EP1204772B1 - Method for producing welded steel pipes with a high degree of strength, ductility and deformability - Google Patents

Method for producing welded steel pipes with a high degree of strength, ductility and deformability Download PDF

Info

Publication number
EP1204772B1
EP1204772B1 EP00943586A EP00943586A EP1204772B1 EP 1204772 B1 EP1204772 B1 EP 1204772B1 EP 00943586 A EP00943586 A EP 00943586A EP 00943586 A EP00943586 A EP 00943586A EP 1204772 B1 EP1204772 B1 EP 1204772B1
Authority
EP
European Patent Office
Prior art keywords
heat treatment
strength
pipe
pipes
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00943586A
Other languages
German (de)
French (fr)
Other versions
EP1204772A2 (en
Inventor
Gerold Hohl
Gerhard Knauf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Europipe GmbH
Original Assignee
Europipe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10023488A external-priority patent/DE10023488B4/en
Application filed by Europipe GmbH filed Critical Europipe GmbH
Publication of EP1204772A2 publication Critical patent/EP1204772A2/en
Application granted granted Critical
Publication of EP1204772B1 publication Critical patent/EP1204772B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Definitions

  • the invention relates to a method for the production of welded steel pipes of high strength, toughness and deformation properties, in particular large pipes according to the UOE method, in which, starting from a hot-rolled sheet, cold formed a tube, welded and calibrated to nominal diameter and after welding and calibration a heat treatment at a temperature in the range of 100-400 ° C is subjected.
  • z. B. produced by the UOE process tubes require yield strengths in the amount of the specified minimum value in order to reliably meet the required safety against flow on the finished tube.
  • integral deformation reserve ⁇ up is meant the mean circumferential plastic elongation of the pipe before the wall constriction commences analogously to the uniform elongation in the laboratory tensile test ( Hohl, GA and Vogt, GH: Allowable strains for high strength line pipe. 3R international, 31st Century, Issue 12/92, pp. 696-700 ).
  • a known under the name "bake hardening” method for increasing the component strength is known. This is understood to mean artificial aging as a result of baking varnishing.
  • the coating is preferably carried out in a zinc bath which is run through by the previously cold-rolled strip.
  • the zinc bath temperatures are in the range of 450-470 ° C. So that the surface refinement of conventional DP (dual-phase) steels is reliably possible, a steel of the following composition is proposed in% by weight 0.05 to 0.3% carbon 0.8 to 3.0% manganese 0.4 to 2.5% aluminum 0.01 to 0.2% silicon
  • a heat treatment preferably follows in a hot-dip galvanizing plant or in a continuous annealing furnace.
  • the structure consists of a ferritic matrix in which martensite is embedded in the form of a honeycomb.
  • Yield strength (R p0.2 ) 200 MPa
  • Elongation at break (A 80 ) 25% Yield strength (R p0.2 / R m) ⁇ 0.7
  • the main elements favoring the proposed process are aluminum and silicon.
  • the latter element Si is kept low to suppress the formation of red scale during hot rolling. Red tinder carries the danger of scale rolling, which leads to surface inhomogeneities when the strip is pickled.
  • High Al contents promote the formation of the fenite during annealing between the transition temperatures A C1 and A C3 .
  • the formation of pearlite is postponed to significantly longer times, so that it can be suppressed at the realizable cooling rates.
  • the adhesion conditions of both the zinc layer and the zinc-iron alloy layer are improved by Al.
  • the known method is for welded pipes of high-strength steels, e.g. the grade X80 with a minimum yield strength of 550 MPa is not applicable, because a heat treatment in the temperature range of 450 - 470 ° C is uneconomical because of the long warm-up and hold times.
  • the yield strength of these high-strength steels is, for example,> 0.70 for a grade X65, otherwise in the range between 0.80 and 0.93.
  • JP-B 61-44123 and JP-B 60-26809 For example, a method of producing a high-strength X80 grade steel (API standard) having excellent low-temperature toughness is known.
  • a steel with the elements C, Si, Mn, P, S, Nb and Al, remainder iron and process-related impurities is melted and cast a slab in the strand.
  • TM-rolling the slab is transformed into a hot-rolled sheet and this too molded a slot tube.
  • the tube thus produced is subjected to a heat treatment in the range of 100-400 ° C with a holding time of between 0.5-120 minutes.
  • the total residence time between the first rolling sequence and the second rolling sequence should be in the range of ⁇ 60 seconds.
  • the object of the invention is to provide a method for producing welded steel pipes of high strength, toughness and deformation properties in particular large pipes according to the UOE method, with the qualities ⁇ X90 with a minimum yield strength of 620 MPa and sour gas-resistant grades economically and process-safe in compliance with the rules fixed upper limit for the yield ratio can be represented.
  • the holding time is mainly dependent on the product wall thickness to be heated and depends on the type of heat input. This means that the holding times can be only seconds in one extreme case and several hours in the other extreme case.
  • the tube produced in this way has more than twice as high deformation reserves with the same high strength compared to conventionally manufactured products, without exceeding the upper limit for the yield ratio determined by the current regulations.
  • the minimum yield strength limit at the sheet corresponds to the minimum yield strength at the pipe which is reduced by the yield strength increase due to cold forming and heat effect.
  • a pipe produced in this way is characterized by resistance to aging and particularly high homogeneity of the properties at the circumference of the pipe, whereby the steel analysis given with regard to the main elements covers the range of high-strength large-diameter steel steels.
  • the mechanical material properties in particular the yield strength
  • the increase means a reserve, which allows the usual variations in alloy composition, wall thickness, rolling parameters, etc., without running the risk to fall below the required minimum value even at the meeting of several unfavorable parameters.
  • the otherwise customary special measures can be omitted.
  • the heat treatment can be carried out in a continuous furnace or during the passage of an induction coil.
  • the latter method is preferably integrated into a pipe external insulation system. This means that the heating of the tube required for the application of the single-or multi-layer insulation can be used simultaneously to increase the strength properties to the required level, since the temperature required for the insulation is in the proposed range of 100-300 degrees Celsius ,
  • Another advantage of the proposed heat treatment is the fact that it contributes to the reproducible representation of the yield ratio at a low level and a homogenization of the strength properties in the production series, so that compared to conventionally produced pipes on the component higher deformation reserves against ductile breakage can be achieved.
  • the effect of a homogenization of the strength properties can be further increased if, in the case of the large pipes produced by the UOE process before the heat treatment, a conditioning of the tubes according to the in the DE 195 22 790 A1 proposed method.
  • the tube properties which can be represented thereby quite purposefully depending on the application for internal or external pressure loading bring in conjunction with the proposed here after heat treatment in terms of dispersion of the values at the tube circumference and from tube to tube and with respect to the potentionell representable on the component deformation reserve the best results.
  • the proposed method is applicable to longitudinally welded and helically welded tubes (also called spiral tubes) according to the HFI and after the UOE method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von geschweißten Stahlrohren hoher Festigkeit, Zähigkeits- und Verformungseigenschaften insbesondere Großrohre nach dem UOE-Verfahren, bei dem, ausgehend von einem warmgewalzten Blech, ein Rohr kalt eingeformt, verschweißt und auf Solldurchmesser kalibriert und nach dem Schweißen und Kalibrieren einer Wärmebehandlung mit einer Temperatur im Bereich von 100-400°C unterworfen wird.The invention relates to a method for the production of welded steel pipes of high strength, toughness and deformation properties, in particular large pipes according to the UOE method, in which, starting from a hot-rolled sheet, cold formed a tube, welded and calibrated to nominal diameter and after welding and calibration a heat treatment at a temperature in the range of 100-400 ° C is subjected.

Durch Kaltformgebung, z. B. nach dem UOE-Verfahren hergestellte Rohre benötigen am Blech Streckgrenzen in Höhe des spezifizierten Mindestwertes, um am fertigen Rohr die geforderten Sicherheiten gegen Fließen zuverlässig zu erfüllen.By cold forming, z. B. produced by the UOE process tubes require yield strengths in the amount of the specified minimum value in order to reliably meet the required safety against flow on the finished tube.

Für Rohre aus hochfesten Stählen mit einer Streckgrenze Rt 0,5 ≥ 550 MPa(X80 entsprechend API-5L) sind diese Anforderungen aufgrund der gleichzeitig geforderten Zähigkeits- und Verformungseigenschaften in der Praxis nur mit vergleichsweise hohem Ausgangsstreckgrenzenverhältnis darstellbar, so daß eine Einhaltung der nach geltendem Regelwerk maximal zulässigen Streckgrenzenverhältnisse z.B. max. 0,93 nach API5L infolge der Kaltverfestigung beim Einformen und Kalibrieren der Rohre in der Großserie kaum oder nur mit erhöhtem technischen Aufwand und entsprechend hohen Produktionskosten zu bewerkstelligen ist. Darüber hinaus nimmt die integrale Verformungsreserve durch die Kaltformgebung als Folge der hohen Ausgangsstreckgrenzenverhältnisse mit steigendem Gütegrad ab, so daß in der Praxis die am Bauteil erforderliche integrale Verformungsreserve εup ≥ 2% im Rahmen der üblichen Streuungen an Rohren aus Stahl mit einer Streckgrenze Rt 0,5 ≥ 550 MPa (X80) nur knapp und an Rohren aus Stahl mit einer Streckgrenze R t 0,5 ≥ 620 Mpa (X90) bislang nicht erreicht werden konnte. Mit "integraler Verformungsreserve εup" ist die mittlere plastische Umfangsdehnung des Rohres vor Beginn der Wandeinschnürung analog der Gleichmaßdehnung im Laborzugversuch gemeint ( Hohl, G.A. and Vogt, G.H: Allowable strains for high strength line pipe. 3R international, 31. Jhg., Heft 12/92, S. 696-700 ).For pipes made of high-strength steels with a yield strength R t 0.5 ≥ 550 MPa (X80 according to API-5L) these requirements due to the simultaneously required toughness and deformation properties in practice only with comparatively high Ausgangssstreckgrenzenverhältnis represented so that compliance with current regulations maximum permissible yield strength ratios eg max. 0.93 to API5L as a result of work hardening during molding and calibration of the tubes in mass production is difficult or can be accomplished only with increased technical complexity and correspondingly high production costs. In addition, the integral deformation reserve by the cold forming decreases as a result of high Ausgangssstreckgrenzenverhältnisse with increasing quality, so that in practice the required on the component integral deformation reserve ε up ≥ 2% in the context of the usual scattering of steel pipes with a yield strength R t 0 , 5 ≥ 550 MPa (X80) was barely achievable and could not be reached on tubes made of steel with a yield strength R t 0.5 ≥ 620 Mpa (X90). By "integral deformation reserve ε up " is meant the mean circumferential plastic elongation of the pipe before the wall constriction commences analogously to the uniform elongation in the laboratory tensile test ( Hohl, GA and Vogt, GH: Allowable strains for high strength line pipe. 3R international, 31st Century, Issue 12/92, pp. 696-700 ).

Zur Überwindung dieses Problems hat es in der Vergangenheit Überlegungen gegeben durch Veränderung der Legierungszusammensetzung und/oder der Walztechnik die geforderten höheren Verformungskennwerte zu erreichen. Diesen Möglichkeiten sind aber in der Praxis Grenzen gesetzt, da zum einen bestimmte Zulegierungen wie z.B. Nickel das Produkt erheblich verteuern oder deren Zugabe verformungstechnische Probleme bereitet wie z.B. Bor und zum anderen die Technologie des thermomechanischen Walzens hinsichtlich des einzustellenden Temperaturfensters, der Abkühlgeschwindigkeiten und der Umformgrade nur begrenzt veränderbar ist.To overcome this problem, it has been considered in the past by changing the alloy composition and / or the rolling technique to achieve the required higher deformation characteristics. However, these possibilities are limited in practice because, on the one hand, certain additions, such as e.g. Nickel significantly increase the cost of the product or the addition of which poses deformation problems such as e.g. Boron and on the other the technology of thermomechanical rolling with respect to the temperature window to be set, the cooling rates and the degree of deformation is limited changeable.

Aus der 196 10 675 C1 ist ein unter der Bezeichnung "bake hardening" lautendes Verfahren zur Erhöhung der Bauteilfestigkeit bekannt. Darunter wird eine künstliche Alterung infolge des Einbrennlackierens verstanden. Die Beschichtung erfolgt vorzugsweise in einem Zinkbad, das von dem zuvor kaltgewalzten Band durchlaufen wird. Die Zinkbadtemperaturen liegen im Bereich von 450 - 470°C. Damit die Oberflächenveredelung konventioneller DP (Dualphasen) -Stähle betriebssicher möglich ist, wird ein Stahl folgender Zusammensetzung in Gew.% vorgeschlagen
0,05 bis 0,3% Kohlenstoff
0,8 bis 3,0% Mangan
0,4 bis 2,5% Aluminium
0,01 bis 0,2% Silizium
From 196 10 675 C1 a known under the name "bake hardening" method for increasing the component strength is known. This is understood to mean artificial aging as a result of baking varnishing. The coating is preferably carried out in a zinc bath which is run through by the previously cold-rolled strip. The zinc bath temperatures are in the range of 450-470 ° C. So that the surface refinement of conventional DP (dual-phase) steels is reliably possible, a steel of the following composition is proposed in% by weight
0.05 to 0.3% carbon
0.8 to 3.0% manganese
0.4 to 2.5% aluminum
0.01 to 0.2% silicon

Rest Eisen mit erschmelzungsbedingten Verunreinigungen. Nach dem Kaltwalzen schließt sich eine Wärmebehandlung vorzugsweise in einer Feuerverzinkungsanlage oder in einem Durchlaufglühofen an.Remaining iron with impurities caused by melting. After the cold rolling, a heat treatment preferably follows in a hot-dip galvanizing plant or in a continuous annealing furnace.

Das Gefüge besteht aus einer ferritischen Matrix, in die insefförmig Martensit eingelagert ist. Die Mindestkennwerte die mit dem bekannten Verfahren erreichbar sind Dehngrenze (Rp0.2) ≥ 200 MPa Zugfestigkeit (Rm) ≥ 550 MPa Bruchdehnung (A80) ≥ 25% Streckgrenzenverhäftnis (Rp0.2/Rm) ≤ 0,7 The structure consists of a ferritic matrix in which martensite is embedded in the form of a honeycomb. The minimum parameters that can be achieved with the known method Yield strength (R p0.2 ) ≥ 200 MPa Tensile strength (R m ) ≥ 550 MPa Elongation at break (A 80 ) ≥ 25% Yield strength (R p0.2 / R m) ≤ 0.7

Die wesentlichen das vorgeschlagene Verfahren begünstigenden Elemente sind Aluminium und Silizium. Das letztgenannte Element Si wird niedrig gehalten, um die Bildung von rotem Zunder beim Warmwalzen zu unterdrücken. Roter Zunder birgt die Gefahr von Zundereinwalzungen, die beim Beizen des Bandes zu Oberflächeninhomogenitäten führen. Hohe Al-Gehafte fördern die Fenitbildung bei der Glühung zwischen den Umwandlungstemperaturen AC1 und AC3. Die Perlitbildung wird zu deutlich längeren Zeiten verschoben, so dass sie bei den realisierbaren Abkühlraten unterdrückt werden kann. Die Haftbedingungen sowohl der Zinkschicht als auch der Zink-Eisen-Legierungsschicht werden durch Al verbessert.The main elements favoring the proposed process are aluminum and silicon. The latter element Si is kept low to suppress the formation of red scale during hot rolling. Red tinder carries the danger of scale rolling, which leads to surface inhomogeneities when the strip is pickled. High Al contents promote the formation of the fenite during annealing between the transition temperatures A C1 and A C3 . The formation of pearlite is postponed to significantly longer times, so that it can be suppressed at the realizable cooling rates. The adhesion conditions of both the zinc layer and the zinc-iron alloy layer are improved by Al.

Das bekannte Verfahren ist für geschweißte Rohre aus hochfesten Stählen z.B. der, Güte X80 mit einer Mindestreckgrenze von 550 MPa nicht anwendbar, da eine Wärmebehandlung im Temperaturbereich von 450 - 470°C wegen der langen Aufwärm- und Haltezeiten unwirtschaftlich ist. Das Streckgrenzenvefiältnis dieser hochfesten Stähle liegt beispielsweise für eine Güte X65 bei> 0,70, ansonsten im Bereich zwischen 0,80 - 0,93.The known method is for welded pipes of high-strength steels, e.g. the grade X80 with a minimum yield strength of 550 MPa is not applicable, because a heat treatment in the temperature range of 450 - 470 ° C is uneconomical because of the long warm-up and hold times. The yield strength of these high-strength steels is, for example,> 0.70 for a grade X65, otherwise in the range between 0.80 and 0.93.

Aus der JP-B 61-44123 und JP-B 60-26809 ist ein Verfahren zur Herstellung eines hochfesten Stahles der Qualität X80 (API-Norm) mit ausgezeichneter Tieftemperaturzähigkeit bekannt. Bei diesem bekannten Verfahren wird ein Stahl mit den Elementen C, Si, Mn, P, S, Nb und Al, Rest Eisen und verfahrensbedingten Verunreinigungen erschmolzen und daraus eine Bramme im Strang gegossen. Durch ein TM-Walzen wird die Bramme in ein warmgewalztes Blech umgeformt und dieses zu einem Schlitzrohr eingeformt. Nach dem Schweißen und Kalibrieren wird das so erzeugte Rohr einer Wärmebehandlung im Bereich von 100 - 400 °C mit einer Haltezeit zwischen 0,5- 120 Minuten unterworfen.From the JP-B 61-44123 and JP-B 60-26809 For example, a method of producing a high-strength X80 grade steel (API standard) having excellent low-temperature toughness is known. In this known method, a steel with the elements C, Si, Mn, P, S, Nb and Al, remainder iron and process-related impurities is melted and cast a slab in the strand. By a TM-rolling the slab is transformed into a hot-rolled sheet and this too molded a slot tube. After welding and calibration, the tube thus produced is subjected to a heat treatment in the range of 100-400 ° C with a holding time of between 0.5-120 minutes.

Als erfindungswesentlich wird hervorgehoben, dass zur Erhöhung der Tieftemperaturzähigkeit die Gesamt-Verweilzeit zwischen der ersten Walzabfolge und der zweiten Walzabfolge im Bereich ≤ 60 Sekunden liegen soll.As essential to the invention it is emphasized that in order to increase the low-temperature toughness, the total residence time between the first rolling sequence and the second rolling sequence should be in the range of ≦ 60 seconds.

Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung geschweißter Stahlrohre hoher Festigkeit, Zähigkeits- und Verformungseigenschaften insbesondere Großrohre nach dem UOE-Verfahren anzugeben, mit dem Qualitäten ≥ X90 mit einer Mindeststreckgrenze von 620 MPa sowie sauergasbeständige Güten wirtschaftlich und prozeßsicher unter Einhaltung der vom Regelwerk festgelegten Obergrenze für das Streckgrenzenverhältnis darstellbar sind.The object of the invention is to provide a method for producing welded steel pipes of high strength, toughness and deformation properties in particular large pipes according to the UOE method, with the qualities ≥ X90 with a minimum yield strength of 620 MPa and sour gas-resistant grades economically and process-safe in compliance with the rules fixed upper limit for the yield ratio can be represented.

Diese Aufgabe wird mit den Merkmalen im Anspruch 1 gelöst. Vorteilhafte Weiterbildungen sind jeweils Gegenstand von Unteransprüchen.This object is achieved with the features in claim 1. Advantageous developments are the subject of dependent claims.

Gemäß dem Lösungsvorschlag wird ausgehend von einem Blech aus einem Stahl der Zusammensetzung in Gew.%
0,02 bis 0,20% Kohlenstoff
0,05 bis 0,50% Silizium
0,50 bis 2,50% Mangan
0,003 bis 0,06% Aluminium
According to the proposed solution is based on a sheet of a steel of the composition in wt.%
0.02 to 0.20% carbon
0.05 to 0.50% silicon
0.50 to 2.50% manganese
0.003 to 0.06% aluminum

Rest Eisen mit erschmelzungsbedingten Verunreinigungen das Rohr nach dem Schweißen und Kalibrieren einer Wärmenachbehandlung im Temperaturbereich von 100-300 Grad Celsius und einer der Rohrwanddicke angepassten Haltezeit mit anschließender Abkühlung an Luft oder durch Zwangskühlung unterworfen. Die Haltezeit.richtet sich vorwiegend nach der durchzuwärmenden Erzeugniswanddicke und hängt von der Art der Wärmezufuhr ab. Dies bedeutet, daß die Haltezeiten in einem Extremfall nur Sekunden und im anderen Extremfall mehrere Stunden betragen kann. Das so erzeugte Rohr weist bei gleich hoher Festigkeit gegenüber konventionell hergestellten Erzeugnissen um mehr als doppelt so hohe Verformungsreserven auf, ohne die vom aktuellen Regelwerk festgelegte Obergrenze für das Streckgrenzenverhältnis zu überschreiten. Optimale Ergebnisse werden erreicht, wenn die Mindestausgangsstreckgrenze am Blech der um den Streckgrenzenanstieg durch Kaltformgebung und Wärmeeffekt verminderten Mindeststreckgrenze am Rohr entspricht. Ein so hergestelltes Rohr zeichnet sich durch Alterungsbeständigkeit und besonders hohe Homogenitäten der Eigenschaften am Rohrumfang aus, wobei die angegebene Stahlanalyse hinsichtlich der Hauptelemente den Bereich der hochfesten Großrohrstähle abdeckt. Nach einem weiteren Merkmal der Erfindung können optional noch weitere Elemente bis zur angegebenen Höchstgrenze zulegiert werden, um besonderen Anforderungen hinsichtlich der mechanischen Kennwerte in Abhängigkeit von der Erzeugniswanddicke zu genügen.Remaining iron with impurities caused by melting subjected to the tube after welding and calibration of a post-heat treatment in the temperature range of 100-300 degrees Celsius and a holding time adapted to the pipe wall thickness with subsequent cooling in air or forced cooling. The holding time is mainly dependent on the product wall thickness to be heated and depends on the type of heat input. This means that the holding times can be only seconds in one extreme case and several hours in the other extreme case. The tube produced in this way has more than twice as high deformation reserves with the same high strength compared to conventionally manufactured products, without exceeding the upper limit for the yield ratio determined by the current regulations. Optimum results are achieved if the minimum yield strength limit at the sheet corresponds to the minimum yield strength at the pipe which is reduced by the yield strength increase due to cold forming and heat effect. A pipe produced in this way is characterized by resistance to aging and particularly high homogeneity of the properties at the circumference of the pipe, whereby the steel analysis given with regard to the main elements covers the range of high-strength large-diameter steel steels. According to a further feature of the invention, it is optionally possible to add further elements up to the specified maximum limit meet special requirements with regard to the mechanical characteristics as a function of the product wall thickness.

Untersuchungen haben ergeben, daß mit der vorgeschlagenen Wärmebehandlung die mechanischen Werkstoffkennwerte insbesondere die Streckgrenze in einem Maße erhöht werden, so daß die geforderten Mindestwerte prozeßsicher erreicht werden. Mit prozeßsicher ist gemeint, daß die Erhöhung eine Reserve bedeutet, die es gestattet die üblichen Schwankungen hinsichtlich Legierungszusammensetzung, Wanddicke, Walzparameter usw. zuzulassen, ohne Gefahr zu laufen auch beim Zusammentreffen mehrerer ungünstig liegender Parameter den geforderten Mindestwert zu unterschreiten. Die ansonsten üblichen Sondermaßnahmen können dadurch entfallen.Investigations have shown that with the proposed heat treatment, the mechanical material properties, in particular the yield strength, are increased to an extent so that the required minimum values are reliably achieved. By process is meant that the increase means a reserve, which allows the usual variations in alloy composition, wall thickness, rolling parameters, etc., without running the risk to fall below the required minimum value even at the meeting of several unfavorable parameters. The otherwise customary special measures can be omitted.

Ein weiterer Vorteil ist darin zu sehen, daß durch eine solche Wärmebehandlung konditionierte Rohre sich bei Betriebstemperatur unterhalb der Wärmebehandlungstemperatur, z. B. 200 Grad Celsius, als alterungsbeständig verhalten, so daß für Leitungen aus solchen Rohren während der betrieblichen Einsatzdauer keine weiteren Veränderungen der mechanischen Eigenschaften zu erwarten sind. Naturgemäß gilt diese Aussage auch für Rohre aus Stahlgüten < X80, deren Eigenschaften am Umfang und in der Fertigungsserie mittels einer solchen Wärmebehandlung mit größerer Prozeßsicherheit und kleineren Streuungen einzustellen sind.Another advantage is the fact that conditioned by such a heat treatment tubes at operating temperature below the heat treatment temperature, for. B. 200 degrees Celsius, behave as aging resistant, so that no further changes in the mechanical properties are expected for lines from such pipes during the operational life. Naturally, this statement also applies to tubes made of steel grades <X80 whose properties on the circumference and in the production series can be adjusted by means of such a heat treatment with greater process reliability and smaller scattering.

Die Wärmebehandlung kann in einem Durchlaufofen oder beim Durchlauf einer Induktionsspule erfolgen. Das letztgenannte Verfahren ist vorzugsweise in eine Rohraußenisolierungsanlage integrierbar. Dies bedeutet, daß die für die Aufbringung der ein-oder-mehrlagigen Isolierung erforderliche Erwärmung des Rohres gleichzeitig zur Steigerung der Festigkeitseigenschaften auf das erforderliche Niveau genutzt werden kann, da die für die Isolierung erforderliche Temperatur in dem vorgeschlagenen Bereich von 100-300 Grad Celsius liegt.The heat treatment can be carried out in a continuous furnace or during the passage of an induction coil. The latter method is preferably integrated into a pipe external insulation system. This means that the heating of the tube required for the application of the single-or multi-layer insulation can be used simultaneously to increase the strength properties to the required level, since the temperature required for the insulation is in the proposed range of 100-300 degrees Celsius ,

Der Vorteil ist, daß die im Abnahmeversuch nach der Isolierung ermittelten Festigkeits- und Verformungseigenschaften damit für die gesamte Nutzungsdauer einer Rohrleitung maßgebend sind. Der Einsatz von Blechen und Bändern mit niedriger Ausgangsstreckgrenze erscheint auch in der Weise vorteilhaft nutzbar, indem zur Einformung zum Schlitzrohr kleinere Umformkräfte benötigt werden. Dieser Vorteil ist insbesondere bei dickwandigen Rohren von Bedeutung.The advantage is that the determined in the acceptance test after isolation strength and deformation properties thus for the entire useful life of a Piping are authoritative. The use of sheets and tapes with low output yield strength also appears to be advantageous in the way in that smaller forming forces are required for forming the slot pipe. This advantage is particularly important in thick-walled pipes.

Ein weiterer Vorteil der vorgeschlagenen Wärmebehandlung ist darin zu sehen, daß sie einen Beitrag zur reproduzierbaren Darstellung der Streckgrenzenverhältnisse auf niedrigem Werteniveau sowie einer Homogenisierung der Festigkeitseigenschaften in der Fertigungsserie leistet, so daß gegenüber konventionell hergestellten Rohren am Bauteil höhere Verformungsreserven gegen duktilen Bruch erreichbar sind.Another advantage of the proposed heat treatment is the fact that it contributes to the reproducible representation of the yield ratio at a low level and a homogenization of the strength properties in the production series, so that compared to conventionally produced pipes on the component higher deformation reserves against ductile breakage can be achieved.

Den Effekt einer Homogenisierung der Festigkeitseigenschaften kann man noch dadurch steigern, wenn man bei dem nach dem UOE-Verfahren hergestellten Großrohren vor der Wärmebehandlung eine Konditionierung der Rohre entsprechend dem in der DE 195 22 790 A1 vorgeschlagenen Verfahren vornimmt. Die hierdurch ganz gezielt je nach Anwendungszweck für Innen- oder Außendruckbelastung darstellbaren Rohreigenschaften bringen in Verbindung mit der hier vorgeschlagenen Wärmenachbehandlung hinsichtlich Streuung der Werte am Rohrumfang und von Rohr zu Rohr sowie in bezug auf die potentionell am Bauteil darstellbare Formänderungsreserve die besten Ergebnisse.The effect of a homogenization of the strength properties can be further increased if, in the case of the large pipes produced by the UOE process before the heat treatment, a conditioning of the tubes according to the in the DE 195 22 790 A1 proposed method. The tube properties which can be represented thereby quite purposefully depending on the application for internal or external pressure loading bring in conjunction with the proposed here after heat treatment in terms of dispersion of the values at the tube circumference and from tube to tube and with respect to the potentionell representable on the component deformation reserve the best results.

Das vorgeschlagene Verfahren ist anwendbar für längsnahtgeschweißte und schraubennahtgeschweißte Rohre (auch Spiralrohre genannt) nach dem HFI- und nach dem UOE-Verfahren.The proposed method is applicable to longitudinally welded and helically welded tubes (also called spiral tubes) according to the HFI and after the UOE method.

Um z B. ein Rohr mit 56" Außendurchmesser und 19.1 mm Wand aus Stahl X100 nach üblicher Verfahrensweise herzustellen, wird am Blech eine 2.0%-Dehngrenze von Rp2.0 ≥ 710 MPa und eine Zugfestigkeit von Rm ≥ 770 MPa gebraucht. Da die finalen Festigkeitseigenschaften durch die Ausgangswerte am Blech und die Kaltverfestigung beim Einformen und Kalibrieren der Rohre auf Solldurchmesser festgelegt sind, werden am fertiggestellten Rohr Streckgrenzenverhältnisse erreicht, die für das Formänderungsvermögen des innendruckbeaufschlagten Bauteils eine Einschränkung darstellen. Dadurch bedingt war an hochfesten Rohren die üblicherweise bei εup ≥ 2% geforderte integrale Dehnung nach konventionellem Verfahren in der Praxis bisher kaum oder nicht sicher genug darstellbar.For example, to produce a tube with 56 "outer diameter and 19.1 mm wall of X100 steel according to the usual procedure, a 2.0% proof stress of Rp2.0 ≥ 710 MPa and a tensile strength of Rm ≥ 770 MPa are used on the plate Strength properties are determined by the initial values on the sheet and the work hardening when forming and calibrating the tubes to nominal diameter, yield strength ratios are achieved on the finished pipe, which is a constraint for the deformation capacity of the internal pressure-loaded component represent. As a result, the integral elongation usually required at ε up ≥ 2% on high-strength pipes by conventional methods has hitherto scarcely been achieved in practice or can not be achieved with sufficient confidence.

Um ein Rohr gleicher Güte und Abmessung nach neuem Verfahren herzustellen, benötigt man am Blech nur eine 2.0%-Dehngrenze von Rp2.0 ≥ 640 MPa statt der ≥ 710 MPa und eine Zugfestigkeit von Rm ≥ 770 MPa, wobei insbesondere die Streckgrenze in Abhängigkeit von der Analyse der eingesetzten Stahlgüte und dem Verformungsgrad bei der Umwandlung vom Blech zum Rohr um den angegebenen Wert schwankt. Beispielsweise weist die eingesetzte Stahlgüte folgende Analyse in Gew.% auf:

  • C 0,096; Si 0,383; Mn 1,95; Al 0,035; P 0,015;Ti 0,019; Cr 0,062;
  • Mo 0,011; Ni 0,045; Nb 0,042; V 0,005; Cu 0,045; N 0,005; B 0,001.
In order to produce a pipe of the same grade and dimension according to a new process, only a 2.0% proof stress of Rp2.0 ≥ 640 MPa instead of ≥ 710 MPa and a tensile strength of Rm ≥ 770 MPa are required, in particular the yield strength as a function of the analysis of the steel grade used and the degree of deformation in the transformation from the sheet to the tube by the specified value varies. For example, the steel grade used has the following analysis in% by weight:
  • C 0.096; Si 0.383; Mn 1.95; Al 0.035; P 0.015; Ti 0.019; Cr 0.062;
  • Mo 0.011; Ni 0.045; Nb 0.042; V 0.005; Cu 0.045; N 0.005; B 0.001.

Da hier die in Umfangsrichtung benötigten Festigkeitseigenschaften simultan durch die Wärmenachbehandlung des Rohres erreicht werden, genügen am Blech zur Darstellung der spezifizierten Rohrgüte niedrigere Ausgangswerte der Dehngrenzen und Streckgrenzenverhältnisse, wodurch eine Erhöhung der Gleichmaßdehnungen auf Werte Ag ≥ 8.5% am Blech und auf Werte Ag ≥ 6.5% am Rohr ermöglicht wird. Gegenüber konventionell hergestellten Rohren ist dadurch ein doppelt so hohes Formänderungsvermögen realisierbar, so daß die notwendigen Voraussetzungen für eine produktionssichere Darstellung der integralen Bauteilreserve εup ≥ 2% im Rahmen der herstellungsbedingten Streuungen auch für Rohrgüten eines X 100 zuverlässig erfüllbar sind.Since the strength properties required in the circumferential direction are simultaneously achieved by the heat after-treatment of the tube, lower initial values of the yield strengths and yield strength ratios are sufficient to produce the specified tube quality, thereby increasing the uniform elongation to values of Ag ≥ 8.5% on the sheet and to values of Ag ≥ 6.5 % on the pipe is possible. In comparison with conventionally produced tubes, a twice as high deformation capacity can be achieved, so that the necessary conditions for a production-reliable representation of the integral component reserve ε up ≥ 2% within the production-related scattering can be reliably fulfilled even for tube grades of X 100.

Das Ausmaß der durch die Wärmenachbehandlung in Rohrumfangsrichtung erreichbaren Steigerungen der Rt0.5-Dehngrenzen hängt von der Stahlzusammensetzung, den C- und N-Anteilen in Zwangslösung und den Parametern des Rohrherstellungsprozesses ab und beträgt nach heutigem Stand der Erkenntnisse bis zu 18% der am expandierten Rohr an Rundzugproben nachgewiesenen Rt0.5-Dehngrenze. Für unexpandierte Rohre wie z. B. HFI-Rohre werden Steigerungen von bis zu 12 % nach den bisherigen Erfahrungen erreicht. Die Zugfestigkeiten Rm nehmen durch die Wärmenachbehandlung um ca. 20 MPa zu.The extent of the achievable by the heat post-treatment in the pipe circumferential direction increases in Rt0.5 Dehngrenzen depends on the steel composition, the C and N shares in forced solution and the parameters of the tube manufacturing process and is based on the current state of knowledge up to 18% of the expanded Tube to round tensile specimens proved Rt0.5 proof stress. For unexpanded pipes such. B. HFI pipes will be increases of up to 12% according to previous experience. The tensile strengths Rm increase by the heat aftertreatment by about 20 MPa.

Claims (5)

  1. Method of manufacturing welded steel pipes with a high degree of strength, toughness and deformability, in particular large-diameter pipes according to the UOE method, in which starting from a hot-rolled plate a pipe is cold-formed, welded and calibrated to the desired diameter and is subjected, after welding and calibrating, to heat treatment at a temperature in the region of 100-400°C, wherein starting from a TM-rolled plate composed of steel comprising (in % by weight):
    0.02 to 0.20 % C
    0.05 to 0.50 % Si
    0.50 to 2.50 % Mn
    0.003 to 0.06 % Al
    and optionally
    up to 0.02 % P
    up to 0.06 % Ti
    up to 0.20 % Cr
    up to 0.50 % Mo
    up to 0.30 % Ni
    up to 0.10 Nb
    up to 0.08 % V
    up to 0.50 % Cu
    up to 0.030 % N
    up to 0.005 % B
    remainder iron with melt-dependent impurities, heat treatment is carried out for the pipe with the quality ≥ X90 (API standard) at a temperature in the range of 100-300°C and with a holding time adapted to the pipe-wall thickness followed by cooling in air or by forced cooling, and the pipe so produced is ageing-resistant and whilst having the same degree of strength has a sufficiently integral deformation reserve against rupture, without exceeding the upper limit for the yield point ratio fixed according to current regulations for conventional steels, wherein the minimum starting yield point in the plate corresponds to the minimum yield point on the pipe reduced by the rise in yield point by cold forming and heat treatment, heat treatment being carried out within the context of applying a single- or multiple-ply outer insulation.
  2. Method according to claim 1, characterised in that the heat treatment takes place in a conveyor furnace.
  3. Method according to claims 1 to 2, characterised in that the heat treatment takes place upon passing through an induction coil.
  4. Method according to one of claims 1 to 3, characterised in that during the manufacture of large-diameter pipes according to the UOE method, the pipes having a longitudinal welded seam are pre-conditioned before the heat treatment by a combined application of cold expansion and cold reduction.
  5. Method according to claim 4, characterised in that the sequence and degree of expansion or reduction is established according to the requirement profile.
EP00943586A 1999-05-10 2000-05-10 Method for producing welded steel pipes with a high degree of strength, ductility and deformability Expired - Lifetime EP1204772B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19922542 1999-05-10
DE19922542 1999-05-10
DE10023488 2000-05-09
DE10023488A DE10023488B4 (en) 1999-05-10 2000-05-09 Process for producing welded steel tubes of high strength, toughness and deformation properties
PCT/DE2000/001513 WO2000068443A2 (en) 1999-05-10 2000-05-10 Method for producing welded steel pipes with a high degree of strength, ductility and deformability

Publications (2)

Publication Number Publication Date
EP1204772A2 EP1204772A2 (en) 2002-05-15
EP1204772B1 true EP1204772B1 (en) 2007-07-25

Family

ID=26005669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00943586A Expired - Lifetime EP1204772B1 (en) 1999-05-10 2000-05-10 Method for producing welded steel pipes with a high degree of strength, ductility and deformability

Country Status (6)

Country Link
US (1) US6648209B2 (en)
EP (1) EP1204772B1 (en)
JP (1) JP2002544377A (en)
CA (1) CA2373064C (en)
DE (1) DE50014515D1 (en)
WO (1) WO2000068443A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1204772B1 (en) * 1999-05-10 2007-07-25 EUROPIPE GmbH Method for producing welded steel pipes with a high degree of strength, ductility and deformability
DE10105809C1 (en) * 2001-02-08 2002-07-18 Thiele Gmbh & Co Kg Production of a round link chain made from heat-treatable steel, used in drive and conveying elements, comprises forming a chain strand, heat treating while calibrating the chain and post-treating
US7892368B2 (en) * 2002-05-24 2011-02-22 Nippon Steel Corporation UOE steel pipe excellent in collapse strength and method of production thereof
WO2006020913A2 (en) * 2004-08-11 2006-02-23 Enventure Global Technology, Llc Method of manufacturing a tubular member
AU2006305841A1 (en) * 2005-10-24 2007-05-03 Exxonmobil Upstream Research Company High strength dual phase steel with low yield ratio, high toughness and superior weldability
CN101611163B (en) * 2006-10-06 2013-01-09 埃克森美孚上游研究公司 Low yield ratio dual phase steel linepipe with superior strain aging resistance
WO2008105990A1 (en) 2007-02-27 2008-09-04 Exxonmobil Upstream Research Company Corrosion resistant alloy weldments in carbon steel structures and pipelines to accommodate high axial plastic strains
US20090301613A1 (en) 2007-08-30 2009-12-10 Jayoung Koo Low Yield Ratio Dual Phase Steel Linepipe with Superior Strain Aging Resistance
CN102492820A (en) * 2011-12-27 2012-06-13 上海锅炉厂有限公司 Method for preventing heat treatment deformation of thin wall pressure vessel cylindrical shell with major diameter
CN103521550B (en) * 2013-10-07 2016-08-31 宝鸡石油钢管有限责任公司 A kind of X90 level pipe line steel heavy caliber thick wall straight-line joint submerged arc welding tube manufacture method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE948604C (en) * 1949-12-09 1956-09-06 Auguste Georges Ferrand Manufacture of reinforced pipelines or tanks
US4001054A (en) * 1974-04-10 1977-01-04 Makepeace Charles E Process for making metal pipe
US4160543A (en) * 1976-11-11 1979-07-10 Hughes Tool Company Heat treatment of welds
JPS6026809B2 (en) * 1980-08-12 1985-06-26 川崎製鉄株式会社 Method for manufacturing high-strength steel pipes with excellent low-temperature toughness
JPS589925A (en) * 1981-07-09 1983-01-20 Kawasaki Steel Corp Production of api standard class x80 steel pipe of superior low temperature toughness
JPS589926A (en) * 1981-07-09 1983-01-20 Kawasaki Steel Corp Production of api standard class x80 steel pipe of superior low temperature toughness
JPS6046321A (en) * 1983-08-23 1985-03-13 Nippon Kokan Kk <Nkk> Manufacture of seam welded pipe
LU86158A1 (en) * 1985-11-12 1987-06-26 Centre Rech Metallurgique PROCESS FOR THE CONTINUOUS MANUFACTURE OF WELDED METAL TUBES
DE3766507D1 (en) * 1986-01-21 1991-01-17 Siemens Ag METHOD AND DEVICES FOR THE HEAT TREATMENT OF ROD WELDED TUBES.
JPH0698382B2 (en) * 1988-03-23 1994-12-07 住友金属工業株式会社 Hot ERW Pipe Manufacturing Method
US5005395A (en) * 1988-03-23 1991-04-09 Sumitomo Metal Industries, Ltd. Method of manufacturing electric welded pipes under hot conditions
EP0494448A1 (en) * 1990-12-25 1992-07-15 Nkk Corporation Method for manufacturing electric-resistance-welded steel pipe with high strength
JP3265023B2 (en) * 1993-01-11 2002-03-11 新日本製鐵株式会社 Method for producing steel and steel pipe excellent in corrosion resistance and workability
DE4318931C1 (en) * 1993-06-03 1994-12-01 Mannesmann Ag Method for the production of welded tubes
AUPM648394A0 (en) * 1994-06-27 1994-07-21 Tubemakers Of Australia Limited Method of increasing the yield strength of cold formed steel sections
DE19522790C2 (en) * 1995-06-14 1998-10-15 Mannesmann Ag Process for the production of pipes according to the UOE process
DE19608387A1 (en) * 1996-03-05 1996-07-18 Werner Glowik Colouring surface of a steel object
BR9804879A (en) * 1997-04-30 1999-08-24 Kawasaki Steel Co High ductility steel product, high strength and process for its production
EP1204772B1 (en) * 1999-05-10 2007-07-25 EUROPIPE GmbH Method for producing welded steel pipes with a high degree of strength, ductility and deformability
ES2230227T3 (en) * 2000-12-25 2005-05-01 Nisshin Steel Co., Ltd. FERRITIC STAINLESS STEEL SHEET WITH GOOD WORKABILITY AND METHOD FOR MANUFACTURING.
US6733601B2 (en) * 2001-01-18 2004-05-11 Jfe Steel Corporation Ferritic stainless steel sheet with excellent workability

Also Published As

Publication number Publication date
US6648209B2 (en) 2003-11-18
EP1204772A2 (en) 2002-05-15
WO2000068443A3 (en) 2001-04-26
DE50014515D1 (en) 2007-09-06
CA2373064A1 (en) 2000-11-16
CA2373064C (en) 2008-10-21
JP2002544377A (en) 2002-12-24
US20020117538A1 (en) 2002-08-29
WO2000068443A2 (en) 2000-11-16

Similar Documents

Publication Publication Date Title
DE60116477T2 (en) WARM, COLD-ROLLED AND MELT-GALVANIZED STEEL PLATE WITH EXCELLENT RECEPTION BEHAVIOR
EP2855718B1 (en) Flat steel product and process for producing a flat steel product
EP3535431B1 (en) Steel product with an intermediate manganese content for low temperature application and production method thereof
DE60121162T2 (en) COLD-ROLLED STEEL PLATE AND GALVANIZED STEEL PLATE WITH GOOD RECOILING CHARACTERISTICS AND METHOD OF MANUFACTURING THEREOF
EP2010690B1 (en) Hot dip coating process for a steel plate product made of high strengthheavy-duty steel
DE19610675C1 (en) Dual phase steel for cold rolled sheet or strip - contg. manganese@, aluminium@ and silicon
EP0320773A2 (en) Process for making hot-rolled clad steel sheet
EP1918403B1 (en) Process for manufacturing steel flat products from a steel forming martensitic structure
DE69708832T2 (en) Cold rolled steel sheet and its manufacturing process
EP1926837A1 (en) Process for manufacturing cold-formed precision steel pipes
DE102018132860A1 (en) Process for the production of conventionally hot-rolled, profiled hot-rolled products
EP1204772B1 (en) Method for producing welded steel pipes with a high degree of strength, ductility and deformability
WO2016078643A9 (en) High-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
WO2016078644A1 (en) Ultra high-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
EP3724359A1 (en) High-strength, hot-rolled flat steel product with high edge crack resistance and simultaneously high bake-hardening potential, and method for producing a flat steel product of this kind
EP2414552B1 (en) Ball pins made of bainitic steels for passenger car and light commercial vehicle
EP3551776A1 (en) Method for producing a hot or cold strip and/or a flexibly rolled flat steel product made of a high-strength manganese steel and flat steel product produced by said method
CA1125150A (en) High strength steel profile and method of making the same
DE10023488B4 (en) Process for producing welded steel tubes of high strength, toughness and deformation properties
EP3469108B1 (en) Method for producing a cold-rolled steel strip having trip-characteristics made of a high-strength mangan-containing steel
DE102019103502A1 (en) Method of manufacturing seamless steel pipe, seamless steel pipe, and pipe product
DE102018132901A1 (en) Process for the production of conventionally hot rolled hot rolled products
DE3507124A1 (en) Oil-drilling pipe welded by electric resistance welding, and method for the manufacture thereof
DE19652399A1 (en) Production of multicomponent foil
EP3122910A2 (en) Components made of a steel alloy and method for producing high-strength components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011029

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030218

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EUROPIPE GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070725

REF Corresponds to:

Ref document number: 50014515

Country of ref document: DE

Date of ref document: 20070906

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100611

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100522

Year of fee payment: 11

Ref country code: DE

Payment date: 20100521

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100519

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50014515

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50014515

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110510

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130