EP1203395B1 - Vorrichtung und verfahren zur ionenstrahlbeschleunigung und zur elektronenstrahlimpulsformung und -verstärkung - Google Patents

Vorrichtung und verfahren zur ionenstrahlbeschleunigung und zur elektronenstrahlimpulsformung und -verstärkung Download PDF

Info

Publication number
EP1203395B1
EP1203395B1 EP01971769A EP01971769A EP1203395B1 EP 1203395 B1 EP1203395 B1 EP 1203395B1 EP 01971769 A EP01971769 A EP 01971769A EP 01971769 A EP01971769 A EP 01971769A EP 1203395 B1 EP1203395 B1 EP 1203395B1
Authority
EP
European Patent Office
Prior art keywords
electron beam
high frequency
ion
coupling
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01971769A
Other languages
English (en)
French (fr)
Other versions
EP1203395A1 (de
EP1203395B8 (de
Inventor
Ulrich Ratzinger
Serguej Minaev
Stefan Setzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GSI Helmholtzzentrum fuer Schwerionenforschung GmbH
Original Assignee
GSI Gesellschaft fuer Schwerionenforschung mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2000140896 external-priority patent/DE10040896B4/de
Application filed by GSI Gesellschaft fuer Schwerionenforschung mbH filed Critical GSI Gesellschaft fuer Schwerionenforschung mbH
Publication of EP1203395A1 publication Critical patent/EP1203395A1/de
Application granted granted Critical
Publication of EP1203395B1 publication Critical patent/EP1203395B1/de
Publication of EP1203395B8 publication Critical patent/EP1203395B8/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • G21K1/087Deviation, concentration or focusing of the beam by electric or magnetic means by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2225/00Transit-time tubes, e.g. Klystrons, travelling-wave tubes, magnetrons
    • H01J2225/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J2225/04Tubes having one or more resonators, without reflection of the electron stream, and in which the modulation produced in the modulator zone is mainly density modulation, e.g. Heaff tube

Definitions

  • the invention relates to an apparatus and method for ion beam acceleration and electron beam pulse shaping and amplification according to the independent claims.
  • This microstructure of the beam is in so-called Buncher cavities generated by directed longitudinal high-frequency electric fields.
  • the thus structured electron beam then generates the desired high-frequency power in the output cavity or the output circuit. After deducting this high-frequency power, its residual energy is finally dumped or discharged in a collector.
  • Power filters with operating frequencies of 200 MHz already have a length of 5 m. For operating frequencies including the lengths are unwieldy and the devices bulky and require a space required, which is associated with considerable costs. An essential reason for this enormous space requirement lies in the formation of the electron beam pulses or the electron packets in the tube, for which elongated, several hundred centimeters long drift paths are needed.
  • Klystrodentex a concept has prevailed that is called Klystrodenrox.
  • This principle is a combination of elements of the tube-driven amplifier and the klystron.
  • the electron pulses are generated by means of a control grid and the pulsed electron beam then passes successively through an exit cavity and a collector.
  • this arrangement can be made very compact, but, as far as this concept has prevailed, it is used for television stations with a relatively low transmission power of up to 60 kW in the UHF band, so that this solution can be used in competition with the standard Topfnikverorgrn however, does not provide the high performance required for ion beam acceleration.
  • Power tubes such as the cup circuit amplifiers remain in the considered frequency range well below 1 MW output power in continuous operation, and pulsed operation, the maximum power falls from about 3 MW in the lower frequency range to less than 1 MW in the upper frequency range, so that they can not be used for several megawatts .
  • the overall efficiency of these power tubes is also reduced by the requirement that the cathode heating power of typically 10 kW be continuously applied at the required pulse repetition rates for amplifying ion beam pulses of several hertz up to 50 Hz.
  • the object of the invention is therefore to provide a high-performance high-frequency amplifier in the frequency range from 100 MHz to about 400 MHz, which reaches in pulsed operation with a 1 ms pulse length and a repetition rate of less than or equal to 50 Hz transmitter powers up to 10 MW.
  • an electron beam pulse shaping and amplification apparatus comprising an electron gun, a high frequency deflector, a DC deflector, a counter field collector, a post accelerator, a power coupler for coupling the power of the electron beam to a load and a main collector for receiving the residual power of the electron beam ,
  • the devices listed above are arranged one after the other in the direction of the electron beam.
  • the electron beam gun initially generates a continuous electron beam which is deflected in the high-frequency deflector excited by a high-frequency excitation signal, so that only in the region of the zero crossings of this signal, the electron beam can be passed periodically in the ion beam axis.
  • the adjoining DC deflector amplifies this effect and the portion of the deflected electron beam is collected in a collector with opposing field and this current is fed back to the cathode of the electron gun.
  • the electron beam which is thus divided into electron packets, is accelerated in a post-accelerator and fed to a power coupler, which can couple the power of the electron beam to a load.
  • the remaining non-decoupled residual power of the electron beam is fed to a main collector.
  • transverse high frequency electric fields in the high frequency deflector and transversely directed static electric fields used in the DC deflector to shape and pre-amplify electron pulses.
  • the pure electron beam pulse shaping can be accommodated in this concept in a frequency range between 100 and 400 MHz within a length of only 0.5 m. This is an improvement by reducing the length by more than tenfold, especially since a Klystron for 350 MHz at the required power consumption is already 5 m long. Thus, there is no significant impediment to using the klystron for low frequencies. In the solution according to the invention, the efficiency of the klystron for the generation of high-frequency power is achieved on a much shorter length.
  • the consumer is an antenna of a coaxial cable end, which projects into a resonator, which is coupled to the electron beam via an annular gap surrounding the electron beam.
  • This embodiment extracts with its antenna a substantial portion of the resonant energy from the resonator, and thus the electrons are braked in the electron beam, so that only a small remaining non-decoupled residual power must be collected in the main collector.
  • the consumer is an antenna coupler of a waveguide, which is designed as a coaxial feedthrough through the wall of the resonator chamber.
  • the antenna coupler protrudes into the resonator chamber, which surrounds the electron beam with an annular gap, so that energy from the electron beam can be coupled into the resonator and is then conducted away via the antenna coupler feedthrough to the waveguide.
  • the consumer is a coupling window to a waveguide, the coupling window opening towards the resonator.
  • the electron beam is surrounded by the resonator with an annular gap.
  • an ion beam acceleration apparatus comprising an ion accelerator tank having a central tank axis for guiding and accelerating a pulsed ion beam of heavy ions in the tank axis.
  • This device further comprises an electron beam pulse shaping and amplifying device with electron beam axis for microstructuring and amplifying current pulses for the supply of the device for ion beam acceleration with high frequency power.
  • This solution has the advantage that the ion accelerator tank itself is simultaneously used as the output circuit for the power amplification stage. A power transfer from the amplifier to the tank is eliminated. A coupling of the power level to the tank volume is thus possible. Thus, a structure for ion beam acceleration for ion beams for heavy ions is achieved, which can be produced extremely manageable and extremely inexpensive.
  • a spot suitable for potential is inserted along the drift tube holder of the ion beam.
  • a transverse alternating electric field with a suitable time structure deflects electrons which are unfavorable in terms of time immediately after the pre-acceleration of the electron beam, so that only electron pulses having the desired frequency for amplifying the ion beam pulses undergo the main acceleration and are then decelerated in the field of the ion accelerator tanks because their energy is applied to the Ion beam is coupled.
  • the load is directly the pulsed ion beam.
  • the power coupler has a resonator with an upper annular gap surrounding the electron beam radially and a lower annular gap radially surrounding the electron beam in the ion accelerator tank on. Passing through the electron beam from two annular gaps, namely an upper and a lower annular gap in the tank, appears advantageous since the electron beam must reach the cooled hanger to release its residual energy in the main collector.
  • the drift distance between the gaps is advantageously kept as short as possible in order to achieve a favorable geometry, which does not significantly affect the stress distribution over the drift tube foot.
  • the electrons regardless of their phase position in the pulse when passing through the two annular gaps, the same energy to the ion beam, so that the residual energy in the main collector or collector is less than 10% of the pulse energy.
  • the power coupler further includes a coupling step between the annular gaps that coaxially surrounds the electron beam and is radially offset and disposed transversely to the ion beam within the ion accelerator tank, the coupling stage being attached to a drift tube mount of the ion beam.
  • the electron beam gun is a Piercetyp electron beam gun.
  • a high-permeant electron beam with correspondingly high space charge constant according to the Child Langmuir equation is advantageously generated at pulse lengths of 1 ms, which achieves a beam current of, for example, 40 A at an acceleration voltage of 40 kV.
  • the high-frequency deflector has a homogeneous transversely directed alternating field, with the short electron beam packets in the area
  • the operating frequency of 100 to 400 MHz are created while the electron beam is deflected in the pulse intervals and is supplied to a collector with opposing field, which in turn provides the current of the cathode of the electron beam gun.
  • the DC deflector has an inhomogeneous, time constant transverse electric field, while the electron beam is transversely stabilized simultaneously by means of a longitudinal magnetic field, so that the Brillouin equilibrium condition remains satisfied.
  • the power coupler has in its output circuit a resonator which communicates with the electron beam via an annular gap.
  • the resonator in turn, the energy through a consumer, which is coupled via a coaxial line, a waveguide or directly, as in the case of the ion beam, be withdrawn, so that the electron packets are decelerated in the electron beam and only with low energy, which is partially below 10 % of the total electron beam energy is to be collected in the main collector.
  • the output circuit also has a single-column annular cavity as the resonator, the cavity surrounding the ion beam.
  • the pulse length and the repetition rate of the electron beam, the so-called macrostructure, are in the case of the invention Solution freely selectable, so that pulse lengths of one millisecond at repetition frequencies of less than 50 Hz and a power of 10 MW can be realized with the inventive device and the method according to the invention.
  • the beam first passes through a homogeneous transversely directed alternating electric field, then an inhomogeneous time constant transverse electric field.
  • the energy of these electrons can largely be returned to the cathode of the electron gun and serves as a charging current.
  • the undeflected beam portion which is present in particles or electron packets at a time interval according to the operating frequency, moves along the beam axis and passes through the main acceleration voltage, which may be for example at 300 kV, and then enters the output circuit of the resonator.
  • a resonator may have a single-column annular cavity, as is common in other solutions.
  • Such a resonator is excited by the passing electron packets, and the high-frequency fields generated in the resonator brake the electrons and simultaneously feed the output line of the amplifier, which may preferably be a coaxial line or a waveguide with corresponding coupling antennas or a corresponding coupling window.
  • the remaining electron energy is delivered in the main collector, wherein in particular the formation according to the invention of the electron beam microstructure for a shortening of the length of otherwise usual for higher operating frequencies Klystronarrangingsverorgrn provides.
  • the radio frequency energy is decoupled via a coaxial cable which projects with an antenna into a ring resonator space which communicates with the high-frequency, high-energy electron beam via an annular gap surrounding the electron beam.
  • the decoupling of the high-frequency energy over a Waveguide reaches, which protrudes with a coupling antenna in a Ringresonatorraum, which communicates via a surrounding the electron beam annular gap with the high-frequency, high-energy electron beam.
  • the decoupling of the high-frequency energy via a waveguide is effected, which is connected via a coupling window to a ring resonator, wherein the ring resonator communicates with the electron beam via an annular gap surrounding the electron beam.
  • a high space charge constant electron beam according to the Child Langmuir equation is obtained from an electron beam gun having a beam current of 20 A to 60 A, preferably between 30 to 50 A, at an acceleration voltage (U c ) of 20 kV to 60 kV, preferably from 30 kV to 50 kV is generated.
  • a further preferred embodiment of the method provides that the electron beam is stabilized transversally in the Brillouin equilibrium by means of a longitudinal magnetic field. It is further provided that the intensity-modulated electron beam excites a narrow-band high-frequency resonator in the output circuit at an operating frequency. For this purpose, the electron beam passes through a homogeneous transversely directed alternating electric field, wherein between 50 and 80% of the electron beam energy are deflected by the beam axis.
  • the method is at approximately constant electron energy of 30 keV to 60 keV in a biased collector with opposing field from -30 kV to -40 kV the deflected portion of the electron beam is collected.
  • the energy of the collected electrons is collected in the collector with opposing field and fed as a charging current of the cathode of the electron gun.
  • the undeflected electron packets are moved and guided at a time interval of an operating frequency along the beam axis and enter a output circuit of the device, which is designed as a resonator, with a main acceleration voltage between 200 kV and 400 kV.
  • the resonator jumps in the output circuit of the device, with high-frequency fields in the resonator receive the energy of the electrons, these decelerate and feed an output line, preferably a coaxial cable and / or a waveguide.
  • the remaining residual energy of the electrons is preferably released in a main collector.
  • the driving radio-frequency signal is set from a main component at a frequency of f / 2 and a superposition at the frequency 5f / 2 in an amplitude ratio of 5: 1.
  • the operating frequency between 100 and 400 MHz and per period about 20% of the electron beam particles are passed in pulses, since the overlapping of the two frequencies, a corresponding zero crossing for a corresponding period of time per period is achieved.
  • Fig. 1 shows a schematic diagram of a first embodiment of an apparatus for electron beam pulse shaping and amplification.
  • This consists essentially of a vacuum-tight Housing 28, in the cascaded an electron gun 6, a Hochfrequenzdeflektor 7, a DC deflector 8, a collector with opposing field 9 and a Nachzeleuniger not shown, the reference numeral 10 in Fig. 9 is shown housed.
  • the schematic diagram shown serves essentially to explain the functional principle of the transverse deflection unit for microstructuring the electron beam. The corresponding many particle calculations for forming electron packets in this device were performed by means of suitable software program packages.
  • the in Fig. 1 The section shown from the electron gun 6 to the collector with opposing field 9, which captures the deflected electrons shown hatched in the beam cross section shown in the x / z plane, contains the essential parts of the electron beam shaping device according to the invention.
  • the two deflection systems 7 and 8 arranged directly behind one another can be clearly seen, wherein the second electrostatic deflection unit 8 can be supplied by the cathode potential U c .
  • the electric field direction E y which is arranged perpendicular to the plane of representation, must be oriented inversely for x> 0 than for x ⁇ 0 in order to further increase the electron deflection of the upstream high-frequency deflection unit.
  • the environment of the z-axis, as illustrated in the illustration, is kept almost field-free in the direct-voltage deflector 8 by overlapping the electrodes lying on ground in order to disturb the passing electron packets as little as possible.
  • FIG. 12 is a diagram showing a period of a high frequency voltage signal applied to the high frequency deflector 7.
  • FIG. 12 For this purpose, the time in nanosecond units is entered on the abscissa and the high-frequency deflection voltage is plotted on the ordinate kV.
  • a recurring plateau 51 at the voltage 0 V Within a high-frequency period at an operating frequency f is given by corresponding excitation frequencies of the Hochfrequenzdeflektors 7 a recurring plateau 51 at the voltage 0 V. This recurring plateau 51 at the voltage 0 V defines the passing beam portion, which is not deflected.
  • the driving RF signal consists of a main component at the frequency f / 2 and a superposition with the frequency 5f / 2.
  • V sin ( ⁇ ft) - 0.2 V ⁇ sin (5 ⁇ ft).
  • Fig. 3 shows the deflection effect on the electrons in a Hochfrequenzdeflektor 7.
  • the electrons in the x / y plane under the influence of the electric and magnetic field describe the tracks shown there.
  • the advantage of crossed electrical and magnetic fields is that the deflection by means of the ExB drift essentially takes place in the x / y plane, so that the deflector plates of the high-frequency deflector 7 represent no limitation as long as the gyroradius rg is suitably selected.
  • FIGS. 4a and 4b show schematic diagrams of possible electric fields in a DC voltage deflector 8.
  • the asymmetrical Gleichthesesdeflektor the Fig. 4b in a slightly modified form as the Fig. 5 shows, applied.
  • the unbalanced Gleichthesesdeflektor 8 has compared to the symmetrical DC deflector of Fig. 4a the advantage of a simpler design by only four baffles 36 to 38 against six baffles 30 to 35 of the Fig. 4a ,
  • Fig. 5 shows a cross section through an asymmetrical DC deflector 8 with drawn equipotential lines 29. It can be clearly seen from this illustration that the center between the baffles 40 to 43 is kept free of field, so that electrons that fly through these cover plates in the center, not or only slightly in addition to get distracted. Furthermore, the modification according to the embodiment Fig. 5 compared to the schematic diagram 4b in that the baffles 41 and 42 lying at ground (0 V) are initially parallel and then partially angled with respect to the center line 44 and the baffles subjected to a negative voltage of -40 kV in this embodiment are completely angled away from the center line 44.
  • Fig. 6 shows several intensity profiles along the electron beam axis in the z direction for different apertures of a collector 9 with opposing field.
  • the z-direction is entered in centimeters on the abscissa, and the electron beam density is comparatively plotted in arbitrary units on the ordinate.
  • the curves were recorded for three different apertures of the collector 9 with opposing fields of ⁇ 5 mm, ⁇ 6 mm and ⁇ 7 mm.
  • the pulse packet or electron packet periodically outputted through this shutter has a length of not quite 10 cm, the length increasing slightly with increasing diameter of the opening in the counter field collector 9.
  • the intensity maximum does not depend on the aperture in this pulse width, but the intensity maximum is evident by the Gleichthesesdeflektor with an acceleration voltage U c determines and is equally intense at constant DC voltage.
  • Fig. 7 shows a sketch of the distribution of the electron density after passing through the high-frequency deflector.
  • the abscissa represents the x-position in mm and the ordinate the electron density in arbitrary units.
  • Fig. 8 shows a sketch of the electron density distribution after passing through the high-frequency deflector 7 and the Gleichwoodsdeflektors 8.
  • the maxima of the deflected electrodes are concentrated at a significant distance from the center of the beam, which is 0.0 mm. Only 20% of the electrons remain in the center of the beam and can be further accelerated in the following high accelerator. These 20% result from electron packets or electron pulses, as in spatial extension in Fig. 6 were presented.
  • the cross section of the particle packages to be transported results in its density distribution to about 13 mm in the x-direction and about 11 mm in the y-direction. From this cross section, the aperture of the collector with opposing field cuts out a corresponding electron pulse beam.
  • Fig. 9 shows a schematic diagram of an apparatus for electron beam pulse shaping and amplification.
  • Like reference numerals define like device components as in FIG Fig. 1 , A discussion of these device components is therefore largely omitted.
  • Fig. 9 is in addition to the in Fig. 1 shown device components to see a frequency converter f 1 , which oscillates at half the operating frequency f and is supplied via a phase shifter 45 to an amplifier 48, which amplifies the signal of the frequency converter f 1 to about 50 kW.
  • This signal is superimposed on a signal which is supplied by a second frequency converter f 2 , which generates a frequency of 5f / 2 and superimposes this signal on the signal of the first frequency converter at the crosspoint 50.
  • an amplitude adjustment is set by the amplifier 49 in addition to the correct phase, so that the amplitude of the signal of the frequency converter f 2 is only 1/5 of the amplitude of the frequency converter f 1 .
  • This signal which for a period takes the form of in Fig. 2 is applied to the plates of the high-frequency deflector 7. Superimposed on the signal is a magnetic field which is generated by the coil 47 within the housing 28.
  • an electron beam 14 is generated in the electron beam axis 5 from an electron beam gun 6, which in this embodiment is a Pierce type electron gun.
  • This electron gun produces a high-energy electron beam with high space charge constant according to the Child Langmuir equation and is transversely stabilized by means of a longitudinal magnetic field of the coil 47 and kept in Brillouin equilibrium.
  • both the deflected electron packets become as well as remaining in the axis center electron packets passed through the DC voltage deflector 8.
  • the time interval of the packets is determined by the operating frequency f, which is between 100 and 400 MHz.
  • the deflected electron beam packet portions are received by the collector 9 with opposing field and supplied via a connecting line of the cathode of the electron beam gun 6, located in the center about 20% of the electron of the electron beam reach the post-accelerator 10, which with an acceleration voltage in this embodiment of 300 kV
  • Electron beam pulses or electron packets energetically amplified so that they can interact with the subsequent annular resonator 15 through the annular gap 25 in interaction.
  • the resonator excited by the frequency of the electron beam, withdraws energy from the electron packets, which in this embodiment is fed via an antenna 23 to a coaxial output line 12.
  • This coaxial cable can be connected to a consumer.
  • the load is directly an ion beam of an accelerating chamber or an ion accelerator tank, for example an ion beam therapy system or an ion beam material inspection system, which is operated substantially with heavy ions such as carbon and oxygen ions.
  • the output line 12 may also be a waveguide which communicates with the resonator 15 via a coupling window or is connected to the resonator 15 via a coaxial feedthrough.
  • the energy not withdrawn from the resonator 15 and thus from the electron beam 14 through the output line is absorbed by the main collector 13.
  • This main collector 13 preferably has water-cooled walls in order to dissipate the residual energy, which in this embodiment is less than 10%. lies. At a maximum power of 10 MW, however, a high cooling capacity is required to prevent melting of the housing of the main collector.
  • Fig. 10 shows a schematic diagram of an apparatus for ion beam acceleration.
  • the principle of the invention has the advantage that it can be introduced directly into a system for ion beam acceleration.
  • the shows Fig. 10 an apparatus 51 for ion beam acceleration, which has an ion accelerator tank 1 with a central container axis 2 for guiding and accelerating a pulsed ion beam 3 in the container axis 2.
  • a Elektronenstrahlimpulsformungs- and -verstärkungs adopted 4 with electron beam axis 5 for microstructuring and amplification of current pulses for the supply of the device 51 for ion beam acceleration with high frequency power is arranged such that the electron beam pulse forming and amplifying device 4 with its electron beam axis 5 arranged transversely to the container axis 2 and and outside of the ion accelerator tank 1 has an electron beam gun 6, a Hochfrequenzdeflektor 7, a DC deflector 8, an opposing collector 9 and a Nachbe deviser 10 and within the Ionenbelixs 1 a power coupler 11 for coupling the power of the electron beam 14 to a consumer 12, the
  • the pulsed ion beam 3 wherein a main collector 13, the residual power of the electron beam 14 receives and said device components successively in the direction of I. onenstrahls 14 are arranged.
  • Half the operating frequency f of the ion beam 3 is supplied in the frequency converter f 1 via a phase shifter 45 and an amplifier 48 to a crosspoint 50, at the same time the f5 / 2 operating frequency f with the frequency converter f 2 via the amplifier 49 is applied. With these superposed frequencies of the high-frequency deflector 7 is operated, which modulates the ion beam from the electron beam gun 6.
  • a DC deflector 8 the deflection and the separation between deflected ion beam sections and thus pulse intervals and in the center continued ion beam sections and thus pulse lengths amplified, so that the deflected ion beam sections can be picked up by the collector 9 with the opposing field.
  • the electron packets which are continued centrally on the ion beam axis 5, are brought to a correspondingly high energy in the post-accelerator 10, so that they can resonate with the volume of space of the ion accelerator tank 1.
  • a substantial part of the electron beam energy is transferred to the ion beam pulses, while a small residual amount of less than 10% of the electron beam energy is supplied to the main collector 13.
  • this solution according to the invention has an upper annular gap 16 and a lower annular gap 17, the Surround the electron beam while a coupling piece 18 is disposed therebetween.

Description

  • Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Ionenstrahlbeschleunigung und zur Elektronenstrahlimpulsformung und -verstärkung gemäß den unabhängigen Ansprüchen.
  • Für eine Ionenstrahlbeschleunigung von Schwerionen wie Kohlenstoffionen, Sauerstoffionen und dergleichen in Linearbeschleunigern und Cyclotronbeschleunigern werden Leistungen im Bereich von mehreren Megawatt bei Frequenzen um 300 MHz benötigt. Für derart hohe Leistungen und bei derartigen Frequenzen versagen die konventionellen Hochfrequenzleistungsverstärker wie Topfkreisverstärker, die im allgemeinen in einem Frequenzbereich von 50 bis 200 MHz und in einem Leistungsspektrum bis zu 50 kW einsetzbar sind. Für höhere Frequenzen und höhere Leistungen bietet sich das Prinzip der Klystron-Leistungsverstärkung an, das sich im Frequenzbereich von 350 MHz bis 20 GHz durchgesetzt hat. Dabei handelt es sich wie bei Wanderfeltröhren um eine lineare Anordnung, wobei ein aus einer Elektronenkanone austretender Strahl mittels longitudinaler Geschwindigkeitsmodulation in Elektronenpakete gegliedert wird. Diese Mikrostruktur des Strahls wird in sogenannten Buncher-Kavitäten mittels gerichteter longitudinaler hochfrequenter elektrischer Felder erzeugt. Der derart strukturierte Elektronenstrahl erzeugt dann in der Ausgangskavität oder dem Ausgangskreis die gewünschte Hochfrequenzleistung. Nach Abzug dieser Hochfrequenzleistung wird seine Restenergie schließlich in einem Kollektor deponiert oder abgeleitet. Leistungsklystrons mit Betriebsfrequenzen von 200 MHz haben bereits eine Baulänge von 5 m. Für Betriebsfrequenzen darunter werden die Baulängen unhandlich und die Geräte unförmig und beanspruchen einen Raumbedarf, der mit erheblichen Kosten verbunden ist. Eine wesentliche Ursache für diesen enormen Raumbedarf liegt in der Formierung der Elektronenstrahlimpulse bzw. der Elektronenpakete in der Röhre, wozu langgestreckte, mehrere hundert Zentimeter lange Driftstrecken benötigt werden. Für wesentlich tiefere Frequenzen, wie unter 200 MHz, wird deshalb auf die Topfkreisverstärker in Form von Leistungsröhren zurückgegriffen, jedoch für den Frequenzbereich zwischen 200 und 350 MHz gibt es bisher keine wirtschaftliche Lösungen, die einen hohen Leistungspegel von mehreren Megawatt und eine entsprechende Betriebsfrequenz zulassen.
  • In den letzten Jahren hat sich ein Konzept durchgesetzt, das sich Klystrodenprinzip nennt. Bei diesem Prinzip handelt es sich um eine Kombination von Elementen des röhrengetriebenen Verstärkers und des Klystrons. Die Elektronenimpulse werden dabei mittels eines Steuergitters erzeugt und der gepulste Elektronenstrahl durchläuft dann nacheinander eine Ausgangskavität und einen Kollektor. Zwar kann diese Anordnung sehr kompakt gebaut werden, aber, soweit sich dieses Konzept durchgesetzt hat, wird es für Fernsehsender eingesetzt mit einer relativ geringen Sendeleistung von maximal 60 kW im UHF-Band, so daß diese Lösung in Konkurrenz zu den standardmäßigen Topfkreisverstärkern einsetzbar ist, jedoch nicht die hohen Leistungen bringt, die für eine Ionenstrahlbeschleunigung erforderlich sind.
  • Das Klystrodenprinzip ist aus der Patentschrift EP-A-o 587481 (THOMSON TUBES ELEKTRONICS), 5. März 1994, aus der US-Patentschrift US-A5 497 053 (SWYDEN THOMAS ET AL) 5. März 1996 , aus der Patentzusammenfassung PATENT ABSTRACTS OF JAPAN 11.März 1983, aus der Veröffentlichung DATABASE WPI Section El, Week 198135, Derwent Publications Ltd, London GB Class V05, AN 1981-j1141D XP002185134 & SU 777 754 A (RYAZA WIRELESS ING INST), 4. Januar 1980 und aus dem Dokument LORING C JR ET AL 2The Klysterode, a new high power electron tube for UHF industrial application"JOURNAL OF MICROWAVE POWER AND ELECTROMAGNETIC ENERGY',1993 USA, BD 28 Nr. 3, Seiten 174-182 XP 001039895), bekannt.
  • Leistungsklystrons, die durchaus in der Lage wären, mehrere Megawattverstärkung zu liefern, verlieren jedoch bei Frequenzen von 100 MHz bis 400 MHz wegen des technischen Aufwands und besonders wegen ihrer Baugröße bei diesen tiefen Frequenzen ihre sonst vorhandenen Vorteile. Andererseits sind Klystroden, wie sie oben erwähnt werden, aufgrund der Verwendung eines Steuergitters bezüglich der maximal erzielbaren Hochfrequenzleistung sowie bezüglich der erzielbaren Wartungsintervalle äußerst begrenzt einsetzbar. Leistungsröhren wie die Topfkreisverstärker bleiben im betrachteten Frequenzbereich deutlich unter 1 MW Ausgangsleistung im Dauerbetrieb, und bei gepulstem Betrieb fällt die Maximalleistung von etwa 3 MW im unteren Frequenzbereich auf unter 1 MW im oberen Frequenzbereich ab, so daß auch diese für mehrere Megawatt nicht verwendet werden können. Der Gesamtwirkungsgrad fällt bei diesen Leistungsröhren auch dadurch ab, daß die Kathodenheizleistung von typisch 10 kW bei den erforderlichen Pulswiederholraten zur Verstärkung von Ionenstrahlimpulsen von mehreren Hertz bis zu 50 Hz kontinuierlich aufzubringen ist.
  • Aufgabe der Erfindung ist es deshalb, einen leistungsstarken Hochfrequenzverstärker im Frequenzbereich von 100 MHz bis etwa 400 MHz anzugeben, der im gepulsten Betrieb mit einer 1 ms Pulslänge und einer Wiederholrate von kleiner gleich 50 Hz Senderleistungen bis zu 10 MW erreicht. Darüber hinaus ist es Aufgabe der Erfindung, eine technische Lösung anzugeben, welche die aktuelle kritische Situation bei der Produktion von Hochfrequenzleistungsröhren überwindet, die darin liegt, daß immer weniger Anbieter derartige Leistungsröhren produzieren, so daß neben den oben genannten Einschränkungen dieses Verstärkertyps auch die Versorgungslage langfristig nicht gesichert erscheint.
  • Gelöst wird diese Aufgabe mit den unabhängigen Ansprüchen, vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • Erfindungsgemäß wird eine Vorrichtung zur Elektronenstrahlimpulsformung und -verstärkung angegeben, die eine Elektronenkanone, einen Hochfrequenzdeflektor, einen Gleichspannungsdeflektor, einen Kollektor mit Gegenfeld, einen Nachbeschleuniger, einen Leistungskoppler zur Ankopplung der Leistung des Elektronenstrahls an einen Verbraucher und einen Hauptkollektor zur Aufnahme der Restleistung des Elektronenstrahls aufweist. Dazu sind die oben aufgelisteten Vorrichtungen nacheinander in Richtung des Elektronenstrahls angeordnet.
  • Die Elektronenstrahlkanone erzeugt zunächst einen kontinuierlichen Elektronenstrahl, der in dem Hochfrequenzdeflektor, angeregt durch ein hochfrequentes Anregungssignal abgelenkt wird, so daß nur im Bereich der Nulldurchgänge dieses Signals der Elektronenstrahl periodisch in der Ionenstrahlachse weitergegeben werden kann. Durch den sich anschließenden Gleichspannungsdeflektor wird dieser Effekt verstärkt und der Anteil des abgelenkten Elektronenstrahls wird in einem Kollektor mit Gegenfeld gesammelt und dieser Strom zu der Kathode der Elektronenkanone zurückgekoppelt. Der in dieser Weise in Elektronenpakete aufgegliederte Elektronenstrahl wird in einem Nachbeschleuniger beschleunigt und einem Leistungskoppler zugeführt, der die Leistung des Elektronenstrahls an einen Verbrauchers ankoppeln kann. Die verbleibende nicht ausgekoppelte Restleistung des Elektronenstrahl wird einem Hauptkollektor zugeführt. Somit werden in vorteilhafter Weise statt der beim Klystron verwendeten longitudinalen Geschwindigkeitsmodulation bei der vorliegenden Erfindung transversale hochfrequente elektrische Felder im Hochfrequenzdeflektor und transversalgerichtete statische elektrische Felder im Gleichspannungsdeflektor verwendet, um Elektronenimpulse zu formen und vorzuverstärken.
  • Innerhalb einer Hochfrequenzperiode werden somit etwa 80 % des kontinuierlich angelieferten Elektronenstrahls abgelenkt und in einem negativ vorgespannten Kollektor mit Gegenspannung aufgefangen. Die auf der Strahlachse weiterlaufenden verbleibenden Elektronenstrahlimpulse in Form von Elektronenpaketen durchlaufen dann die Hauptbeschleunigung mit mehreren hundert Kilovolt und erreichen derart beschleunigt die Ausgangskavität des Leistungskopplers, der die Leistung des Elektronenstrahls an einen Verbraucher ankoppelt. Die nicht ausgekoppelte Restleistung wird im Hauptkollektor gesammelt. Die reine Elektronenstrahlimpulsformierung kann bei diesem Konzept in einem Frequenzbereich zwischen 100 und 400 MHz innerhalb einer Baulänge von nur 0,5 m untergebracht werden. Dieses ist eine Verbesserung durch Verringerung der Baulänge um mehr als das Zehnfache, zumal ein Klystron für 350 MHz bei der geforderten Leistungsaufnahme bereits 5 m lang ist. Somit entfällt ein wesentlicher Hinderungsgrund, für tiefe Frequenzen das Klystron anzuwenden. Bei der erfindungsgemäßen Lösung wird der Wirkungsgrad des Klystrons für die Erzeugung von Hochfrequenzleistungen auf wesentlich kürzerer Baulänge erreicht.
  • In einer bevorzugten Ausführungsform der Erfindung ist der Verbraucher eine Antenne eines Koaxialkabelendes, die in einen Resonator, der über einen den Elektronenstrahl umgebenden Ringspalt mit dem Elektronenstrahl gekoppelt ist, hineinragt. Diese Ausführungsform entzieht mit seiner Antenne einen wesentlichen Anteil der Resonanzenergie aus dem Resonator, und damit werden die Elektronen im Elektronenstrahl gebremst, so daß nur noch eine geringe verbleibende nicht ausgekoppelte Restleistung im Hauptkollektor gesammelt werden muß.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung ist der Verbraucher ein Antennenkoppler eines Hohlleiters, der als koaxiale Durchführung durch die Wandung des Resonatorraumes ausgeführt ist. Dazu ragt der Antennenkoppler in den Resonatorraum hinein, der den Elektronenstrahl mit einem Ringspalt umgibt, so daß Energie aus dem Elektronenstrahl in den Resonator gekoppelt werden kann und über die Antennenkopplerdurchführung dann weiter an den Hohlleiter abgeleitet wird.
  • In einer weiteren bevorzugten Durchführung der Erfindung ist der Verbraucher ein Kopplungsfenster zu einem Hohlleiter, wobei das Kopplungsfenster sich zu dem Resonator hin öffnet. Auch in dieser Ausführungsform ist der Elektronenstrahl von dem Resonator mit einem Ringspalt umgeben.
  • Eine weitere erfindungsgemäße Lösung besteht in einer Vorrichtung zur Ionenstrahlbeschleunigung, die einen Ionenbeschleunigertank mit zentraler Behälterachse zur Führung und Beschleunigung eines gepulsten Ionenstrahl aus Schwerionen in der Behälterachse umfaßt. Diese Vorrichtung weist darüber hinaus eine Elektronenstrahlimpulsformungs- und -verstärkungseinrichtung mit Elektronenstrahlachse zur Mikrostrukturierung und Verstärker von Stromimpulsen für die Versorgung der Vorrichtung zur Ionenstrahlbeschleunigung mit Hochfrequenzleistung auf.
  • Diese Lösung ist dadurch gekennzeichnet, daß die Elektronenstrahlimpulsformungs- und -verstärkungseinrichtung mit ihrer Elektronenstrahlachse quer und versetzt zur Behälterachse angeordnet ist und außerhalb des Ionenbeschleunigertanks eine Elektronenkanone, einen Hochfrequenzdeflektor, einen Gleichspannungsdeflektor, einen Kollektor mit Gegenfeld und einen Nachbeschleuniger aufweist, während innerhalb des Ionenbeschleunigertanks die Vorrichtung einen Leistungskoppler zur Ankopplung der Leistung des Elektronenstrahls an einen Verbraucher und einen Hauptkollektor zur Aufnahme der Restleistung des Elektronenstrahls besitzt. Die aufgeführten Vorrichtungskomponenten der Elektronenstrahlimpulsformungs- und -verstärkungseinrichtung sind hintereinander in Richtung des Elektronenstrahls angeordnet.
  • Diese Lösung hat den Vorteil, daß der Ionenbeschleunigertank selbst gleichzeitig als Ausgangskreis für die Leistungsverstärkungsstufe verwendet wird. Ein Leistungstransport vom Verstärker zum Tank entfällt. Eine Ankopplung der Leistungsstufe an das Tankvolumen ist damit möglich. Damit wird ein Aufbau zur Ionenstrahlbeschleunigung für Ionenstrahlen für Schwerionen erreicht, der äußerst überschaubar und äußerst kostengünstig hergestellt werden kann.
  • Zur Kopplung zwischen treibendem Elektronenstrahl und Ionenbeschleunigertank wird eine im Potential passende Stelle entlang der Driftröhrenhalterung des Ionenstrahls eingesetzt. Ein transversales elektrisches Wechselfeld mit geeigneter Zeitstruktur lenkt dabei unmittelbar nach der Vorbeschleunigung des Elektronenstrahls zeitlich ungünstig liegende Elektronen ab, so daß nur Elektronenimpulse mit der gewünschten Frequenz zur Verstärkung der Ionenstrahlimpulse die Hauptbeschleunigung durchlaufen und anschließend im Feld des Ionenbeschleunigertanks abgebremst werden, weil ihre Energie an den Ionenstrahl angekoppelt ist.
  • Somit ist in einer bevorzugten Ausführungsform der Erfindung der Verbraucher unmittelbar der gepulste Ionenstrahl.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung weist der Leistungskoppler einen Resonator mit einem den Elektronenstrahl radial umgebenden oberen Ringspalt und und einem den Elektronenstrahl radial umgebenden unteren Ringspalt im Ionenbeschleunigertank auf. Ein Durchlaufen des Elektronenstrahls von zwei Ringspalten, nämlich einem oberen und einem unteren Ringspalt im Tank erscheint vorteilhaft, da der Elektronenstrahl den gekühlten Aufhänger erreichen muß, um seine Restenergie in dem Hauptkollektor abzugeben. Dazu wird vorteilhaft die Driftstrecke zwischen den Spalten möglichst kurz gehalten, um eine günstige Geometrie zu erreichen, welche die Spannungsverteilung über dem Driftröhrenfuß nicht wesentlich beeinträchtigt. Außerdem geben in vorteilhafter Weise die Elektronen unabhängig von ihrer Phasenlage im Impuls beim Durchlaufen der beiden Ringspalte die gleiche Energie an den Ionenstrahl ab, so daß die Restenergie in dem Hauptkollektor oder Auffänger kleiner als 10 % der Impulsenergie ist.
  • Um derart angepaßte Ringspalte in dem Ionenbeschleunigertank anzuordnen, weist der Leistungskoppler darüber hinaus zwischen den Ringspalten eine Kopplungsstufe auf, die koaxial den Elektronenstrahl umgibt und radial versetzt und transversal zum Ionenstrahl innerhalb des Ionenbeschleunigertanks angeordnet ist, wobei die Kopplungsstufe an einer Driftröhrenhalterung des Ionenstrahls befestigt ist.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung ist die Elektronenstrahlkanone eine Piercetyp-Elektronenstrahlkanone. Mit einer derartigen Kanone wird in vorteilhafter Weise ein hochperveanter Elektronenstrahl mit entsprechend hoher Raumladungskonstanten gemäß der Child-Langmuir-Gleichung bei Impulslängen von 1 ms erzeugt, der einen Strahlstrom von beispielsweise 40 A bei einer Beschleunigungsspannung von 40 kV erreicht.
  • In einer weiteren bevorzugten Ausführungsform weist der Hochfrequenzdeflektor ein homogenes transversal gerichtetes Wechselfeld auf, mit dem kurze Elektronenstrahlpakete im Bereich der Betriebsfrequenz von 100 bis 400 MHz geschaffen werden, während der Elektronenstrahl in den Impulspausen abgelenkt wird und einem Kollektor mit Gegenfeld zugeführt wird, der seinerseits den Strom der Kathode der Elektronenstrahlkanone zur Verfügung stellt.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung weist der Gleichspannungsdeflektor ein inhomogenes, zeitlich konstantes transversales elektrisches Feld auf, während der Elektronenstrahl mittels eines longitudinalen Magnetfeldes gleichzeitig transversal stabilisiert wird, so daß die Brillouin-Gleichgewichtsbedingung erfüllt bleibt.
  • In einer weiteren bevorzugten Ausführungsform weist der Leistungskoppler in seinem Ausgangskreis einen Resonator auf, der über einen Ringspalt mit dem Elektronenstrahl kommuniziert. Dem Resonator kann wiederum die Energie durch einen Verbraucher, der über eine Koaxialleitung, einen Hohlleiter oder unmittelbar angekoppelt ist, wie im Falle des Ionenstrahls, entzogen werden, so daß die Elektronenpakete im Elektronenstrahl abgebremst werden und nur noch mit geringer Energie, die teilweise unter 10 % der Gesamtelektronenstrahlenergie liegt, in dem Hauptkollektor gesammelt werden müssen.
  • Neben der für die unmittelbare Ankopplung an einen Ionenstrahlverbraucher gefundenen Lösung weist der Ausgangskreis auch eine einspaltige ringförmige Kavität als Resonator auf, wobei die Kavität den Ionenstrahl umgibt. Mit dieser Lösung ist es möglich, beliebige Verbraucher über Koaxialkabel oder Hohlleiter an die erfindungsgemäße leistungsverstärkende Vorrichtung anzuschließen.
  • Die Pulslänge und die Wiederholungsrate des Elektronenstrahls, die sogenannte Makrostruktur, sind bei der erfindungsgemäßen Lösung frei wählbar, so daß Impulslängen von einer Millisekunde bei Wiederholfrequenzen von unter 50 Hz und einer Leistung von 10 MW mit der erfindungsgemäßen Vorrichtung und dem erfindungsgemäßen Verfahren verwirklicht werden können.
  • Da ein schmalbandiger HF-Resonator, wie er in den bevorzugten Ausführungsformen der Erfindung als ringförmige Kavität mit Ringspalt angegeben ist, erst dann mit einem Elektronenstrahl wirkungsvoll angeregt werden kann, wenn der Strahl eine Intensitätsmodulation bei der entsprechenden Betriebsfrequenz aufweist, wird diese sogenannte Mikrostruktur des Elektronenstrahls mittels des erfindungsgemäßen Verfahrens erzeugt. Dieses erfindungsgemäße Verfahren zur Elektronenstrahlimpulsformung und -verstärkung weist folgende Verfahrensschritte auf:
    • Erzeugen eines Elektronenstrahls mittels einer Elektronenstrahlkanone;
    • Beaufschlagen des Elektronenstrahls mit einem transversalen hochfrequenten Wechselfeld unter gleichzeitig hochfrequenter Auslenkung des Elektronenstrahls;
    • Hochfrequentes Ausblenden von bis zu 80 % der Elektronenstrahlenergie zu einem Kollektor mit Gegenfeld mittels eines Hochfrequenzdeflektors und eines Gleichspannungsdeflektors;
    • Nachbeschleunigen des hochfrequenzmodulierten Elektronenstrahls zu verstärkten Elektronenstrahlimpulsen;
    • Auskoppeln der Hochfrequenzenergie über einen Leistungskoppler.
  • Somit durchläuft der Strahl zunächst ein homogenes transversal gerichtetes elektrisches Wechselfeld, danach ein inhomogenes zeitlich konstantes transversales elektrisches Feld. Dabei werden etwa 80 % des Elektronenstrahls von der Strahlachse abgelenkt und bei nahezu konstanter Elektronenenergie von 40 keV in einem vorgespannten Kollektor mit z.B. U = -40 kV + x aufgefangen. Die Energie dieser Elektronen kann weitestgehend wieder an die Kathode der Elektronenkanone zurückgeführt werden und dient als Ladestrom.
  • Der nichtabgelenkte Strahlanteil, der in Teilchen oder Elektronenpaketen im zeitlichen Abstand gemäß der Betriebsfrequenz vorliegt, bewegt sich entlang der Strahlachse weiter und durchläuft die Hauptbeschleunigungsspannung, die beispielsweise bei 300 kV liegen kann, und tritt dann in den Ausgangskreis des Resonators ein. Ein derartiger Resonator kann eine einspaltige ringförmige Kavität aufweisen, wie sie auch bei anderen Lösungen üblich ist. Ein derartiger Resonator wird durch die durchlaufenden Elektronenpakete angeregt, und die im Resonator entstehenden Hochfrequenzfelder bremsen die Elektronen und speisen gleichzeitig die Ausgangsleitung des Verstärkers, die vorzugsweise eine Koaxialleitung oder ein Hohlleiter mit entsprechenden Ankopplungsantennen oder einem entsprechenden Kopplungsfenster sein können. Schließlich wird die restliche Elektronenenergie im Hauptkollektor abgegeben, wobei insbesondere die erfindungsgemäße Formierung der Elektronenstrahlmikrostruktur für eine Verkürzung der Baulänge von sonst für höhere Betriebsfrequenzen üblichen Klystronleistungsverstärkern sorgt.
  • Somit wird bei einem bevorzugten Durchführungsbeispiel des Verfahrens die Hochfrequenzenergie über ein Koaxialkabel ausgekoppelt, das mit einer Antenne in einen Ringresonatorraum ragt, welcher über einen den Elektronenstrahl umgebenden Ringspalt mit dem hochfrequenten, energiereichen Elektronenstrahl kommuniziert.
  • In einem weiteren bevorzugten Durchführungsbeispiel des Verfahrens wird das Auskoppeln der Hochfrequenzenergie über einen Hohlleiter erreicht, der mit einer Koppelantenne in einen Ringresonatorraum hineinragt, welcher über einen den Elektronenstrahl umgebenden Ringspalt mit dem hochfrequenten, energiereichen Elektronenstrahl kommuniziert.
  • Bei einem weiteren bevorzugten Durchführungsbeispiel des Verfahrens wird das Auskoppeln der Hochfrequenzenergie über einen Hohlleiter erfolgen, der über ein Koppelfenster an einen Ringresonatorraum angeschlossen ist, wobei der Ringresonator über einen den Elektronenstrahl umgebenden Ringspalt mit dem Elektronenstrahl kommuniziert.
  • Ein weiteres bevorzugtes Durchführungsbeispiel des Verfahrens sieht vor, daß ein Elektronenstrahl mit hoher Raumladungskonstanten gemäß der Child-Langmuir-Gleichung von einer Elektronenstrahlkanone mit einem Strahlstrom von 20 A bis 60 A, vorzugsweise zwischen 30 bis 50 A, bei einer Beschleunigungsspannung (Uc) von 20 kV bis 60 kV, vorzugsweise von 30 kV bis 50 kV erzeugt wird.
  • Ein weiteres bevorzugtes Durchführungsbeispiel des Verfahrens sieht vor, daß der Elektronenstrahl mittels eines longitudinalen Magnetfeldes transversal im Brillouin-Gleichgewicht stabilisiert wird. Weiterhin ist vorgesehen, daß der intensitätsmodulierte Elektronenstrahl einen schmalbandigen Hochfrequenzresonator im Ausgangskreis bei einer Betriebsfrequenz anregt. Dazu durchläuft der Elektronenstrahl ein homogenes transversalgerichtetes elektrisches Wechselfeld, wobei zwischen 50 und 80 % der Elektronenstrahlenergie von der Strahlachse abgelenkt werden.
  • In einem weiteren bevorzugten Durchführungsbeispiel des Verfahrens wird bei näherungsweise konstanter Elektronenenergie von 30 keV bis 60 keV in einem vorgespannten Kollektor mit Gegenfeld von -30 kV bis -40 kV der abgelenkte Anteil des Elektronenstrahls aufgefangen. Dabei wird die Energie der aufgefangenen Elektronen in dem Kollektor mit Gegenfeld gesammelt und als Ladestrom der Kathode der Elektronenkanone zugeführt.
  • In einem weiteren bevorzugten Durchführungsbeispiel des Verfahrens werden die nicht abgelenkten Elektronenpakete in zeitlichem Abstand einer Betriebsfrequenz entlang der Strahlachse bewegt und geführt und treten mit einer Hauptbeschleunigungsspannung zwischen 200 kV und 400 kV in einen Ausgangskreis der Vorrichtung, der als Resonator ausgebildet ist, ein. Dabei springt der Resonator im Ausgangskreis der Vorrichtung an, wobei hochfrequente Felder im Resonator die Energie der Elektronen aufnehmen, diese abbremsen und eine Ausgangsleitung, vorzugsweise ein Koaxialkabel und/oder einen Hohlleiter speisen.
  • Die verbleibende Restenergie der Elektronen wird vorzugsweise in einem Hauptkollektor abgegeben. Für eine elektrische Strahlablenkung in dem Hochfrequenzdeflektor wird in einem bevorzugten Durchführungsbeispiel des Verfahrens für einem Betriebsfrequenz f das ansteuernde Hochfrequenzsignal aus einem Hauptbestandteil bei einer Frequenz von f/2 und einer Überlagerung mit der Frequenz 5f/2 in einem Amplitudenverhältnis von 5:1 eingestellt. Dabei liegt die Betriebsfrequenz zwischen 100 und 400 MHz und pro Periode werden etwa 20 % der Elektronenstrahlteilchen impulsweise weitergegeben, da durch die Überlagerung der beiden Frequenzen ein entsprechender Nulldurchgang für eine entsprechende Zeitspanne pro Periode erreicht wird.
  • Die Erfindung wird nun anhand von Figuren näher erläutert.
    • Fig. 1 zeigt eine Prinzipskizze einer ersten Ausführungsform einer Vorrichtung zur Elektronenstrahlimpulsformung und -verstärkung.
    • Fig. 2 zeigt ein Diagramm einer Periode eines Hochfrequenzspannungssignals, das an einem Hochfrequenzdeflektor angelegt wird.
    • Fig. 3 zeigt die Ablenkwirkung auf Elektronen in einem Hochfrequenzdeflektor.
    • Figuren 4a und 4b zeigen Prinzipskizzen möglicher elektrischer Felder in einem Gleichspannungsdeflektor.
    • Fig. 5 zeigt einen Querschnitt durch einen asymmetrischen Gleichspannungsdeflektor mit eingezeichneten Äquipotentiallinien.
    • Fig. 6 zeigt mehrere Intensitätsprofile entlang der Elektronenstrahlachse für unterschiedliche Blendenöffnungen des Kollektors mit Gegenfeld.
    • Fig. 7 zeigt eine Skizze der Elektronendichteverteilung nach Durchlaufen des Hochfrequenzdetektors.
    • Fig. 8 zeigt eine Skizze der Elektronendichteverteilung nach Durchlaufen des Hochfrequenzdeflektors und des Gleichspannungsdeflektors.
    • Fig. 9 zeigt eine Prinzipskizze einer Vorrichtung zur Elektronenstrahlimpulsformung und -verstärkung.
    • Fig. 10 zeigt eine Prinzipskizze einer Vorrichtung zur Ionenstrahlbeschleunigung.
  • Fig. 1 zeigt eine Prinzipskizze einer ersten Ausführungsform einer Vorrichtung zur Elektronenstrahlimpulsformung und -verstärkung. Diese besteht im wesentlichen aus einem vakuumdichten Gehäuse 28, in dem hintereinandergeschaltet eine Elektronenkanone 6, ein Hochfrequenzdeflektor 7, ein Gleichspannungsdeflektor 8, ein Kollektor mit Gegenfeld 9 und ein nichtgezeigter Nachbeschleuniger, der mit der Bezugsziffer 10 in Fig. 9 gezeigt wird, untergebracht sind. Die in Fig. 1 gezeigte Prinzipskizze dient im wesentlichen der Erläuterung des Funktionsprinzips der transversalen Ablenkeinheit zur Mikrostrukturformierung des Elektronenstrahls. Die entsprechenden Vielteilchenberechnungen zur Formierung von Elektronenpaketen in dieser Vorrichtung wurden mit Hilfe von geeigneten Softwareprogrammpaketen durchgeführt.
  • Der in Fig. 1 gezeigte Abschnitt von der Elektronenkanone 6 bis zum Kollektor mit Gegenfeld 9, welcher die abgelenkten Elektronen, die im gezeigten Strahlquerschnitt in der x/z-Ebene schraffiert gezeigt werden, auffängt, enthält die wesentlichen Teile der erfindungsgemäßen Elektronenstrahlformierungsvorrichtung. Es sind die beiden unmittelbar hintereinander angeordneten Ablenksysteme 7 und 8 deutlich zu erkennen, wobei die zweite elektrostatische Ablenkeinheit 8 durch das Kathodenpotential Uc versorgt werden kann. Die elektrische Feldrichtung Ey, die senkrecht zu der Darstellungsebene angeordnet ist, muß für x > 0 umgekehrt orientiert sein als für x < 0, um die Elektronenumlenkung der vorgeschalteten hochfrequenten Ablenkeinheit weiter zu verstärken. Die Umgebung der z-Achse, wie sie in der Darstellung verdeutlicht wird, wird im Gleichspannungsdeflektor 8 durch Überlappung der auf Masse liegenden Elektroden nahezu feldfrei gehalten, um die durchlaufenden Elektronenpakete möglichst wenig zu stören.
  • Fig. 2 zeigt ein Diagramm einer Periode eines Hochfrequenzspannungssignals, das an den Hochfrequenzdeflektor 7 angelegt wird. Dazu ist auf der Abzisse die Zeit in Nanosekundeneinheiten eingetragen und auf der Ordinate die Hochfrequenzablenkspannung in kV. Innerhalb einer Hochfrequenzperiode bei einer Betriebsfrequenz f ergibt sich durch entsprechende Anregungsfrequenzen des Hochfrequenzdeflektors 7 ein wiederkehrendes Plateau 51 bei der Spannung 0 V. Diese wiederkehrende Plateau 51 bei der Spannung 0 V definiert den durchlaufenden Strahlanteil, der nicht abgelenkt wird. Ferner zeigt das Diagramm der Fig. 2 die steil ansteigenden Spannungsflanken 53 und 54 am Beginn und am Ende des Plateaus 51, wodurch eine starke Ablenkung des Elektronenstrahls ausgelöst wird, was wiederum die Impulspausen definiert. Das Plateau selbst entspricht etwa einem Strahlanteil von 20 % bzw. einer Phasenbreite von 70° in Einheiten der Betriebsfrequenz. Demnach besteht das ansteuernde HF-Signal aus einem Hauptbestandteil bei der Frequenz f/2 und einer Überlagerung mit der Frequenz 5f/2. Bei einem Amplitudenverhältnis von etwa 5:1 und der entsprechenden Phasenbeziehung entsteht diese in Fig. 2 gezeigte und gewünschte Signalform, die sich aus den Komponenten V = sin(πft) - 0,2 V · sin(5πft) zusammensetzt.
  • Fig. 3 zeigt die Ablenkwirkung auf die Elektronen in einem Hochfrequenzdeflektor 7. Dabei beschreiben die Elektronen in der x/y-Ebene unter dem Einfluß des elektrischen und magnetischen Feldes die dort gezeigten Bahnen. Der Vorteil gekreuzter elektrischer und magnetischer Felder ist dabei, daß die Auslenkung mittels der ExB-Drift im wesentlichen in der x/y-Ebene erfolgt, so daß die Deflektorplatten des Hochfrequenzdeflektors 7 keine Begrenzung darstellen, solange der Gyroradius rg geeignet gewählt ist.
  • Die Figuren 4a und 4b zeigen Prinzipskizzen möglicher elektrischer Felder in einem Gleichspannungsdeflektor 8. In dem hier diskutierten Ausführungsbeispiel wird der asymmetrische Gleichspannungsdeflektor der Fig. 4b in einer leicht modifizierten Form, wie sie die Fig. 5 zeigt, angewandt. Der unsymmetrische Gleichspannungsdeflektor 8 hat gegenüber dem symmetrischen Gleichspannungsdeflektor der Fig. 4a den Vorteil einer einfacheren Gestaltung durch lediglich vier Ablenkplatten 36 bis 38 gegenüber sechs Ablenkplatten 30 bis 35 der Fig. 4a.
  • Fig. 5 zeigt einen Querschnitt durch einen asymmetrischen Gleichspannungsdeflektor 8 mit eingezeichneten Äquipotentiallinien 29. Deutlich ist an dieser Darstellung zu erkennen, daß das Zentrum zwischen den Ablenkplatten 40 bis 43 feldfrei gehalten ist, so daß Elektronen, die diese Abdeckplatten im Zentrum durchfliegen, nicht oder nur geringfügig zusätzlich abgelenkt werden. Ferner besteht die Modifikation der Ausführungsform nach Fig. 5 gegenüber der Prinzipskizze nach Fig 4b darin, daß die an Masse (0 V)liegenden Ablenkplatten 41 und 42 gegenüber der Zentrumslinie 44 zunächst parallel und dann teilweise abgewinkelt sind und die mit einer negativen Spannung in dieser Ausführungsform von -40 kV beaufschlagten Ablenkplatten gegenüber der Zentrumslinie 44 vollständig abgewinkelt sind.
  • Fig. 6 zeigt mehrere Intensitätsprofile entlang der Elektronenstrahlachse in z-Richtung für unterschiedliche Blendenöffnungen eines Kollektors 9 mit Gegenfeld. Bei dieser Darstellung ist auf der Abszisse die z-Richtung in Zentimetern eingetragen, und auf der Ordinate ist in beliebigen Einheiten die Elektronenstrahldichte vergleichsweise aufgetragen. Die Kurven wurden für drei unterschiedliche Blendenöffnungen des Kollektors 9 mit Gegenfeld von ≤ 5 mm, ≤ 6 mm und ≤ 7 mm aufgenommen. Das Impulspaket oder Elektronenpaket, das durch diese Blende periodisch ausgegeben wird, hat eine Länge von nicht ganz 10 cm, wobei die Länge mit zunehmendem Durchmesser der Öffnung in dem Kollektor 9 mit Gegenfeld geringfügig zunimmt. Das Intensitätsmaximum hängt bei dieser Impulsbreite jedoch nicht von der Blendenöffnung ab, sondern das Intensitätsmaximum wird offensichtlich durch den Gleichspannungsdeflektor mit einer Beschleunigungsspannung Uc bestimmt und ist bei gleichbleibender Gleichspannung auch gleich intensiv.
  • Fig. 7 zeigt eine Skizze der Verteilung der Elektronendichte nach Durchlaufen des Hochfrequenzdeflektors. Bei dieser Darstellung ist auf der Abszisse die x-Position in mm und auf der Ordinate die Elektronendichte in beliebigen Einheiten aufgetragen. Nach dem Durchlaufen des Hochfrequenzdeflektors 7 liegen noch 37 % der Elektroden im zentralen Durchlaßbereich der Elektronenstrahlformierungsvorrichtung, während große Anteile des Elektronenstrahls nach unten oder nach oben durch das hochfrequente Wechselfeld abgelenkt werden und für eine weitere Beschleunigung nicht zur Verfügung stehen. Der Gleichstromelektronenstrahl, wie er aus der Elektronenkanone 6 kommt, wird demnach bereits in Elektronenpakete zerschnitten. Noch deutlicher zeigt dieses die Fig. 8.
  • Fig. 8 zeigt eine Skizze der Elektronendichteverteilung nach Durchlaufen des Hochfrequenzdeflektors 7 und des Gleichspannungsdeflektors 8. Auf der Abszisse ist wiederum die x-Position in mm eingetragen, und auf der Ordinate die Elektronendichte in beliebigen vergleichenden Einheiten. Nach dem Gleichspannungsdeflektor konzentrieren sich die Maxima der abgelenkten Elektroden im deutlichen Abstand von der Strahlmitte, die bei 0,0 mm liegt. Lediglich 20 % der Elektronen verbleiben in der Strahlmitte und können in dem nachfolgenden Hochbeschleuniger weiter beschleunigt werden. Diese 20 % ergeben sich aus Elektronenpaketen bzw. Elektronenimpulsen, wie sie in räumlicher Erstreckung in Fig. 6 dargestellt wurden. Der Querschnitt der weiter zu transportierenden Teilchenpakete ergibt sich in seiner Dichteverteilung zu etwa 13 mm in x-Richtung und zu etwa 11 mm in y-Richtung. Aus diesem Querschnitt schneidet die Blendenöffnung des Kollektors mit Gegenfeld einen entsprechenden Elektronenimpulsstrahl aus.
  • Fig. 9 zeigt eine Prinzipskizze einer Vorrichtung zur Elektronenstrahlimpulsformung und -verstärkung. In Fig. 9 definieren gleiche Bezugszeichen gleiche Vorrichtungskomponenten wie in Fig. 1. Eine Erörterung dieser Vorrichtungskomponenten wird deshalb weitestgehend weggelassen. In Fig. 9 ist zusätzlich zu den in Fig. 1 gezeigten Vorrichtungskomponenten ein Frequenzumsetzer f1 zu sehen, der bei der halben Betriebsfrequenz f schwingt und über einen Phasenschieber 45 einem Verstärker 48 zugeführt wird, der das Signal des Frequenzumsetzers f1 auf etwa 50 kW verstärkt. Diesem Signal wird ein Signal überlagert, das von einem zweiten Frequenzumsetzer f2 geliefert wird, der eine Frequenz von 5f/2 erzeugt und dieses Signal dem Signal des ersten Frequenzumsetzers am Koppelpunkt 50 überlagert. Dabei wird neben der richtigen Phase eine Amplitudenanpassung durch den Verstärker 49 eingestellt, so daß die Amplitude des Signals des Frequenzumsetzers f2 lediglich 1/5 der Amplitude des Frequenzumsetzers f1 beträgt. Dieses Signal, das für eine Periode die Form des in Fig. 2 gezeigten Diagramms annimmt, wird an die Platten des Hochfrequenzdeflektors 7 angelegt. Dem Signal überlagert ist ein Magnetfeld, das durch die Spule 47 innerhalb des Gehäuses 28 erzeugt wird.
  • Zwischen den Platten wird ein Elektronenstrahl 14 in der Elektronenstrahlachse 5 von einer Elektronenstrahlkanone 6 erzeugt, die in dieser Ausführungsform eine Pierce-Typ-Elektronenstrahlkanone ist. Diese Elektronenkanone erzeugt einen hochperveanten Elektronenstrahl mit hoher Raumladungskonstanten gemäß der Child-Langmuir-Gleichung und wird mittels eines longitudinalen Magnetfeldes der Spule 47 transversal stabilisiert und im Brillouin-Gleichgewicht gehalten.
  • Nach der Stückelung des Elektronenstrahls in dem Hochfrequenzdeflektor 7 werden sowohl die abgelenkten Elektronenpakete als auch die im Achszentrum verbleibenden Elektronenpakete durch den Gleichspannungsdeflektor 8 geführt. Dabei wird der zeitliche Abstand der Pakete durch die Betriebsfrequenz f, die zwischen 100 und 400 MHz liegt, bestimmt. Während die abgelenkten Elektronenstrahlpaketanteile von dem Kollektor 9 mit Gegenfeld aufgenommen und über eine Verbindungsleitung der Kathode der Elektronenstrahlkanone 6 zugeführt werden, erreichen die im Zentrum befindlichen etwa 20 % der Elektronen des Elektronenstrahls den Nachbeschleuniger 10, der mit einer Beschleunigungsspannung in dieser Ausführungsform von 300 kV die Elektronenstrahlimpulse oder Elektronenpakete energetisch verstärkt, so daß sie mit dem sich anschließenden ringförmigen Resonator 15 über den Ringspalt 25 in Wechselwirkung treten können.
  • Dabei entzieht der Resonator angeregt durch die Frequenz des Elektronenstrahls den Elektronenpaketen Energie, die in dieser Ausführungsform über eine Antenne 23 einer Koaxialausgangsleitung 12 zugeführt wird. Dieses Koaxialkabel kann an einen Verbraucher angeschlossen sein. In anderen Ausführungsformen der Erfindung ist der Verbraucher unmittelbar ein Ionenstrahl einer Beschleunigungskammer oder eines Ionenbeschleunigertanks, beispielsweise einer Ionenstrahltherapieanlage oder einer Ionenstrahlmaterialuntersuchungsanlage, die im wesentlichen mit Schwerionen wie Kohlenstoff- und Sauerstoffionen betrieben wird.
  • Die Ausgangsleitung 12 kann auch ein Hohlleiter sein, der über ein Kopplungsfenster mit dem Resonator 15 kommuniziert oder über eine koaxiale Durchführung mit dem Resonator 15 in Verbindung steht. Die dem Resonator 15 und damit dem Elektronenstrahl 14 durch die Ausgangsleitung nicht entzogene Energie wird von dem Hauptkollektor 13 aufgenommen. Dieser Hauptkollektor 13 weist vorzugsweise wassergekühlte Wandungen auf, um die Restenergie abzuführen, die in dieser Ausführungsform unter 10 % liegt. Bei einer Maximalleistung von 10 MW ist dennoch eine hohe Kühlleistung erforderlich, um ein Schmelzen des Gehäuses des Hauptkollektors zu vermeiden.
  • Fig. 10 zeigt eine Prinzipskizze einer Vorrichtung zur Ionenstrahlbeschleunigung. Das erfindungsgemäße Prinzip hat den Vorteil, daß es unmittelbar in eine Anlage zur Ionenstrahlbeschleunigung eingebracht werden kann. Entsprechend zeigt die Fig. 10 eine Vorrichtung 51 zur Ionenstrahlbeschleunigung, die einen Ionenbeschleunigertank 1 mit zentraler Behälterachse 2 zur Führung und Beschleunigung eines gepulsten Ionenstrahls 3 in der Behälterachse 2 aufweist. Dazu ist eine Elektronenstrahlimpulsformungs- und -verstärkungseinrichtung 4 mit Elektronstrahlachse 5 zur Mikrostrukturierung und Verstärkung von Stromimpulsen für die Versorgung der Vorrichtung 51 zur Ionenstrahlbeschleunigung mit Hochfrequenzleistung derart angeordnet, daß die Elektronenstrahlimpulsformungs- und -verstärkungseinrichtung 4 mit ihrer Elektronenstrahlachse 5 quer und versetzt zur Behälterachse 2 angeordnet ist und außerhalb des Ionenbeschleunigertanks 1 eine Elektronenstrahlkanone 6, einen Hochfrequenzdeflektor 7, einen Gleichspannungsdeflektor 8, einen Kollektor 9 mit Gegenfeld und einen Nachbeschleuniger 10 aufweist und innerhalb des Ionenbeschleunigertanks 1 einen Leistungskoppler 11 zur Ankopplung der Leistung des Elektronenstrahls 14 an einen Verbraucher 12, der in diesem Fall der gepulste Ionenstrahl 3 ist, wobei ein Hauptkollektor 13 die Restleistung des Elektronenstrahls 14 aufnimmt und die genannten Vorrichtungskomponenten nacheinander in Richtung des Ionenstrahls 14 angeordnet sind.
  • Zur Auskopplung der Energie des Elektronenstrahls 14 aus der Elektronenstrahlimpulsformungs- und -verstärkungseinrichtung 4 sind ein oberer Ringspalt 16 und ein unterer Ringspalt 17 mit dazwischen angeordneter den Ionenstrahl koaxial umgebenden Kopplungsstufe angeordnet. Die Kopplungsstufe 18 wird durch die Driftröhrenhalterung 19 gehalten, die gleichzeitig im Bereich des Zentrums des Ionenbeschleunigertanks 1 den Ionenstrahl 3 umgibt. Die Spaltgröße und der Spaltabstand sowie der Versetzungsabstand zwischen Elektronenstrahlachse und Ionenstrahlachse sind derart auf einander abgestimmt, daß das Volumen des Ionenbeschleunigertanks 1 als Resonator für den gepulsten Elektronenstrahl dienen kann, wobei der Resonator unmittelbar auf den im Zentrum geführten gepulsten Ionenstrahl wirkt.
  • Die halbe Betriebsfrequenz f des Ionenstrahls 3 wird in dem Frequenzumsetzer f1 über einen Phasenschieber 45 und einen Verstärker 48 einem Koppelpunkt 50 zugeführt, an dem gleichzeitig die f5/2 Betriebsfrequenz f mit dem Frequenzumsetzer f2 über den Verstärker 49 anliegt. Mit diesen überlagerten Frequenzen wird der Hochfrequenzdeflektor 7 betrieben, der den Ionenstrahl aus der Elektronenstrahlkanone 6 moduliert.
  • Anschließend wird in einem Gleichspannungsdeflektor 8 die Auslenkung und die Trennung zwischen ausgelenkten Ionenstrahlabschnitten und damit Impulspausen und im Zentrum weitergeführten Ionenstrahlabschnitten und damit Impulslängen verstärkt, so daß die abgelenkten Ionenstrahlabschnitte von dem Kollektor 9 mit dem Gegenfeld aufgenommen werden können. Die zentral auf der Ionenstrahlachse 5 fortgeführten Elektronenpakete werden in dem Nachbeschleuniger 10 auf eine entsprechend hohe Energie gebracht, so daß sie mit dem Raumvolumen des Ionenbeschleunigertanks 1 in Resonanz treten können. Dabei wird ein wesentlicher Teil der Elektronenstrahlenergie auf die Ionenstrahlimpulse übertragen, während eine geringe Restmenge von unter 10 % der Elektronenstrahlenergie dem Hauptkollektor 13 zugeführt wird. Im Gegensatz zur Fig. 9 weist diese erfindungsgemäße Lösung einen oberen Ringspalt 16 und einen unteren Ringspalt 17 auf, die den Elektronenstrahl umgeben, während dazwischen ein Koppelstück 18 angeordnet ist.
  • Bezugszeichenliste
  • 1
    Ionenbeschleunigertank
    2
    Zentralbehälter
    3
    gepulster Ionenstrahl
    4
    Elektronenstrahlimpulsformungs- und -verstärkungseinrichtung
    5
    Elektronenstrahlachse
    6
    Elektronenkanone
    7
    Hochfrequenzdeflektor
    8
    Gleichspannungsdeflektor
    9
    Kollektor mit Gegenfeld
    10
    Nachbeschleuniger
    11
    Leistungskoppler
    12
    Verbraucher
    13
    Hauptkollektor
    14
    Elektronenstrahl
    15
    Resonator
    16
    oberer Ringspalt
    17
    unterer Ringspalt
    18
    Kopplungsstufe
    19
    Inhomogenes Feld
    20
    Homogenes transversalgerichtetes Wechselfeld
    21
    Ausgangskreis
    22
    ringförmige Kavität
    23
    Antenne
    24
    Koaxialkabel
    25
    Ringspalt
    26
    einspaltige Kavität
    27
    Ringresonatorraum
    28
    Gehäuse
    29
    Äquipotentiallinien
    30-35
    Ablenkplatten des symmetrischen Gleichspannungsdeflektors
    36-39
    Ablenkplatten des asymmetrischen Gleichspannungsdeflektors
    40-43
    Ablenkplatten des Gleichspannungsdeflektors
    44
    Zentrumslinie
    45
    Phasenschieber
    47
    Spule
    48
    Verstärker
    49
    Verstärker
    f1
    Frequenzumsetzer
    f2
    Frequenzumsetzer
    50
    Koppelpunkt
    51
    Vorrichtung zur Ionenstrahlbeschleunigung
    52
    Plateau
    53-54
    Flanken

Claims (33)

  1. Vorrichtung zur Elektronenstrahlimpulsformung und -verstärkung mit
    (a) einer Elektronenkanone (6),
    (b) einem Hochfrequenzdeflektor (7),
    (c) einem Gleichspannungsdeflektor (8),
    (d) einem Kollektor mit Gegenfeld (9),
    (e) einem Nachbeschleuniger (10)
    (f) einem Leistungskoppler (11) zur Ankopplung der Leistung des Elektronenstrahls (14) an einen Verbraucher (12), und
    (g) einem Hauptkollektor (13) zur Aufnahme der Restleistung des Elektronenstrahls (14),
    wobei die Vorrichtungskomponenten (a) bis (g) nacheinander in Richtung des Elektronenstrahls (14) angeordnet sind.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Verbraucher (12) eine Antenne (23) eines Koaxialkabelendes (24) ist, die in einem Resonator (15), der über einem den Elektronenstrahl (14) umgebenden Ringspalt (25) mit dem Elektronenstrahl (14) gekoppelt ist, hineinragt.
  3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Verbraucher (12) ein Antennenkoppler eines Hohlleiters ist, wobei der Antennenkoppler in einen Resonator (15) hineinragt, der den Elektronenstrahl (14) mit einem Ringspalt (25) umgibt.
  4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Verbraucher (12) ein Kopplungsfenster zu einem Hohlleiter ist, wobei das Kopplungsfenster sich zu einem Resonator (15) öffnet, der den Elektronenstrahl (14) mit einem Ringspalt (25) umgibt.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Elektronenstrahlkanone (6) eine Pierce-Typ-Elektronenstrahlkanone ist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Hochfrequenzdeflektor (7) ein homogenes transversal gerichtetes Wechselfeld (20) aufweist.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Gleichspannungsdeflektor (8) ein inhomogenes zeitlich konstantes transversales elektrisches Feld (19) aufweist.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Leistungskoppler (11) in seinem Ausgangskreis (21) einen Resonator (15) aufweist.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Ausgangskreis (21) eine einspaltige ringförmige Kavität (26) als Resonator (15) aufweist.
  10. Vorrichtung zur Ionenstrahlbeschleunigung, umfassend:
    (A) einen Ionenbeschleunigertank (1) mit zentraler Behälterachse (2) zur Führung und Beschleunigung eines gepulsten Ionenstrahls (3) in der Behälterachse (2),
    (B) eine Elektronenstrahlimpulsformungs- und -verstärkungseinrichtung (4) gemäß einem der Ansprüche 1, 5 bis 9 mit Elektronenstrahlachse (5) zur Mikrostrukturierung und Verstärkung von Stromimpulsen für die Versorgung der Vorrichtung zur Ionenstrahlbeschleunigung mit Hochfrequenzleistung, wobei
    die Elektronenstrahlimpulsformungs- und
    -verstärkungseinrichtung (4) mit ihrer Elektronenstrahlachse (5) quer und versetzt zur Behälterachse (2) angeordnet ist und außerhalb des Ionenbeschleunigertanks (1)
    (a) eine Elektronenkanone (6),
    (b) einen Hochfrequenzdeflektor (7),
    (c) einen Gleichspannungsdeflektor (8),
    (d) einen Kollektor mit Gegenfeld (9) und
    (e) einen Nachbeschleuniger (10) aufweist und innerhalb des Ionenbeschleunigertanks
    (f) einen Leistungskoppler (11) zur Ankopplung der Leistung des Elektronenstrahls (14) an einen Verbraucher (12),
    (g) einen Hauptkollektor (13) zur Aufnahme der Restleistung des Elektronenstrahls (14) aufweist, wobei der Verbraucher (12) der gepulste Ionenstrahl (3) ist.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß der Leistungskoppler (11) einen Resonator (15) mit einem den Elektronenstrahl (14) radial umgebenden oberen Ringspalt (16) und einem den Elektronenstrahl (14) radial umgebenden unteren Ringspalt 17 in dem Ionenbeschleunigertank (1) aufweist.
  12. Vorrichtung nach einem der Ansprüche 10 bis 11, dadurch gekennzeichnet, daß der Leistungskoppler (11) eine zwischen Ringspalten (16, 17) angeordnete Kopplungsstufe (18) aufweist, die koaxial den Elektronenstrahl (14) umgibt und radial versetzt und transversal zum Ionenstrahl (3) innerhalb des Ionenbeschleunigertanks (1) angeordnet ist, wobei die Kopplungsstufe (18) an einer Driftröhrenhalterung (19) des Ionenstrahls (14) befestigt ist.
  13. Vorrichtung zur Hochfrequenzleistungsverstärkung, insbesondere zur Versorgung einer Vorrichtung mit einer Kavität zur Ionnenstrahlbeschleunigung mit Hochfrequenzleistung, umfassend:
    einen Vakuumtank mit zentraler Tankachse zur Erzeugung und Beschleunigung eines gepulsten Elektronenstrahls (14) längs der Tankachse, wobei
    eine Elektronenstrahlimpulsformungs- und -verstärkungseinrichtung (4) gemäß Anspruch 1 mit ihrer Elektronenstrahlachse (5) quer und versetzt zu einer Behälterachse (2) eines Ionenbeschleunigertanks (1) angeordnet ist und außerhalb des Ionenbeschleunigertanks (1)
    (a) eine Elekronenkanone (6),
    (b) einen Hochfrequenzdeflektor (7),
    (c) einen Gleichspannungsdeflektor (8),
    (d) einen Kollektor (9) mit Gegenfeld und
    (e) einen Nachbeschleuniger (10) aufweist und innerhalb des Ionenbeschleunigertanks
    (f) einen ersten sowie einen zweiten Spalt zur Ankopplung der Leistung des Elektronenstrahls (14) an den Ionenstrahl (3)und
    (g) einen Hauptkollektor (13) zur Aufnahme der Restleisung des Elektronenstrahls (14) aufweist.
  14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß ein Ausgangskreis einen Leistungskoppler zur Einspeisung in einen Wellenleiter aufweist.
  15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß der Ausgangskreis als einspaltige Kavität ausgeführt ist.
  16. Verfahren zur Elektronenstrahlimpulsformung und Verstärkung, das folgende Verfahrensschritte aufweist:
    Erzeugen eines Elektronenstrahls (14) mittels einer Elektronenstrahlkanone (5),
    Beaufschlagen des Elektronenstrahls (14) mit einem transversalen hochfrequenten Wechselfeld (20) unter gleichzeitiger hochfrequenter Auslenkung des Elektronenstrahls (14),
    Hochfrequentes Ausblenden von bis zu 80 % der Elektronenstrahlenergie zu einem Kollektor (9) mit Gegenfeld mittels eines Hochfrequenzdeflektors (7) und eines Gleichspannungsdeflektors (8), Nachbeschleunigen des hochfrequenzmodulierten Elektronenstrahls (14) zu Elektronenstrahlimpulsen,
    Auskoppeln der Hochfrequenzenergie über einen Leistungskoppler (11).
  17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß das Auskoppeln der Hochfrequenzenergie über ein Koaxialkabelende (24) erfolgt, das mit einer Antenne (23) in einen Ringresonatorraum (27) ragt, welcher über einen den Elektronenstrahl (14) umgebenden Ringspalt (25) mit dem hochfrequenten energiereichen Elektronenstrahl (14) kommuniziert.
  18. Verfahren nach Anspruch 16 oder Anspruch 17, dadurch gekennzeichnet, daß das Auskoppeln der Hochfrequenzenergie über einen Hohlleiter erfolgt, der mit einer Koppelantenne in einen Ringresonatorraum (27) ragt, welcher über einen den Elektronenstrahl (14) umgebenden Ringspalt (25) mit dem hochfrequenten, energiereichen Elektronenstrahl (14) kommuniziert.
  19. Verfahren nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, daß das Auskoppeln der Hochfrequenzenergie über einen Hohlleiter erfolgt, der über ein Koppelfenster an einen Ringresonator (27) angeschlossen ist, wobei der Resonator (15) über einen den Elektronenstrahl (14) umgebenden Ringspalt (25) mit dem Elektronenstrahl (14) kommuniziert.
  20. Verfahren nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß ein Elektronenstrahl (14) mit hoher Raumladungskonstanten gemäß der Child-Langmuir-Gleichung von einer Elektronenstrahlkanone (6) mit einem Elektronenstrahl von 20 A bis 60 A, vorzugsweise 30 A bis 50 A, bei einer Beschleunigungsspannung (Uc) von 20 kV bis 60 kV, vorzugsweise 30 kV bis 50 kV, erzeugt wird.
  21. Verfahren nach einem der Ansprüche 16 bis 20, dadurch gekennzeichnet, daß der Elektronenstrahl (14) mittels eines longitudinalen Magnetfeldes transversal im Brillouin-Gleichgewicht stabilisiert wird.
  22. Verfahren nach einem der Ansprüche 16 bis 21, dadurch gekennzeichnet, daß der intensitätsmodulierte Elektronenstrahl (14) einen schmalbandigen HF-Resonator im Ausgangskreis bei einer Betriebsfrequenz (f) anregt.
  23. Verfahren nach einem der Ansprüche 16 bis 22, dadurch gekennzeichnet, daß der Elektronenstrahl (14) ein homogenes transversal gerichtetes elektrisches Wechselfeld (20) durchläuft.
  24. Verfahren nach einem der Ansprüche 16 bis 23, dadurch gekennzeichnet, daß zwischen 50 % und 80 % der Elektronenstrahlenergie von der Elektronenstrahlachse (5) abgelenkt werden.
  25. Verfahren nach einem der vorhergehenden Ansprüche 16 bis 24, dadurch gekennzeichnet, daß bei näherungsweise konstanter Elektronenenergie von 30 keV bis 50 keV in einem vorgespannten Kollektor (9) mit Gegenfeld von -30 kV bis -40 kV der abgelenkte Anteil des Elektronenstrahls aufgefangen wird.
  26. Verfahren nach einem der Ansprüche 16 bis 25, dadurch gekennzeichnet, daß die Energie aufgefangener Elektronen in einem Kollektor (9) mit Gegenfeld gesammelt und als Ladestrom der Kathode der Elektronenstrahlkanone (6) zugeführt werden.
  27. Verfahren nach einem der Ansprüche 16 bis 26, dadurch gekennzeichnet, daß die nicht abgelenkten Elektronenpakete im zeitlichen Abstand einer Betriebsfrequenz (f) entlang der Elektronenstrahlachse (14) bewegt und mit einer Hauptbeschleunigungsspannung zwischen 200 und 400 kV in einen Ausgangskreis (21) der Vorrichtung, der als Resonator (15) ausgebildet ist, eintreten.
  28. Verfahren nach einem der Ansprüche 16 bis 27, dadurch gekennzeichnet, daß ein Resonator (15) im Ausgangskreis (21) der Vorrichtung anspringt, wobei hochfrequente Felder im Resonator (15) die Energie der Elektronen aufnehmen, diese abbremsen und eine Ausgangsleitung, vorzugsweise ein Koaxialkabelende (24) und/oder einen Hohlleiter speisen.
  29. Verfahren nach einem der Ansprüche 16 bis 28, dadurch gekennzeichnet, daß eine Restenergie der Elektronen in einem Hauptkollektor (13) abgegeben wird.
  30. Verfahren nach einem der Ansprüche 16 bis 29, dadurch gekennzeichnet, daß für eine elektronische Ablenkung in dem Hochfrequenzdeflektor (7) für eine Betriebsfrequenz (f) das angesteuerte Hochfrequenzsignal aus einem Hauptbestandteil bei der Frequenz (f/2) und einer Überlagerung der Frequenz (5f/2) mit einem Amplitudenverhältnis 5:1 besteht.
  31. Verfahren zur Ionenstrahlbeschleunigung, das mit einer Vorrichtung durchgeführt wird, die
    - einen Ionenbeschleunigertank (1) mit zentraler Behälterachse (2) zur Führung und Beschleunigung eines gepulsten Ionenstrahls (14) in der Behälterachse (2) und
    - eine Elektronenstrahlimpulsformungs- und
    - verstärkungseinrichtung (4) mit Elektronenstrahlachse (5) zur Mikrostrukturierung und Verstärkung von Stromimpulsen für die Versorgung der Vorrichtung zur Ionenstrahlbeschleunigung mit Hochfrequenzleistung aufweist, wobei
    - die Elektronenstrahlimpulsformungs- und
    - verstärkungseinrichtung (4) mit ihrer Elektronenstrahlachse (5) quer und versetzt zur Behälterachse (2) angeordnet ist und außerhalb des Ionenbeschleunigertanks (1) mit einer Elektronenkanone (6) einen Elektronenstrahl (14) erzeugt, und
    - mittels eines Hochfrequenzdeflektors (7) und eines Gleichspannungsdeflektors (8) über 50 % des Elektronenstrahlstroms bei Frequenzen von 100 MHz bis 400 MHz taktweise zur Mikrostrukturierung des Elektronenstrahls (14) in einen Kollektor (9) mit Gegenfeld ablenkt und
    - ein Nachbeschleuniger (10) unter einer Beschleunigerspannung von mehreren 100 Kilovolt vorzugsweise 200 bis 400 Kilovolt den Elektronenstrahl (14) in den Ionenbeschleunigertank (1) einführt und
    - über einen Leistungskoppler (11) den Ionenstrahl (3) beschleunigt.
  32. Verfahren nach Anspruch 31, dadurch gekennzeichnet, daß der Elektronenstrahl (14) einer Intensitätsmodulation unterworfen wird, die der Betriebsfrequenz (f) des Ionenstrahls (3) entspricht.
  33. Verfahren nach Anspruch 31 oder 32, dadurch gekennzeichnet, daß der Kollektor (9) mit Gegenfeld bis zu 80 % der Elektronenstrahlenergie aufnimmt.
EP01971769A 2000-08-17 2001-07-20 Vorrichtung und verfahren zur ionenstrahlbeschleunigung und zur elektronenstrahlimpulsformung und -verstärkung Expired - Lifetime EP1203395B8 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10040719 2000-08-17
DE10040719 2000-08-17
DE10040896 2000-08-18
DE2000140896 DE10040896B4 (de) 2000-08-18 2000-08-18 Vorrichtung und Verfahren zur Ionenstrahlbeschleunigung und zur Elektronenstrahlimpulsformung und -verstärkung
PCT/EP2001/008413 WO2002015218A1 (de) 2000-08-17 2001-07-20 Vorrichtung und verfahren zur ionenstrahlbeschleunigung und zur elektronenstrahlimpulsformung und -verstärkung

Publications (3)

Publication Number Publication Date
EP1203395A1 EP1203395A1 (de) 2002-05-08
EP1203395B1 true EP1203395B1 (de) 2009-07-15
EP1203395B8 EP1203395B8 (de) 2009-08-26

Family

ID=26006754

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01971769A Expired - Lifetime EP1203395B8 (de) 2000-08-17 2001-07-20 Vorrichtung und verfahren zur ionenstrahlbeschleunigung und zur elektronenstrahlimpulsformung und -verstärkung

Country Status (4)

Country Link
US (1) US6870320B2 (de)
EP (1) EP1203395B8 (de)
DE (1) DE50114988D1 (de)
WO (1) WO2002015218A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841745A (zh) * 2012-11-20 2014-06-04 住友重机械工业株式会社 回旋加速器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2828007B1 (fr) * 2001-07-27 2004-02-13 Thales Sa Dispositif d'amplification d'un signal haute frequence
DE10325151B4 (de) * 2003-05-30 2006-11-30 Infineon Technologies Ag Vorrichtung für die Erzeugung und/oder Beeinflussung elektromagnetischer Strahlung eines Plasmas
WO2009123593A1 (en) * 2008-04-03 2009-10-08 Patrick Ferguson Hollow beam electron gun for use in a klystron
US8401151B2 (en) * 2009-12-16 2013-03-19 General Electric Company X-ray tube for microsecond X-ray intensity switching
US9102523B2 (en) * 2012-09-17 2015-08-11 U.S. Photonics, Inc. Supercharged electron source in a signal emission system
US9224572B2 (en) 2012-12-18 2015-12-29 General Electric Company X-ray tube with adjustable electron beam
US9484179B2 (en) 2012-12-18 2016-11-01 General Electric Company X-ray tube with adjustable intensity profile
US9202660B2 (en) 2013-03-13 2015-12-01 Teledyne Wireless, Llc Asymmetrical slow wave structures to eliminate backward wave oscillations in wideband traveling wave tubes
US11810763B2 (en) * 2021-01-13 2023-11-07 Schlumberger Technology Corporation Distributed ground single antenna ion source

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU777754A1 (ru) * 1976-10-08 1980-11-07 Рязанский Радиотехнический Институт Способ равновесной фокусировки ленточного электронного потока
JPS5842141A (ja) * 1981-09-08 1983-03-11 Nec Corp ピアス形電子銃
FR2695755B1 (fr) * 1992-09-11 1994-10-28 Thomson Tubes Electroniques Tube électronique à structure radiale.
US5572092A (en) * 1993-06-01 1996-11-05 Communications And Power Industries, Inc. High frequency vacuum tube with closely spaced cathode and non-emissive grid
US5497053A (en) * 1993-11-15 1996-03-05 The United States Of America As Represented By The Secretary Of The Navy Micro-electron deflector
US6172463B1 (en) * 1998-11-05 2001-01-09 International Isotopes, Inc. Internally cooled linear accelerator and drift tubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841745A (zh) * 2012-11-20 2014-06-04 住友重机械工业株式会社 回旋加速器

Also Published As

Publication number Publication date
EP1203395A1 (de) 2002-05-08
WO2002015218A1 (de) 2002-02-21
EP1203395B8 (de) 2009-08-26
US20020180364A1 (en) 2002-12-05
US6870320B2 (en) 2005-03-22
DE50114988D1 (de) 2009-08-27

Similar Documents

Publication Publication Date Title
DE3421530C2 (de)
DE1807720B2 (de) Stehwellen-linearbeschleuniger
CH224052A (de) Vorrichtung mit einer Entladungsröhre, in der ein von einer Steuerschwingung in Dichte moduliertes Elektronenbündel erzeugt wird.
EP1203395B1 (de) Vorrichtung und verfahren zur ionenstrahlbeschleunigung und zur elektronenstrahlimpulsformung und -verstärkung
DE2757079A1 (de) Linearbeschleuniger
DE4238803A1 (en) Electron beam accelerator for agricultural foodstuffs irradiation - comprises electron beams pulsed in hollow resonance zone in opposing phases on differing trajectories
DE909706C (de) Roehrenanordnung fuer ultrakurze Wellen
DE1138872B (de) Teilchenbeschleuniger fuer Ladungstraeger, in dem ein Energieaustausch zwischen den Ladungstraegern und einer hochfrequenten elektromagnetischen Wanderwelle stattfindet
Friedman et al. Electron accelerators driven by modulated intense relativistic electron beams
DE2417651A1 (de) Magnetische fokussierungsanordnung fuer geradlinige strahlen
DE2327665C2 (de) Auffangvorrichtung für einen Elektronenstrahl
DE3208293C2 (de)
DE10040896B4 (de) Vorrichtung und Verfahren zur Ionenstrahlbeschleunigung und zur Elektronenstrahlimpulsformung und -verstärkung
WO2007144058A1 (de) Modularer linearbeschleuniger
DE836053C (de) Verstaerker fuer kurze elektrische Wellen unter Verwendung eines mehrere Wellenlaengen langen Entladungsraumes
DE959747C (de) Roehrenanordnung fuer sehr kurze Wellen
DE2454458C3 (de) Hochfrequenz-Plasmatriebwerk
DE19750904A1 (de) Dualenergie-Ionenstrahlbeschleuniger
DE1539053A1 (de) Partikelstrahl-Pulsiervorrichtung
EP0434933A2 (de) Einrichtung für die Erzeugung eines Plasmas durch Mikrowellen
DE1130935B (de) Elektronenroehre zur Erzeugung oder Verstaerkung sehr kurzer elektromagnetischer Wellen
DE3605735A1 (de) Vorrichtung zur erzeugung kurzer elektronen- ionen- oder roentgenimpulse mit hohem richtstrahlwert
DE3315020C1 (de) Beschleunigungsstrecke zur phasenfreien Beschleunigung geladener Teilchen
DE1277941B (de) Gasentladungseinrichtung zur Erzeugung eines Hoechstfrequenzrauschspektrums
DE1261608B (de) Hochfrequenz-Plasmagenerator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GSI HELMHOLTZZENTRUM FUER SCHWERIONENFORSCHUNG GMB

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50114988

Country of ref document: DE

Date of ref document: 20090827

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: GSI HELMHOLTZZENTRUM FUER SCHWERIONENFORSCHUNG GMB

Effective date: 20090805

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091026

BERE Be: lapsed

Owner name: GSI HELMHOLTZZENTRUM FUER SCHWERIONENFORSCHUNG G.M

Effective date: 20090731

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090720

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50114988

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170720

Year of fee payment: 17

Ref country code: CH

Payment date: 20170724

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200723

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50114988

Country of ref document: DE