EP1204772B1 - Method for producing welded steel pipes with a high degree of strength, ductility and deformability - Google Patents
Method for producing welded steel pipes with a high degree of strength, ductility and deformability Download PDFInfo
- Publication number
- EP1204772B1 EP1204772B1 EP00943586A EP00943586A EP1204772B1 EP 1204772 B1 EP1204772 B1 EP 1204772B1 EP 00943586 A EP00943586 A EP 00943586A EP 00943586 A EP00943586 A EP 00943586A EP 1204772 B1 EP1204772 B1 EP 1204772B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat treatment
- strength
- pipe
- pipes
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 24
- 239000010959 steel Substances 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000034 method Methods 0.000 claims description 27
- 238000010438 heat treatment Methods 0.000 claims description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 230000032683 aging Effects 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 238000003466 welding Methods 0.000 claims description 4
- 230000033228 biological regulation Effects 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims description 3
- 239000008186 active pharmaceutical agent Substances 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 230000001143 conditioned effect Effects 0.000 claims description 2
- 230000006698 induction Effects 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 229910052750 molybdenum Inorganic materials 0.000 claims 1
- 238000009740 moulding (composite fabrication) Methods 0.000 claims 1
- 229910052720 vanadium Inorganic materials 0.000 claims 1
- 238000005096 rolling process Methods 0.000 description 7
- 239000011572 manganese Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 241000219307 Atriplex rosea Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009422 external insulation Methods 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
Definitions
- the invention relates to a method for the production of welded steel pipes of high strength, toughness and deformation properties, in particular large pipes according to the UOE method, in which, starting from a hot-rolled sheet, cold formed a tube, welded and calibrated to nominal diameter and after welding and calibration a heat treatment at a temperature in the range of 100-400 ° C is subjected.
- z. B. produced by the UOE process tubes require yield strengths in the amount of the specified minimum value in order to reliably meet the required safety against flow on the finished tube.
- integral deformation reserve ⁇ up is meant the mean circumferential plastic elongation of the pipe before the wall constriction commences analogously to the uniform elongation in the laboratory tensile test ( Hohl, GA and Vogt, GH: Allowable strains for high strength line pipe. 3R international, 31st Century, Issue 12/92, pp. 696-700 ).
- a known under the name "bake hardening” method for increasing the component strength is known. This is understood to mean artificial aging as a result of baking varnishing.
- the coating is preferably carried out in a zinc bath which is run through by the previously cold-rolled strip.
- the zinc bath temperatures are in the range of 450-470 ° C. So that the surface refinement of conventional DP (dual-phase) steels is reliably possible, a steel of the following composition is proposed in% by weight 0.05 to 0.3% carbon 0.8 to 3.0% manganese 0.4 to 2.5% aluminum 0.01 to 0.2% silicon
- a heat treatment preferably follows in a hot-dip galvanizing plant or in a continuous annealing furnace.
- the structure consists of a ferritic matrix in which martensite is embedded in the form of a honeycomb.
- Yield strength (R p0.2 ) 200 MPa
- Elongation at break (A 80 ) 25% Yield strength (R p0.2 / R m) ⁇ 0.7
- the main elements favoring the proposed process are aluminum and silicon.
- the latter element Si is kept low to suppress the formation of red scale during hot rolling. Red tinder carries the danger of scale rolling, which leads to surface inhomogeneities when the strip is pickled.
- High Al contents promote the formation of the fenite during annealing between the transition temperatures A C1 and A C3 .
- the formation of pearlite is postponed to significantly longer times, so that it can be suppressed at the realizable cooling rates.
- the adhesion conditions of both the zinc layer and the zinc-iron alloy layer are improved by Al.
- the known method is for welded pipes of high-strength steels, e.g. the grade X80 with a minimum yield strength of 550 MPa is not applicable, because a heat treatment in the temperature range of 450 - 470 ° C is uneconomical because of the long warm-up and hold times.
- the yield strength of these high-strength steels is, for example,> 0.70 for a grade X65, otherwise in the range between 0.80 and 0.93.
- JP-B 61-44123 and JP-B 60-26809 For example, a method of producing a high-strength X80 grade steel (API standard) having excellent low-temperature toughness is known.
- a steel with the elements C, Si, Mn, P, S, Nb and Al, remainder iron and process-related impurities is melted and cast a slab in the strand.
- TM-rolling the slab is transformed into a hot-rolled sheet and this too molded a slot tube.
- the tube thus produced is subjected to a heat treatment in the range of 100-400 ° C with a holding time of between 0.5-120 minutes.
- the total residence time between the first rolling sequence and the second rolling sequence should be in the range of ⁇ 60 seconds.
- the object of the invention is to provide a method for producing welded steel pipes of high strength, toughness and deformation properties in particular large pipes according to the UOE method, with the qualities ⁇ X90 with a minimum yield strength of 620 MPa and sour gas-resistant grades economically and process-safe in compliance with the rules fixed upper limit for the yield ratio can be represented.
- the holding time is mainly dependent on the product wall thickness to be heated and depends on the type of heat input. This means that the holding times can be only seconds in one extreme case and several hours in the other extreme case.
- the tube produced in this way has more than twice as high deformation reserves with the same high strength compared to conventionally manufactured products, without exceeding the upper limit for the yield ratio determined by the current regulations.
- the minimum yield strength limit at the sheet corresponds to the minimum yield strength at the pipe which is reduced by the yield strength increase due to cold forming and heat effect.
- a pipe produced in this way is characterized by resistance to aging and particularly high homogeneity of the properties at the circumference of the pipe, whereby the steel analysis given with regard to the main elements covers the range of high-strength large-diameter steel steels.
- the mechanical material properties in particular the yield strength
- the increase means a reserve, which allows the usual variations in alloy composition, wall thickness, rolling parameters, etc., without running the risk to fall below the required minimum value even at the meeting of several unfavorable parameters.
- the otherwise customary special measures can be omitted.
- the heat treatment can be carried out in a continuous furnace or during the passage of an induction coil.
- the latter method is preferably integrated into a pipe external insulation system. This means that the heating of the tube required for the application of the single-or multi-layer insulation can be used simultaneously to increase the strength properties to the required level, since the temperature required for the insulation is in the proposed range of 100-300 degrees Celsius ,
- Another advantage of the proposed heat treatment is the fact that it contributes to the reproducible representation of the yield ratio at a low level and a homogenization of the strength properties in the production series, so that compared to conventionally produced pipes on the component higher deformation reserves against ductile breakage can be achieved.
- the effect of a homogenization of the strength properties can be further increased if, in the case of the large pipes produced by the UOE process before the heat treatment, a conditioning of the tubes according to the in the DE 195 22 790 A1 proposed method.
- the tube properties which can be represented thereby quite purposefully depending on the application for internal or external pressure loading bring in conjunction with the proposed here after heat treatment in terms of dispersion of the values at the tube circumference and from tube to tube and with respect to the potentionell representable on the component deformation reserve the best results.
- the proposed method is applicable to longitudinally welded and helically welded tubes (also called spiral tubes) according to the HFI and after the UOE method.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Herstellung von geschweißten Stahlrohren hoher Festigkeit, Zähigkeits- und Verformungseigenschaften insbesondere Großrohre nach dem UOE-Verfahren, bei dem, ausgehend von einem warmgewalzten Blech, ein Rohr kalt eingeformt, verschweißt und auf Solldurchmesser kalibriert und nach dem Schweißen und Kalibrieren einer Wärmebehandlung mit einer Temperatur im Bereich von 100-400°C unterworfen wird.The invention relates to a method for the production of welded steel pipes of high strength, toughness and deformation properties, in particular large pipes according to the UOE method, in which, starting from a hot-rolled sheet, cold formed a tube, welded and calibrated to nominal diameter and after welding and calibration a heat treatment at a temperature in the range of 100-400 ° C is subjected.
Durch Kaltformgebung, z. B. nach dem UOE-Verfahren hergestellte Rohre benötigen am Blech Streckgrenzen in Höhe des spezifizierten Mindestwertes, um am fertigen Rohr die geforderten Sicherheiten gegen Fließen zuverlässig zu erfüllen.By cold forming, z. B. produced by the UOE process tubes require yield strengths in the amount of the specified minimum value in order to reliably meet the required safety against flow on the finished tube.
Für Rohre aus hochfesten Stählen mit einer Streckgrenze Rt 0,5 ≥ 550 MPa(X80 entsprechend API-5L) sind diese Anforderungen aufgrund der gleichzeitig geforderten Zähigkeits- und Verformungseigenschaften in der Praxis nur mit vergleichsweise hohem Ausgangsstreckgrenzenverhältnis darstellbar, so daß eine Einhaltung der nach geltendem Regelwerk maximal zulässigen Streckgrenzenverhältnisse z.B. max. 0,93 nach API5L infolge der Kaltverfestigung beim Einformen und Kalibrieren der Rohre in der Großserie kaum oder nur mit erhöhtem technischen Aufwand und entsprechend hohen Produktionskosten zu bewerkstelligen ist. Darüber hinaus nimmt die integrale Verformungsreserve durch die Kaltformgebung als Folge der hohen Ausgangsstreckgrenzenverhältnisse mit steigendem Gütegrad ab, so daß in der Praxis die am Bauteil erforderliche integrale Verformungsreserve εup ≥ 2% im Rahmen der üblichen Streuungen an Rohren aus Stahl mit einer Streckgrenze Rt 0,5 ≥ 550 MPa (X80) nur knapp und an Rohren aus Stahl mit einer Streckgrenze R t 0,5 ≥ 620 Mpa (X90) bislang nicht erreicht werden konnte. Mit "integraler Verformungsreserve εup" ist die mittlere plastische Umfangsdehnung des Rohres vor Beginn der Wandeinschnürung analog der Gleichmaßdehnung im Laborzugversuch gemeint (
Zur Überwindung dieses Problems hat es in der Vergangenheit Überlegungen gegeben durch Veränderung der Legierungszusammensetzung und/oder der Walztechnik die geforderten höheren Verformungskennwerte zu erreichen. Diesen Möglichkeiten sind aber in der Praxis Grenzen gesetzt, da zum einen bestimmte Zulegierungen wie z.B. Nickel das Produkt erheblich verteuern oder deren Zugabe verformungstechnische Probleme bereitet wie z.B. Bor und zum anderen die Technologie des thermomechanischen Walzens hinsichtlich des einzustellenden Temperaturfensters, der Abkühlgeschwindigkeiten und der Umformgrade nur begrenzt veränderbar ist.To overcome this problem, it has been considered in the past by changing the alloy composition and / or the rolling technique to achieve the required higher deformation characteristics. However, these possibilities are limited in practice because, on the one hand, certain additions, such as e.g. Nickel significantly increase the cost of the product or the addition of which poses deformation problems such as e.g. Boron and on the other the technology of thermomechanical rolling with respect to the temperature window to be set, the cooling rates and the degree of deformation is limited changeable.
Aus der 196 10 675 C1 ist ein unter der Bezeichnung "bake hardening" lautendes Verfahren zur Erhöhung der Bauteilfestigkeit bekannt. Darunter wird eine künstliche Alterung infolge des Einbrennlackierens verstanden. Die Beschichtung erfolgt vorzugsweise in einem Zinkbad, das von dem zuvor kaltgewalzten Band durchlaufen wird. Die Zinkbadtemperaturen liegen im Bereich von 450 - 470°C. Damit die Oberflächenveredelung konventioneller DP (Dualphasen) -Stähle betriebssicher möglich ist, wird ein Stahl folgender Zusammensetzung in Gew.% vorgeschlagen
0,05 bis 0,3% Kohlenstoff
0,8 bis 3,0% Mangan
0,4 bis 2,5% Aluminium
0,01 bis 0,2% SiliziumFrom 196 10 675 C1 a known under the name "bake hardening" method for increasing the component strength is known. This is understood to mean artificial aging as a result of baking varnishing. The coating is preferably carried out in a zinc bath which is run through by the previously cold-rolled strip. The zinc bath temperatures are in the range of 450-470 ° C. So that the surface refinement of conventional DP (dual-phase) steels is reliably possible, a steel of the following composition is proposed in% by weight
0.05 to 0.3% carbon
0.8 to 3.0% manganese
0.4 to 2.5% aluminum
0.01 to 0.2% silicon
Rest Eisen mit erschmelzungsbedingten Verunreinigungen. Nach dem Kaltwalzen schließt sich eine Wärmebehandlung vorzugsweise in einer Feuerverzinkungsanlage oder in einem Durchlaufglühofen an.Remaining iron with impurities caused by melting. After the cold rolling, a heat treatment preferably follows in a hot-dip galvanizing plant or in a continuous annealing furnace.
Das Gefüge besteht aus einer ferritischen Matrix, in die insefförmig Martensit eingelagert ist. Die Mindestkennwerte die mit dem bekannten Verfahren erreichbar sind
Die wesentlichen das vorgeschlagene Verfahren begünstigenden Elemente sind Aluminium und Silizium. Das letztgenannte Element Si wird niedrig gehalten, um die Bildung von rotem Zunder beim Warmwalzen zu unterdrücken. Roter Zunder birgt die Gefahr von Zundereinwalzungen, die beim Beizen des Bandes zu Oberflächeninhomogenitäten führen. Hohe Al-Gehafte fördern die Fenitbildung bei der Glühung zwischen den Umwandlungstemperaturen AC1 und AC3. Die Perlitbildung wird zu deutlich längeren Zeiten verschoben, so dass sie bei den realisierbaren Abkühlraten unterdrückt werden kann. Die Haftbedingungen sowohl der Zinkschicht als auch der Zink-Eisen-Legierungsschicht werden durch Al verbessert.The main elements favoring the proposed process are aluminum and silicon. The latter element Si is kept low to suppress the formation of red scale during hot rolling. Red tinder carries the danger of scale rolling, which leads to surface inhomogeneities when the strip is pickled. High Al contents promote the formation of the fenite during annealing between the transition temperatures A C1 and A C3 . The formation of pearlite is postponed to significantly longer times, so that it can be suppressed at the realizable cooling rates. The adhesion conditions of both the zinc layer and the zinc-iron alloy layer are improved by Al.
Das bekannte Verfahren ist für geschweißte Rohre aus hochfesten Stählen z.B. der, Güte X80 mit einer Mindestreckgrenze von 550 MPa nicht anwendbar, da eine Wärmebehandlung im Temperaturbereich von 450 - 470°C wegen der langen Aufwärm- und Haltezeiten unwirtschaftlich ist. Das Streckgrenzenvefiältnis dieser hochfesten Stähle liegt beispielsweise für eine Güte X65 bei> 0,70, ansonsten im Bereich zwischen 0,80 - 0,93.The known method is for welded pipes of high-strength steels, e.g. the grade X80 with a minimum yield strength of 550 MPa is not applicable, because a heat treatment in the temperature range of 450 - 470 ° C is uneconomical because of the long warm-up and hold times. The yield strength of these high-strength steels is, for example,> 0.70 for a grade X65, otherwise in the range between 0.80 and 0.93.
Aus der
Als erfindungswesentlich wird hervorgehoben, dass zur Erhöhung der Tieftemperaturzähigkeit die Gesamt-Verweilzeit zwischen der ersten Walzabfolge und der zweiten Walzabfolge im Bereich ≤ 60 Sekunden liegen soll.As essential to the invention it is emphasized that in order to increase the low-temperature toughness, the total residence time between the first rolling sequence and the second rolling sequence should be in the range of ≦ 60 seconds.
Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung geschweißter Stahlrohre hoher Festigkeit, Zähigkeits- und Verformungseigenschaften insbesondere Großrohre nach dem UOE-Verfahren anzugeben, mit dem Qualitäten ≥ X90 mit einer Mindeststreckgrenze von 620 MPa sowie sauergasbeständige Güten wirtschaftlich und prozeßsicher unter Einhaltung der vom Regelwerk festgelegten Obergrenze für das Streckgrenzenverhältnis darstellbar sind.The object of the invention is to provide a method for producing welded steel pipes of high strength, toughness and deformation properties in particular large pipes according to the UOE method, with the qualities ≥ X90 with a minimum yield strength of 620 MPa and sour gas-resistant grades economically and process-safe in compliance with the rules fixed upper limit for the yield ratio can be represented.
Diese Aufgabe wird mit den Merkmalen im Anspruch 1 gelöst. Vorteilhafte Weiterbildungen sind jeweils Gegenstand von Unteransprüchen.This object is achieved with the features in claim 1. Advantageous developments are the subject of dependent claims.
Gemäß dem Lösungsvorschlag wird ausgehend von einem Blech aus einem Stahl der Zusammensetzung in Gew.%
0,02 bis 0,20% Kohlenstoff
0,05 bis 0,50% Silizium
0,50 bis 2,50% Mangan
0,003 bis 0,06% AluminiumAccording to the proposed solution is based on a sheet of a steel of the composition in wt.%
0.02 to 0.20% carbon
0.05 to 0.50% silicon
0.50 to 2.50% manganese
0.003 to 0.06% aluminum
Rest Eisen mit erschmelzungsbedingten Verunreinigungen das Rohr nach dem Schweißen und Kalibrieren einer Wärmenachbehandlung im Temperaturbereich von 100-300 Grad Celsius und einer der Rohrwanddicke angepassten Haltezeit mit anschließender Abkühlung an Luft oder durch Zwangskühlung unterworfen. Die Haltezeit.richtet sich vorwiegend nach der durchzuwärmenden Erzeugniswanddicke und hängt von der Art der Wärmezufuhr ab. Dies bedeutet, daß die Haltezeiten in einem Extremfall nur Sekunden und im anderen Extremfall mehrere Stunden betragen kann. Das so erzeugte Rohr weist bei gleich hoher Festigkeit gegenüber konventionell hergestellten Erzeugnissen um mehr als doppelt so hohe Verformungsreserven auf, ohne die vom aktuellen Regelwerk festgelegte Obergrenze für das Streckgrenzenverhältnis zu überschreiten. Optimale Ergebnisse werden erreicht, wenn die Mindestausgangsstreckgrenze am Blech der um den Streckgrenzenanstieg durch Kaltformgebung und Wärmeeffekt verminderten Mindeststreckgrenze am Rohr entspricht. Ein so hergestelltes Rohr zeichnet sich durch Alterungsbeständigkeit und besonders hohe Homogenitäten der Eigenschaften am Rohrumfang aus, wobei die angegebene Stahlanalyse hinsichtlich der Hauptelemente den Bereich der hochfesten Großrohrstähle abdeckt. Nach einem weiteren Merkmal der Erfindung können optional noch weitere Elemente bis zur angegebenen Höchstgrenze zulegiert werden, um besonderen Anforderungen hinsichtlich der mechanischen Kennwerte in Abhängigkeit von der Erzeugniswanddicke zu genügen.Remaining iron with impurities caused by melting subjected to the tube after welding and calibration of a post-heat treatment in the temperature range of 100-300 degrees Celsius and a holding time adapted to the pipe wall thickness with subsequent cooling in air or forced cooling. The holding time is mainly dependent on the product wall thickness to be heated and depends on the type of heat input. This means that the holding times can be only seconds in one extreme case and several hours in the other extreme case. The tube produced in this way has more than twice as high deformation reserves with the same high strength compared to conventionally manufactured products, without exceeding the upper limit for the yield ratio determined by the current regulations. Optimum results are achieved if the minimum yield strength limit at the sheet corresponds to the minimum yield strength at the pipe which is reduced by the yield strength increase due to cold forming and heat effect. A pipe produced in this way is characterized by resistance to aging and particularly high homogeneity of the properties at the circumference of the pipe, whereby the steel analysis given with regard to the main elements covers the range of high-strength large-diameter steel steels. According to a further feature of the invention, it is optionally possible to add further elements up to the specified maximum limit meet special requirements with regard to the mechanical characteristics as a function of the product wall thickness.
Untersuchungen haben ergeben, daß mit der vorgeschlagenen Wärmebehandlung die mechanischen Werkstoffkennwerte insbesondere die Streckgrenze in einem Maße erhöht werden, so daß die geforderten Mindestwerte prozeßsicher erreicht werden. Mit prozeßsicher ist gemeint, daß die Erhöhung eine Reserve bedeutet, die es gestattet die üblichen Schwankungen hinsichtlich Legierungszusammensetzung, Wanddicke, Walzparameter usw. zuzulassen, ohne Gefahr zu laufen auch beim Zusammentreffen mehrerer ungünstig liegender Parameter den geforderten Mindestwert zu unterschreiten. Die ansonsten üblichen Sondermaßnahmen können dadurch entfallen.Investigations have shown that with the proposed heat treatment, the mechanical material properties, in particular the yield strength, are increased to an extent so that the required minimum values are reliably achieved. By process is meant that the increase means a reserve, which allows the usual variations in alloy composition, wall thickness, rolling parameters, etc., without running the risk to fall below the required minimum value even at the meeting of several unfavorable parameters. The otherwise customary special measures can be omitted.
Ein weiterer Vorteil ist darin zu sehen, daß durch eine solche Wärmebehandlung konditionierte Rohre sich bei Betriebstemperatur unterhalb der Wärmebehandlungstemperatur, z. B. 200 Grad Celsius, als alterungsbeständig verhalten, so daß für Leitungen aus solchen Rohren während der betrieblichen Einsatzdauer keine weiteren Veränderungen der mechanischen Eigenschaften zu erwarten sind. Naturgemäß gilt diese Aussage auch für Rohre aus Stahlgüten < X80, deren Eigenschaften am Umfang und in der Fertigungsserie mittels einer solchen Wärmebehandlung mit größerer Prozeßsicherheit und kleineren Streuungen einzustellen sind.Another advantage is the fact that conditioned by such a heat treatment tubes at operating temperature below the heat treatment temperature, for. B. 200 degrees Celsius, behave as aging resistant, so that no further changes in the mechanical properties are expected for lines from such pipes during the operational life. Naturally, this statement also applies to tubes made of steel grades <X80 whose properties on the circumference and in the production series can be adjusted by means of such a heat treatment with greater process reliability and smaller scattering.
Die Wärmebehandlung kann in einem Durchlaufofen oder beim Durchlauf einer Induktionsspule erfolgen. Das letztgenannte Verfahren ist vorzugsweise in eine Rohraußenisolierungsanlage integrierbar. Dies bedeutet, daß die für die Aufbringung der ein-oder-mehrlagigen Isolierung erforderliche Erwärmung des Rohres gleichzeitig zur Steigerung der Festigkeitseigenschaften auf das erforderliche Niveau genutzt werden kann, da die für die Isolierung erforderliche Temperatur in dem vorgeschlagenen Bereich von 100-300 Grad Celsius liegt.The heat treatment can be carried out in a continuous furnace or during the passage of an induction coil. The latter method is preferably integrated into a pipe external insulation system. This means that the heating of the tube required for the application of the single-or multi-layer insulation can be used simultaneously to increase the strength properties to the required level, since the temperature required for the insulation is in the proposed range of 100-300 degrees Celsius ,
Der Vorteil ist, daß die im Abnahmeversuch nach der Isolierung ermittelten Festigkeits- und Verformungseigenschaften damit für die gesamte Nutzungsdauer einer Rohrleitung maßgebend sind. Der Einsatz von Blechen und Bändern mit niedriger Ausgangsstreckgrenze erscheint auch in der Weise vorteilhaft nutzbar, indem zur Einformung zum Schlitzrohr kleinere Umformkräfte benötigt werden. Dieser Vorteil ist insbesondere bei dickwandigen Rohren von Bedeutung.The advantage is that the determined in the acceptance test after isolation strength and deformation properties thus for the entire useful life of a Piping are authoritative. The use of sheets and tapes with low output yield strength also appears to be advantageous in the way in that smaller forming forces are required for forming the slot pipe. This advantage is particularly important in thick-walled pipes.
Ein weiterer Vorteil der vorgeschlagenen Wärmebehandlung ist darin zu sehen, daß sie einen Beitrag zur reproduzierbaren Darstellung der Streckgrenzenverhältnisse auf niedrigem Werteniveau sowie einer Homogenisierung der Festigkeitseigenschaften in der Fertigungsserie leistet, so daß gegenüber konventionell hergestellten Rohren am Bauteil höhere Verformungsreserven gegen duktilen Bruch erreichbar sind.Another advantage of the proposed heat treatment is the fact that it contributes to the reproducible representation of the yield ratio at a low level and a homogenization of the strength properties in the production series, so that compared to conventionally produced pipes on the component higher deformation reserves against ductile breakage can be achieved.
Den Effekt einer Homogenisierung der Festigkeitseigenschaften kann man noch dadurch steigern, wenn man bei dem nach dem UOE-Verfahren hergestellten Großrohren vor der Wärmebehandlung eine Konditionierung der Rohre entsprechend dem in der
Das vorgeschlagene Verfahren ist anwendbar für längsnahtgeschweißte und schraubennahtgeschweißte Rohre (auch Spiralrohre genannt) nach dem HFI- und nach dem UOE-Verfahren.The proposed method is applicable to longitudinally welded and helically welded tubes (also called spiral tubes) according to the HFI and after the UOE method.
Um z B. ein Rohr mit 56" Außendurchmesser und 19.1 mm Wand aus Stahl X100 nach üblicher Verfahrensweise herzustellen, wird am Blech eine 2.0%-Dehngrenze von Rp2.0 ≥ 710 MPa und eine Zugfestigkeit von Rm ≥ 770 MPa gebraucht. Da die finalen Festigkeitseigenschaften durch die Ausgangswerte am Blech und die Kaltverfestigung beim Einformen und Kalibrieren der Rohre auf Solldurchmesser festgelegt sind, werden am fertiggestellten Rohr Streckgrenzenverhältnisse erreicht, die für das Formänderungsvermögen des innendruckbeaufschlagten Bauteils eine Einschränkung darstellen. Dadurch bedingt war an hochfesten Rohren die üblicherweise bei εup ≥ 2% geforderte integrale Dehnung nach konventionellem Verfahren in der Praxis bisher kaum oder nicht sicher genug darstellbar.For example, to produce a tube with 56 "outer diameter and 19.1 mm wall of X100 steel according to the usual procedure, a 2.0% proof stress of Rp2.0 ≥ 710 MPa and a tensile strength of Rm ≥ 770 MPa are used on the plate Strength properties are determined by the initial values on the sheet and the work hardening when forming and calibrating the tubes to nominal diameter, yield strength ratios are achieved on the finished pipe, which is a constraint for the deformation capacity of the internal pressure-loaded component represent. As a result, the integral elongation usually required at ε up ≥ 2% on high-strength pipes by conventional methods has hitherto scarcely been achieved in practice or can not be achieved with sufficient confidence.
Um ein Rohr gleicher Güte und Abmessung nach neuem Verfahren herzustellen, benötigt man am Blech nur eine 2.0%-Dehngrenze von Rp2.0 ≥ 640 MPa statt der ≥ 710 MPa und eine Zugfestigkeit von Rm ≥ 770 MPa, wobei insbesondere die Streckgrenze in Abhängigkeit von der Analyse der eingesetzten Stahlgüte und dem Verformungsgrad bei der Umwandlung vom Blech zum Rohr um den angegebenen Wert schwankt. Beispielsweise weist die eingesetzte Stahlgüte folgende Analyse in Gew.% auf:
- C 0,096; Si 0,383; Mn 1,95; Al 0,035; P 0,015;Ti 0,019; Cr 0,062;
- Mo 0,011; Ni 0,045; Nb 0,042; V 0,005; Cu 0,045; N 0,005; B 0,001.
- C 0.096; Si 0.383; Mn 1.95; Al 0.035; P 0.015; Ti 0.019; Cr 0.062;
- Mo 0.011; Ni 0.045; Nb 0.042; V 0.005; Cu 0.045; N 0.005; B 0.001.
Da hier die in Umfangsrichtung benötigten Festigkeitseigenschaften simultan durch die Wärmenachbehandlung des Rohres erreicht werden, genügen am Blech zur Darstellung der spezifizierten Rohrgüte niedrigere Ausgangswerte der Dehngrenzen und Streckgrenzenverhältnisse, wodurch eine Erhöhung der Gleichmaßdehnungen auf Werte Ag ≥ 8.5% am Blech und auf Werte Ag ≥ 6.5% am Rohr ermöglicht wird. Gegenüber konventionell hergestellten Rohren ist dadurch ein doppelt so hohes Formänderungsvermögen realisierbar, so daß die notwendigen Voraussetzungen für eine produktionssichere Darstellung der integralen Bauteilreserve εup ≥ 2% im Rahmen der herstellungsbedingten Streuungen auch für Rohrgüten eines X 100 zuverlässig erfüllbar sind.Since the strength properties required in the circumferential direction are simultaneously achieved by the heat after-treatment of the tube, lower initial values of the yield strengths and yield strength ratios are sufficient to produce the specified tube quality, thereby increasing the uniform elongation to values of Ag ≥ 8.5% on the sheet and to values of Ag ≥ 6.5 % on the pipe is possible. In comparison with conventionally produced tubes, a twice as high deformation capacity can be achieved, so that the necessary conditions for a production-reliable representation of the integral component reserve ε up ≥ 2% within the production-related scattering can be reliably fulfilled even for tube grades of X 100.
Das Ausmaß der durch die Wärmenachbehandlung in Rohrumfangsrichtung erreichbaren Steigerungen der Rt0.5-Dehngrenzen hängt von der Stahlzusammensetzung, den C- und N-Anteilen in Zwangslösung und den Parametern des Rohrherstellungsprozesses ab und beträgt nach heutigem Stand der Erkenntnisse bis zu 18% der am expandierten Rohr an Rundzugproben nachgewiesenen Rt0.5-Dehngrenze. Für unexpandierte Rohre wie z. B. HFI-Rohre werden Steigerungen von bis zu 12 % nach den bisherigen Erfahrungen erreicht. Die Zugfestigkeiten Rm nehmen durch die Wärmenachbehandlung um ca. 20 MPa zu.The extent of the achievable by the heat post-treatment in the pipe circumferential direction increases in Rt0.5 Dehngrenzen depends on the steel composition, the C and N shares in forced solution and the parameters of the tube manufacturing process and is based on the current state of knowledge up to 18% of the expanded Tube to round tensile specimens proved Rt0.5 proof stress. For unexpanded pipes such. B. HFI pipes will be increases of up to 12% according to previous experience. The tensile strengths Rm increase by the heat aftertreatment by about 20 MPa.
Claims (5)
- Method of manufacturing welded steel pipes with a high degree of strength, toughness and deformability, in particular large-diameter pipes according to the UOE method, in which starting from a hot-rolled plate a pipe is cold-formed, welded and calibrated to the desired diameter and is subjected, after welding and calibrating, to heat treatment at a temperature in the region of 100-400°C, wherein starting from a TM-rolled plate composed of steel comprising (in % by weight):0.02 to 0.20 % C0.05 to 0.50 % Si0.50 to 2.50 % Mn0.003 to 0.06 % Aland optionallyup to 0.02 % Pup to 0.06 % Tiup to 0.20 % Crup to 0.50 % Moup to 0.30 % Niup to 0.10 Nbup to 0.08 % Vup to 0.50 % Cuup to 0.030 % Nup to 0.005 % Bremainder iron with melt-dependent impurities, heat treatment is carried out for the pipe with the quality ≥ X90 (API standard) at a temperature in the range of 100-300°C and with a holding time adapted to the pipe-wall thickness followed by cooling in air or by forced cooling, and the pipe so produced is ageing-resistant and whilst having the same degree of strength has a sufficiently integral deformation reserve against rupture, without exceeding the upper limit for the yield point ratio fixed according to current regulations for conventional steels, wherein the minimum starting yield point in the plate corresponds to the minimum yield point on the pipe reduced by the rise in yield point by cold forming and heat treatment, heat treatment being carried out within the context of applying a single- or multiple-ply outer insulation.
- Method according to claim 1, characterised in that the heat treatment takes place in a conveyor furnace.
- Method according to claims 1 to 2, characterised in that the heat treatment takes place upon passing through an induction coil.
- Method according to one of claims 1 to 3, characterised in that during the manufacture of large-diameter pipes according to the UOE method, the pipes having a longitudinal welded seam are pre-conditioned before the heat treatment by a combined application of cold expansion and cold reduction.
- Method according to claim 4, characterised in that the sequence and degree of expansion or reduction is established according to the requirement profile.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19922542 | 1999-05-10 | ||
DE19922542 | 1999-05-10 | ||
DE10023488 | 2000-05-09 | ||
DE10023488A DE10023488B4 (en) | 1999-05-10 | 2000-05-09 | Process for producing welded steel tubes of high strength, toughness and deformation properties |
PCT/DE2000/001513 WO2000068443A2 (en) | 1999-05-10 | 2000-05-10 | Method for producing welded steel pipes with a high degree of strength, ductility and deformability |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1204772A2 EP1204772A2 (en) | 2002-05-15 |
EP1204772B1 true EP1204772B1 (en) | 2007-07-25 |
Family
ID=26005669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00943586A Expired - Lifetime EP1204772B1 (en) | 1999-05-10 | 2000-05-10 | Method for producing welded steel pipes with a high degree of strength, ductility and deformability |
Country Status (6)
Country | Link |
---|---|
US (1) | US6648209B2 (en) |
EP (1) | EP1204772B1 (en) |
JP (1) | JP2002544377A (en) |
CA (1) | CA2373064C (en) |
DE (1) | DE50014515D1 (en) |
WO (1) | WO2000068443A2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1204772B1 (en) * | 1999-05-10 | 2007-07-25 | EUROPIPE GmbH | Method for producing welded steel pipes with a high degree of strength, ductility and deformability |
DE10105809C1 (en) * | 2001-02-08 | 2002-07-18 | Thiele Gmbh & Co Kg | Production of a round link chain made from heat-treatable steel, used in drive and conveying elements, comprises forming a chain strand, heat treating while calibrating the chain and post-treating |
US7892368B2 (en) * | 2002-05-24 | 2011-02-22 | Nippon Steel Corporation | UOE steel pipe excellent in collapse strength and method of production thereof |
WO2006020913A2 (en) * | 2004-08-11 | 2006-02-23 | Enventure Global Technology, Llc | Method of manufacturing a tubular member |
AU2006305841A1 (en) * | 2005-10-24 | 2007-05-03 | Exxonmobil Upstream Research Company | High strength dual phase steel with low yield ratio, high toughness and superior weldability |
CN101611163B (en) * | 2006-10-06 | 2013-01-09 | 埃克森美孚上游研究公司 | Low yield ratio dual phase steel linepipe with superior strain aging resistance |
WO2008105990A1 (en) | 2007-02-27 | 2008-09-04 | Exxonmobil Upstream Research Company | Corrosion resistant alloy weldments in carbon steel structures and pipelines to accommodate high axial plastic strains |
US20090301613A1 (en) | 2007-08-30 | 2009-12-10 | Jayoung Koo | Low Yield Ratio Dual Phase Steel Linepipe with Superior Strain Aging Resistance |
CN102492820A (en) * | 2011-12-27 | 2012-06-13 | 上海锅炉厂有限公司 | Method for preventing heat treatment deformation of thin wall pressure vessel cylindrical shell with major diameter |
CN103521550B (en) * | 2013-10-07 | 2016-08-31 | 宝鸡石油钢管有限责任公司 | A kind of X90 level pipe line steel heavy caliber thick wall straight-line joint submerged arc welding tube manufacture method |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE948604C (en) * | 1949-12-09 | 1956-09-06 | Auguste Georges Ferrand | Manufacture of reinforced pipelines or tanks |
US4001054A (en) * | 1974-04-10 | 1977-01-04 | Makepeace Charles E | Process for making metal pipe |
US4160543A (en) * | 1976-11-11 | 1979-07-10 | Hughes Tool Company | Heat treatment of welds |
JPS6026809B2 (en) * | 1980-08-12 | 1985-06-26 | 川崎製鉄株式会社 | Method for manufacturing high-strength steel pipes with excellent low-temperature toughness |
JPS589925A (en) * | 1981-07-09 | 1983-01-20 | Kawasaki Steel Corp | Production of api standard class x80 steel pipe of superior low temperature toughness |
JPS589926A (en) * | 1981-07-09 | 1983-01-20 | Kawasaki Steel Corp | Production of api standard class x80 steel pipe of superior low temperature toughness |
JPS6046321A (en) * | 1983-08-23 | 1985-03-13 | Nippon Kokan Kk <Nkk> | Manufacture of seam welded pipe |
LU86158A1 (en) * | 1985-11-12 | 1987-06-26 | Centre Rech Metallurgique | PROCESS FOR THE CONTINUOUS MANUFACTURE OF WELDED METAL TUBES |
DE3766507D1 (en) * | 1986-01-21 | 1991-01-17 | Siemens Ag | METHOD AND DEVICES FOR THE HEAT TREATMENT OF ROD WELDED TUBES. |
JPH0698382B2 (en) * | 1988-03-23 | 1994-12-07 | 住友金属工業株式会社 | Hot ERW Pipe Manufacturing Method |
US5005395A (en) * | 1988-03-23 | 1991-04-09 | Sumitomo Metal Industries, Ltd. | Method of manufacturing electric welded pipes under hot conditions |
EP0494448A1 (en) * | 1990-12-25 | 1992-07-15 | Nkk Corporation | Method for manufacturing electric-resistance-welded steel pipe with high strength |
JP3265023B2 (en) * | 1993-01-11 | 2002-03-11 | 新日本製鐵株式会社 | Method for producing steel and steel pipe excellent in corrosion resistance and workability |
DE4318931C1 (en) * | 1993-06-03 | 1994-12-01 | Mannesmann Ag | Method for the production of welded tubes |
AUPM648394A0 (en) * | 1994-06-27 | 1994-07-21 | Tubemakers Of Australia Limited | Method of increasing the yield strength of cold formed steel sections |
DE19522790C2 (en) * | 1995-06-14 | 1998-10-15 | Mannesmann Ag | Process for the production of pipes according to the UOE process |
DE19608387A1 (en) * | 1996-03-05 | 1996-07-18 | Werner Glowik | Colouring surface of a steel object |
BR9804879A (en) * | 1997-04-30 | 1999-08-24 | Kawasaki Steel Co | High ductility steel product, high strength and process for its production |
EP1204772B1 (en) * | 1999-05-10 | 2007-07-25 | EUROPIPE GmbH | Method for producing welded steel pipes with a high degree of strength, ductility and deformability |
ES2230227T3 (en) * | 2000-12-25 | 2005-05-01 | Nisshin Steel Co., Ltd. | FERRITIC STAINLESS STEEL SHEET WITH GOOD WORKABILITY AND METHOD FOR MANUFACTURING. |
US6733601B2 (en) * | 2001-01-18 | 2004-05-11 | Jfe Steel Corporation | Ferritic stainless steel sheet with excellent workability |
-
2000
- 2000-05-10 EP EP00943586A patent/EP1204772B1/en not_active Expired - Lifetime
- 2000-05-10 DE DE50014515T patent/DE50014515D1/en not_active Expired - Lifetime
- 2000-05-10 CA CA002373064A patent/CA2373064C/en not_active Expired - Fee Related
- 2000-05-10 WO PCT/DE2000/001513 patent/WO2000068443A2/en active IP Right Grant
- 2000-05-10 JP JP2000617212A patent/JP2002544377A/en active Pending
-
2001
- 2001-11-13 US US10/033,379 patent/US6648209B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US6648209B2 (en) | 2003-11-18 |
EP1204772A2 (en) | 2002-05-15 |
WO2000068443A3 (en) | 2001-04-26 |
DE50014515D1 (en) | 2007-09-06 |
CA2373064A1 (en) | 2000-11-16 |
CA2373064C (en) | 2008-10-21 |
JP2002544377A (en) | 2002-12-24 |
US20020117538A1 (en) | 2002-08-29 |
WO2000068443A2 (en) | 2000-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60116477T2 (en) | WARM, COLD-ROLLED AND MELT-GALVANIZED STEEL PLATE WITH EXCELLENT RECEPTION BEHAVIOR | |
EP2855718B1 (en) | Flat steel product and process for producing a flat steel product | |
EP3535431B1 (en) | Steel product with an intermediate manganese content for low temperature application and production method thereof | |
DE60121162T2 (en) | COLD-ROLLED STEEL PLATE AND GALVANIZED STEEL PLATE WITH GOOD RECOILING CHARACTERISTICS AND METHOD OF MANUFACTURING THEREOF | |
EP2010690B1 (en) | Hot dip coating process for a steel plate product made of high strengthheavy-duty steel | |
DE19610675C1 (en) | Dual phase steel for cold rolled sheet or strip - contg. manganese@, aluminium@ and silicon | |
EP0320773A2 (en) | Process for making hot-rolled clad steel sheet | |
EP1918403B1 (en) | Process for manufacturing steel flat products from a steel forming martensitic structure | |
DE69708832T2 (en) | Cold rolled steel sheet and its manufacturing process | |
EP1926837A1 (en) | Process for manufacturing cold-formed precision steel pipes | |
DE102018132860A1 (en) | Process for the production of conventionally hot-rolled, profiled hot-rolled products | |
EP1204772B1 (en) | Method for producing welded steel pipes with a high degree of strength, ductility and deformability | |
WO2016078643A9 (en) | High-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel | |
WO2016078644A1 (en) | Ultra high-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel | |
EP3724359A1 (en) | High-strength, hot-rolled flat steel product with high edge crack resistance and simultaneously high bake-hardening potential, and method for producing a flat steel product of this kind | |
EP2414552B1 (en) | Ball pins made of bainitic steels for passenger car and light commercial vehicle | |
EP3551776A1 (en) | Method for producing a hot or cold strip and/or a flexibly rolled flat steel product made of a high-strength manganese steel and flat steel product produced by said method | |
CA1125150A (en) | High strength steel profile and method of making the same | |
DE10023488B4 (en) | Process for producing welded steel tubes of high strength, toughness and deformation properties | |
EP3469108B1 (en) | Method for producing a cold-rolled steel strip having trip-characteristics made of a high-strength mangan-containing steel | |
DE102019103502A1 (en) | Method of manufacturing seamless steel pipe, seamless steel pipe, and pipe product | |
DE102018132901A1 (en) | Process for the production of conventionally hot rolled hot rolled products | |
DE3507124A1 (en) | Oil-drilling pipe welded by electric resistance welding, and method for the manufacture thereof | |
DE19652399A1 (en) | Production of multicomponent foil | |
EP3122910A2 (en) | Components made of a steel alloy and method for producing high-strength components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20011029 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20030218 |
|
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
APAA | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOS REFN |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EUROPIPE GMBH |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070725 |
|
REF | Corresponds to: |
Ref document number: 50014515 Country of ref document: DE Date of ref document: 20070906 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080428 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20100611 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20100522 Year of fee payment: 11 Ref country code: DE Payment date: 20100521 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100519 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50014515 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50014515 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110510 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111130 |