en) * 2004-08-23 2009-10-28 Siemens Aktiengesellschaft Supplying steam for cooling the outer casing of a steam turbine
KR100644966B1 (en) * 2004-10-19 2006-11-15 한국과학기술연구원 Micro power generating device
EP1780376A1 (en) 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Steam turbine
FR2925939A1 (en) * 2007-12-28 2009-07-03 Alstom Power Hydraulique Sa HYDRAULIC MACHINE, ENERGY CONVERSION INSTALLATION COMPRISING SUCH A MACHINE AND METHOD OF ADJUSTING SUCH A MACHINE
EP2154332A1 (en) * 2008-08-14 2010-02-17 Siemens Aktiengesellschaft Reduction of the thermal loading of an external casing for a fluid flow engine
DE102008045655B4 (en) * 2008-09-03 2010-06-17 Siemens Aktiengesellschaft Steam turbine system with a condensing steam turbine with an energy-efficient sealing steam supply
US8192151B2 (en) * 2009-04-29 2012-06-05 General Electric Company Turbine engine having cooling gland
US8221056B2 (en) * 2009-06-11 2012-07-17 General Electric Company Mixing hotter steam with cooler steam for introduction into downstream turbine
EP2431570A1 (en) 2010-09-16 2012-03-21 Siemens Aktiengesellschaft Steam turbine with a dummy piston and wet steam blockage
KR102406229B1 (en) * 2017-10-18 2022-06-10 한화파워시스템 주식회사 Process gas sealing system
CN108625917A (en) * 2018-06-28 2018-10-09 西安交通大学 A kind of supercritical carbon dioxide Brayton cycle power part coolant seal insulation system
CN112253259A (en) * 2020-09-16 2021-01-22 上海发电设备成套设计研究院有限责任公司 Turbine rotor system
CN115290291A (en) * 2022-06-14 2022-11-04 南京航空航天大学 Experimental device for simulating boundary layer leakage flow and subsonic velocity outflow coupling effect

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE281253C (en)
US1347591A (en) * 1915-05-13 1920-07-27 Roder Karl Compensating axial thrust in multistage turbines
DE467562C (en) 1926-05-03 1928-10-26 Bbc Brown Boveri & Cie Stuffing box for centrifugal compressor with feed line for a locking means
US1895003A (en) * 1930-05-26 1933-01-24 Bbc Brown Boveri & Cie Steam turbine
FR1001387A (en) 1946-04-29 1952-02-22 Rateau Soc Stops for rotating parts, in particular for turbomachine rotors
NL263276A (en) * 1960-04-07
FR1360000A (en) 1963-04-22 1964-04-30 Cem Comp Electro Mec Temperature conditioning device for turbo-machine shafts
DE6809708U (en) 1968-12-03 1973-03-08 Siemens Ag MULTI-SHELLED AXIAL, THROTTLE-CONTROLLED STEAM TURBINE FOR HIGH PRESSURE AND TEMPERATURES.
US3647311A (en) * 1970-04-23 1972-03-07 Westinghouse Electric Corp Turbine interstage seal assembly
JPS5227282B2 (en) 1970-11-05 1977-07-19
US4276002A (en) * 1979-03-09 1981-06-30 Anderson James H Turbopump unit for deep wells and system
JPS5857601B2 (en) * 1981-03-31 1983-12-21 株式会社東芝 low boiling point media turbine
US4663938A (en) * 1981-09-14 1987-05-12 Colgate Thermodynamics Co. Adiabatic positive displacement machinery
US4439107A (en) * 1982-09-16 1984-03-27 United Technologies Corporation Rotor blade cooling air chamber
DE3424138A1 (en) 1984-06-30 1986-01-09 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau AIR STORAGE GAS TURBINE
JPS62284905A (en) * 1986-06-02 1987-12-10 Mitsubishi Heavy Ind Ltd Structure of steam turbine
JPS63167001A (en) * 1986-12-26 1988-07-11 Fuji Electric Co Ltd Reaction turbine
US4916892A (en) * 1988-05-06 1990-04-17 General Electric Company High pressure seal
JPH0519501U (en) * 1991-08-26 1993-03-12 三菱重工業株式会社 High and medium pressure turbine
US5224713A (en) * 1991-08-28 1993-07-06 General Electric Company Labyrinth seal with recirculating means for reducing or eliminating parasitic leakage through the seal
JPH0559901A (en) * 1991-08-30 1993-03-09 Mitsubishi Heavy Ind Ltd Balance piston for turbine
US5517817A (en) * 1993-10-28 1996-05-21 General Electric Company Variable area turbine nozzle for turbine engines
DE4435322B4 (en) * 1994-10-01 2005-05-04 Alstom Method and device for shaft seal and for cooling on the exhaust side of an axial flowed gas turbine
JPH08303202A (en) * 1995-05-09 1996-11-19 Mitsubishi Heavy Ind Ltd Single flow steam turbine with low main steam pressure
JPH09324602A (en) * 1996-06-04 1997-12-16 Fuji Electric Co Ltd Double step balance piston steam chamber for steam turbine
US5932940A (en) * 1996-07-16 1999-08-03 Massachusetts Institute Of Technology Microturbomachinery
DE19701020A1 (en) 1997-01-14 1998-07-23 Siemens Ag Steam turbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0116467A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1806476A1 (en) * 2006-01-05 2007-07-11 Siemens Aktiengesellschaft Turbine for a thermal power plant

Also Published As

Publication number Publication date
KR20020028221A (en) 2002-04-16
US6695575B1 (en) 2004-02-24
DE50009046D1 (en) 2005-01-27
WO2001016467A1 (en) 2001-03-08
CN1370254A (en) 2002-09-18
CN1171006C (en) 2004-10-13
EP1206627B1 (en) 2004-12-22
JP2003508665A (en) 2003-03-04
JP4522633B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
DE4447507B4 (en) Annular seal
DE69827555T2 (en) gas turbine
DE69934846T2 (en) Steam turbine with brush seal
EP1945911B1 (en) Steam turbine
DE602004011859T2 (en) Device for the control of gaps in a gas turbine
DE69936184T2 (en) Abzapfringraum at the blade tips of a gas turbine engine
EP1736635B1 (en) Air transfer system between compressor and turbine of a gas turbine engine
DE19620828C1 (en) Steam turbine shaft incorporating cooling circuit
DE3506733A1 (en) TURBINE GUIDE RING
EP2179143B1 (en) Gap cooling between combustion chamber wall and turbine wall of a gas turbine installation
CH681243A5 (en)
DE2003947A1 (en) Gas turbine
WO2001016467A1 (en) Turbine and method for discharging leakage fluid
DE3941174A1 (en) TOP GAME SETTING ON TURBO MACHINES
DE1475702B2 (en) Labyrinth seal for bypass gas turbine jet engines
CH702000B1 (en) Device with swirl chambers to the gap flow control in a turbine stage.
EP0122872B1 (en) Medium pressure steam turbine for a high temperature steam plant with intermediate reheating
EP0953099B1 (en) Steam turbine
CH694257A5 (en) Steam turbine.
EP3064706A1 (en) Guide blade assembly for a flow engine with axial flow
WO2010052053A1 (en) Gas turbine with securing plate between blade base and disk
EP2236759A1 (en) Rotor blade system
DE3406071A1 (en) Device for cooling the rotors of steam turbines
DE3248439A1 (en) GAS TURBINE ENGINE WITH COOLED SHOVEL TIPS
EP1249578A1 (en) Cooling of a gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020128

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50009046

Country of ref document: DE

Date of ref document: 20050127

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050307

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050923

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180822

Year of fee payment: 19

Ref country code: IT

Payment date: 20180829

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180809

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181019

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181107

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50009046

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190818

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190818