EP1203961A1 - Verfahren zum Messen des Widerstands und der Induktivität einer Leitung - Google Patents

Verfahren zum Messen des Widerstands und der Induktivität einer Leitung Download PDF

Info

Publication number
EP1203961A1
EP1203961A1 EP00811038A EP00811038A EP1203961A1 EP 1203961 A1 EP1203961 A1 EP 1203961A1 EP 00811038 A EP00811038 A EP 00811038A EP 00811038 A EP00811038 A EP 00811038A EP 1203961 A1 EP1203961 A1 EP 1203961A1
Authority
EP
European Patent Office
Prior art keywords
line
values
resistance
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00811038A
Other languages
English (en)
French (fr)
Other versions
EP1203961B1 (de
Inventor
Michael Stanimirov
Bernhard Deck
Walter Rueegg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to DE50012309T priority Critical patent/DE50012309D1/de
Priority to EP00811038A priority patent/EP1203961B1/de
Priority to AT00811038T priority patent/ATE319098T1/de
Priority to US09/984,990 priority patent/US6713998B2/en
Publication of EP1203961A1 publication Critical patent/EP1203961A1/de
Application granted granted Critical
Publication of EP1203961B1 publication Critical patent/EP1203961B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/181Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using coils without a magnetic core, e.g. Rogowski coils

Definitions

  • the invention relates to a method for measuring the resistance and inductance of a line according to the preamble of claim 1. Such methods e.g. for short-circuit detection in power supply lines used.
  • This task is performed by the method according to claim 1 solved. Instead of integrating the values of The measured values become direct to the Rogowski coil used in a system of equations, which the desired Delivers results.
  • Measured values Preferably a larger number of Measured values are used so that the system of equations is over-determined becomes.
  • the resistance and the inductance can then be determined with a compensation calculation.
  • the squares of errors are minimized, which is achieved by means of simple matrix inversion or recursive is possible.
  • Fig. 1 shows the equivalent circuit for a Line 1 with resistor R and inductance L. It can e.g. by a short-circuited at a point 2 Act power line.
  • a voltage measuring device 3 is provided for measuring the voltage u ( t ) over the line 1.
  • This can be, for example, an electro-optical voltage converter which (if necessary except for a known calibration constant) can directly reproduce the value of the voltage u ( t ).
  • a storm differential measuring device 4 is used to measure the current i ( t ) or in line 1. This comprises a Rogowski coil 5, which generates a voltage proportional to the time derivative ⁇ / ⁇ t of i ( t ). Accordingly, the storm differential measuring device generates 4 measured values which (apart from a known calibration constant) correspond to the value ⁇ i ( t ) / ⁇ t .
  • t kT A , The resistance R and the inductance L are to be determined from these values.
  • the time derivative of the current i ( t ), ie the magnitude, is measured with the Rogowski coil
  • the current i ( t ) can be calculated by integrating (2). By inserting in (1) we get:
  • Equation (3) can be converted into a discretized form.
  • A can be written as where ⁇ 0 is the frequency at which the digital approximation should match the analog values.
  • ⁇ 0 2 ⁇ ⁇ f N is chosen, where f N is the network frequency of the voltage on the line to be measured.
  • Equation (4) forms a basis for determining the sought values R and L or the parameters ⁇ 0 and ⁇ 1 .
  • N measurements of the voltage ⁇ u 1 , u 2 , ... u N ⁇ and the differentiated current ⁇ . , ... ⁇ with N ⁇ 3 is required to build an equation system with ( N ) equations with N -1 equations for ⁇ 0 and ⁇ 1 , so that the parameters can be calculated.
  • This procedure has the advantage that a direct integration of equation (3) can be avoided.
  • the resistance R and the inductance L can then be determined from the parameters ⁇ 0 and ⁇ 1
  • N is preferably> 3, ie more than two equations are set up, so that an over-determined system of equations arises.
  • the parameter values can be determined with high accuracy using a compensation calculation.
  • the first multiplicand on the right side of equation (7) is the inverse of a 2 ⁇ 2 matrix generated from the values of the differentiated current, while the second multiplicand is a sum of vectors from the values of the differentiated current is weighted with differences of successive voltage values u k .
  • Equation system (4) can also be solved using recursive parameter estimation methods or Kalman filters.
  • An iterative method can, for example, calculate a new approximation value ⁇ n for the parameter vector ⁇ for each vector pair m n , y n from the previous approximation value ⁇ n -1 using the recursion formula
  • E is the unit matrix
  • is a forgetting factor between 0.8 and 0.9
  • P n is the so-called precision matrix (starting value eg 10 3 ⁇ E or 10 5 ⁇ E ).
  • K is called the correction factor.

Abstract

Das hier beschriebene Verfahren erlaubt es, die Impedanz einer Leitung (1) zu bestimmen, indem die über die Leitung anliegende Spannung (u) und die Zeitableitung des durch die Leitung fliessenden Stroms (i) gemessen werden. Dabei werden die gemessenen Werte des differenzierten Stroms nicht integriert, sondern direkt und zusammen mit den gemessenen Spannungswerten in ein Gleichungssystem eingesetzt, aus welchem die Werte der Induktivität (L) und des Widerstands (R) der Leitung (1) abgeschätzt werden können. Auf diese Weise erübrigt sich eine Integration der Werte des differenzierten Stroms. <IMAGE>

Description

Technisches Gebiet
Die Erfindung betrifft ein Verfahren zum Messen des Widerstands und der Induktivität einer Leitung gemäss Oberbegriff von Anspruch 1. Derartige Verfahren werden z.B. zur Kurzschlussdetektion in Stromversorgungsleitungen verwendet.
Stand der Technik
Um die Impedanz und insbesondere den Widerstand und die Induktivität einer Leitung zu bestimmen, werden in der Regel der in ihr fliessende Strom und die über sie anliegende Spannung zeitaufgelöst gemessen rechnerisch in die gesuchten Werte umgewandelt. Zur Strommessung wird, insbesondere bei Starkstromleitungen, neuerdings auch eine Rogowski-Spule eingesetzt, d.h. eine sich um die stromführende Leitung erstreckende Spule, die die Ableitung des Stroms nach der Zeit misst. Um den Strom zu ermitteln, muss diese Ableitung nach der Zeit integriert werden. Dies erfordert zusätzlichen numerischen Aufwand und kann zu Ungenauigkeiten führen (Clippingeffekte, Phasenversatz).
Darstellung der Erfindung
Es stellt sich deshalb die Aufgabe, ein Verfahren der eingangs genannten Art bereitzustellen, welches eine möglichst genaue und einfache Möglichkeit zur Messung der Induktivität und des Widerstands erlaubt.
Diese Aufgabe wird vom Verfahren gemäss Anspruch 1 gelöst. Anstelle einer Integration der Werte von der Rogowski-Spule werden die gemessenen Werte also direkt in ein Gleichungssystem eingesetzt, welches die gewünschten Resultate liefert.
Vorzugsweise wird eine grössere Zahl von Messwerten verwendet, so dass das Gleichungssystem überbestimmt wird. Der Widerstand und die Induktivität können sodann mit Ausgleichsrechnung ermittelt werden. Vorzugsweise werden die Fehlerquadrate minimiert, was mittels einfacher Matrixinversion oder rekursiv möglich ist.
Kurze Beschreibung der Zeichnung
Weitere Ausgestaltungen, Vorteile und Anwendungen der Erfindung ergeben sich aus den abhängigen Ansprüchen und aus der nun folgenden Beschreibung anhand der Figur 1. Dabei zeigt die Figur ein Ersatzschaltbild für eine zu messende Leitung.
Wege zur Ausführung der Erfindung
Fig. 1 zeigt das Ersatzschaltbild für eine Leitung 1 mit Widerstand R und Induktivität L. Dabei kann es sich z.B. um eine an einem Punkt 2 kurzgeschlossene Starkstromleitung handeln.
Zur Messung der Spannung u(t) über der Leitung 1 ist ein Spannungsmessgerät 3 vorgesehen. Dabei kann es sich z.B. um einen elektro-optischen Spannungsumwandler handeln, der (ggf. bis auf eine bekannte Eichkonstante) den Wert der Spannung u(t) direkt wiederzugeben vermag.
Zur Messung des Stroms i(t) bzw. in der Leitung 1 wird ein Stormdifferenzial-Messgerät 4 verwendet. Dieses umfasst eine Rogowski-Spule 5, die eine Spannung proportional zur Zeitableitung ∂/∂t von i(t) erzeugt. Entsprechend erzeugt das Stormdifferenzial-Messgerät 4 Messwerte, die (bis auf eine bekannte Eichkonstante) dem Wert ∂i(t)/∂t ensprechen.
Die Messgeräte 3, 4 werden mit einer Abtastrate fA = 1/TA betrieben und liefern eine Reihe von Spannungswerten u 0 u 1, ... und eine Reihe von Weren
Figure 00030001
,
Figure 00030002
, ...
Figure 00030003
des differenzierten Stroms, wobei uk = u(kTA ) und
Figure 00030004
= ∂i/∂t| t=kT A . Aus diesen Werten sollen der Widerstand R und die Induktivität L bestimmt werden.
Für die Spannung u(t) gilt: u(t) = R · i(t) + L · t i(t)
Mit der Rogowski-Spule wird die zeitliche Ableitung des Stroms i(t) gemessen, d.h. die Grösse
Figure 00030005
Der Strom i(t) kann durch Integration von (2) berechnet werden. Durch Einsetzen in (1) ergibt sich somit:
Figure 00030006
Gleichung (3) lässt sich in diskretisierte Form umwandeln. Vorzugsweise wird die Laplace-Transformierte u(p) gebildet und eine bilineare Transformation p = A · (z - 1)/(z + 1), wobei A im Falle der Tustin-Approximation den Wert A ≅ 2/ TA annimmt. Genauer kann A geschrieben werden als
Figure 00030007
wobei ω0 die Frequenz ist, bei der die digitale Approximation mit den analogen Werten übereinstimmen soll. Bei Verwendung von Formel (3a) anstelle von A = 2/TA stimmt die Approximation durch das digitale Modell genau mit dem analogen Modell bei der Kreisfrequenz ω0 überein. In der Praxis wird ω0 = 2π·f N gewählt, wobei f N die Netzfrequenz der auf der auszumessenden Leitung liegenden Spannung ist.
Durch Diskretisierung von Gleichung (3) ergibt sich näherungsweise:
Figure 00040001
wobei un und un-1 zwei nacheinander abgetastete Spannungswerte und
Figure 00040002
und
Figure 00040003
zwei nacheinander abgetastete Werte des differenzierten Stroms sind. Die Parameter α 0 und α1 sind gegeben durch
Figure 00040004
Gleichung (4) bildet eine Grundlage zur Ermittlung der gesuchten Werte R und L bzw. der Parameter α0 und α 1 . Hierzu werden N Messungen der Spannung {u 1, u 2, ... uN } und des differenzierten Stroms {
Figure 00040005
,
Figure 00040006
, ... } mit N ≥ 3 benötigt, um aus (4) ein Gleichungssystem mit N-1 Gleichungen für α0 und α 1 aufzustellen, so dass die Parameter berechnet werden können. Dieses Vorgehen hat den Vorteil, dass eine direkte Integration von Gleichung (3) umgangen werden kann.
Aus den Parametern α0 und α1 können sodann der Widerstand R und die Induktivität L bestimmt werden aus
Figure 00040007
Vorzugsweise ist N > 3, d.h. es werden mehr als zwei Gleichungen aufgestellt, so dass ein überbestimmtes Gleichungssystem entsteht. Die Parameterwerte können in diesem Falle mittels Ausgleichsrechung mit hoher Genauigkeit bestimmt werden.
Beispielsweise können die Parameter α0 und α1 bestimmt werden durch Minimieren der Fehlerquadrate der linearen Gleichungen (4) für n = 1 ... N, was in Vektorschreibweise zu folgender Lösung führt:
Figure 00050001
mit
Figure 00050002
und yn = (un - un -1)
Dabei ist der erste Multiplikand auf der rechten Seite der Gleichung (7) die Inverse einer 2 × 2 - Matrix erzeugt aus den Werten des differenzierten Stroms, während der zweite Multiplikand eine Summe von Vektoren aus den Werten des differenzierten Stroms gewichtet mit Differenzen aufeinander folgender Spannungswerte uk ist.
Gleichungssystem (4) kann auch mittels rekursiver Parameterschätzverfahren oder Kalmanfiltern gelöst werden. Ein iteratives Verfahren kann z.B. für jedes Vektorpaar mn , yn einen neuen Näherungswert Θ n für den Parametervektor Θ aus dem vorhergehenden Näherungswert Θ n -1 berechnen mittels der Rekursionsformel
Figure 00050003
Dabei ist E die Einheitsmatrix, λ ein Vergessensfaktor zwischen 0.8 und 0.9 und Pn die sog. Präzisionsmatrix (Startwert z.B. 103·E oder 105·E) ist. K wird Korrekturfaktor genannt.
Bezugszeichenliste
1:
Leitung
2:
Kurzschlusspunkt
3:
Spannungsmessgerät
4:
Stormdifferenzial-Messgerät
5:
Rogowski-Spule
A:
Faktor
E:
Einheitsmatrix
fA :
Abtastrate
i(t):
Zeitabhängiger Strom
K:
Korrekturfaktor
L:
Induktivität
N:
Zahl der Messwerte innerhalb des Beobachtungsfensters
R:
Widerstand
TA :
Zeitabstand zwischen Messwerten
u(t) :
Spannung
uk :
Spannungswerte
Figure 00060001
:
Zeitdifferenzierter Strom
:
Werte des differenzierten Stromes
α0, α1:
Parameterwerte
λ:
Vergessensfaktor
Θ:
Parametervektor

Claims (8)

  1. Verfahren zum Messen des Widerstands R und der Induktivität L einer Leitung, bei welchem eine Spannung u über der Leitung und eine zeitliche Ableitung
    Figure 00070001
    des Stroms durch die Leitung mit einer Rate 1/TA gemessen werden um eine Reihe von N Spannungswerten u 0, u 1, ... uN und eine Reihe von N Werten
    Figure 00070002
    ,
    Figure 00070003
    , ...
    Figure 00070004
    des differenzierten Stroms zu erhalten, dadurch gekennzeichnet, dass N ≥ 3 und die Spannungswerte und die Werte des differenzierten Stroms in ein Gleichungssystem mit N-1 Gleichungen der Form
    Figure 00070005
    eingesetzt werden, mit Parametern α 0 = RA + L α 1 = RA - L wobei A ≅ 2/TA oder
    Figure 00070006
    und dass aus dem Gleichungssystem der Widerstand R und die Induktivität L ermittelt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass N ≥ 3 ist und dass der Widerstand R und die Induktivität L durch Ausgleichsrechnung ermittelt werden.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Widerstand R und die Induktivität L durch Lösen von
    Figure 00080001
    mit
    Figure 00080002
    und yn = (un - un -1) ermittelt werden.
  4. Verfahren nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass das Gleichungssystem iterative gelöst wird, indem für eine Vielzahl von n ein Näherungswert Θ n berechnet wird für
    Figure 00080003
    aus der Rekursionsformel K = Pn -1 · mn · (λ + m T n · Pn -1 · mn )-1 Θ n = Θ n -1 + K · (yn - m T n · Θ n -1)
    Figure 00080004
    mit
    Figure 00080005
    und yn = (un - un -1) wobei E die Einheitsmatrix, λ ein Vergessensfaktor, insbesondere zwischen 0.8 und 0.9, und Pn eine Matrix mit Startwert, vorzugsweise zwischen 103·E und 105·E, ist.
  5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die erste Ableitung des Stroms mit einer Rogowski-Spule gemessen wird.
  6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass A = 2/TA .
  7. Verfahren nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass
    Figure 00090001
       wobei ω0 die Kreisfrequenz einer auf der Leitung liegenden Spannung ist.
  8. Verwendung des Verfahrens nach einem der vorangehenden Ansprüche zum Messen der Impedanz einer Starkstromleitung.
EP00811038A 2000-11-06 2000-11-06 Verfahren zum Messen des Widerstands und der Induktivität einer Leitung Expired - Lifetime EP1203961B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE50012309T DE50012309D1 (de) 2000-11-06 2000-11-06 Verfahren zum Messen des Widerstands und der Induktivität einer Leitung
EP00811038A EP1203961B1 (de) 2000-11-06 2000-11-06 Verfahren zum Messen des Widerstands und der Induktivität einer Leitung
AT00811038T ATE319098T1 (de) 2000-11-06 2000-11-06 Verfahren zum messen des widerstands und der induktivität einer leitung
US09/984,990 US6713998B2 (en) 2000-11-06 2001-11-01 Method for measuring the resistance and the inductance of a line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00811038A EP1203961B1 (de) 2000-11-06 2000-11-06 Verfahren zum Messen des Widerstands und der Induktivität einer Leitung

Publications (2)

Publication Number Publication Date
EP1203961A1 true EP1203961A1 (de) 2002-05-08
EP1203961B1 EP1203961B1 (de) 2006-03-01

Family

ID=8175014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00811038A Expired - Lifetime EP1203961B1 (de) 2000-11-06 2000-11-06 Verfahren zum Messen des Widerstands und der Induktivität einer Leitung

Country Status (4)

Country Link
US (1) US6713998B2 (de)
EP (1) EP1203961B1 (de)
AT (1) ATE319098T1 (de)
DE (1) DE50012309D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012456A1 (de) * 2005-07-26 2007-02-01 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Messanordnung zur messung des induktivitäts- und des widerstandswertes eines induktiven sensors

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6842014B2 (en) * 2003-04-10 2005-01-11 Delphi Technologies, Inc. Methods for determining inductance and resistance of an inductor
US7164275B2 (en) * 2004-09-30 2007-01-16 Rockwell Automation Technologies, Inc. AC power line impedance monitoring method and system
US20060241881A1 (en) * 2005-03-30 2006-10-26 Gasperi Michael L Networked power line parameter analysis method and system
US7638999B2 (en) * 2006-04-07 2009-12-29 Cooper Technologies Company Protective relay device, system and methods for Rogowski coil sensors
US7564233B2 (en) 2006-11-06 2009-07-21 Cooper Technologies Company Shielded Rogowski coil assembly and methods
US7616010B2 (en) * 2007-04-30 2009-11-10 Rockwell Automation Technologies, Inc. Line impedance measurement method and system
US7671606B2 (en) * 2007-04-30 2010-03-02 Rockwell Automation Technologies, Inc. Portable line impedance measurement method and system
US7710729B2 (en) * 2007-07-27 2010-05-04 British Columbia Transmission Corporation Method and system of real-time estimation of transmission line parameters in on-line power flow calculations
US7816927B2 (en) * 2007-07-27 2010-10-19 British Columbia Hydro And Power Authority Method and system for real time identification of voltage stability via identification of weakest lines and buses contributing to power system collapse
US7703202B2 (en) * 2008-01-18 2010-04-27 Inventec Corporation Method for manufacturing a transmission line equalizer
US7979220B2 (en) * 2008-08-21 2011-07-12 Abb Research Ltd. System and method for monitoring power damping compliance of a power generation unit
US8456176B2 (en) * 2008-10-06 2013-06-04 Electric Power Research Institute, Inc. Passive agent system impedance monitoring station and method
US9143112B2 (en) 2011-06-30 2015-09-22 Silicon Laboratories Inc. Circuits and methods for providing an impedance adjustment
GB2493000B (en) * 2011-07-20 2013-07-10 Cambridge Silicon Radio Ltd A power supply module
CH706854A2 (de) 2012-08-21 2014-02-28 Dr Rer Nat Lisseth Sandoval Soto Verfahren und Vorrichtung zur Bestimmung der elektrischen Eigenschaften von Materialien.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD216547A1 (de) * 1983-06-13 1984-12-12 Ilmenau Tech Hochschule Anordnung zur potentialfreien strommessung
DE4204515A1 (de) * 1992-02-15 1993-08-19 Abb Patent Gmbh Verfahren zum messen von stroemen sowie anordnung zur durchfuehrung des verfahrens

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE216547C (de)
US6397156B1 (en) * 1998-11-17 2002-05-28 Abb Inc. Impedance measurement system for power system transmission lines
FR2798470B1 (fr) * 1999-09-09 2001-12-21 Pioch Sa Capteur inductif pour la mesure d'un courant dans un conducteur
US6437554B1 (en) * 1999-11-19 2002-08-20 The United States Of America As Represented By The Secretary Of The Interior High current measurement system incorporating an air-core transducer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD216547A1 (de) * 1983-06-13 1984-12-12 Ilmenau Tech Hochschule Anordnung zur potentialfreien strommessung
DE4204515A1 (de) * 1992-02-15 1993-08-19 Abb Patent Gmbh Verfahren zum messen von stroemen sowie anordnung zur durchfuehrung des verfahrens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012456A1 (de) * 2005-07-26 2007-02-01 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Messanordnung zur messung des induktivitäts- und des widerstandswertes eines induktiven sensors

Also Published As

Publication number Publication date
EP1203961B1 (de) 2006-03-01
ATE319098T1 (de) 2006-03-15
DE50012309D1 (de) 2006-04-27
US20020158641A1 (en) 2002-10-31
US6713998B2 (en) 2004-03-30

Similar Documents

Publication Publication Date Title
DE69627777T2 (de) Pulsbasiertes Impedanz-Messgerät
EP1203961B1 (de) Verfahren zum Messen des Widerstands und der Induktivität einer Leitung
EP3039443B1 (de) Verfahren zur kalibrierung eines messaufbaus
DE2715842A1 (de) Verfahren zur automatischen impedanzmessung
DE112016006971T5 (de) Verfahren und Vorrichtung zum Herausfinden des Phasenfehlers oder von Timing-Verzögerungen in einem Stromwandler und Leistungsmessvorrichtung einschließlich Stromwandlerfehlerkorrektur
DE2917237C2 (de)
DE19852502A1 (de) Verfahren zur Offset-Kalibrierung eines magnetoresistiven Winkelsensors
DE102020209149A1 (de) Kalibrieren einer impedanzmessvorrichtung
DE102004010707A1 (de) Energiezähleranordnung und Verfahren zum Kalibrieren
EP2615472B1 (de) Einrichtung und Verfahren zur Überwachung eines Stromes eines Leitungsabschnitts
EP2211190A1 (de) Verfahren und Vorrichtung zur Kompensation von Zuleitungseinflüssen bei einer Fehlerortung
EP0360348B1 (de) Verfahren und Vorrichtung zur Messung kleiner elektrischer Signale
CH176677A (de) Verfahren zum Prüfen von Stromwandlern.
DE3831659A1 (de) Einschaltung zum eichen eines ohmmeters
DE19934055A1 (de) Verfahren zum Ermitteln von Amplitude und Phasenwinkel eines einem Strom oder einer Spannung eines elektrischen Energieversorgungsnetzes entsprechenden Meßsignals
DE2726533B2 (de) Temperaturkompensations-Verfahren und Temperaturkompensator für Lösungskonzentrations-Ultraschallmesser
DE102015210426A1 (de) Anordnung und Verfahren zum Erfassen eines Stroms mittels eines induktiven Stromsensors
DE102014011397B4 (de) Verfahren zum Kalibrieren einer elektrochemischen Impedanzspektroskopie-Messvorrichtung und Impedanznormal
DE2702815C3 (de) Temperaturmeßvorrichtung
DE4133619A1 (de) Verfahren und vorrichtung zur messung des einschwingverhaltens
EP0438637A1 (de) Verfahren und Anordnung zur Ermittlung eines Effektivwertes Ieff eines mit Hilfe eines Hallelementes und einer Verstärkeranordnung zu messenden Stromes
DE102020126419B4 (de) Thermometer
DE102013011790B4 (de) Überwachungssystem
DE853180C (de) Verfahren zum Einstellen von Groessen in elektrischen Stromkreisen auf einen mit einem Bruch multiplizierten Wert der Ursprungsgroesse ohne Rechnung, insbesondere zum Einstellen von Magnetmotor- oder Elektrolytzaehlern
DE411592C (de) Verfahren zur Kompensierung in Wechselstromkreisen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020930

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50012309

Country of ref document: DE

Date of ref document: 20060427

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060601

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060612

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060801

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061204

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: ABB RESEARCH LTD.

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061106

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151125

Year of fee payment: 16

Ref country code: DE

Payment date: 20151119

Year of fee payment: 16

Ref country code: GB

Payment date: 20151118

Year of fee payment: 16

Ref country code: FI

Payment date: 20151111

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151119

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50012309

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106