EP1203395B1 - Procede et dispositif d'acceleration de faisceau ionique et de formation et d'amplification d'impulsion de faisceau electronique - Google Patents

Procede et dispositif d'acceleration de faisceau ionique et de formation et d'amplification d'impulsion de faisceau electronique Download PDF

Info

Publication number
EP1203395B1
EP1203395B1 EP01971769A EP01971769A EP1203395B1 EP 1203395 B1 EP1203395 B1 EP 1203395B1 EP 01971769 A EP01971769 A EP 01971769A EP 01971769 A EP01971769 A EP 01971769A EP 1203395 B1 EP1203395 B1 EP 1203395B1
Authority
EP
European Patent Office
Prior art keywords
electron beam
high frequency
ion
coupling
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01971769A
Other languages
German (de)
English (en)
Other versions
EP1203395A1 (fr
EP1203395B8 (fr
Inventor
Ulrich Ratzinger
Serguej Minaev
Stefan Setzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GSI Helmholtzzentrum fuer Schwerionenforschung GmbH
Original Assignee
GSI Gesellschaft fuer Schwerionenforschung mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2000140896 external-priority patent/DE10040896B4/de
Application filed by GSI Gesellschaft fuer Schwerionenforschung mbH filed Critical GSI Gesellschaft fuer Schwerionenforschung mbH
Publication of EP1203395A1 publication Critical patent/EP1203395A1/fr
Publication of EP1203395B1 publication Critical patent/EP1203395B1/fr
Application granted granted Critical
Publication of EP1203395B8 publication Critical patent/EP1203395B8/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • G21K1/087Deviation, concentration or focusing of the beam by electric or magnetic means by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2225/00Transit-time tubes, e.g. Klystrons, travelling-wave tubes, magnetrons
    • H01J2225/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J2225/04Tubes having one or more resonators, without reflection of the electron stream, and in which the modulation produced in the modulator zone is mainly density modulation, e.g. Heaff tube

Definitions

  • the invention relates to an apparatus and method for ion beam acceleration and electron beam pulse shaping and amplification according to the independent claims.
  • This microstructure of the beam is in so-called Buncher cavities generated by directed longitudinal high-frequency electric fields.
  • the thus structured electron beam then generates the desired high-frequency power in the output cavity or the output circuit. After deducting this high-frequency power, its residual energy is finally dumped or discharged in a collector.
  • Power filters with operating frequencies of 200 MHz already have a length of 5 m. For operating frequencies including the lengths are unwieldy and the devices bulky and require a space required, which is associated with considerable costs. An essential reason for this enormous space requirement lies in the formation of the electron beam pulses or the electron packets in the tube, for which elongated, several hundred centimeters long drift paths are needed.
  • Klystrodentex a concept has prevailed that is called Klystrodenrox.
  • This principle is a combination of elements of the tube-driven amplifier and the klystron.
  • the electron pulses are generated by means of a control grid and the pulsed electron beam then passes successively through an exit cavity and a collector.
  • this arrangement can be made very compact, but, as far as this concept has prevailed, it is used for television stations with a relatively low transmission power of up to 60 kW in the UHF band, so that this solution can be used in competition with the standard Topfnikverorgrn however, does not provide the high performance required for ion beam acceleration.
  • Power tubes such as the cup circuit amplifiers remain in the considered frequency range well below 1 MW output power in continuous operation, and pulsed operation, the maximum power falls from about 3 MW in the lower frequency range to less than 1 MW in the upper frequency range, so that they can not be used for several megawatts .
  • the overall efficiency of these power tubes is also reduced by the requirement that the cathode heating power of typically 10 kW be continuously applied at the required pulse repetition rates for amplifying ion beam pulses of several hertz up to 50 Hz.
  • the object of the invention is therefore to provide a high-performance high-frequency amplifier in the frequency range from 100 MHz to about 400 MHz, which reaches in pulsed operation with a 1 ms pulse length and a repetition rate of less than or equal to 50 Hz transmitter powers up to 10 MW.
  • an electron beam pulse shaping and amplification apparatus comprising an electron gun, a high frequency deflector, a DC deflector, a counter field collector, a post accelerator, a power coupler for coupling the power of the electron beam to a load and a main collector for receiving the residual power of the electron beam ,
  • the devices listed above are arranged one after the other in the direction of the electron beam.
  • the electron beam gun initially generates a continuous electron beam which is deflected in the high-frequency deflector excited by a high-frequency excitation signal, so that only in the region of the zero crossings of this signal, the electron beam can be passed periodically in the ion beam axis.
  • the adjoining DC deflector amplifies this effect and the portion of the deflected electron beam is collected in a collector with opposing field and this current is fed back to the cathode of the electron gun.
  • the electron beam which is thus divided into electron packets, is accelerated in a post-accelerator and fed to a power coupler, which can couple the power of the electron beam to a load.
  • the remaining non-decoupled residual power of the electron beam is fed to a main collector.
  • transverse high frequency electric fields in the high frequency deflector and transversely directed static electric fields used in the DC deflector to shape and pre-amplify electron pulses.
  • the pure electron beam pulse shaping can be accommodated in this concept in a frequency range between 100 and 400 MHz within a length of only 0.5 m. This is an improvement by reducing the length by more than tenfold, especially since a Klystron for 350 MHz at the required power consumption is already 5 m long. Thus, there is no significant impediment to using the klystron for low frequencies. In the solution according to the invention, the efficiency of the klystron for the generation of high-frequency power is achieved on a much shorter length.
  • the consumer is an antenna of a coaxial cable end, which projects into a resonator, which is coupled to the electron beam via an annular gap surrounding the electron beam.
  • This embodiment extracts with its antenna a substantial portion of the resonant energy from the resonator, and thus the electrons are braked in the electron beam, so that only a small remaining non-decoupled residual power must be collected in the main collector.
  • the consumer is an antenna coupler of a waveguide, which is designed as a coaxial feedthrough through the wall of the resonator chamber.
  • the antenna coupler protrudes into the resonator chamber, which surrounds the electron beam with an annular gap, so that energy from the electron beam can be coupled into the resonator and is then conducted away via the antenna coupler feedthrough to the waveguide.
  • the consumer is a coupling window to a waveguide, the coupling window opening towards the resonator.
  • the electron beam is surrounded by the resonator with an annular gap.
  • an ion beam acceleration apparatus comprising an ion accelerator tank having a central tank axis for guiding and accelerating a pulsed ion beam of heavy ions in the tank axis.
  • This device further comprises an electron beam pulse shaping and amplifying device with electron beam axis for microstructuring and amplifying current pulses for the supply of the device for ion beam acceleration with high frequency power.
  • This solution has the advantage that the ion accelerator tank itself is simultaneously used as the output circuit for the power amplification stage. A power transfer from the amplifier to the tank is eliminated. A coupling of the power level to the tank volume is thus possible. Thus, a structure for ion beam acceleration for ion beams for heavy ions is achieved, which can be produced extremely manageable and extremely inexpensive.
  • a spot suitable for potential is inserted along the drift tube holder of the ion beam.
  • a transverse alternating electric field with a suitable time structure deflects electrons which are unfavorable in terms of time immediately after the pre-acceleration of the electron beam, so that only electron pulses having the desired frequency for amplifying the ion beam pulses undergo the main acceleration and are then decelerated in the field of the ion accelerator tanks because their energy is applied to the Ion beam is coupled.
  • the load is directly the pulsed ion beam.
  • the power coupler has a resonator with an upper annular gap surrounding the electron beam radially and a lower annular gap radially surrounding the electron beam in the ion accelerator tank on. Passing through the electron beam from two annular gaps, namely an upper and a lower annular gap in the tank, appears advantageous since the electron beam must reach the cooled hanger to release its residual energy in the main collector.
  • the drift distance between the gaps is advantageously kept as short as possible in order to achieve a favorable geometry, which does not significantly affect the stress distribution over the drift tube foot.
  • the electrons regardless of their phase position in the pulse when passing through the two annular gaps, the same energy to the ion beam, so that the residual energy in the main collector or collector is less than 10% of the pulse energy.
  • the power coupler further includes a coupling step between the annular gaps that coaxially surrounds the electron beam and is radially offset and disposed transversely to the ion beam within the ion accelerator tank, the coupling stage being attached to a drift tube mount of the ion beam.
  • the electron beam gun is a Piercetyp electron beam gun.
  • a high-permeant electron beam with correspondingly high space charge constant according to the Child Langmuir equation is advantageously generated at pulse lengths of 1 ms, which achieves a beam current of, for example, 40 A at an acceleration voltage of 40 kV.
  • the high-frequency deflector has a homogeneous transversely directed alternating field, with the short electron beam packets in the area
  • the operating frequency of 100 to 400 MHz are created while the electron beam is deflected in the pulse intervals and is supplied to a collector with opposing field, which in turn provides the current of the cathode of the electron beam gun.
  • the DC deflector has an inhomogeneous, time constant transverse electric field, while the electron beam is transversely stabilized simultaneously by means of a longitudinal magnetic field, so that the Brillouin equilibrium condition remains satisfied.
  • the power coupler has in its output circuit a resonator which communicates with the electron beam via an annular gap.
  • the resonator in turn, the energy through a consumer, which is coupled via a coaxial line, a waveguide or directly, as in the case of the ion beam, be withdrawn, so that the electron packets are decelerated in the electron beam and only with low energy, which is partially below 10 % of the total electron beam energy is to be collected in the main collector.
  • the output circuit also has a single-column annular cavity as the resonator, the cavity surrounding the ion beam.
  • the pulse length and the repetition rate of the electron beam, the so-called macrostructure, are in the case of the invention Solution freely selectable, so that pulse lengths of one millisecond at repetition frequencies of less than 50 Hz and a power of 10 MW can be realized with the inventive device and the method according to the invention.
  • the beam first passes through a homogeneous transversely directed alternating electric field, then an inhomogeneous time constant transverse electric field.
  • the energy of these electrons can largely be returned to the cathode of the electron gun and serves as a charging current.
  • the undeflected beam portion which is present in particles or electron packets at a time interval according to the operating frequency, moves along the beam axis and passes through the main acceleration voltage, which may be for example at 300 kV, and then enters the output circuit of the resonator.
  • a resonator may have a single-column annular cavity, as is common in other solutions.
  • Such a resonator is excited by the passing electron packets, and the high-frequency fields generated in the resonator brake the electrons and simultaneously feed the output line of the amplifier, which may preferably be a coaxial line or a waveguide with corresponding coupling antennas or a corresponding coupling window.
  • the remaining electron energy is delivered in the main collector, wherein in particular the formation according to the invention of the electron beam microstructure for a shortening of the length of otherwise usual for higher operating frequencies Klystronarrangingsverorgrn provides.
  • the radio frequency energy is decoupled via a coaxial cable which projects with an antenna into a ring resonator space which communicates with the high-frequency, high-energy electron beam via an annular gap surrounding the electron beam.
  • the decoupling of the high-frequency energy over a Waveguide reaches, which protrudes with a coupling antenna in a Ringresonatorraum, which communicates via a surrounding the electron beam annular gap with the high-frequency, high-energy electron beam.
  • the decoupling of the high-frequency energy via a waveguide is effected, which is connected via a coupling window to a ring resonator, wherein the ring resonator communicates with the electron beam via an annular gap surrounding the electron beam.
  • a high space charge constant electron beam according to the Child Langmuir equation is obtained from an electron beam gun having a beam current of 20 A to 60 A, preferably between 30 to 50 A, at an acceleration voltage (U c ) of 20 kV to 60 kV, preferably from 30 kV to 50 kV is generated.
  • a further preferred embodiment of the method provides that the electron beam is stabilized transversally in the Brillouin equilibrium by means of a longitudinal magnetic field. It is further provided that the intensity-modulated electron beam excites a narrow-band high-frequency resonator in the output circuit at an operating frequency. For this purpose, the electron beam passes through a homogeneous transversely directed alternating electric field, wherein between 50 and 80% of the electron beam energy are deflected by the beam axis.
  • the method is at approximately constant electron energy of 30 keV to 60 keV in a biased collector with opposing field from -30 kV to -40 kV the deflected portion of the electron beam is collected.
  • the energy of the collected electrons is collected in the collector with opposing field and fed as a charging current of the cathode of the electron gun.
  • the undeflected electron packets are moved and guided at a time interval of an operating frequency along the beam axis and enter a output circuit of the device, which is designed as a resonator, with a main acceleration voltage between 200 kV and 400 kV.
  • the resonator jumps in the output circuit of the device, with high-frequency fields in the resonator receive the energy of the electrons, these decelerate and feed an output line, preferably a coaxial cable and / or a waveguide.
  • the remaining residual energy of the electrons is preferably released in a main collector.
  • the driving radio-frequency signal is set from a main component at a frequency of f / 2 and a superposition at the frequency 5f / 2 in an amplitude ratio of 5: 1.
  • the operating frequency between 100 and 400 MHz and per period about 20% of the electron beam particles are passed in pulses, since the overlapping of the two frequencies, a corresponding zero crossing for a corresponding period of time per period is achieved.
  • Fig. 1 shows a schematic diagram of a first embodiment of an apparatus for electron beam pulse shaping and amplification.
  • This consists essentially of a vacuum-tight Housing 28, in the cascaded an electron gun 6, a Hochfrequenzdeflektor 7, a DC deflector 8, a collector with opposing field 9 and a Nachzeleuniger not shown, the reference numeral 10 in Fig. 9 is shown housed.
  • the schematic diagram shown serves essentially to explain the functional principle of the transverse deflection unit for microstructuring the electron beam. The corresponding many particle calculations for forming electron packets in this device were performed by means of suitable software program packages.
  • the in Fig. 1 The section shown from the electron gun 6 to the collector with opposing field 9, which captures the deflected electrons shown hatched in the beam cross section shown in the x / z plane, contains the essential parts of the electron beam shaping device according to the invention.
  • the two deflection systems 7 and 8 arranged directly behind one another can be clearly seen, wherein the second electrostatic deflection unit 8 can be supplied by the cathode potential U c .
  • the electric field direction E y which is arranged perpendicular to the plane of representation, must be oriented inversely for x> 0 than for x ⁇ 0 in order to further increase the electron deflection of the upstream high-frequency deflection unit.
  • the environment of the z-axis, as illustrated in the illustration, is kept almost field-free in the direct-voltage deflector 8 by overlapping the electrodes lying on ground in order to disturb the passing electron packets as little as possible.
  • FIG. 12 is a diagram showing a period of a high frequency voltage signal applied to the high frequency deflector 7.
  • FIG. 12 For this purpose, the time in nanosecond units is entered on the abscissa and the high-frequency deflection voltage is plotted on the ordinate kV.
  • a recurring plateau 51 at the voltage 0 V Within a high-frequency period at an operating frequency f is given by corresponding excitation frequencies of the Hochfrequenzdeflektors 7 a recurring plateau 51 at the voltage 0 V. This recurring plateau 51 at the voltage 0 V defines the passing beam portion, which is not deflected.
  • the driving RF signal consists of a main component at the frequency f / 2 and a superposition with the frequency 5f / 2.
  • V sin ( ⁇ ft) - 0.2 V ⁇ sin (5 ⁇ ft).
  • Fig. 3 shows the deflection effect on the electrons in a Hochfrequenzdeflektor 7.
  • the electrons in the x / y plane under the influence of the electric and magnetic field describe the tracks shown there.
  • the advantage of crossed electrical and magnetic fields is that the deflection by means of the ExB drift essentially takes place in the x / y plane, so that the deflector plates of the high-frequency deflector 7 represent no limitation as long as the gyroradius rg is suitably selected.
  • FIGS. 4a and 4b show schematic diagrams of possible electric fields in a DC voltage deflector 8.
  • the asymmetrical Gleichthesesdeflektor the Fig. 4b in a slightly modified form as the Fig. 5 shows, applied.
  • the unbalanced Gleichthesesdeflektor 8 has compared to the symmetrical DC deflector of Fig. 4a the advantage of a simpler design by only four baffles 36 to 38 against six baffles 30 to 35 of the Fig. 4a ,
  • Fig. 5 shows a cross section through an asymmetrical DC deflector 8 with drawn equipotential lines 29. It can be clearly seen from this illustration that the center between the baffles 40 to 43 is kept free of field, so that electrons that fly through these cover plates in the center, not or only slightly in addition to get distracted. Furthermore, the modification according to the embodiment Fig. 5 compared to the schematic diagram 4b in that the baffles 41 and 42 lying at ground (0 V) are initially parallel and then partially angled with respect to the center line 44 and the baffles subjected to a negative voltage of -40 kV in this embodiment are completely angled away from the center line 44.
  • Fig. 6 shows several intensity profiles along the electron beam axis in the z direction for different apertures of a collector 9 with opposing field.
  • the z-direction is entered in centimeters on the abscissa, and the electron beam density is comparatively plotted in arbitrary units on the ordinate.
  • the curves were recorded for three different apertures of the collector 9 with opposing fields of ⁇ 5 mm, ⁇ 6 mm and ⁇ 7 mm.
  • the pulse packet or electron packet periodically outputted through this shutter has a length of not quite 10 cm, the length increasing slightly with increasing diameter of the opening in the counter field collector 9.
  • the intensity maximum does not depend on the aperture in this pulse width, but the intensity maximum is evident by the Gleichthesesdeflektor with an acceleration voltage U c determines and is equally intense at constant DC voltage.
  • Fig. 7 shows a sketch of the distribution of the electron density after passing through the high-frequency deflector.
  • the abscissa represents the x-position in mm and the ordinate the electron density in arbitrary units.
  • Fig. 8 shows a sketch of the electron density distribution after passing through the high-frequency deflector 7 and the Gleichwoodsdeflektors 8.
  • the maxima of the deflected electrodes are concentrated at a significant distance from the center of the beam, which is 0.0 mm. Only 20% of the electrons remain in the center of the beam and can be further accelerated in the following high accelerator. These 20% result from electron packets or electron pulses, as in spatial extension in Fig. 6 were presented.
  • the cross section of the particle packages to be transported results in its density distribution to about 13 mm in the x-direction and about 11 mm in the y-direction. From this cross section, the aperture of the collector with opposing field cuts out a corresponding electron pulse beam.
  • Fig. 9 shows a schematic diagram of an apparatus for electron beam pulse shaping and amplification.
  • Like reference numerals define like device components as in FIG Fig. 1 , A discussion of these device components is therefore largely omitted.
  • Fig. 9 is in addition to the in Fig. 1 shown device components to see a frequency converter f 1 , which oscillates at half the operating frequency f and is supplied via a phase shifter 45 to an amplifier 48, which amplifies the signal of the frequency converter f 1 to about 50 kW.
  • This signal is superimposed on a signal which is supplied by a second frequency converter f 2 , which generates a frequency of 5f / 2 and superimposes this signal on the signal of the first frequency converter at the crosspoint 50.
  • an amplitude adjustment is set by the amplifier 49 in addition to the correct phase, so that the amplitude of the signal of the frequency converter f 2 is only 1/5 of the amplitude of the frequency converter f 1 .
  • This signal which for a period takes the form of in Fig. 2 is applied to the plates of the high-frequency deflector 7. Superimposed on the signal is a magnetic field which is generated by the coil 47 within the housing 28.
  • an electron beam 14 is generated in the electron beam axis 5 from an electron beam gun 6, which in this embodiment is a Pierce type electron gun.
  • This electron gun produces a high-energy electron beam with high space charge constant according to the Child Langmuir equation and is transversely stabilized by means of a longitudinal magnetic field of the coil 47 and kept in Brillouin equilibrium.
  • both the deflected electron packets become as well as remaining in the axis center electron packets passed through the DC voltage deflector 8.
  • the time interval of the packets is determined by the operating frequency f, which is between 100 and 400 MHz.
  • the deflected electron beam packet portions are received by the collector 9 with opposing field and supplied via a connecting line of the cathode of the electron beam gun 6, located in the center about 20% of the electron of the electron beam reach the post-accelerator 10, which with an acceleration voltage in this embodiment of 300 kV
  • Electron beam pulses or electron packets energetically amplified so that they can interact with the subsequent annular resonator 15 through the annular gap 25 in interaction.
  • the resonator excited by the frequency of the electron beam, withdraws energy from the electron packets, which in this embodiment is fed via an antenna 23 to a coaxial output line 12.
  • This coaxial cable can be connected to a consumer.
  • the load is directly an ion beam of an accelerating chamber or an ion accelerator tank, for example an ion beam therapy system or an ion beam material inspection system, which is operated substantially with heavy ions such as carbon and oxygen ions.
  • the output line 12 may also be a waveguide which communicates with the resonator 15 via a coupling window or is connected to the resonator 15 via a coaxial feedthrough.
  • the energy not withdrawn from the resonator 15 and thus from the electron beam 14 through the output line is absorbed by the main collector 13.
  • This main collector 13 preferably has water-cooled walls in order to dissipate the residual energy, which in this embodiment is less than 10%. lies. At a maximum power of 10 MW, however, a high cooling capacity is required to prevent melting of the housing of the main collector.
  • Fig. 10 shows a schematic diagram of an apparatus for ion beam acceleration.
  • the principle of the invention has the advantage that it can be introduced directly into a system for ion beam acceleration.
  • the shows Fig. 10 an apparatus 51 for ion beam acceleration, which has an ion accelerator tank 1 with a central container axis 2 for guiding and accelerating a pulsed ion beam 3 in the container axis 2.
  • a Elektronenstrahlimpulsformungs- and -verstärkungs adopted 4 with electron beam axis 5 for microstructuring and amplification of current pulses for the supply of the device 51 for ion beam acceleration with high frequency power is arranged such that the electron beam pulse forming and amplifying device 4 with its electron beam axis 5 arranged transversely to the container axis 2 and and outside of the ion accelerator tank 1 has an electron beam gun 6, a Hochfrequenzdeflektor 7, a DC deflector 8, an opposing collector 9 and a Nachbe deviser 10 and within the Ionenbelixs 1 a power coupler 11 for coupling the power of the electron beam 14 to a consumer 12, the
  • the pulsed ion beam 3 wherein a main collector 13, the residual power of the electron beam 14 receives and said device components successively in the direction of I. onenstrahls 14 are arranged.
  • Half the operating frequency f of the ion beam 3 is supplied in the frequency converter f 1 via a phase shifter 45 and an amplifier 48 to a crosspoint 50, at the same time the f5 / 2 operating frequency f with the frequency converter f 2 via the amplifier 49 is applied. With these superposed frequencies of the high-frequency deflector 7 is operated, which modulates the ion beam from the electron beam gun 6.
  • a DC deflector 8 the deflection and the separation between deflected ion beam sections and thus pulse intervals and in the center continued ion beam sections and thus pulse lengths amplified, so that the deflected ion beam sections can be picked up by the collector 9 with the opposing field.
  • the electron packets which are continued centrally on the ion beam axis 5, are brought to a correspondingly high energy in the post-accelerator 10, so that they can resonate with the volume of space of the ion accelerator tank 1.
  • a substantial part of the electron beam energy is transferred to the ion beam pulses, while a small residual amount of less than 10% of the electron beam energy is supplied to the main collector 13.
  • this solution according to the invention has an upper annular gap 16 and a lower annular gap 17, the Surround the electron beam while a coupling piece 18 is disposed therebetween.

Claims (33)

  1. Dispositif de formation et d'amplification d'impulsion de faisceau électronique, avec
    (a) un canon à électrons (6),
    (b) un déflecteur à haute fréquence (7),
    (c) un déflecteur à tension continue (8),
    (d) un collecteur à champ contraire (9),
    (e) un post-accélérateur (10)
    (f) un coupleur de puissance (11) pour le couplage de la puissance du faisceau électronique (14) à un récepteur (12), et
    (g) un collecteur principal (13) pour capturer la puissance résiduelle du faisceau électronique (14),
    où les composants de dispositif (a) à (g) sont disposés successivement dans la direction du faisceau électronique (14).
  2. Dispositif selon la revendication 1, caractérisé en ce que le récepteur (12) est une antenne (23) d'une extrémité de câble coaxial (24), laquelle pénètre dans un résonateur (15) couplé au faisceau électronique (14) par une fente annulaire (25) entourant ledit faisceau électronique (14).
  3. Dispositif selon la revendication 1, caractérisé en ce que le récepteur (12) est un coupleur d'antenne d'un conducteur creux, ledit coupleur d'antenne pénétrant dans un résonateur (15) entourant le faisceau électronique (14) par une fente annulaire (25).
  4. Dispositif selon la revendication 1, caractérisé en ce que le récepteur (12) est une fenêtre de couplage vers un conducteur creux, la fenêtre de couplage s'ouvrant vers un résonateur (15) entourant le faisceau électronique (14) par une fente annulaire (25).
  5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que le canon à faisceau d'électrons (6) est un canon à faisceau d'électrons de type Pierce.
  6. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que le déflecteur à haute fréquence (7) comprend un champ alternatif (20) homogène à direction transversale.
  7. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que le déflecteur à tension continue (8) comprend un champ électrique (19) transversal inhomogène temporellement constant.
  8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce que le coupleur de puissance (11) comprend un résonateur (15) dans son circuit de sortie (21).
  9. Dispositif selon la revendication 8, caractérisé en ce que le circuit de sortie (21) comprend une cavité (26) annulaire à une fente en tant que résonateur (15).
  10. Dispositif d'accélération de faisceau ionique, comprenant :
    (A) un réservoir d'accélération ionique (1) avec un axe de réservoir central (2) pour le guidage et l'accélération d'un faisceau ionique pulsé (3) dans l'axe de réservoir (2),
    (B) un dispositif de formation et d'amplification d'impulsion de faisceau électronique (4) selon l'une des revendications 1, 5 à 9, avec un axe de faisceau électronique (5) pour la microstructuration et l'amplification d'impulsions de courant pour l'alimentation en puissance à haute fréquence du dispositif d'accélération de faisceau ionique, où
    le dispositif de formation et d'amplification d'impulsion de faisceau électronique (4) est disposé de manière que son axe de faisceau électronique (5) soit perpendiculaire et décalé par rapport à l'axe de réservoir (2) et comprenne à l'extérieur du réservoir d'accélération ionique (1)
    (a) un canon à électrons (6),
    (b) un déflecteur à haute fréquence (7),
    (c) un déflecteur à tension continue (8),
    (d) un collecteur à champ contraire (9), et
    (e) un post-accélérateur (10)
    et à l'intérieur du réservoir d'accélération ionique
    (f) un coupleur de puissance (11) pour le couplage de la puissance du faisceau électronique (14) à un récepteur (12),
    (g) un collecteur principal (13) pour capturer la puissance résiduelle du faisceau électronique (14),
    le récepteur (12) étant le faisceau ionique pulsé (3).
  11. Dispositif selon la revendication 10, caractérisé en ce que le coupleur de puissance (11) comprend un résonateur (15) avec une fente annulaire supérieure (16) entourant radialement le faisceau électronique (14) et avec une fente annulaire inférieure (17) entourant radialement le faisceau électronique (14) dans le réservoir d'accélération ionique (1).
  12. Dispositif selon l'une des revendications 10 à 11, caractérisé en ce que le coupleur de puissance (11) comprend un étage de couplage (18) situé entre des fentes annulaires (16, 17), qui entoure coaxialement le faisceau électronique (14) et est disposé radialement décalé et transversalement par rapport au faisceau ionique (3) à l'intérieur du réservoir d'accélération ionique (1), ledit étage de couplage (18) étant fixé sur un support de tube de glissement (19) du faisceau ionique (3).
  13. Dispositif amplificateur de puissance à haute fréquence,
    en particulier pour l'alimentation en puissance à haute fréquence d'un dispositif d'accélération de faisceau ionique avec une cavité, comprenant :
    un réservoir à vide avec un axe de réservoir central pour la génération et l'accélération d'un faisceau électronique pulsé (14) le long de l'axe de réservoir, où
    un dispositif de formation et d'amplification d'impulsion de faisceau électronique (4) selon la revendication 1 est disposé de manière que son axe de faisceau électronique (5) soit perpendiculaire et décalé par rapport à un axe de réservoir (2) d'un réservoir d'accélération ionique (1) et comprenne à l'extérieur du réservoir d'accélération ionique (1)
    (a) un canon à électrons (6),
    (b) un déflecteur à haute fréquence (7),
    (c) un déflecteur à tension continue (8),
    (d) un collecteur à champ contraire (9), et
    (e) un post-accélérateur (10)
    et à l'intérieur du réservoir d'accélération ionique
    (f) une première ainsi qu'une deuxième fente pour le couplage de la puissance du faisceau électronique (14) au faisceau ionique (3), et
    (g) un collecteur principal (13) pour capturer la puissance résiduelle du faisceau électronique (14).
  14. Dispositif selon la revendication 13, caractérisé en ce qu'un circuit de sortie comprend un coupleur de puissance pour injection dans un guide d'ondes.
  15. Dispositif selon la revendication 14, caractérisé en ce que le circuit de sortie est exécuté comme cavité à une fente.
  16. Procédé de formation et d'amplification d'impulsion de faisceau électronique, comprenant les étapes suivantes :
    génération d'un faisceau électronique (14) au moyen d'un canon à faisceau d'électrons (6),
    exposition du faisceau électronique (14) à un champ alternatif transversal à haute fréquence (20) en déviant simultanément le faisceau électronique (14) sous haute fréquence,
    déflexion sous haute fréquence d'une part allant jusqu'à 80 % de l'énergie du faisceau électronique, vers un collecteur (9) à champ contraire, au moyen d'un déflecteur à haute fréquence (7) et d'un déflecteur à tension continue (8),
    post-accélération du faisceau électronique (14) modulé sous haute fréquence, pour former des impulsions de faisceau électronique,
    découplage de l'énergie à haute fréquence par un coupleur de puissance (11).
  17. Procédé selon la revendication 16, caractérisé en ce que le découplage de l'énergie à haute fréquence est réalisé par une extrémité de câble coaxial (24) pénétrant avec une antenne (23) dans un compartiment de résonateur annulaire (27) qui communique avec le faisceau électronique (14) à haute fréquence riche en énergie par une fente annulaire (25) entourant ledit faisceau électronique (14).
  18. Procédé selon la revendication 16 ou la revendication 17, caractérisé en ce que le découplage de l'énergie à haute fréquence est réalisé par un conducteur creux pénétrant avec une antenne de couplage dans un compartiment de résonateur annulaire (27) qui communique avec le faisceau électronique (14) à haute fréquence riche en énergie par une fente annulaire (25) entourant ledit faisceau électronique (14).
  19. Procédé selon l'une des revendications 16 à 18, caractérisé en ce que le découplage de l'énergie à haute fréquence est réalisé par un conducteur creux raccordé à un résonateur annulaire (27) par une fenêtre de couplage, le résonateur (15) communiquant avec le faisceau électronique (14) par une fente annulaire (25) entourant ledit faisceau électronique (14).
  20. Procédé selon l'une des revendications 16 à 19, caractérisé en ce qu'un faisceau électronique (14) à constante de charge d'espace élevée est généré conformément à la loi de Child-Langmuir par un canon à faisceau d'électrons (6) avec un faisceau électronique compris entre 20 A et 60 A, de préférence entre 30 A et 50 A, pour une tension d'accélération (UC) comprise entre 20 kV et 60 kV, de préférence entre 30 kV et 50 kV.
  21. Procédé selon l'une des revendications 16 à 20, caractérisé en ce que le faisceau électronique (14) est stabilisé transversalement en équilibre Brillouin au moyen d'un champ magnétique longitudinal.
  22. Procédé selon l'une des revendications 16 à 21, caractérisé en ce que le faisceau électronique (14) modulé en intensité excite un résonateur HF à bande étroite dans le circuit de sortie à une fréquence de service (f).
  23. Procédé selon l'une des revendications 16 à 22, caractérisé en ce que le faisceau électronique (14) traverse un champ électrique alternatif (20) homogène à direction transversale.
  24. Procédé selon l'une des revendications 16 à 23, caractérisé en ce qu'une part d'énergie du faisceau électronique comprise entre 50 % et 80 % est déviée de l'axe de faisceau électronique (5).
  25. Procédé selon l'une des revendications 16 à 24, caractérisé en ce que, pour une énergie des électrons sensiblement constante comprise entre 30 keV et 50 keV dans un collecteur (9) polarisé à champ contraire de -30 kV à -40 kV, la part dérivée du faisceau électronique est capturée.
  26. Procédé selon l'une des revendications 16 à 25, caractérisé en ce que l'énergie d'électrons capturés est recueillie dans un collecteur (9) à champ contraire et délivrée au canon à faisceau d'électrons (6) en tant que courant de charge de la cathode.
  27. Procédé selon l'une des revendications 16 à 26, caractérisé en ce que les paquets d'électrons non dérivés sont déplacés le long de l'axe du faisceau électronique (14) à intervalle temporel d'une fréquence de service (f), et pénètrent avec une tension d'accélération principale comprise entre 200 et 400 kV dans un circuit de sortie (21) du dispositif réalisé comme résonateur (15).
  28. Procédé selon l'une des revendications 16 à 27, caractérisé en ce qu'un résonateur (15) est amorcé dans le circuit de sortie (21) du dispositif, des champs à haute fréquence capturant l'énergie des électrons dans le résonateur (15), freinant celle-ci et alimentant une ligne de sortie, de préférence une extrémité de câble coaxial (24) et/ou un conducteur creux.
  29. Procédé selon l'une des revendications 16 à 28, caractérisé en ce qu'une énergie résiduelle des électrons est délivrée à un collecteur principal (13).
  30. Procédé selon l'une des revendications 16 à 29, caractérisé en ce que, pour une déviation électronique dans le déflecteur à haute fréquence (7) pour une fréquence de service (f), le signal à haute fréquence commandé est constitué d'un composant principal à la fréquence (f/2) et d'une superposition de la fréquence (5f/2) avec un rapport d'amplitude 5:1.
  31. Procédé d'accélération de faisceau ionique, exécuté avec un dispositif comprenant :
    - un réservoir d'accélération ionique (1) avec un axe de réservoir central (2) pour le guidage et l'accélération d'un faisceau ionique pulsé (14) dans l'axe de réservoir (2), et
    - un dispositif de formation et d'amplification d'impulsion de faisceau électronique (4) avec un axe de faisceau électronique (5) pour la microstructuration et l'amplification d'impulsions de courant pour l'alimentation en puissance à haute fréquence du dispositif d'accélération de faisceau ionique, où
    - le dispositif de formation et d'amplification d'impulsion de faisceau électronique (4) est disposé de manière que son axe de faisceau électronique (5) soit perpendiculaire et décalé par rapport à l'axe de réservoir (2) et génère un faisceau électronique (14) au moyen d'un canon à électrons (6) à l'extérieur du réservoir d'accélération ionique (1), et où
    - au moyen d'un déflecteur à haute fréquence (7) et d'un déflecteur à tension continue (8), plus de 50 % du courant de faisceau électronique sont cycliquement dérivés vers un collecteur (9) à champ contraire à des fréquences comprises entre 100 MHz et 400 MHz pour la microstructuration du faisceau électronique (14), et où
    - un post-accélérateur (10) guide le faisceau électronique (14) vers le réservoir d'accélération ionique (1) sous une tension d'accélération de plusieurs centaines de Kilovolts, de préférence comprise entre 200 et 400 Kilovolts, et
    - accélère le faisceau ionique (3) via un coupleur de puissance (11).
  32. Procédé selon la revendication 31, caractérisé en ce que le faisceau électronique (14) est soumis à une modulation d'intensité qui correspond à la fréquence de service (f) du faisceau ionique (3).
  33. Procédé selon la revendication 31 ou la revendication 32, caractérisé en ce que le collecteur (9) à champ contraire capture jusqu'à 80 % de l'énergie du faisceau électronique.
EP01971769A 2000-08-17 2001-07-20 Procede et dispositif d'acceleration de faisceau ionique et de formation et d'amplification d'impulsion de faisceau electronique Expired - Lifetime EP1203395B8 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10040719 2000-08-17
DE10040719 2000-08-17
DE10040896 2000-08-18
DE2000140896 DE10040896B4 (de) 2000-08-18 2000-08-18 Vorrichtung und Verfahren zur Ionenstrahlbeschleunigung und zur Elektronenstrahlimpulsformung und -verstärkung
PCT/EP2001/008413 WO2002015218A1 (fr) 2000-08-17 2001-07-20 Procede et dispositif d'acceleration de faisceau ionique et de formation et d'amplification d'impulsion de faisceau electronique

Publications (3)

Publication Number Publication Date
EP1203395A1 EP1203395A1 (fr) 2002-05-08
EP1203395B1 true EP1203395B1 (fr) 2009-07-15
EP1203395B8 EP1203395B8 (fr) 2009-08-26

Family

ID=26006754

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01971769A Expired - Lifetime EP1203395B8 (fr) 2000-08-17 2001-07-20 Procede et dispositif d'acceleration de faisceau ionique et de formation et d'amplification d'impulsion de faisceau electronique

Country Status (4)

Country Link
US (1) US6870320B2 (fr)
EP (1) EP1203395B8 (fr)
DE (1) DE50114988D1 (fr)
WO (1) WO2002015218A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841745A (zh) * 2012-11-20 2014-06-04 住友重机械工业株式会社 回旋加速器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2828007B1 (fr) * 2001-07-27 2004-02-13 Thales Sa Dispositif d'amplification d'un signal haute frequence
DE10325151B4 (de) * 2003-05-30 2006-11-30 Infineon Technologies Ag Vorrichtung für die Erzeugung und/oder Beeinflussung elektromagnetischer Strahlung eines Plasmas
WO2009123593A1 (fr) * 2008-04-03 2009-10-08 Patrick Ferguson Canon à électrons à faisceau creux destiné à être utilisé dans un klystron
US8401151B2 (en) * 2009-12-16 2013-03-19 General Electric Company X-ray tube for microsecond X-ray intensity switching
US9102523B2 (en) * 2012-09-17 2015-08-11 U.S. Photonics, Inc. Supercharged electron source in a signal emission system
US9224572B2 (en) 2012-12-18 2015-12-29 General Electric Company X-ray tube with adjustable electron beam
US9484179B2 (en) 2012-12-18 2016-11-01 General Electric Company X-ray tube with adjustable intensity profile
US9202660B2 (en) 2013-03-13 2015-12-01 Teledyne Wireless, Llc Asymmetrical slow wave structures to eliminate backward wave oscillations in wideband traveling wave tubes
US11810763B2 (en) 2021-01-13 2023-11-07 Schlumberger Technology Corporation Distributed ground single antenna ion source

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU777754A1 (ru) * 1976-10-08 1980-11-07 Рязанский Радиотехнический Институт Способ равновесной фокусировки ленточного электронного потока
JPS5842141A (ja) * 1981-09-08 1983-03-11 Nec Corp ピアス形電子銃
FR2695755B1 (fr) * 1992-09-11 1994-10-28 Thomson Tubes Electroniques Tube électronique à structure radiale.
US5572092A (en) * 1993-06-01 1996-11-05 Communications And Power Industries, Inc. High frequency vacuum tube with closely spaced cathode and non-emissive grid
US5497053A (en) * 1993-11-15 1996-03-05 The United States Of America As Represented By The Secretary Of The Navy Micro-electron deflector
US6172463B1 (en) * 1998-11-05 2001-01-09 International Isotopes, Inc. Internally cooled linear accelerator and drift tubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841745A (zh) * 2012-11-20 2014-06-04 住友重机械工业株式会社 回旋加速器

Also Published As

Publication number Publication date
EP1203395A1 (fr) 2002-05-08
US20020180364A1 (en) 2002-12-05
DE50114988D1 (de) 2009-08-27
US6870320B2 (en) 2005-03-22
EP1203395B8 (fr) 2009-08-26
WO2002015218A1 (fr) 2002-02-21

Similar Documents

Publication Publication Date Title
DE3421530C2 (fr)
DE1807720B2 (de) Stehwellen-linearbeschleuniger
CH224052A (de) Vorrichtung mit einer Entladungsröhre, in der ein von einer Steuerschwingung in Dichte moduliertes Elektronenbündel erzeugt wird.
EP1203395B1 (fr) Procede et dispositif d'acceleration de faisceau ionique et de formation et d'amplification d'impulsion de faisceau electronique
DE2757079A1 (de) Linearbeschleuniger
DE4238803A1 (en) Electron beam accelerator for agricultural foodstuffs irradiation - comprises electron beams pulsed in hollow resonance zone in opposing phases on differing trajectories
DE909706C (de) Roehrenanordnung fuer ultrakurze Wellen
DE1138872B (de) Teilchenbeschleuniger fuer Ladungstraeger, in dem ein Energieaustausch zwischen den Ladungstraegern und einer hochfrequenten elektromagnetischen Wanderwelle stattfindet
Friedman et al. Electron accelerators driven by modulated intense relativistic electron beams
DE2417651A1 (de) Magnetische fokussierungsanordnung fuer geradlinige strahlen
DE2327665C2 (de) Auffangvorrichtung für einen Elektronenstrahl
DE3208293C2 (fr)
DE10040896B4 (de) Vorrichtung und Verfahren zur Ionenstrahlbeschleunigung und zur Elektronenstrahlimpulsformung und -verstärkung
WO2007144058A1 (fr) Accélérateur linéaire modulaire
DE836053C (de) Verstaerker fuer kurze elektrische Wellen unter Verwendung eines mehrere Wellenlaengen langen Entladungsraumes
DE959747C (de) Roehrenanordnung fuer sehr kurze Wellen
DE2454458C3 (de) Hochfrequenz-Plasmatriebwerk
DE19750904A1 (de) Dualenergie-Ionenstrahlbeschleuniger
DE1539053A1 (de) Partikelstrahl-Pulsiervorrichtung
EP0434933A2 (fr) Dispositif à micro-ondes pour la génération de plasma
DE1130935B (de) Elektronenroehre zur Erzeugung oder Verstaerkung sehr kurzer elektromagnetischer Wellen
DE3605735A1 (de) Vorrichtung zur erzeugung kurzer elektronen- ionen- oder roentgenimpulse mit hohem richtstrahlwert
DE3315020C1 (de) Beschleunigungsstrecke zur phasenfreien Beschleunigung geladener Teilchen
DE1277941B (de) Gasentladungseinrichtung zur Erzeugung eines Hoechstfrequenzrauschspektrums
DE1261608B (de) Hochfrequenz-Plasmagenerator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GSI HELMHOLTZZENTRUM FUER SCHWERIONENFORSCHUNG GMB

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50114988

Country of ref document: DE

Date of ref document: 20090827

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: GSI HELMHOLTZZENTRUM FUER SCHWERIONENFORSCHUNG GMB

Effective date: 20090805

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091026

BERE Be: lapsed

Owner name: GSI HELMHOLTZZENTRUM FUER SCHWERIONENFORSCHUNG G.M

Effective date: 20090731

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090720

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50114988

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170720

Year of fee payment: 17

Ref country code: CH

Payment date: 20170724

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200723

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50114988

Country of ref document: DE