EP1199457B1 - Verfahren zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine - Google Patents

Verfahren zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine

Info

Publication number
EP1199457B1
EP1199457B1 EP20010120794 EP01120794A EP1199457B1 EP 1199457 B1 EP1199457 B1 EP 1199457B1 EP 20010120794 EP20010120794 EP 20010120794 EP 01120794 A EP01120794 A EP 01120794A EP 1199457 B1 EP1199457 B1 EP 1199457B1
Authority
EP
European Patent Office
Prior art keywords
lean
inadmissible
internal combustion
combustion engine
burn operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010120794
Other languages
English (en)
French (fr)
Other versions
EP1199457A2 (de
EP1199457A3 (de
Inventor
Ekkehard Dr. Pott
Michael Dr. Zillmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1199457A2 publication Critical patent/EP1199457A2/de
Publication of EP1199457A3 publication Critical patent/EP1199457A3/de
Application granted granted Critical
Publication of EP1199457B1 publication Critical patent/EP1199457B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Definitions

  • the invention relates to a method for controlling a lean-running internal combustion engine with a catalyst system arranged in an exhaust duct of the internal combustion engine, comprising at least one catalytic converter.
  • internal combustion engines are preferably operated at least temporarily in a lean operating mode, that is to say with a mixture having a low fuel fraction and an excess of air ( ⁇ > 1).
  • a lean operating mode that is to say with a mixture having a low fuel fraction and an excess of air ( ⁇ > 1).
  • emission of unburned hydrocarbons HC and other pollutants can be reduced.
  • stratified operation in which the injected fuel concentrates in the combustion chamber of the engine in the area of a spark plug, the allowable lambda value can be greatly increased toward lean.
  • nitrogen oxides NO x can not be completely converted (due to a small amount of reducing agent) in the lean exhaust gas, it is known to absorb them during lean operation by means of an NO x storage catalytic converter arranged in an exhaust duct of the internal combustion engine. In order to avoid NO x breakthroughs, it is also customary to restrict or block approval of the lean operation if a NO x storage capacity of the storage catalytic converter decreases.
  • a disadvantage of this control of the lean operation in exclusive dependence on the NO x storage capacity of the storage catalyst is that a slump in HC conversion rate of the catalyst system, in particular a usually the NO x storage catalytic converter upstream of the primary catalyst is not taken into account.
  • US Pat. Nos. 5,947,077 and 5,904,129 each disclose a method for controlling lean-running direct-injection internal combustion engines, in which misfires are detected and when a critical limit for a frequency of misfire is exceeded, certain measures are taken to restore sufficient combustion efficiency. In particular, a reduction of an exhaust gas recirculation rate, a change of an ignition angle, a shifting of an injection time from the compression to the intake stroke and / or a reduction of the air-fuel ratio is performed.
  • the invention has for its object to improve the known method for controlling a lean-running internal combustion engine to control the lean operation in a simple and cost-effective manner such that the HC conversion rate of the catalyst system is taken into account in a licensing of the lean operation to reduce pollutant emissions ,
  • the method is further increased by not equally weighting each impermissible combustion event, but rather by individually weighting according to its damage potential with respect to the HC conversion rate of the at least one catalyst, the weighting increasing with increasing damage potential.
  • the registered impermissible combustion events include delayed burns and / or misfires. Both in the delayed combustion, in which a flammability of the air-fuel mixture compared to the regular combustion far into the expansion stroke is moved into, as well as a misfire or ignition failure, in which the mixture burns only at the catalyst, extreme thermal stresses of Catalyst system, in particular the precatalyst, which reduce the HC conversion performance.
  • the detection of the impermissible combustion events is preferably carried out by evaluation of a speed or ripple signal which is output, for example, from a speed sensor. This procedure is known from the so-called misfire detection and will not be explained in detail here.
  • the lean operation of the internal combustion engine is controlled either as a function of an absolute or a specific frequency of impermissible combustion events. Both manipulated variables can also be combined with each other.
  • the absolute frequency is determined by integration of the impermissible combustion events detected during a period of lean operation.
  • the specific frequency refers, for example, to a predetermined number of crankshaft revolutions or to a fixed time unit. A suitable range for the number of crankshaft revolutions is between 10 and 10,000, more particularly between 50 and 500. Ideally, the improper combustion events are determined based on 200 to 2000 crankshaft revolutions.
  • the specific frequency of impermissible combustion events related to crankshaft revolutions is typically between 0.1 and 5% for a four-cylinder four-stroke engine, in particular between 0.5 and 3%, mainly between 0.8 and 3.5%. It should be noted that two ignitions occur per crankshaft revolution.
  • the weighting may increase with the level of a catalyst temperature and / or level of a load and / or level of fuel fraction in the air-fuel mixture and / or the frequency of improper combustion events, that is, the degree of pre-damage of the catalyst system ,
  • the restriction of the lean operation of the internal combustion engine is preferably carried out by a limitation of operating parameter ranges of the internal combustion engine, within which the lean operation is permitted.
  • a load range, a speed range, a range of a catalyst temperature and / or an exhaust gas temperature is restricted.
  • the method according to the invention is particularly suitably carried out in combination with the conventional control of the lean operation, which takes place as a function of a NO x storage rate of an NO x storage catalyst of the catalyst system. In this way, both a NO x emission and the HC emission during lean operation can be effectively protected.
  • FIG. 1 shows an internal combustion engine 10 with a downstream exhaust gas channel 12.
  • a small volume precatalyst typically designed as a 3-way catalyst.
  • the precatalyst 14 promotes an oxidative conversion of unburned hydrocarbons HC and carbon monoxide CO and simultaneously a reduction of nitrogen oxides NO x .
  • Excess NO x which can not be completely converted due to the small amount of reducing agent in the lean exhaust gas, is stored in a downstream NO x storage catalytic converter 16, which is typically arranged at an underbody position of a vehicle.
  • various sensors are installed in the exhaust passage 12.
  • a lambda probe 18 which is directly downstream of the internal combustion engine 10 outputs a signal proportional to an oxygen content of the exhaust gas to a control unit 20 which regulates an air-fuel mixture to be supplied to the internal combustion engine 10 (lambda control).
  • a NO x sensor 22 connected downstream of the NO x storage catalytic converter 16 serves to monitor the storage catalytic converter 16 and to control the lean operation of the Internal combustion engine 10. Also its signal is processed by the controller 20. Is detected, for example by means of the NO x sensor 22 has a decreasing NO x storage capacity of the storage catalyst 16, so the operating range of the internal combustion engine 10, in which a lean operation is about is permitted or restricted or banned until a NO x regeneration of the storage catalyst 16 can be carried out.
  • a cumulative HC emission in lean operation is particularly sensitive to slumps of HC conversion rate and increases rapidly.
  • impermissible combustion events in the lean operation of the internal combustion engine are measured in order to detect damage to the catalyst system 14, 16 with regard to the HC conversion.
  • a speed sensor 24 is arranged at a suitable position of the internal combustion engine 10. The speed sensor 24 provides an agitation signal and also transmits this to the control unit 20. This evaluates in a manner to be described, the signal and controls the allowable operating range for the lean operation in response to the signal.
  • FIG. 2 shows a typical method sequence for controlling the lean-burn internal combustion engine 10.
  • a first step S1 the detection of inadmissibly proceeding combustion events takes place by means of evaluation of the running noise signal provided by the rotational speed sensor 24 by the control device 20.
  • a weighting of the Detected inadmissible combustion events based on their damage potential with respect to the HC conversion rate of the pre-catalyst 14 and / or the No x storage catalytic converter 16 made. For example, a misfire, which occurs at a relatively high catalyst temperature anyway, be weighted higher than one at a relatively low catalyst temperature taking place dropouts.
  • a third step S3 integrating the weighted improper combustion events during a lean phase determines their absolute frequency.
  • a specific frequency of the impermissible combustion events for example per crankshaft revolution or time unit, can also be determined here.
  • a query is carried out in which it is checked whether the determined absolute and / or specific frequency of the impermissible combustion events exceeds a predefinable threshold. If this is not the case, step S1 is started again without taking further measures. Otherwise, the query in step S4 is affirmative, then in a fifth step S5, the lean operation of the internal combustion engine is either restricted or completely disabled.
  • the restriction of the lean operation by restricting an allowable operating range for lean operation such as by limiting an allowable load range and / or speed range, etc., take place.
  • Particularly advantageous may also be provided a gradual restriction of lean operation.
  • the step size for example, for the allowable load and / or speed, either fixed or be determined variable depending on the frequency of inadmissible events. It is also conceivable, after elapse of a predetermined time interval and / or a predetermined fuel or Heilmassen shedsatzes the measures taken in step S5 cancel all or part. This allows a certain spontaneous regeneration of the internal combustion engine 10 or the catalyst system 14, 16 are taken into account.
  • the method according to the invention makes it possible to tailor the permissible operating range for the lean operation of internal combustion engines, in particular of direct-injection engines, very precisely to the current combustion quality of the internal combustion engine 10 with little process outlay.
  • a NO x charge of the NO x storage catalytic converter 16, but also an HC conversion rate of the catalyst system 14, 16 can thus be taken into account.
  • compliance with HC emission limits can be more effectively ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine mit einem in einem Abgaskanal der Verbrennungskraftmaschine angeordneten Katalysatorsystem, bestehend aus mindestens einem Katalysator.
  • Zur Verbrauchsminimierung werden Verbrennungskraftmaschinen bevorzugt zumindest zeitweise in einem mageren Betriebsmodus betrieben, das heißt mit einem Gemisch mit einem niedrigen Kraftstoffanteil und einem Luftüberschuss (λ > 1). Unter diesen Bedingungen kann außerdem eine Emission unverbrannter Kohlenwasserstoffe HC und anderer Schadstoffe gesenkt werden. Im Falle direkteinspritzender Verbrennungskraftmaschinen kann der zulässige Lambdawert durch Realisierung eines sogenannten Schichtbetriebes, bei dem der eingespritzte Kraftstoff sich im Verbrennungsraum der Maschine im Bereich einer Zündkerze konzentriert, sehr stark in Richtung mager angehoben werden. Da (aufgrund eines geringen Reduktionsmittelangebotes) im mageren Abgas Stickoxide NOx nicht vollständig konvertiert werden können, ist es bekannt, diese während des Magerbetriebes durch einen in einem Abgaskanal der Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator zu absorbieren. Um NOx-Durchbrüche zu vermeiden, ist ferner üblich, eine Zulassung des Magerbetriebes einzuschränken oder zu sperren, wenn eine NOx-Speicherfähigkeit des Speicherkatalysators abnimmt. Nachteilig an dieser Steuerung des Magerbetriebes in ausschließlicher Abhängigkeit von der NOx-Speicherfähigkeit des Speicherkatalysators ist jedoch, dass ein Einbruch einer HC-Konvertierungsrate des Katalysatorsystems, insbesondere eines üblicherweise dem NOx-Speicherkatalysator vorgeschalteten Vorkatalysators, nicht berücksichtigt wird. Es hat sich nämlich erwiesen, dass trotz der insgesamt niedrigen HC-Rohemission der Verbrennungskraftmaschine im Magerbetrieb die HC-Endemission empfindlich mit bereits geringfügigen Einbrüchen der HC-Konvertierungsrate des Katalysatorsystems ansteigt. Dies ist unter anderem auf das Vorhandensein verhältnismäßig hoher Anteile schwer oxidierbarer HC-Komponenten im Magerabgas zurückzuführen. Dies hat zur Folge, dass die HC-Konvertierungsrate im Magerbetrieb grundsätzlich niedriger als in einem stöchiometrischen Betriebsmodus bei λ = 1 ist, bei dem die HC-Konvertierungsrate wesentlich über 99,5 % liegt.
  • Aus US 5,947,077 A und US 5,904,129 A ist jeweils ein Verfahren zur Steuerung von magerlauffähigen, direkteinspritzenden Verbrennungskraftmaschinen bekannt, bei denen Zündaussetzer detektiert werden und bei Überschreitung einer kritischen Grenze für eine Häufigkeit der Zündaussetzer bestimmte Maßnahmen durchgeführt werden, um eine ausreichende Verbrennungseffizienz wiederherzustellen. Insbesondere wird eine Reduzierung einer Abgasrückführungsrate, eine Veränderung eines Zündwinkels, eine Verlegung eines Einspritzzeitpunktes vom Komprossions- in den Ansaugtakt und/oder eine Absenkung des Luft-Kraftstoff-Verhältnisses durchgeführt.
  • Der Erfindung liegt die Aufgabe zugrunde, das bekannte Verfahren zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine zu verbessern, um in einfacher und kostengünstiger Weise den Magerbetrieb derart zu steuern, dass die HC-Konvertierungsrate des Katalysatorsystems bei einer Zulassung des Magerbetriebes berücksichtigt wird, um die Schadstoffemission zu senken.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Es ist gemäß Stand der Technik vorgesehen, dass unzulässige Verbrennungsereignisse registriert werden und eine Steuerung eines Magerbetriebes der Verbrennungskraftmaschine in Abhängigkeit von einer Häufigkeit der unzulässigen Verbrennungsereignisse erfolgt, wobei der Magerbetrieb mit zunehmender Häufigkeit der unzulässigen Verbrennungsereignisse eingeschränkt oder gesperrt wird. Unzulässige Verbrennungsereignisse der Verbrennungskraftmaschine stellen eine Hauptursache für die Beeinträchtigung der HC-, aber auch der CO- und NOx-Konvertierungsrate des Katalysatorsystems, insbesondere eines motornahen Vorkatalysators des Katalysatorsystems, dar. Indem die Häufigkeit dieser Ereignisse ermittelt wird, kann ein Einbruch der HC-, CO- und NOx-Konvertierungsrate abgeschätzt werden. Mit zunehmender Häufigkeit der unzulässigen Verbrennungsereignisse und somit abnehmender Konvertierungsrate des Katalysatorsystems wird dann ein Betriebsparameterbereich der Verbrennungskraftmaschine, in dem der Magerbetrieb zugelassen wird, eingeschränkt oder vollständig gesperrt. Die Genauigkeit des Verfahrens wird erfindungsgemäß weiterhin dadurch erhöht, dass nicht jedes unzulässige Verbrennungsereignis gleich gewichtet wird, sondern eine individuelle Gewichtung gemäß seines Schädigungspotentials hinsichtlich der HC-Konvertierungsrate des mindestens einen Katalysators vorgenommen wird, wobei die Gewichtung mit zunehmenden Schädigungspotential zunimmt.
  • Nach einer bevorzugten Ausgestaltung des Verfahrens umfassen die registrierten unzulässigen Verbrennungsereignisse verschleppte Verbrennungen und/oder Zündaussetzer beziehungsweise Entflammungsaussetzer. Sowohl bei der verschleppten Verbrennung, bei der eine Entflammung des Luft-Kraftstoff-Gemisches gegenüber der regulären Verbrennung weit in den Expansionstakt hinein verschoben wird, sowie auch bei einem Zündaussetzer beziehungsweise Entflammungsaussetzer, bei dem das Gemisch erst am Katalysator verbrennt, entstehen extreme thermische Belastungen des Katalysatorsystems, insbesondere des Vorkatalysators, welche die HC-Konvertierungsleistung herabsetzen.
  • Die Detektion der unzulässigen Verbrennungsereignisse erfolgt bevorzugt durch Auswertung eines Drehzahl- oder Laufruhesignals, welches beispielsweise von einem Drehzahlsensor ausgegeben wird. Diese Vorgehensweise ist aus der so genannten Aussetzererkennung bekannt und soll hier nicht näher erläutert werden.
  • Gemäß zweier besonders vorteilhafter Ausbildungen des Verfahrens wird der Magerbetrieb der Verbrennungskraftmaschine entweder in Abhängigkeit einer absoluten oder einer spezifischen Häufigkeit unzulässiger Verbrennungsereignisse gesteuert. Beide Stellgrößen lassen sich auch miteinander kombinieren. Die absolute Häufigkeit wird durch Integration der während einer Dauer des Magerbetriebes detektierten unzulässigen Verbrennungsereignisse ermittelt. Dagegen bezieht sich die spezifische Häufigkeit beispielsweise auf eine vorgegebene Anzahl von Kurbeiwellenumdrehungen oder auf eine fest vorgegebene Zeiteinheit. Ein geeigneter Bereich für die Anzahl von Kurbelwellenumdrehungen liegt zwischen 10 und 10000, insbesondere zwischen 50 und 500. Idealerweise werden die unzulässigen Verbrennungsereignisse bezogen auf 200 bis 2000 Kurbelwellenumdrehungen ermittelt. Die auf Kurbelwellenumdrehungen bezogene spezifische Häufigkeit von unzulässigen Verbrennungsereignissen liegt für einen vierzylindrigen Viertaktmotor typischerweise zwischen 0,1 und 5 %, insbesondere zwischen 0,5 und 3 %, vornehmlich zwischen 0,8 und 3,5 %. Dabei ist zu beachten, dass pro Kurbelwellenumdrehung zwei Zündungen erfolgen.
  • In die Berechnung einer Gewichtung eines unzulässigen Verbrennungsereignisses können unterschiedliche Faktoren einfließen. Beispielsweise kann die Gewichtung mit Höhe einer Katalysatortemperatur und/oder Höhe einer Drehzahl und/oder Höhe einer Last und/oder Höhe eines Kraftstoffanteiles in dem Luft-Kraftstoff-Gemisch und/oder der Häufigkeit unzulässiger Verbrennungsereignisse, also dem Grad der Vorschädigung des Katalysatorsystems, zunehmen.
  • Die Einschränkung des Magerbetriebes der Verbrennungskraftmaschine erfolgt bevorzugt durch eine Begrenzung von Betriebsparameterbereichen der Verbrennungskraftmaschine, innerhalb derer der Magerbetrieb zugelassen wird. Dabei wird vorteilhafterweise ein Lastbereich, ein Drehzahlbereich, ein Bereich einer Katalysatortemperatur und/oder einer Abgastemperatur eingeschränkt.
  • Das erfindungsgemäße Verfahren wird besonders zweckmäßig in Kombination mit der herkömmlichen Steuerung des Magerbetriebes durchgeführt, welche in Abhängigkeit einer NOx-Speicherrate eines NOx-Speicherkatalysators des Katalysatorsystems erfolgt. Auf diese Weise kann sowohl eine NOx-Emission als auch die HC-Emission während des Magerbetriebes wirkungsvoll abgesichert werden.
  • Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.
  • Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
  • Figur 1
    schematisch eine Anordnung einer Verbrennungskraftmaschine mit zugehörigem Abgaskanal und
    Figur 2
    ein Ablaufdiagramm einer bevorzugten Ausführung des Verfahrens.
  • Figur 1 zeigt eine Verbrennungskraftmaschine 10 mit einem nachgeschalteten Abgaskanal 12. In einer motornahen Position des Abgaskanals 12 befindet sich ein kleinvolumiger, typischerweise als 3-Wege-Katalysator ausgestalteter Vorkatalysator 14. Der Vorkatalysator 14 fördert eine oxidative Konvertierung unverbrannter Kohlenwasserstoffe HC und Kohlenmonoxid CO sowie gleichzeitig eine Reduktion von Stickoxiden NOx. Überschüssiges NOx, welches aufgrund der im mageren Abgas geringen Reduktionsmittelmenge nicht vollständig umgesetzt werden kann, wird in einem nachgeschalteten, typischerweise an einer Unterbodenposition eines Fahrzeuges angeordneten NOx-Speicherkatalysator 16 eingelagert. Außer dem Katalysatorsystem 14, 16 sind verschiedene Sensoren in dem Abgaskanal 12 installiert. Eine unmittelbar der Verbrennungskraftmaschine 10 nachgeschaltete Lambdasonde 18 gibt ein einem Sauerstoffgehalt des Abgases proportionales Signal an ein Steuergerät 20, welches ein der Verbrennungskraftmaschine 10 zuzuführendes Luft-Kraftstoff-Gemisch regelt (Lambdaregelung). Ein stromab des NOx-Speicherkatalysators 16 geschalteter NOx-Sensor 22 dient der Überwachung des Speicherkatalysators 16 sowie der Steuerung des Magerbetriebes der Verbrennungskraftmaschine 10. Auch sein Signal wird von dem Steuergerät 20 verarbeitet. Wird zum Beispiel mittels des NOx-Sensors 22 eine abnehmende NOx-Speicherfähigkeit des Speicherkatalysators 16 erkannt, so wird etwa der Betriebsbereich der Verbrennungskraftmaschine 10, in welchem ein Magerbetrieb zulässig ist, eingeschränkt oder gesperrt, bis eine NOx-Regeneration des Speicherkatalysators 16 durchgeführt werden kann. Auf diese Weise lassen sich NOx-Durchbrüche unterdrücken. Es existieren jedoch Schädigungsprofile, bei denen zwar eine ausreichende NOx-Konvertierung beziehungsweise -Einlagerung stattfindet, die HC-Konvertierungsrate des Katalysatorsystems 14, 16, insbesondere des Vorkatalysators 14, jedoch einbricht. Wie bereits eingangs erläutert, ist dies hauptsächlich die Folge von unzulässig ablaufenden Verbrennungen, insbesondere verschleppten Verbrennungen, oder sporadisch auftretenden Zündaussetzern, welche zu einer hohen thermischen Exposition des Vorkatalysators 14 führen. Da im Magerbetrieb die HC-Konvertierungsrate aufgrund eines verhältnismäßig hohen Anteils schwer oxidierbarer HC-Komponenten im Abgas im Gegensatz zu einem stöchiometrischen Betrieb bei λ = 1 unterhalb von 99,5 % liegt, reagiert eine kumulierte HC-Emission im Magerbetrieb besonders empfindlich auf Einbrüche der HC-Konvertierungsrate und steigt schnell an. Erfindungsgemäß werden daher unzulässige Verbrennungsereignisse im Magerbetrieb der Verbrennungskraftmaschine gemessen, um eine Schädigung des Katalysatorsystems 14, 16 hinsichtlich der HC-Konvertierung zu detektieren. Zu diesem Zweck ist beispielsweise ein Drehzahlsensor 24 an einer geeigneten Position der Verbrennungskraftmaschine 10 angeordnet. Der Drehzahlsensor 24 stellt ein Laufruhesignal bereit und übermittelt dieses ebenfalls an das Steuergerät 20. Dieses wertet in noch zu beschreibender Weise das Signal aus und steuert den zulässigen Betriebsbereich für den Magerbetrieb in Abhängigkeit von dem Signal.
  • Einen typischen Verfahrensablauf zur Steuerung der magerlauffähigen Verbrennungskraftmaschine 10 zeigt Figur 2. In einem ersten Schritt S1 erfolgt in bekannter Weise die Detektierung unzulässig ablaufender Verbrennungsereignisse mittels Auswertung des durch den Drehzahlsensor 24 bereitgestellten Laufruhesignals durch das Steuergerät 20. In einem zweiten Schritt S2 wird eine Gewichtung der detektierten unzulässigen Verbrennungsereignisse anhand ihres Schädigungspotentials hinsichtlich der HC-Konvertierungsrate des Vorkatalysators 14 und/oder des Nox-Speicherkatalysators 16 vorgenommen. So kann etwa ein Zündaussetzer, der bei einer ohnehin relativ hohen Katalysatortemperatur auftritt, höher gewichtet werden als ein bei einer verhältnismäßig niedrigen Katalysatortemperatur stattfindender Aussetzer. In einem dritten Schritt S3 wird durch Integration der gewichteten unzulässigen Verbrennungsereignisse während einer Magerphase deren absolute Häufigkeit bestimmt. Alternativ oder zusätzlich kann hier auch eine spezifische Häufigkeit der unzulässigen Verbrennungsereignisse, beispielsweise pro Kurbelwellenumdrehung oder Zeiteinheit, ermittelt werden. In einem vierten Schritt S4 wird eine Abfrage durchgeführt, bei welcher überprüft wird, ob die ermittelte absolute und/oder spezifische Häufigkeit der unzulässigen Verbrennungsereignisse eine vorgebbare Schwelle überschreitet. Ist dies nicht der Fall, wird ohne Ergreifung weiterer Maßnahmen wieder mit Schritt S1 begonnen. Wird andernfalls die Abfrage im Schritt S4 bejaht, so wird in einem fünften Schritt S5 der Magerbetrieb der Verbrennungskraftmaschine entweder eingeschränkt oder vollständig gesperrt. Dabei kann die Einschränkung des Magerbetriebes durch Einschränkung eines zulässigen Betriebsbereiches für den Magerbetrieb, etwa durch Einschränkung eines zulässigen Lastbereiches und/oder Drehzahlbereiches etc., erfolgen. Besonders vorteilhaft kann auch eine schrittweise Einschränkung des Magerbetriebes vorgesehen sein. Dabei kann die Schrittweite, beispielsweise für die zulässige Last und/oder Drehzahl, entweder fest vorgegeben werden oder variabel in Abhängigkeit von der Häufigkeit unzulässiger Ereignisse bestimmt werden. Ebenso ist denkbar, nach Verstreichen eines vorgebbaren Zeitintervalls und/oder eines vorgebbaren Kraftstoff- oder Luftmassendurchsatzes die im Schritt S5 ergriffenen Maßnahmen ganz oder teilweise aufzuheben. Hierdurch kann einer gewissen Spontanregeneration der Verbrennungskraftmaschine 10 oder des Katalysatorsystems 14, 16 Rechnung getragen werden.
  • Insgesamt ermöglicht das erfindungsgemäße Verfahren, mit geringem Prozessaufwand den zulässigen Betriebsbereich für den Magerbetrieb von Verbrennungskraftmaschinen, insbesondere von direkteinspritzenden Motoren, sehr genau auf die aktuelle Verbrennungsgüte der Verbrennungskraftmaschine 10 abzustimmen. Im Gegensatz zu bekannten Verfahren kann somit nicht nur eine NOx-Beladung des NOx-Speicherkatalysators 16, sondern auch eine HC-Konvertierungsrate des Katalysatorsystems 14, 16 berücksichtigt werden. Im Resultat kann die Einhaltung von Grenzwerten für HC-Emissionen somit effektiver abgesichert werden.
  • BEZUGSZEICHENLISTE
  • 10
    Verbrennungskraftmaschine
    12
    Abgaskanal
    14
    Vorkatalysator
    16
    NOx-Speicherkatalysator
    18
    Lambdasonde
    20
    Steuergerät
    22
    NOx-Sensor
    24
    Drehzahlsensor

Claims (13)

  1. Verfahren zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine (10) mit einem in einem Abgaskanal (12) der Verbrennungskraftmaschine (10) angeordneten Katalysatorsystem, bestehend aus mindestens einem Katalysator (14, 16), wobei unzulässige Verbrennungsereignisse registriert werden und eine Steuerung eines Magerbetriebes der Verbrennungskraftmaschine (10) in Abhängigkeit von einer Häufigkeit der unzulässigen Verbrennungsereignisse erfolgt, wobei der Magerbetrieb mit zunehmender Häufigkeit der unzulässigen Verbrennungsereignisse eingeschränkt oder gesperrt wird, dadurch gekennzeichnet, dass eine Gewichtung eines unzulässigen Verbrennungsereignisses in Abhängigkeit seines Schädigungspotentials hinsichtlich der HC-Konvertierungsrate des mindestens einen Katalysators (14, 16) durchgeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das unzulässige Verbrennungsereignis eine verschleppte Verbrennung und/oder ein Zündaussetzer ist.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die unzulässigen Verbrennungsereignisse durch Auswertung eines Drehzahl- oder Laufruhesignals detektiert werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine absolute, auf eine Dauer des Magerbetriebs bezogene Häufigkeit unzulässiger Verbrennungsereignisse ermittelt und der Magerbetrieb der Verbrennungskraftmaschine (10) in Abhängigkeit der absoluten Häufigkeit unzulässiger Verbrennungsereignisse gesteuert wird.
  5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine spezifische Häufigkeit unzulässiger Verbrennungsereignisse, insbesondere bezogen auf eine vorgegebene Anzahl (n) von Kurbelwellenumdrehungen oder auf eine vorgegebene Zeiteinheit, ermittelt und der Magerbetrieb der Verbrennungskraftmaschine (10) in Abhängigkeit der spezifischen Häufigkeit unzulässiger Verbrennungsereignisse gesteuert wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass (n) zwischen 10 und 10000, insbesondere zwischen 50 und 5000, vorzugsweise zwischen 200 und 2000, Kurbelwellenumdrehungen legt.
  7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die spezifische Häufigkeit zwischen 0,1 und 5 %, insbesondere zwischen 0,5 und 3 %, insbesondere zwischen 0,8 und 2,5 %, liegt.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gewichtung des unzulässigen Verbrennungsereignisses mit mindestens einem der Parameter zunimmt, umfassend Katalysatortemperatur, Drehzahl, Last, Kraftstoffanteil in einem Luft-Kraftstoff-Gemisch und Häufigkeit unzulässiger Verbrennungsereignisse.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einschränkung des Magerbetriebes der Verbrennungskraftmaschine (10) durch Begrenzung von Betriebsparameterbereichen erfolgt, innerhalb derer der Magerbetrieb zugelassen wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Betriebsparameter eine Last und/oder eine Drehzahl und/oder eine Katalysatortemperatur und/oder eine Abgastemperatur umfassen.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einschränkung des Magerbetriebs der Verbrennungskraftmaschine (10) schrittweise erfolgt, wobei eine Schrittweite fest vorgegeben wird oder variabel, insbesondere in Abhängigkeit von der Häufigkeit unzulässiger Verbrennungsereignisse, bestimmt wird.
  12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einschränkung oder Sperrung des Magerbetriebs nach Ablauf eines vorgebbaren Zeitintervalls und/oder eines vorgebbaren Kraftstoff- oder Luftmassendurchsatzes vollständig oder teilweise aufgehoben wird.
  13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zulassung des Magerbetriebs der Verbrennungskraftmaschine (10) zusätzlich in Abhängigkeit einer NOx-Speicherrate eines NOx-Speicherkatalysators (16) des Katalysatorsystems (14, 16) durchgeführt wird.
EP20010120794 2000-10-16 2001-09-11 Verfahren zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine Expired - Lifetime EP1199457B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10051184 2000-10-16
DE2000151184 DE10051184A1 (de) 2000-10-16 2000-10-16 Verfahren zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine

Publications (3)

Publication Number Publication Date
EP1199457A2 EP1199457A2 (de) 2002-04-24
EP1199457A3 EP1199457A3 (de) 2002-10-23
EP1199457B1 true EP1199457B1 (de) 2006-08-16

Family

ID=7659929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010120794 Expired - Lifetime EP1199457B1 (de) 2000-10-16 2001-09-11 Verfahren zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine

Country Status (2)

Country Link
EP (1) EP1199457B1 (de)
DE (2) DE10051184A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10253613B4 (de) * 2002-11-15 2004-09-30 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine eines Fahrzeugs, insbesondere eines Kraftfahrzeuges
DE10261618B4 (de) * 2002-12-27 2014-05-22 Volkswagen Ag Laufunruheauswertungsverfahren
DE10328117A1 (de) 2003-06-23 2005-01-13 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
DE102004017092B4 (de) * 2004-04-07 2008-10-16 Audi Ag Verfahren zur Optimierung des Betriebs eines Otto-Verbrennungsmotors eines Kraftfahrzeugs

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4303332C2 (de) * 1993-02-03 2002-01-10 Opel Adam Ag Otto-Motor für Kraftfahrzeuge mit Kraftstoffeinspritzung
DE19706807C2 (de) * 1997-02-21 1999-01-28 Ford Global Tech Inc Verfahren zur Regelung der Laufruhe eines Verbrennungsmotors
DE19744410C2 (de) * 1997-10-08 2001-06-21 Ford Global Tech Inc Verfahren zur Überwachung der Laufruheregelung eines Verbrennungsmotors
DE19850786A1 (de) * 1998-08-05 2000-02-17 Volkswagen Ag Regelung eines NOx-Speicher-Katalysators

Also Published As

Publication number Publication date
DE50110740D1 (de) 2006-09-28
EP1199457A2 (de) 2002-04-24
DE10051184A1 (de) 2002-04-25
EP1199457A3 (de) 2002-10-23

Similar Documents

Publication Publication Date Title
DE102012022153B4 (de) Verfahren zur Regeneration mindestens eines Partikelfilters, Steuereinrichtung und Kraftfahrzeug mit einer solchen
DE60003105T2 (de) Vorrichtung zur Abgasemissionssteuerung einer Brennkraftmaschine
DE60208522T2 (de) Abgasreiniger für brennkraftmaschinen
DE102018101433B4 (de) Steuerungsvorrichtung für einen Verbrennungsmotor
EP1214511B1 (de) VERFAHREN ZUR FUNKTIONSÜBERWACHUNG EINES IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SENSORS
DE102012021882B4 (de) Verfahren zum Betreiben eines Ottomotors, Steuereinrichtung und Kraftfahrzeug mit einer solchen
DE69635917T2 (de) Feststellungsvorrichtung der Katalysatorverschlechterung einer Brennkraftmaschine
DE19929513C2 (de) Verfahren zum Betreiben eines Otto-Motors mit Zylindereinspritzung und zugehöriger Motor
EP1366278B1 (de) Verfahren zur temperatursteuerung eines katalysatorsystems
DE602004004948T2 (de) Steuergerät für die Verbrennung eines Verbrennungsmotors
DE19948073A1 (de) Abgasreinigungsvorrichtung für eine Verbrennungskraftmaschine
DE10114456B4 (de) Vorrichtung und Verfahren zur Koordination von abgasrelevanten Maßnahmen
EP1199457B1 (de) Verfahren zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine
DE102020134619A1 (de) Anomaliediagnosesystem einer stromabwärtsseitigen Luft-Kraftstoff-Verhältnis-Erfassungsvorrichtung
EP1143131B1 (de) Mehrflutige Abgasanlage und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses eines Mehrzylinderverbrennungsmotors
DE10162115A1 (de) Verfahren und Vorrichtung zur Katalysatoraufheizung
DE10148128A1 (de) Verfahren und Vorrichtung zur Reduzierung einer Schadstoffendemission einer Verbrennungskraftmaschine
EP1183454B1 (de) VERFAHREN ZUR STEUERUNG EINER REGENERATION EINES NOx-SPEICHERKATALYSATORS
DE10261618B4 (de) Laufunruheauswertungsverfahren
DE10023079B4 (de) Vorrichtung und Verfahren zur Steuerung einer NOx-Regeneration eines im Abgasstrang einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
EP1391592B1 (de) Verfahren zum Betrieb eines magerlauffähigen Verbrennungsmotors mit einem Abgasreinigungssystem
WO2009153102A1 (de) Verfahren und vorrichtung zum betreiben eines abgasnachbehandlungssystems
EP1300572B1 (de) Verfahren und Vorrichtung zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine
DE10115968A1 (de) Verfahren zur Erwärmung eines Katalysators
DE102005005936A1 (de) Abgasemissionssteuerungssystem für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030423

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20050620

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060816

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50110740

Country of ref document: DE

Date of ref document: 20060928

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061127

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150930

Year of fee payment: 15

Ref country code: DE

Payment date: 20150930

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110740

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160911