JPS63167001A - Reaction turbine - Google Patents

Reaction turbine

Info

Publication number
JPS63167001A
JPS63167001A JP31440486A JP31440486A JPS63167001A JP S63167001 A JPS63167001 A JP S63167001A JP 31440486 A JP31440486 A JP 31440486A JP 31440486 A JP31440486 A JP 31440486A JP S63167001 A JPS63167001 A JP S63167001A
Authority
JP
Japan
Prior art keywords
steam
turbine
chamber
bleed air
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31440486A
Other languages
Japanese (ja)
Inventor
Masayoshi Tateno
立野 政義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP31440486A priority Critical patent/JPS63167001A/en
Publication of JPS63167001A publication Critical patent/JPS63167001A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To balance the thrust of a turbine axle, to heat steam in bleed air chamber and to improve internal efficiency of a turbine by introducing leakage steam from a labyrinth packing into a bleed air stage chamber of a reaction turbine through a balancing pipe. CONSTITUTION:A moving blade array 2 and a stationary blade array 3 as reaction blade are provided on a turbine axle 1, and a balancing piston 6 inte gral with the turbine axle 1 is disposed upstream from the moving blade array 2. A bleed air chamber 5 is formed in a turbine casing 11, and a bleed air pipe 22 is connected to the bleed air chamber 5. In this arrangement, there is provided a balancing pipe 24 for introducing leakage steam from a leakage steam chamber 19 into a bleed air stage 5a of the turbine casing 11. Pressure of bleed air steam from the bleed air chamber 5 is applied to one end surface 6a of the balancing piston 6, and steam pressure from a steam inlet chamber 7 is applied to the other end surface 6b thereof. Further steam of the bleed air stage 5a is heated by high-temperature steam leakage from labylinth packing 16.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、タービン車軸に釣合ピストンを配備して運転
時、該車軸にかかる軸方向の推力を釣9合わせて運転さ
れる反動タービンに関する1、〔従来の技術〕 反動翼を有する反動タービンは、タービンケーシングに
取付けられた静翼から噴出する高速の蒸気流を反動翼か
らなるタービン車軸に取付けられた動翼に流入させ、高
速蒸気流の方向変化による衝動力と動翼内における蒸気
の膨張、すなわち圧力降下して生じる蒸気の流速増加建
よる反動力を動翼に与えて、タービン車軸を回転させ1
機械的仕事をさせるようになっている。この場合、動翼
で蒸気の膨張が行われるため、動翼の入口部の蒸気圧力
は出口部より高い。したがってタービン車軸は蒸気が流
れる方向に推力をうける1、この推力と平衡化するため
にタービン車軸に釣合ピストンを設け、前記推力と逆方
向の力を生じさせてタービン車軸をバランスさせている
。以下添付の図面に基いて従来技術を説明する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reaction turbine that is operated by disposing a balancing piston on the turbine axle and balancing the axial thrust applied to the axle during operation. 1. [Prior Art] A reaction turbine having reaction blades causes a high-speed steam flow ejected from a stator blade attached to a turbine casing to flow into a rotor blade attached to a turbine axle consisting of reaction blades, thereby generating a high-speed steam flow. The turbine axle is rotated by applying an impulse force due to a change in the direction of the rotor blades and a reaction force resulting from the expansion of steam within the rotor blades, that is, the pressure drop resulting in an increase in the flow velocity of the steam, to rotate the turbine axle.
They are made to do mechanical work. In this case, since steam is expanded in the rotor blades, the steam pressure at the inlet of the rotor blade is higher than at the outlet. Therefore, the turbine axle receives a thrust in the direction in which the steam flows1.In order to balance this thrust, a balancing piston is provided on the turbine axle to generate a force in the opposite direction to the thrust to balance the turbine axle. The prior art will be explained below based on the attached drawings.

第3図は反動タービンの概略構成図である。図において
タービン車軸1には1反動與である動翼られ、その両端
をそれぞれ軸受9,1oで軸支されている。11はター
ビンケーシングであり、タービン車軸1の動翼列2,3
に組み合わされ翼部を形成する静翼列12.13を備え
るとともに、タービン車軸1を囲み、軸受9,10を介
して回転自在に支承している。
FIG. 3 is a schematic diagram of the reaction turbine. In the figure, a turbine axle 1 has a rotor blade, which is a reaction rod, and both ends of the rotor blade are supported by bearings 9 and 1o, respectively. 11 is a turbine casing, and rotor blade rows 2 and 3 of the turbine axle 1
It is provided with a row of stator blades 12 and 13 that are combined with each other to form a blade section, and also surrounds the turbine axle 1 and rotatably supports it via bearings 9 and 10.

また、タービン車軸1の反動翼列2とタービンケーシン
グ11の静翼列12とが組合されてなる高圧翼列の上流
側において、バランスピストン6と。
Further, on the upstream side of the high-pressure blade row formed by combining the reaction blade row 2 of the turbine axle 1 and the stator blade row 12 of the turbine casing 11, a balance piston 6 is provided.

それを囲むタービンケーシング11の内周面で画成する
蒸気流入室7と漏出蒸気室19とからなる小空間と1反
動翼列3と静翼列13とが組合されてなる低圧翼列の下
流側においてタービンケーシング11の内周面とタービ
ン車軸9とで画成する排気蒸気とタービンケーシング1
1の内周面とに配されるラビリンスパツキン16を挟む
形で蒸気流入室7と漏洩蒸気室19とKわけられている
。蒸気流入室7は。
Downstream of a low-pressure blade row formed by combining a small space consisting of a steam inflow chamber 7 and a leakage steam chamber 19 defined by the inner peripheral surface of the turbine casing 11 surrounding it, and a first reaction blade row 3 and a stator blade row 13 Exhaust steam defined on the side by the inner peripheral surface of the turbine casing 11 and the turbine axle 9 and the turbine casing 1
A steam inflow chamber 7 and a leakage steam chamber 19 are separated by a labyrinth packing 16 disposed on the inner peripheral surface of the steam chamber 1. The steam inflow chamber 7 is.

蒸気配管20が接続されていて、送流されて来る蒸気を
タービンケーシング11の内部へ供給する。供給された
蒸気は、翼列段で膨張し仕事をしながら通流し排気蒸気
室14へ至り、排気管21を介して復水器(図示せず)
へ送流され復水となり活用される。なおタービンケーシ
ング11には1反動翼列2と静止翼列12とからなる翼
列部分と反動翼列3と静止翼列13とからなる翼列部分
との間に抽気室5が形成されており、との抽気室5に接
続されかつ工場蒸気配管(図示せず)等に連通する抽気
管22りX いて、ラビリンスパツキン16からの漏」蒸気を抽気管
22へ合流させるようKなっていて、漏出蒸気を抽気蒸
気とともに工場蒸気等に利用されるようになっている。
A steam pipe 20 is connected to supply the steam sent into the turbine casing 11. The supplied steam expands in the blade row stage and flows through it while doing work, reaching the exhaust steam chamber 14, and passes through the exhaust pipe 21 to a condenser (not shown).
The water is sent to the water, becomes condensate, and is used. In the turbine casing 11, an air bleed chamber 5 is formed between a blade row portion consisting of a reaction blade row 2 and a stationary blade row 12 and a blade row portion consisting of a reaction blade row 3 and a stationary blade row 13. A bleed pipe 22 is connected to the bleed chamber 5 of the labyrinth seal 16 and communicates with a factory steam pipe (not shown), etc., and is configured to allow steam leaking from the labyrinth packing 16 to join the bleed pipe 22. Leakage steam is now used together with extracted steam for factory steam, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明してきたように構成された反動タービンにおい
てラビリンスパツキン16を漏れ出る蒸気は蒸気入口室
7の蒸気と等エンタルピ変化で漏洩蒸気室19に流れる
ので、漏洩蒸気室19の蒸気温度は蒸気入口室7の蒸気
温度に近い。しかし抽気室5の蒸気温度は動翼2と、静
翼12とからなる翼列を通流することにより仕事をして
いるので蒸気入口室7の蒸気温度よりかなり低い5、し
かし漏洩蒸気室19の蒸気は釣合管23を経て抽気管2
2に流しているので高温の漏洩蒸気のもつエネルギを充
分に活用してタービンに仕事をさせずに抽気管22を介
して外部に放出されるので、タービンの内部効率を低下
させてしまう。
In the reaction turbine configured as described above, steam leaking out of the labyrinth packing 16 flows into the leakage steam chamber 19 with an isenthalpic change with the steam in the steam inlet chamber 7, so that the steam temperature in the leakage steam chamber 19 is lower than that in the steam inlet chamber. Close to the steam temperature of 7. However, the steam temperature in the bleed chamber 5 is considerably lower than the steam temperature in the steam inlet chamber 7 because work is done by flowing through the blade row consisting of the rotor blades 2 and the stator blades 12, but the leak steam chamber 19 The steam passes through the balance pipe 23 to the bleed pipe 2.
2, the energy of the high-temperature leaked steam is fully utilized and discharged to the outside via the bleed pipe 22 without causing the turbine to do any work, which reduces the internal efficiency of the turbine.

本発明は、上述のような点に鑑みラビリンスパツキンを
漏れ出る蒸気を有効に利用してタービンの内部効率の向
上に利用できる反動タービンを提供することを目的とす
るものである。
In view of the above-mentioned points, it is an object of the present invention to provide a reaction turbine that can effectively utilize steam leaking from a labyrinth packing to improve the internal efficiency of the turbine.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、タービン車軸に配備されるバランスピスト
ンとタービンケーシングとの間に設けているラビリンス
パツキン部分からの漏洩蒸気を取り出し1反動タービン
の抽気段へ送流する釣合管を設けるようにした。
In the present invention, a balance pipe is provided for extracting leaked steam from a labyrinth gasket provided between a balance piston provided on a turbine axle and a turbine casing and sending it to the extraction stage of one reaction turbine.

〔作用〕[Effect]

上記のように釣合管を介してラビリンスパツキンからの
漏洩蒸気を反動タービンの抽気室段に導いたので、ター
ビン車軸の推力は釣合ピストンにより平衡化するととも
に、ラビリンスパツキンから漏洩した高い温度の蒸気が
段に流入することと漏出してきた蒸気量だけ、1 ’?
)02tJ−以下第2図によって説明を補足する。第2
図はモリニーhs線(又は蒸気h−s線)で、縦軸に二
ンタルピ、横軸にエントロピをとり、タービンにおける
熱落差を示したものである。図においてA点はタービン
に流入する蒸気のエンタルピであり。
As mentioned above, the steam leaking from the labyrinth packing was led to the bleed chamber stage of the reaction turbine through the balancing pipe, so the thrust of the turbine axle was balanced by the balancing piston, and the high temperature steam leaking from the labyrinth packing was Only the amount of steam flowing into the stage and the amount of steam leaking out is 1'?
)02tJ-The explanation will be supplemented with reference to FIG. 2 below. Second
The figure shows the Moliny HS line (or steam HS line), with the vertical axis representing dynthalpy and the horizontal axis representing entropy, showing the heat drop in the turbine. In the figure, point A is the enthalpy of steam flowing into the turbine.

B点は流入蒸気が翼列を通流し圧力P曲線迄等エントロ
ピ変化による断熱膨張した時のエンタルピを表わす。曲
線p及I曲線PaはそれぞれB点との等圧力線と抽気蒸
気の等圧力線を示し1曲線T、Ta及びTbは0点、D
点及びE点を通る温度線である。
Point B represents the enthalpy when the incoming steam passes through the blade row and expands adiabatically due to isentropic changes up to the pressure P curve. Curves p and I curve Pa represent the isopressure line with point B and the isopressure line of extracted steam, respectively; 1 curves T, Ta and Tb are the 0 point, D
It is a temperature line passing through point and E point.

ところが実際のタービン内での膨張ではエントロピが増
加するので等圧力線Pと温度線Tとの交点Cのエンタル
ピを有する蒸気となる。同様に抽気蒸気のエンタルピは
抽気蒸気の等圧力線Paと温度wATaとの交点りの値
となる。従ってこのターピンの仕事に利用されるのは、
旬間の熱落差h1と■間の熱落差h2の和となり、この
時の内部効率はh1+h2乙由となる。ところで本発明
のようにラビリンスパツキンからの高温は漏洩蒸気を抽
気段へ送入すると抽気段の蒸気は加熱され、その温度は
温度線Tbまで上昇するので、抽気段の蒸気のエンタル
ピは抽気蒸気の圧力線Pa上を温度上昇分だけ右上方へ
移動し、温度線Tbと等圧力線Paの交点Eとなる。
However, during actual expansion within the turbine, the entropy increases, resulting in steam having an enthalpy equal to the intersection point C between the constant pressure line P and the temperature line T. Similarly, the enthalpy of the extracted steam is the value at the intersection of the constant pressure line Pa of the extracted steam and the temperature wATa. Therefore, what is used for this Turpin work is
It is the sum of the heat drop h1 between the seasons and the heat drop h2 between the times, and the internal efficiency at this time is h1+h2. By the way, as in the present invention, when the high temperature leaked steam from the labyrinth packing is sent to the bleed stage, the steam in the bleed stage is heated and its temperature rises to the temperature line Tb, so the enthalpy of the steam in the bleed stage is equal to that of the bleed steam. It moves to the upper right on the pressure line Pa by the amount of temperature rise, and reaches the intersection E of the temperature line Tb and the constant pressure line Pa.

よって抽気段以降の翼列段を通流する蒸気は、排気室の
等圧力線plで膨張するのでF点まで圧力と温度をさげ
て仕事をする。このため本発明のように構成した場合の
蒸気がなす仕事はD間の熱落差り、とび間の熱落差h3
との和となる。この場合h2<haであるのでその差だ
け熱落差を大きくとれ。
Therefore, the steam flowing through the blade row stage after the bleed stage expands along the constant pressure line pl of the exhaust chamber, so it performs work by reducing the pressure and temperature to point F. Therefore, the work done by the steam when configured as in the present invention is the heat drop between D and the heat drop between gaps h3.
It becomes the sum of In this case, h2<ha, so increase the heat drop by that difference.

また蒸気量も漏れ蒸気流大分だけ増加するので。Also, the amount of steam increases by the amount of leaked steam flow.

この分だけ利用できる仕事量は大きくなる。The amount of work that can be used increases accordingly.

〔考案の実施例〕[Example of idea]

以下図面に基づいて本考案の実施例を説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本考案の実施例による反動タービンの概略構成
図である。なお、第1図において第3図の従来例と同一
部品には同じ符号を付し、その説明を省略する。
FIG. 1 is a schematic diagram of a reaction turbine according to an embodiment of the present invention. In FIG. 1, parts that are the same as those in the conventional example shown in FIG. 3 are given the same reference numerals, and their explanations will be omitted.

第1図において漏洩蒸気室19からの漏洩蒸気は。In FIG. 1, the leakage steam from the leakage steam chamber 19 is as follows.

一端がタービンケーシングの抽気段に接続される釣合管
24によって、タービンの抽気段5aへ送流するように
構成される。このため釣合ピストン6の端面6bには従
来技術のように抽気室5aの抽気蒸気の圧力が加わり、
一方釣合ピストン6の端面6aには蒸気入口室7の蒸気
圧力が加わるので、前述の反動翼による推力と釣合うと
ともに2ビリンスパl& ッキン看を漏れ出る高温の蒸気は抽気段の蒸気を加熱し
て抽気室の蒸気の温度を上昇させかつ洩れ出る蒸気の分
だけ抽気室の蒸気量と増加させて抽気室以降の翼列で利
用し得る仕事量を増加させるのである。
The flow is arranged to be delivered to the bleed stage 5a of the turbine by means of a balance pipe 24, which is connected at one end to the bleed stage of the turbine casing. Therefore, the pressure of the bleed steam in the bleed chamber 5a is applied to the end surface 6b of the balancing piston 6, as in the prior art.
On the other hand, since the steam pressure in the steam inlet chamber 7 is applied to the end face 6a of the balancing piston 6, it balances the thrust from the reaction blades mentioned above, and the high-temperature steam leaking from the two cylinders heats the steam in the extraction stage. This increases the temperature of the steam in the bleed chamber and increases the amount of steam in the bleed chamber by the leaked steam, thereby increasing the amount of work that can be used by the blade rows after the bleed chamber.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように1本考案によれば釣合ピス
トンのうとリンスパツキンから漏れ出る蒸気を抽気段に
導いたことにより1反動翼による推力をバランスピスト
ンにより釣合わせるとともに漏れ出る蒸気により抽気室
の蒸気を加熱して温度を上昇させてタービンに利用され
る熱落差を大きくシ、かつ抽気段以降の一列を流れる蒸
気を漏洩蒸気量だけ増加させるので、タービンに与える
仕事量は大きくシ、タービンの内部効率を向上させるこ
とができるのである1゜
As is clear from the above explanation, according to the present invention, the steam leaking from the balance piston shell and rinse packing is guided to the bleed stage, so that the thrust from the first reaction vane is balanced by the balance piston, and the leaking steam is used to bleed air. The steam in the chamber is heated to raise its temperature to increase the heat drop used by the turbine, and the steam flowing in the line after the extraction stage is increased by the amount of leaked steam, so the amount of work given to the turbine is increased. It is possible to improve the internal efficiency of the turbine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した実施例の反動タービンの概略
構成図で、第2図はタービンの熱落差を示す蒸気−hs
−線図、第3図は従来の反動タービンの概略構成図であ
る4゜ 1:タービン車軸52t3:動翼列、5:抽気室。 5a:抽気段、6:釣合ピストン、7:蒸気流入室。 11:タービンケーシング、12,13 :静翼列、1
6:ラピリンスパツキン、19:漏洩蒸気室、22:抽
気管、 23,24 :釣合管。 、 π゛ ご″ 第1図 Δ 二ントロビ 第2図
FIG. 1 is a schematic configuration diagram of a reaction turbine according to an embodiment of the present invention, and FIG. 2 is a steam-hs diagram showing the heat drop of the turbine.
- diagram, FIG. 3 is a schematic configuration diagram of a conventional reaction turbine.4゜1: Turbine axle 52t3: bucket row, 5: bleed chamber. 5a: extraction stage, 6: balance piston, 7: steam inflow chamber. 11: Turbine casing, 12, 13: Stator blade row, 1
6: Lapilin packing, 19: Leaking steam chamber, 22: Bleeding pipe, 23, 24: Balancing pipe. , π゛go'' Fig. 1 Δ Nitrobi Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 蒸気タービンの車室中間段に設けられた抽気室を介し通
流蒸気を外部へ抽気するように構成された反動タービン
において、車室段落を高圧側から低圧側へ通流する蒸気
により発生する軸方向推力に釣り合わせるためタービン
車軸に配備されるバランスピストンとタービンケーシン
グとの間に設けているラビリンスパッキン部分からの漏
出蒸気を取り出し、前記抽気段へ送流するように釣合管
を設けたことを特徴とする反動タービン。
In a reaction turbine configured to bleed flowing steam to the outside through a bleed chamber provided in an intermediate stage of the casing of a steam turbine, a shaft generated by steam flowing through the casing stage from the high-pressure side to the low-pressure side. A balancing pipe is provided to take out leaked steam from a labyrinth packing part provided between a balance piston provided on the turbine axle and the turbine casing in order to balance the directional thrust and send it to the extraction stage. A reaction turbine featuring:
JP31440486A 1986-12-26 1986-12-26 Reaction turbine Pending JPS63167001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31440486A JPS63167001A (en) 1986-12-26 1986-12-26 Reaction turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31440486A JPS63167001A (en) 1986-12-26 1986-12-26 Reaction turbine

Publications (1)

Publication Number Publication Date
JPS63167001A true JPS63167001A (en) 1988-07-11

Family

ID=18052942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31440486A Pending JPS63167001A (en) 1986-12-26 1986-12-26 Reaction turbine

Country Status (1)

Country Link
JP (1) JPS63167001A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508665A (en) * 1999-08-27 2003-03-04 シーメンス アクチエンゲゼルシヤフト Turbine and its leakage fluid discharge method
JP2008508471A (en) * 2004-08-02 2008-03-21 シーメンス アクチエンゲゼルシヤフト Steam turbine and operation method thereof
JP2010506080A (en) * 2006-10-09 2010-02-25 シーメンス アクチエンゲゼルシヤフト Rotor for fluid machinery
JP2018526566A (en) * 2015-08-07 2018-09-13 シーメンス アクティエンゲゼルシャフト Overload introduction into steam turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138405A (en) * 1980-03-31 1981-10-29 Fuji Electric Co Ltd Gland steam pipe device for steam turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138405A (en) * 1980-03-31 1981-10-29 Fuji Electric Co Ltd Gland steam pipe device for steam turbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508665A (en) * 1999-08-27 2003-03-04 シーメンス アクチエンゲゼルシヤフト Turbine and its leakage fluid discharge method
JP2008508471A (en) * 2004-08-02 2008-03-21 シーメンス アクチエンゲゼルシヤフト Steam turbine and operation method thereof
US8202037B2 (en) 2004-08-02 2012-06-19 Siemens Aktiengesellschaft Steam turbine and method for operation of a steam turbine
KR101239792B1 (en) * 2004-08-02 2013-03-06 지멘스 악티엔게젤샤프트 Steam turbine, and method for the operation of a steam turbine
JP2010506080A (en) * 2006-10-09 2010-02-25 シーメンス アクチエンゲゼルシヤフト Rotor for fluid machinery
JP2018526566A (en) * 2015-08-07 2018-09-13 シーメンス アクティエンゲゼルシャフト Overload introduction into steam turbine
US10301975B2 (en) 2015-08-07 2019-05-28 Siemens Aktiengesellschaft Overload introduction into a steam turbine

Similar Documents

Publication Publication Date Title
CN100575671C (en) Steam turbine and steam turbine operation method
Weiß Volumetric expander versus turbine–which is the better choice for small ORC plants
JP6781166B2 (en) Regenerative thermodynamic power cycle system and how to operate it
JPH07208106A (en) Turbine
JP2008248822A (en) Thermal power plant
KR20140116121A (en) Method and turbine for expanding an organic operating fluid in a rankine cycle
US2414551A (en) Compressor
CN108397247B (en) Quick-assembly high-speed coaxial intermediate reheat axial exhaust steam turbine
CN103717838B (en) Comprise the steam turbine of thrust balancing piston
JPS63167001A (en) Reaction turbine
KR102133491B1 (en) Generator using turbine and compressor using motor
Cich et al. Radial inlet and exit design for a 10 MWe SCO2 axial turbine
US4431371A (en) Gas turbine with blade temperature control
JPH09125909A (en) Combined-cycle steam turbine
US6851927B2 (en) Fluid-flow machine with high-pressure and low-pressure regions
US2377611A (en) Turbine
WO2019244785A1 (en) Steam turbine installation and combined cycle plant
US2524724A (en) Turbine apparatus
JP2019108835A (en) Steam turbine plant and its operation method
JP4488787B2 (en) Steam turbine plant and method for cooling intermediate pressure turbine thereof
CN112135957B (en) Steam turbine plant and combined cycle plant
JP2890907B2 (en) Steam turbine
JP2000282807A (en) Steam turbine facility
JPS5857601B2 (en) low boiling point media turbine
JP2004011609A (en) Steam turbine