EP1202041B1 - Verfahren und Vorrichtung zur Belastungsprüfung von elektrischen Systemen eines Kraftfahrzeugs - Google Patents

Verfahren und Vorrichtung zur Belastungsprüfung von elektrischen Systemen eines Kraftfahrzeugs Download PDF

Info

Publication number
EP1202041B1
EP1202041B1 EP00123729A EP00123729A EP1202041B1 EP 1202041 B1 EP1202041 B1 EP 1202041B1 EP 00123729 A EP00123729 A EP 00123729A EP 00123729 A EP00123729 A EP 00123729A EP 1202041 B1 EP1202041 B1 EP 1202041B1
Authority
EP
European Patent Office
Prior art keywords
motor vehicle
systems
robot
electrical systems
ambient conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00123729A
Other languages
English (en)
French (fr)
Other versions
EP1202041A1 (de
Inventor
Holm Freese
Andreas Dr. Sigwart
Peter Bockemühl
Karl-Heinz Richarz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to DE50015598T priority Critical patent/DE50015598D1/de
Priority to EP00123729A priority patent/EP1202041B1/de
Priority to US10/003,966 priority patent/US6690174B2/en
Publication of EP1202041A1 publication Critical patent/EP1202041A1/de
Application granted granted Critical
Publication of EP1202041B1 publication Critical patent/EP1202041B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/002Thermal testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40039Robot mounted or sliding inside vehicle, on assembly line or for test, service
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40041Robot operates panel like car radio by pushing, turning buttons, knobs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0062Testing or measuring non-electrical properties of switches, e.g. contact velocity

Definitions

  • the invention relates to a method for load testing of electrical systems of a motor vehicle, wherein the operating elements of the systems are operated by at least one automatic actuator test. Furthermore, the invention relates to a device for carrying out said method.
  • a life tester for electromechanical components of motor vehicles in which a test setup on stepper motors repeated actuation of a switch can be made. At the same time corresponding data about the forces and moments occurring here to be recorded.
  • Such a device allows the testing of a switch with regard to its behavior in many repeated operation. It turns out, however, that the results obtained from this are insufficient for an evaluation of the switch behavior under real conditions.
  • the electrical systems including the controls in a motor vehicle under real conditions to numerous and complex interactions of the systems with each other and to large variations in the loads due to real environmental conditions.
  • the controls of the systems are repeatedly actuated by at least one automatic actuator for testing purposes.
  • the method is characterized in that the electrical systems are tested in their installed, operational state in a motor vehicle, and that the motor vehicle during this test is exposed to a simulation of real environmental conditions.
  • the method according to the invention achieves a considerably better approximation to the actual conditions of use of the electrical systems. This happens because the electrical systems or the associated controls are not tested in isolation in an artificial structure, but that they are in their final installed state in the vehicle. As a result, on the one hand interactions of the electrical systems with each other and interactions between an electrical system or a control element and the motor vehicle are taken into account.
  • the behavior of a switch can vary greatly depending on the installation location and method of installation, whereby the proposed method ensures that the test is based on the actual installation conditions.
  • test results are achieved by exposing the motor vehicle during the test to a simulation of real environmental conditions, which can likewise have a considerable influence on the behavior of the systems and operating elements.
  • the ambient temperature may be part of the simulated environmental conditions. This is varied during the test in a range which corresponds to the temperatures that can occur in real use of the motor vehicle. Typically, this temperature range is between -40 ° C and + 85 ° C.
  • the distribution of the test time over the temperatures can be chosen based on the real temperature distribution to which a motor vehicle is typically exposed during its lifetime. Preferably, however, extreme temperatures are used disproportionately in the test, since these are particularly have a burdensome effect and are therefore of greater importance in determining the limit of
  • the humidity may be part of the simulated environmental conditions, since these also have a considerable influence on the load behavior of the systems or operating elements to be tested.
  • the humidity is preferably varied during the test in the fluctuation range occurring under real conditions.
  • the simulated environmental conditions may also include solar radiation, which is preferably simulated by artificial irradiation with light of a suitable wavelength distribution (spectrum) and with a power of typically 4000 W / m 2 .
  • the simulated environmental conditions may also include those accelerations of the motor vehicle which typically occur under real conditions.
  • high-frequency accelerations shocks
  • the simulated environmental conditions may also include those accelerations of the motor vehicle which typically occur under real conditions.
  • high-frequency accelerations shocks
  • the vertical direction of interest which can be simulated by a vertical movement of the footprint of the wheels of interest.
  • the footprints under the wheels of the front axle could be moved independently of the footprints under the wheels of the rear axle. It is particularly preferred that all footprints of the wheels can be controlled and moved independently.
  • the acceleration program impressed on the motor vehicle can be predetermined by accelerations recorded during a real journey, in order to ensure a particularly realistic simulation.
  • a robot For automatic actuation of the controls, a robot is preferably used.
  • a robot has the advantage that flexible operations and sequences of operations of various controls can be made flexible with him, the movement can be specified, for example, by a teach-in.
  • the use of a robot also has the advantage that it comes particularly close in terms of force application and the sequence of movements in an operation of the controls by a driver.
  • the forces and torques occurring in this case are preferably sensed by the actuating device.
  • the data obtained in this way can then be evaluated later or simultaneously (online) using suitable analysis methods and provide valuable information on the behavior and changes to the operating elements.
  • the operation of the controls of the electrical systems is advantageously carried out so that the forces and torques occurring vary in size and direction. This also results in a greater realism of the stress test is achieved because the operation of such controls by a human is always subject to certain variations. In particular, suboptimal or incorrect actuations can also be performed in order to also detect their influence.
  • the invention further relates to a device for load testing of electrical (including electronic) systems of a motor vehicle, which has an automatic actuator for actuating the operating elements of the systems.
  • the device is characterized that it contains a simulation chamber into which a motor vehicle containing the systems to be tested can be introduced, and in which environmental conditions can be simulated for the entire motor vehicle.
  • the automatic actuator is designed so that it can be arranged in the operating state within a motor vehicle with the systems to be tested.
  • Said device allows the implementation of the above-explained method, so that it can achieve the advantages described there.
  • a greater realism of the load test is achieved by testing the systems when installed in a motor vehicle and under (simulated) environmental conditions.
  • the simulation chamber can have an air-conditioning system with which real climatic conditions can be simulated with regard to temperature, atmospheric humidity and the like.
  • the simulation chamber can have emitters for emitting electromagnetic radiation of a suitable spectrum in order to simulate the action of solar radiation.
  • the simulation chamber preferably contains a so-called road simulator for simulating accelerations acting on a motor vehicle during a journey.
  • the road simulator can be formed, in particular, from standing surfaces for the wheels of a motor vehicle, which can be moved separately in the vertical direction via a control.
  • the actuator further advantageously includes sensors with which the forces and torques can be detected, which occur in the operation of controls of the electrical systems.
  • the signals of these sensors can be recorded or evaluated in real time in order to draw important conclusions about the behavior of the controls.
  • the actuator is preferably a robot.
  • a robot has the advantage that flexible operations and sequences of operations of various controls can be made flexible with him, the movements can be specified, for example, by a teach-in.
  • the use of a robot also has the advantage that it comes particularly close in terms of force application and the sequence of movements in an operation of the controls by a driver.
  • the robot is advantageously provided with a protective cover whose interior is air-conditioned. In this way it can be ensured that the robot operates reliably regardless of the surrounding (simulated) environmental conditions around it.
  • FIG. 1 schematically shows the device according to the invention for carrying out a load test on electrical systems of a motor vehicle 3.
  • the electrical systems or their controls such as rotary switch, toggle switch, slide, etc. are tested in the installed state in the motor vehicle 3.
  • the motor vehicle 3 is located for this purpose in a simulation chamber 1, in which real environmental conditions for the entire motor vehicle 3 can be simulated.
  • a simulation chamber 1 in which real environmental conditions for the entire motor vehicle 3 can be simulated.
  • solar radiation 9 with a value of typically 4000 W / m 2 via emitter 2 mounted on the ceiling of the simulation chamber.
  • An air conditioning 8, the ambient temperature and humidity can be simulated according to a predetermined program.
  • a four-channel road simulator 7 is provided in the simulation chamber 1, which is independent of each other contains vertically movable stand surfaces 4a, 4b for the wheels of the motor vehicle.
  • the program of the accelerations may, for example, come from a measurement during a real journey.
  • a robot 10 is provided in the motor vehicle. This is advantageously arranged on the position of the driver's seat, so that occur in terms of force application as realistic as possible.
  • the movement of the robot 10 is carried out by a control device 5 according to a predeterminable program.
  • the robot 10 it is possible to perform even complex operations of different controls in a row. In this way, realistic interactions between the electrical systems can be simulated.
  • the robot 10 may be equipped with a rigid gripper as an actuator, but it is also possible to attach a pneumatic gripper that allows additional degrees of freedom.
  • the robot arm may be formed bionic, thus enabling a force-controlled actuation of the toggle switch or rotary switch.
  • the robot 10 is preferably equipped with sensors that measure the forces and torques that occur when operating a control element. These forces and moments can be read out via the signal line 6 and recorded for analysis.
  • FIG. 2 shows in more detail the various components of the test apparatus of FIG. 1 , The same parts as in Figure 1 are provided with the same reference numerals.
  • the motor vehicle 3 with the systems to be tested is located in a climate chamber 1 for a complete vehicle in which temperatures between -40 ° C and + 85 ° C can be generated in any gradients and the extreme solar radiation can be simulated.
  • climate chamber 1 for a complete vehicle in which temperatures between -40 ° C and + 85 ° C can be generated in any gradients and the extreme solar radiation can be simulated.
  • roadway-specific vibrations can be generated via a four-channel road simulator.
  • the others in FIG. 2 Components shown serve in particular the operation of the robot 10, by which the operating elements of the electrical systems are actuated in the motor vehicle.
  • the robot 10 is provided with a protective cover, so that it can work reliably at all temperatures occurring in the simulation chamber 1.
  • the air-conditioned protective sheath of the robot 10 is connected to the robot base via tubes 11 for a special cooling and heating fluid with a mobile air conditioner 12 outside the climatic chamber 1.
  • the air conditioner 12 is controlled and generated by temperature sensors inside the protective cover Depending on the temperature in the climate chamber 1 warm or cold air, which is guided into the protective cover.
  • the temperature in the protective cover can thus be kept independent of ambient temperatures (-40 ° C to + 85 ° C) within a permitted temperature range of approx. 5 ° C to 35 ° C.
  • Temperature and flow sensors monitor the interior of the protective cover and emit messages when irregularities occur.
  • the air conditioner 12 is controlled by a computer-based robot controller 15.
  • This computer controller 15 further controls a power supply 13 for the robot which is connected to the robot via a power line 14 of 8 to 18V.
  • the computer control 15 is connected via digital interfaces to a controller 18 of the climatic chamber (white) and a device 19 for generating hydro pulses.
  • a controller 18 of the climatic chamber (white) and a device 19 for generating hydro pulses is Another connection of the computer controller 15 .
  • Another connection of the computer controller 15 is a PC-based data acquisition 20, wherein said connection can be formed via a parallel interface (RS 232) or an Ethernet.
  • RS 232 parallel interface
  • Ethernet Ethernet
  • the modules 22, 23 and 24 are provided.
  • the module 22 is a control unit via which the control signals 28 are conducted to the robot 10.
  • the control unit 22 is further connected to the computer controller 15 and to a teaching unit 21, the latter having a Programming of the actuation positions in the teach-in procedure is allowed while the test procedure is being programmed on a PC.
  • a teaching unit 21 having a Programming of the actuation positions in the teach-in procedure is allowed while the test procedure is being programmed on a PC.
  • the data acquisition module 23 collects measurement data 25 from the interior of the climate chamber 1 (for example, voltage, temperature, current, DIO) and forwards them to the PC-based data acquisition 20.
  • measurement data 25 for example, voltage, temperature, current, DIO
  • the mutual influence of modules can be observed, as it arises, for example, by discharge currents at interfaces.
  • a force / torque amplifier 24 is still present, which detects the occurring during actuation of the controls reactions 27 such as particular switching forces Fx, Fy, Fz and switching moments Mx, My, Mz and forwards to the computer control 15 after amplification. Force and torque are recorded with each actuation, the measured values are logged and provided in a statistic.
  • FIG. 3 shows a typical force-displacement relationship in the operation of a switch.
  • the force F in N On the horizontal axis while the distance traveled by the switch s in mm is shown on the vertical axis, the force F in N.
  • Such force-displacement curves (or corresponding torque-angle curves) allow the detection of changes in the switching forces and the tactile feedback forces for the robot.
  • the curve 30 represents the maximum operating force
  • the Curve 31 is the minimum required actuation force.
  • the actuation force 33 in the example is approximately 4 N.
  • the force difference 32 of approximately 2.5 N corresponds to the tactile feedback.
  • FIG. 5 shows the timing of the generation of vibrations during a test cycle.
  • scenarios 1.1 and 1.2 In chronological order, scenarios 1.1 and 1.2, and then scenarios 2.1 to 2.5 (cf. FIG. 4 ).
  • scenarios 2.1 to 2.5 In a second run of scenarios 2.1 to 2.5, a vibration phase (dark area) is executed in each case between the scenarios.
  • FIGS. 6 and 7 show the temperature course set during a seven-day test as well as the percentage frequency of the occurring temperatures.
  • At the highest temperatures (50 ° C) marked with the symbol 40 additional sunshine is simulated.
  • At the 40 ° temperature level marked 42 a relative humidity of 95% is set.
  • FIG. 8 a simplified flowchart for a seven-day or fortnightly examination procedure is shown.
  • the in FIG. 5 shown vibration profile repeated throughout the test period of 7/14 days, the vibrations are interrupted approximately every two minutes to the switch operations according to the in FIG. 4 execute listed scenarios.
  • the load from the entire life of a motor vehicle (about 10 years) can be compressed in a load test of about four weeks duration.
  • a high degree of realism is achieved and due to the automation a high reproducibility of the results and thus a high level of reliability of the results is achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Belastungsprüfung von elektrischen Systemen eines Kraftfahrzeugs, wobei die Bedienelemente der Systeme durch mindestens eine automatische Betätigungsvorrichtung testweise betätigt werden. Ferner betrifft die Erfindung eine Vorrichtung zur Durchführung des genannten Verfahrens.
  • In Kraftfahrzeugen finden zunehmend elektrische und elektronische Systeme wachsender Komplexität Verwendung. Aus diesem Grunde kommt einer Belastungsprüfung solcher elektrischen Systeme - worunter im Folgenden auch elektronische Systeme verstanden werden sollen - eine besondere Bedeutung zu. Durch eine Belastungsprüfung soll festgestellt werden, ob die Systeme eine ausreichend hohe Lebensdauer und Funktionstüchtigkeit aufweisen. Dabei sind speziell die Bedienelemente der elektrischen Systeme einer Prüfung zu unterziehen, da diese einer hohen mechanischen Belastung ausgesetzt sind und somit vorrangig einem Verschleiß und Ausfallerscheinungen unterliegen.
  • Aus der DE 31 05 491 C2 ist diesbezüglich eine Lebensdauer-Prüfvorrichtung für elektromechanische Bauelemente von Kraftfahrzeugen bekannt, bei welcher in einem Versuchsaufbau über Schrittmotoren eine wiederholte Betätigung eines Schalters vorgenommen werden kann. Gleichzeitig können entsprechende Daten über die hierbei auftretenden Kräfte und Momente aufgezeichnet werden. Eine solche Vorrichtung erlaubt die Prüfung eines Schalters hinsichtlich seines Verhaltens bei vielfach wiederholter Betätigung. Es zeigt sich jedoch, dass die hieraus gewonnenen Ergebnisse für eine Beurteilung des Schalterverhaltens unter realen Bedingungen nicht ausreichen. So kommt es bei der Verwendung der elektrischen Systeme einschließlich der Bedienelemente in einem Kraftfahrzeug unter realen Bedingungen zu zahlreichen und komplexen Wechselwirkungen der Systeme untereinander sowie zu großen Variationen der Belastungen aufgrund von realen Umgebungsbedingungen.
  • Vor diesem Hintergrund war es Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zur Belastungsprüfung von elektrischen Systemen eines Kraftfahrzeuges bereitzustellen, welche eine bessere Beurteilung des Verhaltens und der Belastungen unter realen Bedingungen ermöglichen.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 sowie eine Vorrichtung mit den Merkmalen des Anspruchs 9 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen enthalten.
  • Bei dem Verfahren zur Belastungsprüfung von elektrischen (einschließlich elektronischen) Systemen eines Kraftfahrzeuges werden die Bedienelemente der Systeme durch mindestens eine automatische Betätigungsvorrichtung zu Prüfzwekken wiederholt betätigt. Das Verfahren ist dadurch gekennzeichnet, dass die elektrischen Systeme in ihrem eingebauten, betriebsbereiten Zustand in einem Kraftfahrzeug geprüft werden, und dass das Kraftfahrzeug während dieser Prüfung einer Simulation von realen Umgebungsbedingungen ausgesetzt ist.
  • Durch das erfindungsgemäße Verfahren wird eine erheblich bessere Annäherung an die realen Benutzungsbedingungen der elektrischen Systeme erzielt. Dies geschieht dadurch, dass die elektrischen Systeme beziehungsweise die zugehörigen Bedienelemente nicht isoliert in einem künstlichen Aufbau getestet werden, sondern dass sie sich in ihrem endgültigen Einbauzustand im Kraftfahrzeug befinden. Hierdurch werden einerseits Wechselwirkungen der elektrischen Systeme untereinander als auch Wechselwirkungen zwischen einem elektrischen System beziehungsweise einem Bedienelement und dem Kraftfahrzeug berücksichtigt. So kann zum Beispiel das Verhalten eines Schalters je nach Einbauort und Einbauart sehr unterschiedlich ausfallen, wobei durch das vorgeschlagene Verfahren sichergestellt ist, dass der Prüfung die tatsächlichen Einbauumstände zugrunde gelegt werden.
  • Eine weitere wesentliche Verbesserung der Testergebnisse wird dadurch erreicht, dass das Kraftfahrzeug während der Prüfung einer Simulation von realen Umgebungsbedingungen ausgesetzt ist, die ebenfalls erheblichen Einfluss auf das Verhalten der Systeme und Bedienelemente haben können.
  • Dabei kann zu den simulierten Umgebungsbedingungen insbesondere die Umgebungstemperatur gehören. Diese wird während der Prüfung in einem Bereich variiert, welcher den Temperaturen entspricht, die beim realen Einsatz des Kraftfahrzeugs auftreten können. Typischerweise liegt dieser Temperaturbereich zwischen -40°C und +85°C. Die Verteilung der Prüfungszeit über die Temperaturen kann basierend auf der realen Temperaturverteilung gewählt werden, welcher ein Kraftfahrzeug typischerweise während seiner Lebensdauer ausgesetzt ist. Vorzugsweise werden jedoch Extremtemperaturen bei der Prüfung überproportional zugrunde gelegt, da sich diese besonders belastend auswirken und somit bei der Feststellung der Belastbarkeitsgrenze von höherer Bedeutung sind.
  • Weiterhin kann zu den simulierten Umgebungsbedingungen die Luftfeuchtigkeit gehören, da auch diese einen erheblichen Einfluss auf das Belastungsverhalten der zu prüfenden Systeme beziehungsweise Bedienelemente hat. Die Luftfeuchtigkeit wird vorzugsweise während des Tests in dem unter realen Bedingungen auftretenden Schwankungsbereich variiert.
  • Zu den simulierten Umgebungsbedingungen kann auch die Sonneneinstrahlung gehören, die vorzugsweise durch eine künstliche Bestrahlung mit Licht einer geeigneten Wellenlängenverteilung (Spektrum) und mit einer Leistung von typischerweise 4000 W/m2 simuliert wird.
  • Schließlich können zu den simulierten Umgebungsbedingungen auch solche Beschleunigungen des Kraftfahrzeugs gehören, die unter realen Bedingungen typischerweise auftreten. Insbesondere hochfrequente Beschleunigungen (Stöße) haben verständlicherweise erheblichen Einfluss auf das mechanische Verhalten der zu prüfenden Systeme und Bedienelemente. Ferner sind vor allem Beschleunigungen in vertikaler Richtung von Interesse, welche durch eine vertikale Bewegung der Standflächen der Räder simuliert werden können. Dabei sollten vorzugsweise die Standflächen unter den Rädern der Vorderachse unabhängig von den Standflächen unter den Rädern der Hinterachse bewegt werden können. Besonders bevorzugt ist es, dass alle Standflächen der Räder unabhängig voneinander angesteuert und bewegt werden können. Das dem Kraftfahrzeug aufgeprägte Beschleunigungsprogramm kann durch bei einer realen Fahrt aufgezeichnete Beschleunigungen vorgegeben werden, um so eine besonders realistische Simulation zu gewährleisten.
  • Zur automatischen Betätigung der Bedienelemente wird vorzugsweise ein Roboter verwendet. Ein solcher Roboter hat den Vorteil, dass mit ihm flexibel auch komplexe Bedienvorgänge und Abfolgen von Betätigungen verschiedener Bedienelemente vorgenommen werden können, wobei die Bewegungsabläufe zum Beispiel durch ein Teach-in vorgegeben werden können. Der Einsatz eines Roboters hat ferner den Vorteil, dass er hinsichtlich der Kraftaufbringung und der Bewegungsabfolge den Verhältnissen bei einer Betätigung der Bedienelemente durch einen Fahrer besonders nahe kommt.
  • Während der Betätigung der Bedienelemente werden vorzugsweise die hierbei auftretenden Kräfte und Drehmomente durch die Betätigungsvorrichtung sensorisch erfasst. Die so gewonnen Daten können dann später oder gleichzeitig (online) mit geeigneten Analyseverfahren ausgewertet werden und geben wertvolle Hinweise über Verhalten und Veränderungen der Bedienelemente.
  • Die Betätigung der Bedienelemente der elektrischen Systeme wird vorteilhafterweise so ausgeführt, dass die dabei auftretenden Kräfte und Drehmomente hinsichtlich ihrer Größe und ihrer Richtung variieren. Auch hierdurch wird eine größere Realitätsnähe der Belastungsprüfung erreicht, da die Betätigung solcher Bedienelemente durch einen Menschen immer gewissen Variationen unterworfen ist. Insbesondere können auch suboptimale beziehungsweise nicht korrekte Betätigungen durchgeführt werden, um auch deren Einfluss zu erfassen.
  • Die Erfindung betrifft ferner eine Vorrichtung zur Belastungsprüfung von elektrischen (einschließlich elektronischen) Systemen eines Kraftfahrzeugs, welche eine automatische Betätigungsvorrichtung zur Betätigung der Bedienelemente der Systeme aufweist. Die Vorrichtung ist dadurch gekennzeichnet, dass sie eine Simulationskammer enthält, in welche ein die zu prüfenden Systeme enthaltendes Kraftfahrzeug eingebracht werden kann, und in welcher Umgebungsbedingungen für das gesamte Kraftfahrzeug simuliert werden können. Weiterhin ist die automatische Betätigungsvorrichtung so ausgestaltet, dass sie im Betriebszustand innerhalb eines Kraftfahrzeugs mit den zu prüfenden Systemen angeordnet werden kann.
  • Die genannte Vorrichtung erlaubt die Durchführung des oben erläuterten Verfahrens, so dass sich die dort geschilderten Vorteile erzielen lassen. Insbesondere wird eine größere Realitätsnähe der Belastungsprüfung durch das Testen der Systeme im eingebauten Zustand in einem Kraftfahrzeug und unter (simulierten) Umgebungsbedingungen erreicht.
  • Die Simulationskammer kann insbesondere eine Klimaanlage aufweisen, mit welcher sich reale Klimabedingungen hinsichtlich Temperatur, Luftfeuchtigkeit und dergleichen simulieren lassen.
  • Ferner kann die Simulationskammer Strahler zur Abgabe elektromagnetischer Strahlung eines geeigneten Spektrums aufweisen, um hierdurch die Einwirkung von Sonneneinstrahlung zu simulieren.
  • Des weiteren enthält die Simulationskammer vorzugsweise einen sogenannten Straßensimulator zur Simulation von Beschleunigungen, die auf ein Kraftfahrzeug während einer Fahrt einwirken. Der Straßensimulator kann insbesondere aus Standflächen für die Räder eines Kraftfahrzeugs gebildet werden, welche über eine Ansteuerung separat in vertikaler Richtung bewegt werden können.
  • Die Betätigungsvorrichtung enthält ferner vorteilhafterweise Sensoren, mit welchen die Kräfte und Drehmomente erfasst werden können, die bei der Betätigung von Bedienelementen der elektrischen Systeme auftreten. Die Signale dieser Sensoren können aufgezeichnet oder in Echtzeit ausgewertet werden, um hieraus wichtige Rückschlüsse über das Verhalten der Bedienelemente zu ziehen.
  • Bei der Betätigungsvorrichtung handelt es sich vorzugsweise um einen Roboter. Ein solcher Roboter hat den Vorteil, dass mit ihm flexibel auch komplexe Bedienvorgänge und Abfolgen von Betätigungen verschiedener Bedienelemente vorgenommen werden können, wobei die Bewegungsabläufe zum Beispiel durch ein Teach-in vorgegeben werden können. Der Einsatz eines Roboters hat ferner den Vorteil, dass er hinsichtlich der Kraftaufbringung und der Bewegungsabfolge den Verhältnissen bei einer Betätigung der Bedienelemente durch einen Fahrer besonders nahe kommt.
  • Der Roboter wird vorteilhafterweise mit einer Schutzumhüllung versehen, deren Innenraum klimatisierbar ist. Auf diese Weise kann sichergestellt werden, dass der Roboter unabhängig von den um ihn herum herrschenden (simulierten) Umgebungsbedingungen zuverlässig arbeitet.
  • Im Folgenden wird die Erfindung mit Hilfe der Figuren beispielhaft näher erläutert. Es zeigen:
  • Fig. 1
    schematisch die Komponenten einer erfindungsgemäßen Vorrichtung zur Belastungsprüfung;
    Fig. 2
    den detaillierteren Aufbau der Vorrichtung nach Figur 1;
    Fig. 3
    ein Kraft-Weg-Diagramm für ein typisches Bedienelement;
    Fig. 4
    einen Betätigungsplan für verschiedene Bedienelemente;
    Fig. 5
    die Zeitsteuerung einer Vibrations-Simulation;
    Fig. 6
    die Zeitsteuerung der Umgebungstemperatur-Simulation;
    Fig. 7
    die Häufigkeitsverteilung der simulierten Temperaturen;
    Fig. 8
    ein Flussdiagramm des Prüfverfahrens.
  • Figur 1 zeigt schematisch die erfindungsgemäße Vorrichtung zur Durchführung einer Belastungsprüfung an elektrischen Systemen eines Kraftfahrzeugs 3. Die elektrischen Systeme beziehungsweise ihre Bedienelemente wie z.B. Drehschalter, Kippschalter, Schieber, etc. werden dabei im eingebauten Zustand im Kraftfahrzeug 3 getestet.
  • Das Kraftfahrzeug 3 befindet sich zu diesem Zweck in einer Simulationskammer 1, in welcher reale Umgebungsbedingungen für das gesamte Kraftfahrzeug 3 simuliert werden können. Insbesondere lässt sich über an der Decke der Simulationskammer angebrachte Strahler 2 die Sonneneinstrahlung 9 mit einem Wert von typischerweise 4000 W/m2 simulieren. Über eine Klimaanlage 8 können die Umgebungstemperatur und die Luftfeuchtigkeit nach einem vorgegebenen Programm simuliert werden. Weiterhin ist in der Simulationskammer 1 ein vierkanaliger Straßensimulator 7 vorgesehen, welcher unabhängig voneinander vertikal bewegbare Standflächen 4a, 4b für die Räder des Kraftfahrzeugs enthält. Durch diesen Straßensimulator können Vertikalbeschleunigungen simuliert werden, die bei einer typischen Fahrt des Kraftfahrzeugs 3 auftreten. Das Programm der Beschleunigungen kann z.B. aus einer Messung bei einer realen Fahrt stammen.
  • Zur Betätigung der Bedienelemente der elektrischen Systeme ist im Kraftfahrzeug ein Roboter 10 vorgesehen. Dieser ist vorteilhafterweise auf der Position des Fahrersitzes angeordnet, so dass hinsichtlich der Kraftaufbringung möglichst realistische Verhältnisse eintreten. Die Bewegung des Roboters 10 wird von einer Steuervorrichtung 5 nach einem vorgebbaren Programm ausgeführt. Durch den Roboter 10 ist es möglich, auch komplexe Betätigungsvorgänge von verschiedenen Bedienelementen hintereinander durchzuführen. Auf diese Weise lassen sich realistische Wechselwirkungen zwischen den elektrischen Systemen simulieren. Der Roboter 10 kann mit einem starren Greifer als Betätigungsorgan ausgestattet sein, möglich ist jedoch auch die Anbringung eines pneumatischen Greifers, der zusätzliche Freiheitsgrade erlaubt. Insbesondere kann der Roboterarm bionisch ausgebildet sein, also eine kraftkontrollierte Betätigung der Kippschalter oder Drehschalter ermöglichen.
  • Der Roboter 10 ist vorzugsweise mit Sensoren ausgerüstet, welche die Kräfte und Drehmomente messen, die bei der Betätigung eines Bedienelementes auftreten. Diese Kräfte und Momente lassen sich über die Signalleitung 6 auslesen und für eine Analyse aufzeichnen.
  • Mit der erfindungsgemäßen Simulationskammer 1 und dem Roboter 10 kann somit eine Dauerfestigkeitsprüfung der Elektronik erfolgen, bei welcher auch extreme klimatische Bedingungen berücksichtigt werden können. Auf diese Weise wird die Zuverlässigkeit und Betriebsfestigkeit von Komponenten und Systemen gewissermaßen im Zeitraffer bei typischen Laufzeiten von 10 Jahren und 277.800 km (150 000 Meilen) geprüft. Mit der Vorrichtung können in einem integrierten Testzyklus die Straßenverhältnisse und die klimatischen Bedingungen simuliert und zugleich die elektrischen Komponenten betätigt werden. Damit nähern sich die Laborbedingungen weiter an die Realität an, und zusätzlich wird für die notwendigen Tests Zeit gespart.
  • Figur 2 zeigt detaillierter die verschiedenen Komponenten der Prüfvorrichtung von Figur 1. Gleiche Teile wie bei Figur 1 sind dabei mit den gleichen Bezugsziffern versehen.
  • Das Kraftfahrzeug 3 mit den zu testenden Systemen befindet sich in einer Klimakammer 1 für ein komplettes Fahrzeug, in welcher Temperaturen zwischen -40°C und +85°C in beliebigen Verläufen erzeugt werden können und auch die extreme Sonneneinstrahlung simuliert werden kann. Über einen vierkanaligen Straßensimulator können zugleich fahrbahntypische Schwingungen erzeugt werden.
  • Die weiteren in Figur 2 gezeigten Komponenten dienen insbesondere dem Betrieb des Roboters 10, durch welchen die Bedienelemente der elektrischen Systeme im Kraftfahrzeug betätigt werden. Der Roboter 10 ist dabei mit einer Schutzumhüllung versehen, so dass er zuverlässig bei allen in der Simulationskammer 1 auftretenden Temperaturen arbeiten kann. Die klimatisierte Schutzumhüllung des Roboters 10 ist am Roboterfuß über Röhren 11 für ein spezielles Kühlungs- und Heizungsfluid mit einem mobilen Klimagerät 12 außerhalb der Klimakammer 1 verbunden. Das Klimagerät 12 wird über Temperaturfühler im Inneren der Schutzhülle gesteuert und erzeugt je nach Temperatur in der Klimakammer 1 warme beziehungsweise kalte Luft, die in die Schutzhülle geführt wird. Die Temperatur in der Schutzhülle kann so unabhängig von Umgebungstemperaturen (-40°C bis +85°C) in einem erlaubten Temperaturbereich von ca. 5°C bis 35°C gehalten werden. Temperatur- und Strömungssensoren überwachen den Innenraum der Schutzhülle und geben Meldungen aus, wenn Unregelmäßigkeiten auftreten.
  • Das Klimagerät 12 wird von einer computerbasierten Roboterregelung 15 gesteuert. Diese Computersteuerung 15 steuert ferner eine Energieversorgung 13 für den Roboter, welche über eine Spannungsleitung 14 von 8 bis 18 V mit dem Roboter verbunden ist.
  • Weiterhin ist die Computersteuerung 15 über digitale Schnittstellen mit einer Steuerung 18 der Klimakammer (Weiss) sowie einer Einrichtung 19 zur Erzeugung von Hydroimpulsen verbunden. Eine weitere Verbindung der Computersteuerung 15 besteht zu einer PC-basierten Datenerfassung 20, wobei die genannte Verbindung über eine parallele Schnittstelle (RS 232) oder ein Ethernet gebildet werden kann. Mit der Datenerfassung 20 können alle elektrischen Systeme während der Prüfung vermessen und beobachtet werden, um die logischen Funktionen, Spannungen und Ströme in Echtzeit darzustellen und eine Verschlechterung durch Einflüsse wie zum Beispiel Verschleiß zu visualisieren.
  • Zur unmittelbaren Ansteuerung und Kommunikation mit dem Roboter 10 sind die Module 22, 23 und 24 vorgesehen. Das Modul 22 ist dabei eine Steuerungseinheit, über welche die Steuersignale 28 an den Roboter 10 geleitet werden. Die Steuereinheit 22 ist ferner mit der Computersteuerung 15 und mit einer Teaching-Einheit 21 verbunden, wobei Letztere eine Programmierung der Betätigungspositionen im Teach-in Verfahren erlaubt, während der Prüfablauf auf einem PC programmiert wird. Durch dieses Verfahren können auch komplizierte Aufgaben erledigt werden und zum Beispiel viele Bedienelemente nacheinander beziehungsweise im Wechsel betätigt werden. Auch Aufgabenstellungen wie zum Beispiel eine gezielt unkorrekte Betätigung mit ungleichmäßiger Belastung, die in der Praxis ebenfalls vorkommt, kann mit dem Roboter 10 erfüllt werden.
  • Das Datenerfassungsmodul 23 sammelt Messdaten 25 aus dem Inneren der Klimakammer 1 (zum Beispiel Spannung, Temperatur, Strom, DIO) und leitet diese an die PC-basierte Datenerfassung 20 weiter. Dabei kann insbesondere auch die gegenseitige Beeinflussung von Modulen beobachtet werden, wie sie zum Beispiel durch Entladeströme an Schnittstellen entsteht.
  • Schließlich ist noch ein Kraft-/Drehmomentverstärker 24 vorhanden, welcher die beim Betätigen der Bedienelemente auftretenden Reaktionen 27 wie insbesondere Schaltkräfte Fx, Fy, Fz sowie Schaltmomente Mx, My, Mz erfasst und nach Verstärkung an die Computersteuerung 15 weiterleitet. Kraft und Drehmoment werden so bei jeder Betätigung aufgezeichnet, die Messwerte werden protokolliert und in einer Statistik bereitgestellt.
  • Figur 3 zeigt eine typische Kraft-Weg-Beziehung bei der Betätigung eines Schalters. Auf der horizontalen Achse ist dabei die vom Schalter zurückgelegte Wegstrecke s in mm dargestellt, auf der vertikalen Achse die Kraft F in N. Derartige Kraft-Weg-Kurven (oder entsprechende Drehmoment-Winkel-Kurven) erlauben die Detektion von Änderungen der Schaltkräfte sowie der taktilen Rückkopplungskräfte für den Roboter. Die Kurve 30 stellt die maximale Betätigungskraft, die Kurve 31 die minimal erforderliche Betätigungskraft dar. Die Betätigungskraft 33 beträgt im Beispiel ca. 4 N. Der Kraftunterschied 32 von ca. 2,5 N entspricht der taktilen Rückkopplung.
  • Figur 4 zeigt beispielhaft ein typisches Programm für die Betätigung von verschiedenen im Kraftfahrzeug vorhandenen Schaltern bzw. Bedienelementen. Für den Funktionstest werden verschiedene typische Bedienabläufe simuliert, sog. Szenarien 1.1 bis 2.5. In der linken Spalte sind untereinander verschiedene zu testende Systeme A bis G mit unterschiedlichen Funktionen aufgeführt. Die Bedeutung der Systeme und Funktionen in dem beispielhaften Programmablauf ist:
  • A:
    Verschiedene Funktionen (1. Gruppe)
    A1: Fahrertür (Wechsel offen - geschlossen)
    A2: Zündung
    B:
    Klimafunktionen:
    B1: Heizungsgebläse (Stufe 2)
    B2: Heizungsgebläse (Stufe 4)
    B3: Klimatisierung
    B4: Umluft
    C:
    Sichtbarkeitsfunktionen
    C1: Heizbares Rücklicht
    C2: Heizbare Heckscheibe
    D:
    Externe Beleuchtung und Blinker
    D1: Standlicht usw. bis
    D9: Warnblinkanlage
    E:
    Scheibenwischerfunktionen
    E1: Frontwischer (Stufe 1) usw. bis
    E6: Heckscheibenwischer (Intervallbetrieb)
    F:
    Komfortfunktionen
    F1: Elektrische Fensterheber auf -ab (Fahrer) usw. bis
    F6: Schiebedachneigung
    G:
    Verschiedene Funktionen (2. Gruppe)
    G1: Zigarettenanzünder
    G2: Instrumentenbrettdimmer (hell-dunkel)
    G3: Hupe
    In den verschiedenen Szenarien 1.1 bis 2.5 werden die jeweiligen Funktionen entweder eingeschaltet (schwarzer Balken im mittleren Bereich 36 der jeweiligen Spalte) oder ausgeschaltet (schwarzer Balken im rechten Bereich 37 der jeweiligen Spalte). Die Funktionen in der jeweiligen Spalte werden entweder in der Reihenfolge von oben nach unten (bei den Szenarien 1.1 sowie 2.1 bis 2.4) oder von unten nach oben (Szenarien 1.2 und 2.5) ausgeführt. In der untersten Zeile 35 ist die jeweilige ungefähre Betriebsdauer pro Bedienfunktion angegeben; in der Spalte 38 sind die Anzahl der Zyklen für die Ausführung der einzelnen Funktionen angegeben; durch eine zweifache Ausführung bestimmter Funktion wird die größere Häufigkeit der Bedienung der Funktionen in der Realität berücksichtigt. Die Szenarien 1.1 (sog. Start-Szenario) und 1.2 (sog. Stop-Szenario) stellen einen vollständigen Funktionstest dar, der über den gesamten Temperaturbereich durchgeführt wird. Bei den Szenarien 2.1 bis 2.5 werden bestimmte Funktionen in bestimmten Temperaturbereichen, in denen diese normalerweise nicht benötigt werden oder benutzt werden können, nicht ausgeführt, wie in Spalte 41 für die einzelnen Funktionen und drei exemplarische Temperaturbereiche jeweils angegeben (mittlerer Temperaturbereich >5°C und <21 °C, hoher Temperaturbereich >21 °C sowie niedriger Temperaturbereich < 5°C). Wie aus Figur 4 insgesamt ersichtlich, erlaubt das erfindungsgemäße Verfahren die Betätigung einer großen Anzahl verschiedener Funktionen nacheinander oder im Wechsel, so dass im Rahmen der Simulation auch komplexe Wechselwirkungen der einzelnen Bedienelemente untereinander erkannt werden können.
  • Figur 5 zeigt den Zeitablauf der Erzeugung von Vibrationen während eines Testzyklus. In zeitlicher Abfolge werden zunächst die Szenarien 1.1 und 1.2, und anschließend die Szenarien 2.1 bis 2.5 (vgl. Figur 4) ausgeführt. Bei einem zweiten Durchlauf der Szenarien 2.1 bis 2.5 wird jeweils zwischen den Szenarien eine Vibrationsphase (dunkler Bereich) ausgeführt.
  • Die Figuren 6 und 7 zeigen den während eines siebentägigen Tests eingestellten Temperaturverlauf sowie die prozentuale Häufigkeit der dabei auftretenden Temperaturen. Bei den mit dem Symbol 40 gekennzeichneten höchsten Temperaturen (50 °C) wird zusätzlich Sonnenbestrahlung simuliert. Bei dem mit 42 gekennzeichneten Temperaturniveau von 40° wird eine relative Luftfeuchtigkeit von 95 % eingestellt.
  • In Figur 8 ist ein vereinfachtes Ablaufdiagramm für eine siebentägige beziehungsweise vierzehntägige Prüfungsprozedur dargestellt. Wie hieraus erkennbar ist, wird das in Figur 5 dargestellte Vibrationsprofil während der gesamten Versuchsdauer von 7/14 Tagen ständig wiederholt, wobei die Vibrationen etwa alle zwei Minuten unterbrochen werden, um die Schalterbetätigungen entsprechend den in Figur 4 aufgelisteten Szenarien auszuführen.
  • Durch das erfindungsgemäße Testprogramm, welches rund um die Uhr während der gesamten Versuchsdauer ausgeführt wird, kann die Belastung aus der gesamten Lebensdauer eines Kraftfahrzeugs (ca. 10 Jahren) in einen Belastungstest von ca. vier Wochen Dauer komprimiert werden. Dabei wird gleichzeitig eine hohe Realitätsnähe und aufgrund der Automatisierung eine hohe Reproduzierbarkeit der Ergebnisse und damit ein hohes Zuverlässigkeitsniveau der Ergebnisse erreicht.

Claims (15)

  1. Verfahren zur Belastungsprüfung von elektrischen Systemen eines Kraftfahrzeugs, wobei die Bedienelemente der Systeme durch mindestens eine automatische Betätigungsvorrichtung testweise betätigt werden,
    dadurch gekennzeichnet, dass die elektrischen Systeme im eingebauten Zustand im Kraftfahrzeug (3) geprüft werden, und dass das Kraftfahrzeug während der Prüfung einer Simulation von realen Umgebungsbedingungen ausgesetzt ist.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass zu den Umgebungsbedingungen die Umgebungstemperatur gehört, welche während der Prüfung vorzugsweise zwischen -40°C und +85°C variiert wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet, dass zu den Umgebungsbedingungen die Luftfeuchtigkeit gehört.
  4. Verfahren nach mindestens einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass zu den Umgebungsbedingungen die Sonneneinstrahlung gehört, welche vorzugsweise durch eine Bestrahlung mit einer Leistung von bis zu 5000 W/m2 simuliert wird.
  5. Verfahren nach mindestens einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass zu den Umgebungsbedingungen Beschleunigungen des Kraftfahrzeugs (3) gehören, welche vorzugsweise durch voneinander unabhängige vertikale Bewegungen der Standflächen (4a, 4b) der Räder des Kraftfahrzeugs simuliert werden.
  6. Verfahren nach mindestens einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass die Betätigungsvorrichtung ein Roboter (10) ist.
  7. Verfahren nach mindestens einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass die Betätigungsvorrichtung (10) die Kräfte und Momente beim Betätigen der Bedienelemente sensorisch erfasst.
  8. Verfahren nach mindestens einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass die Betätigungsvorrichtung (10) die Kräfte und Momente bei der Betätigung der Bedienelemente variiert.
  9. Vorrichtung zur Belastungsprüfung von elektrischen Systemen eines Kraftfahrzeugs, enthaltend mindestens eine automatische Bedienvorrichtung zur Betätigung der Bedienelemente der Systeme,
    dadurch gekennzeichnet, dass die Vorrichtung zur Aufnahme eines die zu prüfenden Systeme enthaltenden Kraftfahrzeugs (3) eine Simulationskammer (1) aufweist, in der Umgebungsbedingungen simuliert werden können, und dass die automatische Betätigungsvorrichtung (10) innerhalb des Kraftfahrzeugs angeordnet werden kann.
  10. Vorrichtung nach Anspruch 9,
    dadurch gekennzeichnet, dass die Simulationskammer (1) eine Klimaanlage (8) aufweist.
  11. Vorrichtung nach einem der Ansprüche 9 oder 10,
    dadurch gekennzeichnet, dass die Simulationskammer (1) Strahler (2) zur Simulation von Sonneneinstrahlung aufweist.
  12. Vorrichtung nach mindestens einem der Ansprüche 9 bis 11,
    dadurch gekennzeichnet, dass die Simulationskammer (1) Standflächen (4a, 4b) für die Räder eines Kraftfahrzeugs (3) aufweist, die über eine Ansteuerung (7) separat vertikal bewegbar sind.
  13. Vorrichtung nach mindestens einem der Ansprüche 9 bis 12,
    dadurch gekennzeichnet, dass die Betätigungsvorrichtung Sensoren zur Erfassung von Kräften und Momenten bei der Betätigung von Bedienelementen der elektrischen Systeme aufweist.
  14. Vorrichtung nach mindestens einem der Ansprüche 9 bis 13,
    dadurch gekennzeichnet, dass die Betätigungsvorrichtung ein Roboter (10) ist.
  15. Vorrichtung nach Anspruch 13,
    dadurch gekennzeichnet, dass der Roboter (10) eine klimatisierbare Schutzumhüllung aufweist.
EP00123729A 2000-10-31 2000-10-31 Verfahren und Vorrichtung zur Belastungsprüfung von elektrischen Systemen eines Kraftfahrzeugs Expired - Lifetime EP1202041B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE50015598T DE50015598D1 (de) 2000-10-31 2000-10-31 Verfahren und Vorrichtung zur Belastungsprüfung von elektrischen Systemen eines Kraftfahrzeugs
EP00123729A EP1202041B1 (de) 2000-10-31 2000-10-31 Verfahren und Vorrichtung zur Belastungsprüfung von elektrischen Systemen eines Kraftfahrzeugs
US10/003,966 US6690174B2 (en) 2000-10-31 2001-10-31 Method and arrangement for load testing electrical systems of a motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00123729A EP1202041B1 (de) 2000-10-31 2000-10-31 Verfahren und Vorrichtung zur Belastungsprüfung von elektrischen Systemen eines Kraftfahrzeugs

Publications (2)

Publication Number Publication Date
EP1202041A1 EP1202041A1 (de) 2002-05-02
EP1202041B1 true EP1202041B1 (de) 2009-03-18

Family

ID=8170260

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00123729A Expired - Lifetime EP1202041B1 (de) 2000-10-31 2000-10-31 Verfahren und Vorrichtung zur Belastungsprüfung von elektrischen Systemen eines Kraftfahrzeugs

Country Status (3)

Country Link
US (1) US6690174B2 (de)
EP (1) EP1202041B1 (de)
DE (1) DE50015598D1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7203574B2 (en) * 2003-01-10 2007-04-10 Lockheed Martin Corporation Self-sustaining environmental control unit
US7181379B2 (en) * 2003-03-17 2007-02-20 Environmental Testing Corporation Variable altitude simulator system for testing engines and vehicles
EP1473123B1 (de) * 2003-04-30 2018-06-06 Günther Battenberg System zum Erfassen, Beeinflussen und Ausnutzen von Roboterbewegungen
US8108191B1 (en) * 2005-12-08 2012-01-31 Advanced Testing Technologies, Inc. Electric motor simulator and method for testing motor driver devices
DE102006006246A1 (de) * 2006-02-10 2007-08-16 Battenberg, Günther Verfahren und Vorrichtung zur vollautomatischen Endkontrolle von Bauteilen und/oder deren Funktionseinheiten
DE102006059945B4 (de) * 2006-12-19 2013-03-21 Volkswagen Ag Verfahren zur Bestimmung der Stoßbelastung beim Anschlagen eines bewegbaren Elements an einen Endanschlag und Vorrichtung hierfür
NL2000962C2 (nl) * 2007-09-17 2009-03-18 Johannes Wilhelmus Maria Konings Werkwijze voor het automatisch verstellen van een onderdeel van een inrichting.
FR2923013A1 (fr) * 2007-10-26 2009-05-01 Renault Sas Banc d'essai de mesures haptiques pour un bloc de commande d'un appareil electrique
DE102007055009A1 (de) * 2007-11-14 2009-05-20 Sitech Sitztechnik Gmbh Versuchsstand mit kooperierenden Robotern
DE102009007932A1 (de) 2009-02-06 2010-08-12 Battenberg, Günther Qualitätsgesteuertes Produktions- und Prüfverfahren
GB201200493D0 (en) * 2012-01-12 2012-02-22 Jaguar Cars Vehicle test and diagnostics arrangement and method (switch pack actuation)
US20130181059A1 (en) * 2012-01-13 2013-07-18 Nissan North America, Inc. Testing apparatus for preventing freezing of relays in electrical components
US9283852B2 (en) * 2012-05-09 2016-03-15 Schneider Electric USA, Inc. Diagnostic receptacle for electric vehicle supply equipment
CN103760496B (zh) * 2014-01-28 2016-06-22 安徽安凯汽车股份有限公司 一种电动汽车动力电池组充放电能力测试装置及方法
CN104316339B (zh) * 2014-09-29 2017-04-26 四川长虹电器股份有限公司 一种功能测试方法及功能测试系统
CN104459553B (zh) * 2014-11-28 2017-10-03 上海交通大学 一种预测电动汽车电池效率和健康状况的方法和系统
DE102015201465A1 (de) * 2015-01-28 2016-07-28 Hochschule Karlsruhe Verfahren und Vorrichtung zur Herstellung eines Kabelbaums
US10288525B2 (en) * 2015-10-20 2019-05-14 Hyperloop Technologies, Inc. Bearing testing apparatus and method
FR3079176B1 (fr) * 2018-03-21 2020-04-10 Faurecia Sieges D'automobile Systeme pour siege de vehicule comprenant un dispositif fonctionnel, une interface d'entree et un dispositif de commande
EP3579008A1 (de) * 2018-06-05 2019-12-11 Proventia Oy Anordnung zum testen von elektrischen fahrzeugkomponenten
US11868108B2 (en) * 2021-06-29 2024-01-09 Volvo Car Corporation Artificial weathering of a multi-dimensional object
CN114235373B (zh) * 2021-12-21 2024-04-02 北京理工大学重庆创新中心 一种轮腿机器人单轮腿工况测试装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837491B2 (ja) * 1976-08-30 1983-08-16 クレイトン マニユフアクチユアリング カンパニ− 慣性および道路負荷シミュレ−タ
DE3105491C2 (de) * 1981-02-14 1983-07-21 Merit-Werk Merten & Co Kg, 5270 Gummersbach Lebensdauer-Prüfvorrichtung für elektromechanische Bauelemente, wie insbesondere Kraftfahrzeugschalter aller Art
US4964298A (en) * 1987-03-02 1990-10-23 Kabushiki-Kaisha Toyo Seisakusho Device for controlling the air pressure in the low pressure environmental testing chamber for self-propelled vehicles
KR960006313B1 (ko) * 1988-10-25 1996-05-13 가부시끼가이샤 메이덴샤 자동 변속기용 구동 시험 장치
US5025659A (en) * 1989-09-13 1991-06-25 Sverdrup Technology, Inc. Slotted-wall extension and method for environmental wind tunnels
US5167146A (en) * 1991-07-15 1992-12-01 General Motors Corporation Emissions test enclosure with minimized air exchange
JP2613517B2 (ja) * 1991-12-07 1997-05-28 株式会社堀場製作所 シャシダイナモメータ上の自動車運転用ロボット
DE4305901A1 (de) * 1993-02-26 1994-09-01 Bayerische Motoren Werke Ag Sonnenlichtsimulations-Vorrichtung für Kraftfahrzeuge

Also Published As

Publication number Publication date
US20020088271A1 (en) 2002-07-11
EP1202041A1 (de) 2002-05-02
US6690174B2 (en) 2004-02-10
DE50015598D1 (de) 2009-04-30

Similar Documents

Publication Publication Date Title
EP1202041B1 (de) Verfahren und Vorrichtung zur Belastungsprüfung von elektrischen Systemen eines Kraftfahrzeugs
EP3243055B1 (de) Verfahren zum betrieb eines fahrsimulators
DE19523483C2 (de) Rechnergestützte Fehlerdiagnoseeinrichtung für ein komplexes technisches System
EP1128999B1 (de) Vorrichtung sowie verfahren zur steuerung einer elektrisch betätigbaren feststellbremse
DE102010031884B4 (de) Verfahren und Vorrichtung zur Testung eines Batterie-Management-Systems
DE102014002526A1 (de) Kollisionsprüfsystem und Verfahren zum Betreiben eines Kollisionsprüfsystems
EP2088439B1 (de) Vorrichtung zur Funktionsüberprüfung eines Fahrzeugs
CN109147465A (zh) 一种汽车驾驶模拟器测试系统及控制方法
DE102012019301A1 (de) Verfahren und Vorrichtung zur Fahrzeugdiagnose
EP3729044A1 (de) Verfahren zur analyse eines automatisierungssystems einer anlage, emulator zum zumindest teilweise virtuellen betreiben eines automatisierungssystems einer anlage und system zur analyse eines automatisierungssystems einer anlage
EP2884295A1 (de) Systeme und Verfahren zum Entwickeln und Testen von hybriden Energiespeichern
EP0881501A2 (de) Vorrichtung zur Funktionsüberprüfung eines elektronisch gesteuerten Regelsystems in einem Kraftfahrzeug nach einem Fertigungsvorgang
EP1324053A1 (de) Verfahren für die Funktionsprüfung eines Querbeschleunigungssensor
DE102008047007B4 (de) Vorrichtung und Verfahren zur Durchführung einer Bremsenprüfung
DE102013001088A1 (de) Batterieattrappe
WO2005040838A1 (de) System und verfahren zum testen von steuervorgängen bei einem fahrzeug
DE3228416C2 (de) Anzeigevorrichtung für ein Kraftfahrzeug zur selektiven Anzeige von die Betriebsbedingungen des Kraftfahrzeuges selbst betreffenden Informationen
WO2006035038A2 (de) Verfahren zum testen von steuergerätesoftware für ein steuergerät
DE102006053559B4 (de) Inbetriebnahme eines Notbremssystems in einer Werkstatt
DE102019203205A1 (de) Verfahren zum Auswerten von Fahrzeugdaten sowie Fahrzeugdatenauswertesystem zum Durchführen eines derartigen Verfahrens
AT509249B1 (de) Prüfstand für elektrische energiespeichersysteme für fahrzeuge
CN209168449U (zh) 一种汽车驾驶模拟器测试系统
DE102020106064A1 (de) Vorrichtung zum Simulieren von klimatischen Außenbedingungen in einem Innenraum eines Fahrzeugs
DE202010010492U1 (de) Vorrichtung zur Testung eines Batterie-Management-Systems
DE102019118002A1 (de) Verfahren und System zur Prüfung und/oder Montage eines Objekts mittels eines Roboters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORD GLOBAL TECHNOLOGIES, LLC

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50015598

Country of ref document: DE

Date of ref document: 20090430

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091221

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20111110 AND 20111116

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: BATTENBERG ROBOTIC GMBH & CO. KG, DE

Effective date: 20111201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121113

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121024

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181026

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50015598

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501