EP1194297B1 - Procede d'enduction et produits issus du procede - Google Patents

Procede d'enduction et produits issus du procede Download PDF

Info

Publication number
EP1194297B1
EP1194297B1 EP00951325A EP00951325A EP1194297B1 EP 1194297 B1 EP1194297 B1 EP 1194297B1 EP 00951325 A EP00951325 A EP 00951325A EP 00951325 A EP00951325 A EP 00951325A EP 1194297 B1 EP1194297 B1 EP 1194297B1
Authority
EP
European Patent Office
Prior art keywords
support
process according
product
lacquer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00951325A
Other languages
German (de)
English (en)
Other versions
EP1194297A1 (fr
Inventor
Michel Levy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabinet Erman Sarl
Original Assignee
Cabinet Erman Sarl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabinet Erman Sarl filed Critical Cabinet Erman Sarl
Publication of EP1194297A1 publication Critical patent/EP1194297A1/fr
Application granted granted Critical
Publication of EP1194297B1 publication Critical patent/EP1194297B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/22Metallic printing; Printing with powdered inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/26Printing on other surfaces than ordinary paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • Y10T428/1359Three or more layers [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Definitions

  • the present invention relates to a high resolution coating process. It also relates to products which are transparent to visible light. allowing to filter a certain range of electromagnetic wavelengths.
  • a coating according to these methods is generally total, sometimes partial, but none of these coatings makes it possible to produce patterns presenting high resolution.
  • US Patent 5,721,007 describes a process in which a support is coated a metal layer; an electrically insulating varnish is printed on high resolution on a first part of the coated support; one or more metallic layers are deposited on a second part of the support, i.e. the part of the support not covered by the varnish, by electrolysis so as to form the conductive circuits of the circuit; the electrically insulating mask is removed in order to be able to engrave the coating of the support not covered by the layer or the metallic layers deposited on the support between the varnish.
  • This method is eg used for the manufacture of electric circuits, in particular for the manufacture of flat cables. Although this method allows printing to high resolution, it does not allow a metallic deposit on the varnish.
  • the object of the present invention is therefore to propose a manufacturing process a multilayer substrate having high resolution patterns and allowing a metallic deposit on the varnish.
  • the varnish is a loaded varnish.
  • the loaded varnish not only protects in specific places the support but also to carry out a metallic deposit later on the varnish charge.
  • Printing a high-resolution varnish on a support creates fine and high resolution patterns on this support.
  • This process is independent of the support and the method of coating the support. In principle, this process is applicable to any medium
  • the support Before printing, the support can be coated with a layer which includes preferably metal.
  • the loaded varnish may for example include conductive materials and / or barrier materials to respectively filter the waves electromagnetic.
  • the material forming a barrier to respectively filtering electromagnetic waves preferably absorbs and / or reflects at least part of the electromagnetic waves.
  • the treatment of the coated support by electrolysis advantageously comprises electrolytic etching of the coating on the unprinted part of the support coating.
  • the support is subjected to a deposit electrolytic on the conductive printed part after washing and drying.
  • Support treatment by electrolysis includes electrolytic deposition one or more metals or their alloys on the printed part of the support.
  • the printing of the varnish on the support is preferably carried out by gravure printing.
  • Photogravure is advantageously carried out by a photogravure group comprising at least one cylinder whose printing areas are made of engraved cells, the outermost of each drawing are interconnected to ensure linear continuity of the contours.
  • the cylinder cells are preferably arranged in a line size of 175 700 cells per inch (per 2.5 cm), preferably 350 cells per inch (by 2.5 cm).
  • the contours of the contours are preferably connected between them to achieve continuity of graphics and avoid any tooth effect.
  • the photogravure group is able to print a coating with drawings very fine, between 150 and 25 ⁇ m, preferably 50 ⁇ m.
  • the etching is preferably carried out by electrolysis between the coating metal of the support to be treated and an anode bathed in an electrolyte aqueous.
  • the anode is preferably a titanium anode made up of a folded sheet.
  • the aqueous electrolyte advantageously comprises a mineral acid and its salt or a mineral base and its salt, preferably NaOH + concentrated NaCI at 10%.
  • the electrolyte is chosen in such a way that the products released in aqueous phase by electrolysis attack metallic coating with a mixture of the acid type and its salts or with an alkaline and its salts halogens.
  • the reflection and transmission rates can vary from 0 to 100% while the absorption rate can vary from 0 to 50%.
  • the electrolytic deposition is preferably carried out by electrolysis of one or several metals and / or their alloy, by dissolving a soluble electrode containing at least the metal or metals of the electrode.
  • the metallic deposit or successive metallic deposits allow to create drawings with high resolution and high precision on a support.
  • the products resulting from the process described above may have characteristics useful, especially for uses in the wave field electromagnetic, especially in the microwave field.
  • the process makes it possible to obtain multilayer products having characteristics of reflection, transmission and absorption of electromagnetic radiation very specific incidents.
  • radiation electromagnetic incident on the product can be transmitted at a rate of 0 to 100%, reflected at a rate of 0 to 100% and / or absorbed at a rate of 0 to 50%.
  • the use of such products is very diverse; they can for example be used as a filter for electromagnetic radiation, these filters being transparent in visible light.
  • a heat-resistant polymer film can be coated with preferably polyester, a layer that heats up when electromagnetic energy incident is partially absorbed by the coating. This coating can be metallic with a resistivity between 0.0005 and 0.1 ohm / square, preferably 0.01 ohm / square, e.g.
  • the product is, under these conditions, of a very high visual transparency and heats up at high temperatures (from 200 to 300 ° C) when struck by electromagnetic radiation and in particular microwaves. Heat energy can represent up to 50% of the incident energy.
  • the amount of energy absorbed, transmitted or reflected varies according to the importance and the distribution of the coating applied to the film. Below a threshold predetermined, the transmitted energy is greater than the reflected energy, beyond of this threshold, the transmitted energy is lower than the reflected energy.
  • the method also makes it possible to create multilayer products.
  • On a first metallic deposit you can deposit a second metallic deposit by ironing the support through the printing station and the processing station.
  • filtering means in the context of this that between 0 and 99.9% and preferably between 0 and 95% of the incident waves pass through the product.
  • the product can therefore ultimately be transparent or opaque to a determined electromagnetic wavelength range.
  • transparent to visible light means in the context of the shows that between 80 and 99.9% and preferably between 90 and 95% of the visible light pass through the product.
  • the product comprises a layer additional metallic coating covering at least part of the layer of varnish.
  • An additional layer of varnish can at least partially cover the metallic coating which can in turn be covered, at least in part by an additional layer of plaster.
  • the basic support is generally a film of synthetic material such as eg polyester film.
  • any other material may also be suitable as long as it is transparent to visible light and to the range electromagnetic waves chosen.
  • it must be possible to cover with a high resolution pattern including a coating and / or varnish.
  • the product as proposed generally absorbs between 0 and 95% of the determined range of incident electromagnetic waves, reflects between 0 and 100% and / or transmits between 0 and 100% of the waves not absorbed depending on the pattern, nature and amount of coating.
  • the product absorbs from 0 to 50% of energy from electromagnetic waves and reflects and / or transmits energy not absorbed.
  • the product therefore constitutes a filter to a range of electromagnetic waves and transparent to visible light, it can even constitute an opaque filter to electromagnetic waves and transparent to visible light.
  • the electromagnetic waves are eg microwaves and the product can therefore be used as packaging for products microwaveable, i.e. for food packaging that can be reheated in a microwave oven.
  • Fig. 1A shows a section through a support film 10, on which - at fig. 1B - a discontinuous layer 20 of charged varnish is printed.
  • fig. 1C we see a metal layer 30 deposited by electrolysis on the layer 20 printed film 10. It is therefore possible to deposit a metal layer 30 having high resolution drawing on a blank film, that is to say on a film without continuous metallic coating. In this way, you can get movies with high resolution metallic drawings on film 10.
  • Fig. 2A shows a film 10 comprising a metal coating 15.
  • Fig. 2B we prints (Fig. 2B) on the coating layer a protective varnish 20 and removes the part not covered by the coating protective varnish metallic (Fig. 2C) by electrolysis.
  • Fig. 3A shows a film 10 comprising a metallic coating 15.
  • a protective varnish 20 is printed (FIG. 2B) on the coating layer and removes the part not covered by the protective varnish 20 of the coating metallic (Fig. 2C) by electrolysis. After washing and drying, a metallic layer 30 on the protective varnish layer. It is therefore possible to manufacture multilayer materials.
  • Fig. 5 shows a heat-resistant polymer film, preferably polyester, coated with a layer that heats up when electromagnetic energy incident is partially absorbed by the coating which can be metallic with a conductivity between 1 and 2,000 ohm / square, preferably 100 ohm / square, for example consisting of a layer of aluminum obtained by sublimation under vacuum, with a thickness of 10 to 10,000 Angstroms, preferably with an optical density of 0.6.
  • the packaging material is very high visual transparency and heats up to 280 ° C when electromagnetic radiation with a frequency of 2,450 MHz strikes him; the heat energy obtained can represent up to 50% of the incident energy.
  • the transmitted energy is greater than the reflected energy. Beyond the same threshold, it is the reflected energy which prevails over that transmitted.
  • FIG. 6 Another example of application is shown in FIG. 6 in which a film is applied against a microwave oven door.
  • a protective varnish comprising products which reinforce the absorbing and / or reflecting effect of a film
  • This material consists of an aluminum coating obtained by sublimation under vacuum, of a thickness at least equal to 600 Angström covered with a varnish charged with particles which allow to reach an overall conductivity between 1 and 10 ohm / square preferably 2.5 ohm / square.
  • These particles are preferably aluminum elements of small dimensions (5 to 15 ⁇ m, preferably 10 ⁇ m) obtained by vacuum deposition.
  • the wavelength of common household microwave ovens is 12.5 cm.
  • the method according to the present invention makes it possible to produce lines of 50 ⁇ m.
  • a grid is obtained (FIG. 10) which is opaque in the microwave.
  • a film is therefore obtained which is almost entirely transparent to visible light, but which is nonetheless opaque for microwaves. This film can be applied against a microwave oven door.
  • the door window is transparent to visible light, so you can clearly see what's going on inside the oven, however microwaves are not transmitted through the door.
  • Fig. 7 shows a cap for a “Liège coffee” type drink which can be placed on a container containing coffee in its lower part and in the upper part of the cream floating on the coffee, before heating it in a microwave oven.
  • the cap On the container is placed the cap which, in its upper part, surrounding the cream, reflects the microwave rays and which, in its lower part, surrounding the coffee, absorbs part of the microwave rays. Through therefore, the cream remains cold while the heat generated by the absorption microwave rays in the lower part is transmitted to the coffee for heat it. With such a headdress, one obtains a Liège coffee with coffee hot and warm creamy cream.
  • FIG. 8 Another example of the use of a material according to the present invention is a PR meal tray for food to be carried at various temperatures (Fig. 8).
  • the starter (a) should be eaten warm, the main dish (b) hot and cold ice (c). These 3 types of food will be placed on a tray thermo-formed PR meal and closed by a cover (not shown) constituting enclosures communicating to the outside only through vents (not shown).
  • a cover constituting enclosures communicating to the outside only through vents (not shown).
  • the enclosure (a) with a metallic coating of conductivity 0.1 Mohm / square around the fish the enclosure (b) will have no coating, the enclosure (c) will coated with a multilayer film, will be equivalent to that allowing to make microwave radiation barrier (Fig. 6) so that ice does not is not heated.
  • the energy conversion layer composed of coating the printed varnish (s) with a possible filler, or electrolytic deposits and electrolytic etching (s), it is possible to produce materials whose composition will be determined by conversions desired electromagnetic energies and even achieve electromagnetic radiation barriers for certain lengths wave and possibly combine the two possibilities to have in function of their wavelength of both absorbent and reflective materials
  • Fig. 9 shows an installation for carrying out the process described above.
  • This installation consists of a supply station A which receives the film provided with its basic deposit BA1, wound on a reel.
  • the spool is unwound to supply a printing station with photogravure B; then, at the exit of this gravure printing station, the BA2 strip passes through an electrolysis station C carrying out the treatment physico-chemical on the windows of BA3 film.
  • This electrolysis station C is followed by a washing station D in which the varnish can optionally be removed water-soluble giving the BA4 film and the strip is rinsed.
  • the BA4 strip passes in a drying station E and. finally, at an F checkpoint to arrive on the rewinder G.
  • the feed station A includes an unwinder A1 which carries the spool A2. This unwinder is driven by a motor controlled by an A3 call group, which regulates a controlled voltage in the BA1 band.
  • the tape then passes in the printing station B which includes a printing unit (fig. 10 and 11) with an inkwell B1, a gravure cylinder B2 plunging into the inkwell B1 for cover the surface with rotogravure cells and the window contour.
  • This cylinder cooperates with a doctor blade B3 which removes the ink on the surface so as not to leave only the ink inside the cells or the engraving.
  • the inkwell B1 is supplied from a reservoir B4 containing the coating product by a pump B5 and a pipe B6.
  • the B4 tank is equipped with a means of detection of viscosity B6 such as a viscometer to allow adjustment of the viscosity of the coating liquid.
  • This gravure group B can be equipped with a spot reading system, or marker detectable by a photocell, placed on the strip metallized which will allow the piloting of the strip, so that the positioning of the print window is in registration with the patterns of the strip metallic with possibly pre-printed graphics.
  • the liquid level in the inkwell B1 is adjusted by an overflow B7 with return to reservoir 84, so that the gravure cylinder B2 is always immersed at the same depth in the inkwell B1.
  • the cylinder B2 cooperates with a pressure cylinder B10 placed above the strip BA1, the cylinder B2 being below the strip
  • the BA1 strip is schematically composed, as indicated in Figure 3, a support 10 of plastic and a base coating 15 such as a metal.
  • the gravure cylinder B2 compresses, with the presser B10, the strip BA1 and deposits the corresponding varnish impressions to windows or printing areas or coatings I corresponding to Windows.
  • Fig. 11 is a top view of the printing unit shown in FIG. Fig. 10.
  • This figure shows the gravure cylinder B2.
  • the pressure cylinder B10 with an arrow indicating the compression as well as the band BA in top view.
  • the gravure cylinder B2 carries an engraved surface according to a rotogravure window or printing area B21 of relatively complicated shape which achieves printing I of the varnish on the underside 15 of the strip BA1 (which then became BA2).
  • Figs. 12A-12D show more clearly the construction of the surface engraved from the rotogravure window.
  • Fig. 12A gives the desired contour for the heliographic window, i.e. the outline of future graphics (1100).
  • the surface of the gravure window is etched in the cylinder.
  • This window consists of an engraved surface comprising K100 basins or cells, separated by K101 walls, and the whole is surrounded by a K102 net, which borders the bowls and the intervals between the K100 cuvettes.
  • the cells are represented by black squares with rounded corners possibly truncated, separated by low walls (partitions or also called bridges) K101, white.
  • All the cells or basins are surrounded here by a net, that is to say a very narrow notch which fills with ink but limits spreading the ink in the cells to give the printed image a continuous, precise outline limiting the window limit precisely and predetermined
  • this thread K102 passes contiguously over the bowls or adjacent to them.
  • the window 1200 also includes cells K200 separated by low walls K201 and the whole is surrounded by a thread K202 which is further from the edge of the cells K200 (truncated or not) that in the embodiment of FIG. 12B.
  • the fineness of the line constituting the net depends on the resolution of the tracer which designed the window (s); thus, with the choice between the forms of engraving of figs. 12B and 12C depends on the viscosity of the liquid used for this printing. As indicated, this liquid is, once dried, a passivation product, i.e. inert vis-à-vis the physicochemical action to be performed.
  • fig. 12D shows the 1300 printed image with its very precise outline and not serrated.
  • the electrolysis station C consists of an electrolysis tank C1 which is licked by the strip BA2, having received the impression in the post printing station B.
  • This electrolysis station also includes an extraction hood C2 of the electrolysis gases. The detail of the station C2 appears in FIG. 13.
  • the electrolysis tank C1 has an overflow to discharge the surplus in electrolyte C9. so as to keep the level of electrolyte C9 constant.
  • the electrolyte is discharged into a C15 hopper which leads it to a pump C8 which in turn takes it back to the electrolysis tank C1.
  • a collection hopper C15 which collects the liquid dripping from the drained BA3 strip by its passage between two cylinders C16, 017. The spin liquid is collected in the hopper C15 and it returns to the tank C9.
  • the electrolysis tank can be used either to burn the BA2 film or to make a metallic deposit on BA2 film.
  • the printed film BA2 is positively polarized and licks an electrolyte C9 a few millimeters from the tips of a soluble metal anode C20 during the electrolysis which is negatively polarized.
  • the shape of the anode is obtained by folding a sheet.
  • a PVC insulator C22 Between each tip of the anode C20, there is a PVC insulator C22.
  • a copper electrode and an aqueous electrolyte composed of 220 g / l of CuSO 4 and 20 g / l of H 2 SO 4 will preferably be chosen for the deposition of copper.
  • the amperage will advantageously be 10 A / dm 2
  • window printing and electrolysis operations can be repeated with different window shapes made one on the other others, for example to form an integrated circuit and in this case there will be a succession of posts B, C and possibly D which will alternate.
  • washing station D This washing station rinse the BA3 strip to remove the remaining electrolyte and dissolve the layer coating including the passivation layer.
  • This washing station D is consists of different return cylinders D1, D2 leading the strip BA3 in a first tank D4 then in a second tank D5. These tanks contain an electrolyte flushing liquid and / or a solvent and coating. The detailed structure of these washing tanks will not be given. It is a set of cylinders defining a strip circulation path in the washing bath.
  • Washing is carried out with spins between steel cylinders and polymer cylinders to limit entrainment and facilitate drying by evaporation of the washing liquid, so that the film is dry and streak-free electrolyte incompatible with its subsequent use.
  • the strip BA4 Downstream of washing station D, the strip BA4 passes into the drying station E equipped with ventilation and air extraction means E1, E2, E3, E4 and, finally, the dried BAS strip passes through a control station F equipped with a F1 video camera that views an area of BAS film to control the quality of the making. This control is supplemented by a measurement of the optical density and the resistivity (not shown) These checks are carried out continuously.
  • Output control station F the film is wound on a winding station G.
  • This winding station has a structure similar to the unwinder A but works reverse. It includes a G1 support equipped with a motor and forming the roller G2.
  • the strip After checking the strip, the strip is margined and wound up with a tension control so that it is not distorted by the areas of allowance.
  • the installation has the advantage of a processing speed that can exceed the processing speed of 250 m / min. Processing is insensitive to presence of the metal oxides which protect your metallized side of the film, which is notably an advantage compared to the previous chemical process. The possibility of depositing a metal layer of a different nature than that which has been corroded allows the manufacture of metallic multilayers.
  • the resolution of the metallized line obtained is that of the printing because the thickness of the corrosion mask can be 2 microns or less.
  • the process and the installation described allow the production of a film comprising multiple layers of insulating and conductive materials, insulators and metallic materials capable of being used in the printing of materials.
  • the energy conversion layer composed of coating, or varnish (s) printed with a possible filler, or electrolytic deposits and electrolytic etching (s)
  • the electromagnetic wave is penetrating.
  • the wave is the more penetrating the higher the frequency.
  • the incident wave which does not penetrate is reflected.
  • the incident energy is equal to the reflected energy.
  • the energy of the incident wave which crosses without obstacle, without reflection and without absorption is equal to the energy transmitted.
  • a layer thickness of 1 micron has been found to cause the reflection of the incident wave, without absorption or transmission.
  • a layer of aluminum with a thickness of 1 micron is said to be microwave opaque.
  • the absorbed energy is maximum for layer thicknesses aluminum close to 50 ⁇ .
  • a polyester is coated with a 0.001 resistivity aluminum layer Ohm / square under vacuum by sublimation. We are able to obtain a temperature 200 ° C polyester film skin (30% of the incident energy is absorbed).
  • polyester being transparent to microwave, all of the microwave energy will be transmitted (not of reflected energy). Polyester is said to be transparent to microwaves.
  • An additional metallic deposit of 400 ⁇ is made.
  • the material becomes then reflecting in the microwave.
  • the transmitted energy is close to 0 and the material is opaque in the microwave.
  • lead can be used as a barrier X-rays.

Landscapes

  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Cookers (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Printing Methods (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)

Description

Introduction
La présente invention concerne un procédé d'enduction à haute résolution. Elle concerne également des produits transparents à la lumière visible permettant de filtrer une certaine gamme de longueurs d'ondes électromagnétiques.
État de la technique
On connaít de nombreux procédés d'enduction d'un matériau d'emballage, dont voici une énumération non exhaustive:
  • enduction aqueuse où le liquide à enduire est une suspension ou une dissolution de produit dans l'eau;
  • enduction solvant où le liquide à enduire est une suspension ou une dissolution de produit dans un ou des solvants;
  • enduction thermo-fusible où le liquide à enduire est obtenu en portant le produit à déposer à une température qui le rend liquide;
  • enduction sans solvant où les produits à déposer sont sous forme liquide (monomères) et durciront par catalyse en se polymérisant;
  • enduction par évaporation d'un solide qui se sublime sous vide sur le support;
  • enduction par contrecollage où l'enduction est un film que l'on fixe au support avec une colle;
  • enduction par transfert où le produit à déposer est provisoirement déjà sur un film où il accroche mal, pour être enlevé du support provisoire et finalement fixé sur le support définitif par un quelconque moyen déjà décrit.
Une enduction suivant ces procédés est généralement totale, parfois partielle, mais aucune de ces enductions ne permet de réaliser des motifs présentant une haute résolution.
Le brevet US-5,721,007 décrit un procédé dans lequel un support est enduit d'une couche métallique ; un vernis isolant électriquement est imprimé à haute résolution sur une première partie du support enduit ; une ou plusieures couches métalliques sont déposées sur une seconde partie du support, c.-à-d. la partie du support non couverte par le vernis, par électrolyse pour ainsi former les circuits conducteurs du circuit ; le masque isolant electriquement est enlevé afin de pouvoir graver l'enduction du support non couvert par la couche ou les couches métalliques déposées sur le support entre le vernis. Cette méthode est p.ex. utilisée pour la fabrication de circuits électriques, en particulier pour la fabrication de cables plats. Bien que cette méthode permette une impression à haute résolution, elle ne permet pas un dépôt métallique sur le vernis.
Objet de l'invention
L'objet de la présente invention est donc de proposer un procédé de fabrication d'un substrat multicouches ayant des motifs à haute résolution et permettant un dépôt métallique sur le vernis.
Description générale de l'invention revendiquée avec ses principaux avantages.
Conformément à l'invention, cet objectif est atteint par un procédé permettant de réaliser des motifs à haute résolution comprenant les étapes suivantes:
  • impression à haute résolution d'un vernis sur le support enduit;
  • traitement du support par électrolyse;
  • lavage et séchage du support .
Selon un aspect important de l'invention, le vernis est un vernis chargé. Le vernis chargé permet non seulement de protéger à des endroits déterminés le support mais aussi d'effectuer un dépôt métallique ultérieurement sur le vernis chargé.
L'impression à haute résolution d'un vernis sur un support permet de créer des motifs fins et à haute résolution sur ce support. Ce procédé est indépendant du support et du procédé d'enduction du support. En principe, ce procédé est applicable à tout support
Avant l'impression, le support peut être enduit avec une couche qui comprend de préférence du métal.
Le vernis chargé peut par exemple comprendre des matériaux conducteurs et/ou des matériaux faisant barrière aux respectivement filtrant les ondes électromagnétiques.
Le matériau faisant barrière aux respectivement filtrant les ondes électromagnétiques absorbe et/ou réfléchit de préférence au moins une partie des ondes électromagnétiques.
Le traitement du support enduit par électrolyse comprend avantageusement la gravure électrolytique de l'enduit sur la partie non imprimée du support enduit.
Selon un mode de réalisation particulier, le support est soumis à un dépôt électrolytique sur la partie imprimée conductrice après le lavage et le séchage.
Le traitement du support par électrolyse comprend le dépôt électrolytique d'un ou plusieurs métaux ou leurs alliages sur la partie imprimée du support.
L'impression du vernis sur le support est de préférence réalisée par héliogravure. L'héliogravure est avantageusement réalisée par un groupe d'héliogravure comportant au moins un cylindre dont les zones d'impression sont constituées d'alvéoles gravées dont les plus externes à chaque dessin sont reliées entre elles pour assurer une continuité linéaire des contours. Les alvéoles du cylindre sont de préférence disposées suivant une linéature de 175 à 700 alvéoles par inch (par 2,5 cm), de préférence de 350 alvéoles par inch (par 2,5 cm). Les alvéoles des contours sont préférentiellement reliées entre elles pour réaliser une continuité du graphisme et éviter tout effet de dent. Le groupe d'héliogravure est capable d'imprimer une enduction avec des dessins d'une très grande finesse, entre 150 et 25 µm, de préférence 50 µm.
La gravure est de préférence réalisée par électrolyse entre l'enduction métallique du support à traiter et une anode baignée dans un électrolyte aqueux. L'anode est préférentiellement une anode en titane constituée d'une tôle pliée. L'électrolyte aqueux comprend avantageusement un acide minéral et son sel ou une base minérale et son sel, de préférence NaOH + NaCI concentré à 10%. Après application du vernis sur le support enduit, le traitement du support par électrolyse permet d'enlever l'enduction du support aux endroits où le vernis n'a pas été appliqué. On obtient ainsi un support présentant des motifs de haute résolution. L'électrolyte est choisi de façon telle que les produits dégagés en phase aqueuse par l'électrolyse agressent l'enduction métallique avec un mélange du type acide et ses sels ou bien avec une alcaline et ses sels halogènes. Suivant le choix de l'électrolyte et la densité du motif imprimé, on obtient des produits ayant des caractéristiques différentes de réflexion, de transmission et d'absorption d'un rayonnement électromagnétique incident. De préférence, les taux de réflexion et de transmission peuvent varier de 0 à 100% tandis que le taux d'absorption peut varier de 0 à 50%.
Le dépôt électrolytique est de préférence réalisé par électrolyse d'un ou plusieurs métaux et/ou leur alliage, par dissolution d'une électrode soluble contenant au moins le métal ou les métaux de l'électrode. Le dépôt métallique ou des dépôts métalliques successifs permettent de créer des dessins à haute résolution et d'une grande précision sur un support.
Les produits issus du procédé décrit ci-dessus peuvent posséder des caractéristiques utiles, surtout pour des utilisations dans le domaine des ondes électromagnétiques, notamment dans le domaine des micro-ondes.
Le procédé permet d'obtenir des produits multicouches ayant des caractéristiques de réflexion, de transmission et d'absorption de rayonnements électromagnétiques incidents bien particuliers. Selon le cas, un rayonnement électromagnétique incident sur le produit peut être transmis à un taux de 0 à 100%, réfléchi à un taux de 0 à 100% et/ou absorbé à un taux de 0 à 50%. L'usage de tels produits est très divers; ils peuvent par exemple être utilisés comme filtre pour rayonnements électromagnétiques, ces filtres étant transparents à la lumière visible. On peut enduire un film polymère thermorésistant, de préférence en polyester, d'une couche s'échauffant lorsque l'énergie électromagnétique incidente est partiellement absorbée par l'enduction. Cette enduction peut être métallique avec une résistivité comprise entre 0,0005 et 0,1 ohm/carré, de préférence 0,01 ohm/carré, par exemple en aluminium avec des épaisseurs entre 0,001 et 1 µm. Le produit est, dans ces conditions, d'une très grande transparence visuelle et s'échauffe à des températures élevées (de l'ordre de 200 à 300°C) lorsqu'il est frappé par des rayonnements électromagnétiques et en particulier des micro-ondes. L'énergie calorifique peut représenter jusqu'à 50% de l'énergie incidente.
La quantité d'énergie absorbée, transmise ou réfléchie varie selon l'importance et la répartition de l'enduction appliquée sur le film. Au deçà d'un seuil prédéterminé, l'énergie transmise est supérieure à l'énergie réfléchie, au delà de ce seuil, l'énergie transmise est inférieure à l'énergie réfléchie.
En chargeant le vernis de produits qui renforcent l'effet absorbant d'ondes électromagnétiques, il est possible de créer des produits opaque aux ondes électromagnétiques. Ainsi, on peut par exemple créer un film opaque aux micro-ondes qui pourrait être appliqué à la fenêtre d'une porte de four micro-ondes. En disposant sur un film support une grille avec des traits fins espacés toutes les ½ longueurs d'onde des micro-ondes, on obtient un film barrière aux micro-ondes, dont la transparence aux ondes de la lumière visible est presque totale. Ce film peut être appliqué contre une porte de four à micro-ondes, à travers laquelle on peut bien observer ce qui se passe à l'intérieur du four et ce en toute sécurité.
Le procédé permet également de créer des produits multicouches. Sur un premier dépôt métallique, on peut déposer un second dépôt métallique en faisant repasser le support par le poste d'impression et le poste de traitement. Le nombre de passages dans les postes d'impression et de traitement et le nombre de postes d'impression et de traitement, et par conséquent le nombre de dépôts métalliques n'étant bien sur pas limité à deux.
Suivant la nature de l'enduction et de la charge des vernis appliqués, il est possible de réaliser des produits dont la composition est déterminée par les conversions des énergies électromagnétiques désirées. Il est également possible de réaliser des barrières aux rayonnement électromagnétiques pour certaines longueurs d'onde. Ces deux possibilités peuvent éventuellement être combinées pour donner en fonction de leur longueur d'onde des produits à la fois absorbants et réfléchissants.
Ainsi, il est possible de créer un emballage qui réfléchit les micro-ondes dans une partie de l'emballage et qui absorbe une partie des micro-ondes dans une autre partie. Ceci permet de chauffer dans un four à micro-ondes des aliments à porter à températures variées.
Selon un autre aspect de la présente invention, on propose un produit multicouche comprenant les couches suivantes :
  • support de base en un matériau transparent à la lumière visible et aux ondes électromagnétiques,
  • au moins un enduit métallique à haute résolution couvrant moins de 5% de la surface du support,
  • au moins une couche de vernis couvrant l'enduit métallique,
   dans lequel l'enduit est disposé sur le support en un motif invisible à l'oeil nu, filtrant une gamme déterminée d'ondes électromagnétiques.
Le terme « filtrant » signifie dans le contexte de la présente que entre 0 et 99.9 % et de préférence entre 0 et 95% des ondes incidentes passent à travers le produit. Le produit peut donc à la limite être transparent ou opaque à une gamme de longueurs d'ondes électromagnétiques déterminée.
Le terme « transparent à la lumière visible » signifie dans le contexte de la présente que entre 80 et 99.9 % et de préférence entre 90 et 95% de la lumière visible passent à travers le produit.
Selon un mode de réalisation avantageux, le produit comprend une couche d'enduit métallique supplémentaire couvrant au moins en partie la couche de vernis.
Selon encore un mode de réalisation particulier, l'invention concerne un produit multicouche comprenant les couches suivantes :
  • support de base en un matériau transparent à la lumière visible et aux ondes électromagnétiques,
  • vernis à haute résolution couvrant moins de 5% de la surface du support
  • au moins un enduit métallique couvrant le vernis et filtrant une gamme déterminée d'ondes électromagnétiques.,
   dans lequel le vernis est disposé sur le support en un motif invisible à l'oeil nu.
Une couche de vernis supplémentaire peut, du moins en partie recouvrir l'enduit métallique qui peut à son tour être recouverte, du moins en partie par une couche d'enduit supplémentaire.
Le support de base est en général un film en matière synthétique comme p.ex. un film polyester. Cependant tout autre matière peut également convenir aussi longtemps qu'elle est transparente à la lumière visible et à la gamme d'ondes électromagnétiques choisie. En plus il faut qu'il soit possible de la recouvrir d'un motif à haute résolution comprenant un enduit et/ou un vernis.
Le produit tel que proposé absorbe généralement entre 0 et 95 % de la gamme déterminé d'ondes électromagnétiques incidentes, réfléchit entre 0 et 100% et/ou transmet entre 0 et 100% des ondes non absorbés en fonction du motif, de la nature et la quantité d'enduit.
Selon un mode de réalisation particulier, le produit absorbe de 0 à 50% de l'énergie des ondes électromagnétiques et réfléchit et/ou transmet l'énergie non absorbée.
Le produit constitue donc un filtre à une gamme d'ondes électromagnétiques et transparent à la lumière visible, il peut même constituer un filtre opaque aux ondes électromagnétiques et transparent à la lumière visible.
En particulier, les ondes électromagnétiques sont p.ex. des micro-ondes et le produit peut dès lors être utilisé en tant qu'emballage pour des produits micro-ondables, c.-à-d. pour des emballages d'aliments qui peuvent être réchauffées dans un four à micro-ondes.
Description à l'aide des Figures
D'autres particularités et caractéristiques de l'invention ressortiront de la description détaillée de quelques modes de réalisation avantageux présentés ci-dessous, à titre d'illustration, en se référant aux dessins annexés. Ceux-ci montrent:
Fig.1:
vue en coupe d'un film au cours de différentes étapes (A, B et C) de production, (support non enduit, vernis avec charge, dépôt électrolytique)
Fig.2:
vue en coupe d'un autre film au cours de différentes étapes (A, B et C) de production, (support enduit, vernis, gravure)
Fig.3:
vue en coupe d'encore un autre film au cours de différentes étapes (A, B, C et D) de production, (support enduit, vernis avec charge, gravure et dépôt)
Fig.4:
manchon rétractable
Fig.5:
film filtrant transparent
Fig.6:
porte de four micro-ondes
Fig.7:
emballage micro-ondable pour "café liégeois"
Fig.8:
plateau repas micro-ondable
Fig.9:
vue d'ensemble d'une machine pour la mise en oeuvre du procédé
Fig.10:
détail du groupe d'impression,
Fig.11:
vue schématique du groupe d'impression
Fig.12a:
forme souhaitée d'une impression
Fig.12b:
fenêtre d'héliogravure (zone gravée avec ligne de continuité en contact avec les alvéoles gravées)
Fig. 12c:
fenêtre d'héliogravure (zone gravée avec ligne de continuité sans contact avec les alvéoles gravées)
Fig. 12d:
résultat imprimé
Fig. 13:
schéma d'un groupe de traitement physico-chimique du film.
Sur les figures, les mêmes références désignent des éléments identiques ou similaires.
La fig. 1A montre une coupe à travers un film de support 10, sur lequel - à la fig. 1B - est imprimée une couche 20 discontinue de vernis chargé. A la fig. 1C, on voit une couche métallique 30 déposée par électrolyse sur la couche 20 imprimée du film 10. Il est donc possible de déposer une couche métallique 30 ayant dessin à haute résolution sur un film vierge, c'est-à-dire sur un film sans enduction métallique continue. De cette manière, on peut obtenir des films avec des dessins métalliques à haute résolution sur film 10.
La Fig. 2A montre un film 10 comprenant une enduction métallique 15. On imprime (Fig. 2B) sur la couche d'enduction un vernis de protection 20 et on enlève la partie non recouverte par le vernis de protection de l'enduction métallique (Fig. 2C) par électrolyse.
Sur la Fig. 3A, montre un film 10 comprenant une enduction métallique 15. On imprime (Fig. 2B) sur la couche d'enduction un vernis de protection 20 et on enlève la partie non recouverte par le vernis de protection 20 de l'enduction métallique (Fig. 2C) par électrolyse. Après lavage et séchage, on dépose une couche métallique 30 sur la couche de vernis de protection. Il est donc possible de fabriquer des matériaux multicouches.
On peut par exemple créer un manchon thermorétractable, qui est constitué d'un film rétractable à la chaleur. Il peut être destiné à grouper deux boítes. On s'intéressera aux zones de rétraction en contact avec les boítes qui seront équipées de zones réactives aux micro-ondes. Les zones du manchon sans contact avec les boítes ne connaítront dans le four à micro ondes aucun échauffement donc aucune rétraction, tandis que l'échauffement sélectif provoquera le rétrécissement du périmètre du manchon et bloquera les deux boítes pour en faire par exemple un lot promotionnel.
La Fig. 5 montre un film polymère thermorésistant, de préférence en polyester, enduit d'une couche s'échauffant lorsque l'énergie électromagnétique incidente est partiellement absorbée par l'enduction qui peut être métallique avec une conductivité comprise entre 1 et 2'000 ohm/carré, de préférence 100 ohm/carré, par exemple constituée d'une couche d'aluminium obtenu par sublimation sous vide, d'une épaisseur de 10 à 10'000 Angström, de préférence d'une densité optique de 0,6. Dans ces conditions, le matériau d'emballage est d'une très grande transparence visuelle et s'échauffe jusqu'à 280°C lorsque des rayonnements électromagnétiques de fréquence 2'450 MHz le frappent; l'énergie calorifique obtenue peut représenter jusqu'à 50 % de l'énergie incidente.
En variant l'importance de l'enduction, on modifiera la quantité des énergies absorbées, réfléchies et transmises.
Au deçà d'un seuil, l'énergie transmise est supérieure à l'énergie réfléchie. Au-delà du même seuil, c'est l'énergie réfléchie qui l'emporte sur celle transmise.
Un autre exemple d'application est représenté à la Fig. 6 dans lequel un film est appliqué contre une porte de four micro-ondes.
En revêtant un film transparent à la lumière visible d'un vernis de protection comprenant des produits qui renforcent l'effet absorbant et/ou de réflexion d'un film, il est possible de fabriquer des matériaux opaques à certains rayonnements électromagnétiques tout en étant transparents à la lumière visible. Ce matériau est constitué d'une enduction d'aluminium obtenue par sublimation sous vide, d'une épaisseur au moins égale à 600 Angström recouvert d'un vernis chargé de particules qui permettent d'atteindre une conductibilité globale entre 1 et 10 ohm/carré de préférence 2,5 ohm/carré. Ces particules sont de préférence des éléments d'aluminium de petites dimensions (5 à 15 µm, de préférence 10 µm) obtenues par dépôt sous vide. La longueur d'onde des fours à micro-ondes domestiques courants est de 12,5 cm. Le procédé selon la présente invention permet de réaliser des traits de 50 µm. Ainsi, avec des traits d'une épaisseur d'aluminium d'environ 10 µm, larges de 50 µm et espacés toutes les ½ longueurs d'onde, soit tous les 6,5 cm, on obtient une grille (figure 10) qui est opaque aux micro-ondes. La surface occupée par cette grille est (50 x 65000 x 2) / (65000)2 = 0,15%, et sa transparence à la lumière visible sera de 99,85%. On obtient donc un film presque entièrement transparent à la lumière visible mais qui est néanmoins opaque pour les micro-ondes. Ce film peut être appliqué contre une porte de four à micro-ondes. La fenêtre de la porte est transparente à la lumière visible, on peut donc bien observer ce qui se passe à l'intérieur du four, cependant les micro-ondes ne sont pas transmises à travers la porte.
La fig. 7 montre une coiffe pour une boisson de type « café liégeois » qui peut être disposée sur un récipient contenant dans sa partie inférieure du café et dans sa partie supérieure de la crème flottant sur le café, avant de la chauffer dans un four à micro-ondes.
Avant de consommer le café liégeois, le consommateur mettra le récipient avec la coiffe dans un four à micro-ondes pour le chauffer.
Sur le récipient est disposée la coiffe qui, dans sa partie supérieure, entourant la crème, réfléchit les rayons micro-ondes et qui, dans sa partie inférieure, entourant le café, absorbe une partie des rayons micro-ondes. Par conséquent, la crème reste froide tandis que la chaleur générée par l'absorption des rayons micro-ondes dans la partie inférieure est transmise au café pour chauffer celui-ci. Avec une telle coiffe, on obtient un café liégeois avec café chaud et crème onctueuse tiède.
Un autre exemple d'utilisation d'un matériau selon la présente invention est un plateau repas PR pour des aliments à porter à températures variées (Fig. 8).
Un tel plateau comprend un repas complet avec p.ex. dans les compartiments :
  • a) un hors d'oeuvre : des asperges avec une vinaigrette
  • b) un plat principal : un poisson en sauce
  • c) un dessert: une glace;
  • Le hors d'oeuvre (a) devra être consommé tiède, le plat principal (b) chaud et la glace (c) froide. Ces 3 types d'aliments seront disposés sur un plateau repas PR thermo-formé et fermé par une opercule (non représentée) constituant des enceintes ne communiquant vers l'extérieur que par des évents (non représentés). Autour du compartiment a pour le hors d'oeuvre, on disposera sur les parois constituées par le plateau et l'opercule un film pour créer une enceinte (a) avec une enduction métallique de conductivité 0.1 Mohm/carré autour au poisson, l'enceinte (b) n'aura aucune enduction, l'enceinte (c) sera revêtue d'un film multicouche, sera équivalente à celle permettant de faire barrière aux rayonnements micro-ondes (Fig. 6) de telle sorte que la glace ne soit pas réchauffée. En plaçant le plateau PR dans un four à micro-ondes pendant 90 s, on obtient des asperges dans le compartiment (a) à 25 °C, le poisson dans le compartiment (b) à 35°C et la glace dans le compartiment (c) à 0°C à partir d'un plateau PR sortant du congélateur.
    Suivant la nature de la couche de conversion énergétique composé de l'enduction du ou des vernis imprimés comportant une éventuelle charge, du ou des dépôts électrolytique et du ou des gravures électrolytiques, il est possible de réaliser des matériaux dont la composition sera déterminée par les conversions des énergies électromagnétiques désirées et même de réaliser des barrières aux rayonnements électromagnétiques pour certaines longueurs d'onde et de combiner éventuellement les deux possibilités pour avoir en fonction de ieur longueur d'onde des matériaux à la fois absorbants et réfléchissants
    La fig. 9 montre une installation pour la mise on oeuvre au procédé décrit ci-dessus. Cette installation se compose d'un poste d'alimentation A qui reçoit le film muni de son dépôt de base BA1, enroulé sur une bobine. Dans ce poste d'alimentation. la bobine est dévidée pour alimenter un poste d'impression par héliogravure B; puis, en sortie de ce poste d'impression par héliogravure, la bande BA2 passe dans un poste d'électrolyse C effectuant le traitement physico-chimique sur les fenêtres du film BA3. Ce poste d'électrolyse C est suivi d'un poste de lavage D dans lequel on enlève éventuellement le vernis hydrosoluble donnant le film BA4 et on rince la bande. Puis la bande BA4 passe dans un poste de séchage E et. enfin, dans un poste de contrôle F pour arriver sur l'enrouleuse G.
    Le poste d'alimentation A comprend un dérouleur A1 qui porte la bobine A2. Ce dérouleur est entraíné par un moteur asservi par un groupe d'appel A3, qui règle une tension contrôlée dans la bande BA1. La bande passe ensuite dans le poste d'impression B qui comprend un groupe d'impression (fig. 10 et 11) avec un encrier B1, un cylindre hélio B2 plongeant dans l'encrier B1 pour recouvrir la surface munie d'alvéoles d'héliogravure et du contour de la fenêtre. Ce cylindre coopère avec une racle B3 qui enlève l'encre en surface pour ne laisser subsister que l'encre a l'intérieur des alvéoles ou de la gravure. L'encrier B1 est alimenté a partir d'un réservoir B4 contenant le produit d'enduction par une pompe B5 et un tuyau B6. Le réservoir B4 est équipé d'un moyen de détection de la viscosité B6 tel qu'un viscosimètre pour permettre de régler la viscosité du liquide d'enduction.
    Ce groupe hélio B peut être équipé d'un système de lecture d'un spot, ou marqueur détectable par une cellule photoélectrique, disposé sur la bande métallisée qui permettra le pilotage de la bande, de telle sorte que le positionnement de la fenêtre d'impression soit en repérage avec les motifs de la bande métallisée comportant des graphismes éventuellement préimprimés.
    Le niveau de liquide dans l'encrier B1 est réglé par un trop-plein B7 avec retour au réservoir 84, de façon que le cylindre d'héliogravure B2 soit toujours immergé à la même profondeur dans l'encrier B1.
    Le cylindre B2 coopère avec un cylindre presseur B10 placé au-dessus de la bande BA1, le cylindre B2 se trouvant en dessous de la bande
    La bande BA1 se compose schématiquement, comme cela est indiqué à la figure 3, d'un support 10 en matière plastique et d'un revêtement de base 15 tel qu'un métal.
    En tournant dans le sens des flèches, le cylindre hélio B2 comprime, avec le presseur B10, la bande BA1 et dépose les impressions de vernis correspondant aux fenêtres ou zones d'impression ou enductions I correspondant aux fenêtres.
    La fig. 11 est une vue de dessus du groupe d'impression représenté à la fig. 10. Cette figure montre le cylindre hélio B2. le cylindre presseur B10 avec une flèche indiquant la compression ainsi que la bande BA en vue de dessus. Le cylindre hélio B2 porte une surface gravée selon une fenêtre d'héliogravure ou zone d'impression B21 de forme relativement compliquée qui réalise l'impression I du vernis sur la face inférieure 15 de la bande BA1 (devenue alors la bande BA2).
    Les fig. 12A-12D montrent de façon plus explicite la réalisation de la surface gravée de la fenêtre d'héliogravure.
    La fig. 12A donne le contour souhaité pour la fenêtre héliographique, c'est-à-dire le contour du futur graphisme (1100).
    A partir de cette forme I100. on grave la surface de la fenêtre d'héliogravure dans le cylindre. Cette fenêtre est constituée par une surface gravée comportant des cuvettes ou alvéoles K100, séparées par des murets K101, et l'ensemble est entouré par un filet K102, qui borde les cuvettes et les intervalles entre les cuvettes K100.
    Dans cette figure, les alvéoles sont représentées par des carrés noirs à coins arrondis éventuellement tronqués, separés par les murets (cloisons ou encore appelés ponts) K101, blancs.
    L'ensemble des alvéoles ou cuvettes est entouré ici par un filet, c'est-à-dire une entaille très étroite qui se remplit d'encre mais limite l'étalement ce l'encre des alvéoles pour donner à l'image imprimée, un contour continu, précis limitant de manière précise et prédéterminee la limite de la fenêtre
    A la fig. 12B, ce filet K102 passe de manière jointive sur les cuvettes ou de façon adjacente à celles-ci.
    Dans le cas de la fig. 12C, la fenêtre 1200 comporte également des alvéoles K200 séparées par des murets K201 et l'ensemble est entouré par un filet K202 qui est plus éloigné du bord des alvéoles K200 (tronquées ou non) que dans la réalisation de la fig. 12B.
    La finesse du trait constituant le filet dépend de la résolution du traceur qui a dessiné la ou les fenêtres; ainsi, avec le choix entre les formes de gravure des fig. 12B et 12C dépend la viscosité du liquide utilisé pour cette impression. Comme indiqué, ce liquide est, une fois séché, un produit de passivation, c'est-à-dire inerte vis-à-vis de l'action physico-chimique à effectuer.
    Enfin, la fig. 12D montre l'image imprimée 1300 avec son contour très précis et non dentelé.
    En retour à la fig. 9, le poste d'électrolyse C se compose d'un bac à électrolyse C1 qui est léché par la bande BA2, ayant reçu l'impression dans le poste d'impression B. Ce poste d'électrolyse comporte également une hotte d'extraction C2 des gaz d'électrolyse. Le détail du poste C2 apparaít à la fig. 13.
    Le bac à électrolyse C1 est doté d'un trop-plein pour déverser le surplus en électrolyte C9. de manière à maintenir constant le niveau de l'électrolyte C9. L'électrolyte est déversé dans une trémie C15 qui le conduit vers une pompe C8 qui à son tour le reconduit dans le bac à électrolyse C1. En sortie, il y a une trémie de collecte C15 qui recueille le liquide gouttant de la bande BA3 essorée par son passage entre deux cylindres C16, 017. Le liquide d'essorage est recueilli dans la trémie C15 et il revient dans ie réservoir C9.
    Le bac à électrolyse peut être utilisé soit pour graver le film BA2 soit pour faire un dépôt métallique sur le film BA2.
    Lorsque le bac est utilisé pour faire une gravure le film imprimé BA2 est polarisé négativement et lèche un électrolyte C9 à quelques millimètres des pointes d'une anode métallique C20 insoluble au cours de l'électrolyse du type titane que l'on polarise positivement. La forme de l'anode est obtenue par pliage d'une tôle. Entre chaque pointe de l'anode C20, on dispose un isolant PVC C22. L'électrolyte C9 est choisi de façon telie que les produits dégagés par l'électrolyse en phase aqueuse agressent l'enduction métallique 15 mais pas l'impression I. L'électrolyte C9 agresse le métal avec un mélange de type acide et ses sels ou encore de type basique et ses sels. On utilise de préférence NaOH + NaCI dans des proportions pondérales de 10% du poids d'eau. Les conditions dans lesquelles se fait l'électrolyse dépendent de la nature du métal à électrolyser. L'électrolyte C9 enlève l'enduction métallique 15 du film B2 aux endroits non protégés par l'impression I.
    Lorsque le bac est utilisé pour faire un dépôt, le film imprimé BA2 est polarisé positivement et lèche un électrolyte C9 à quelques millimètres des pointes d'une anode métallique C20 soluble au cours de l'électrolyse que l'on polarise négativement. La forme de l'anode est obtenue par pliage d'une tôle. Entre chaque pointe de l'anode C20, on dispose un isolant PVC C22. On choisira préférentiellement pour le dépôt de cuivre une électrode en cuivre et un électrolyte aqueux composé de 220 g/l de CuSO4 et de 20 g/l de H2SO4. L'ampérage sera avantageusement de 10 A/dm2
    Enfin, les opérations d'impression de fenêtres et d'électrolyse peuvent être répétées avec des formes de fenêtres différentes réalisées les unes sur les autres, par exemple pour former un circuit intégré et dans ce cas il y aura une succession de postes B, C et éventuellement D qui alterneront.
    Puis le film BA3 passe dans le poste de lavage D. Ce poste de lavage rince la bande BA3 pour enlever les restes d'électrolyte et dissoudre la couche de revêtement notamment la couche de passivation. Ce poste de lavage D se compose de différents cylindres de renvoi D1, D2 conduisant la bande BA3 dans une première cuve D4 puis dans une seconde cuve D5. Ces cuves contiennent un liquide de rinçage de l'électrolyte et/ou un solvant et de l'enduit. La structure détaillée de ces cuves de lavage ne sera pas donnée. Il s'agit d'un ensemble de cylindres définissant un tracé de circulation de la bande dans le bain de lavage.
    Le lavage se fait avec des essorages entre des cylindres en acier et des cylindres en polymère pour limiter les entraínements et faciliter le séchage par évaporation du liquide de lavage, de telle sorte que le film soit sec et sans trace de l'électrolyte incompatible avec son usage ultérieur.
    En aval du poste de lavage D, la bande BA4 passe dans le poste de séchage E équipé de moyens de ventilation et d'extraction d'air E1, E2, E3, E4 et, enfin, la bande séchée BAS passe dans un poste de contrôle F équipé d'une caméra vidéo F1 qui visionne une zone du film BAS pour contrôler la qualité de la fabrication. Ce contrôle est complété par une mesure de la densité optique et le la résistivité (non représentées) Ces contrôles sont faits en continu. En sortie de poste de contrôle F, le film est enroulé sur un poste d'enroulement G. Ce poste d'enroulement a une structure analogue au dérouleur A mais fonctionne en sens inverse. Il comporte un support G1 équipé d'un moteur et formant le rouleau G2.
    Après contrôle de la bande, la bande est margée et enroulée avec un contrôle de tension de telle sorte qu'elle ne soit pas déformée par les zones de surépaisseur.
    Le pilotage de la bande à travers l'installation de la fig. 9 se fait de manière synchronisée à l'aide de repères et de lecteurs ainsi que de circuits de commande ces moyens ne sont pas représentés.
    L'installation présente l'avantage d'une vitesse de traitement pouvant dépasser la vitesse de traitement de 250 m/min. Le traitement est insensible à la présence des oxydes métalliques qui protègent ta face métallisée du film, ce qui est notablement un avantage par rapport au procédé chimique antérieur. La possibilité de déposer une couche métallique d'une autre nature que celle qui a été corrodée permet la fabrication de multicouches métalliques.
    La résolution du trait métallisé obtenu est celle de l'impression car l'épaisseur du masque de corrosion peut être de 2 microns ou inférieure.
    Enfin, pour des questions d'opportunité de production, l'impression de la réserve de corrosion peut être réalisée sur une machine indépendante de la machine de traitement.
    Le procédé et l'installation décrits permettent la réalisation d'un film comportant des couches multiples de matériaux isolants et conducteurs, isolants et métalliques susceptibles d'être employés dans l'impression de matériaux.
    Suivant la nature de la couche de conversion énergétique composée de l'enduction, du ou des vernis imprimés comportant une éventuelle charge, du ou des dépôts électrolytiques et du ou des gravures électrolytiques, il est possible de réaliser des matériaux dont la composition sera déterminée par les conversions des énergies électromagnétiques désirées et même de réaliser des barrières aux rayonnements électromagnétiques pour certaines longueurs d'onde et de combiner éventuellement les deux possibilités pour avoir en fonction de leur longueur d'onde, des matériaux à la fois absorbants et réfléchissants.
    Exemple
    Suivant la fréquence, l'onde électromagnétique est pénétrante. L'onde est d'autant plus pénétrante que la fréquence est grande.
    Pour les matériaux absorbants. l'énergie de l'onde incidente dont la pénétration est arrêtée, est absorbée.
    Pour les matériaux réfléchissants, l'onde incidente qui ne pénètre pas est réfléchie. L'énergie incidente est égale à l'énergie réfléchie.
    Pour les matériaux transparents, l'énergie de l'onde incidente qui traverse sans obstacle, sans réflexion et sans absorption est égale à l'énergie transmise.
    Suivant la nature du matériau et de l'onde, on se trouve dans le cas moyen où les 3 phénomènes ont lieu, la réflexion pure et la transmission pure sont deux cas extrêmes.
    Dans le cas des micro-ondes, en fonction de l'épaisseur de l'aluminium, il a été trouvé qu'une épaisseur de couche de 1 micron provoque la réflexion de l'onde incidente, sans absorption ni transmission. Une couche d'aluminium d'une épaisseur de 1 micron est dite opaque aux micro-ondes.
    Dans la zone d'épaisseur de 10 Å (angström) à 600 Å d'aluminium, une partie de l'énergie incidente est réfléchie, une partie transmise et le solde absorbé et transformé en chaleur.
    Dans les épaisseurs fortes on privilège la réflexion tandis que dans les épaisseurs faibles la transmission.
    L'énergie absorbée est maximale pour des épaisseurs de couche d'aluminium proches de 50 Å.
    Sur un support de type polyester, on déposera un enduit qui sera fonction de l'objectif à atteindre. On annulera l'effet par un enlèvement de l'enduit. On amplifiera l'effet de l'enduit en augmentant la charge du vernis et plus encore en faisant un dépôt électrolytique.
    Un polyester est enduit d'une couche d'aluminium de résistivité 0,001 Ohm/carré sous vide par sublimation. On est capable d'obtenir une température de peau du film de polyester de 200 °C (30 % de l'énergie incidente est absorbée).
    On démétallise une partie du film. Dans cette zone démétallisée, il n'y aura plus d'énergie des micro-ondes absorbée; le polyester étant transparent aux micro-ondes, la totalité de l'énergie des micro-ondes sera transmise (pas d'énergie réfléchie). Le polyester est dit transparent aux micro-ondes.
    On imprime un vernis contenant une charge d'aluminium de conductivité 0,0005 Ohm/carré sur le même film enduit. On obtient un matériau de conductivité 0,0015 Ohm/carré. On obtient un matériau pouvant atteindre une température de peau de 280 °C.
    On fait un dépôt métallique complémentaire de 400 Å. Le matériau devient alors réfléchissant aux micro-ondes. L'énergie transmise est proche 0 et le matériau est opaque aux micro-ondes.
    On choisit la nature de l'enduit, des charges et du ou des dépôts électrolytiques en fonction de la nature des ondes incidentes (fréquence) et de l'effet recherché (réflexion, transmission et absorption).
    De la même manière, il est possible d'utiliser du plomb comme barrière aux rayons X.

    Claims (29)

    1. Procédé permettant de réaliser des motifs sur un support d'une finesse comprise entre 150 et 25 µm comprenant les étapes suivantes:
      impression à haute résolution d'un vernis sur le support;
      traitement du support par électrolyse;
      lavage et séchage du support
         caractérisé en ce que le vernis est un vernis chargé.
    2. Procédé selon la revendication 1, caractérisé en ce que le support est enduit avant impression.
    3. Procédé selon la revendication 2, caractérisé en ce que l'enduit comprend un métal ou des métaux, un ou des oxydes, un ou des sels métalliques ou métalloïdes.
    4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le vernis chargé comprend des matériaux pouvant modifier la propagation des ondes électromagnétiques tels que certains conducteurs électriques et en particulier l'aluminium.
    5. Procédé selon la revendication 4, caractérisé en ce que la charge du métal ou de métalloïde, d'oxydes ou de sels unique ou mélangée est constituée de particules atomiques formées par leur sublimation sous vide tel que l'aluminium, le cuivre, le fer, le chrome, le nickel, le silicium et l'oxyde de silice.
    6. Procédé selon l'une quelconque des revendications 4 à 5, caractérisé en ce que le vernis est choisi parmi les produits de type nitro-cellulosique ou de type polyuréthane.
    7. Procédé selon la revendication 5, caractérisé en ce que le matériau faisant barrière aux ondes électromagnétiques absorbe au moins une partie de ces ondes.
    8. Procédé selon la revendication 5, caractérisé en ce que le matériau faisant barrière aux ondes électromagnétiques réfléchit au moins une partie de ces ondes.
    9. Procédé selon l'une quelconque des revendications 2 à 8, caractérisé en ce que le traitement du support par électrolyse comprend la gravure électrolytique de l'enduit sur la partie non imprimée du support.
    10. Procédé selon la revendication 9, caractérisé en ce que le support est soumis à un dépôt électrolytique sur la partie imprimée après le lavage et le séchage.
    11. Procédé selon l'une quelconque des revendications 1 et 4 - 8, caractérisé en ce que le traitement du support par électrolyse comprend le dépôt électrolytique d'un ou plusieurs métaux ou leurs alliages sur la partie imprimée du support.
    12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'impression du vernis sur le support est réalisée par héliogravure.
    13. Procédé selon la revendication 12, caractérisé en ce que l'héliogravure est réalisée par un ou plusieurs groupes d'héliogravure comportant au moins un cylindre dont les zones d'impression sont constituées d'alvéoles gravées dont les plus externes à chaque dessin sont reliées entre elles pour assurer une continuité linéaire des contours.
    14. Procédé selon l'une quelconque des revendications 2 à 8, caractérisé en ce que la gravure est réalisée par électrolyse entre l'enduction métallique du support à traiter et une anode baignée dans un électrolyte aqueux.
    15. Procédé selon la revendication 14, caractérisé en ce que l'anode est une anode en titane constituée d'une tôle pliée.
    16. Procédé selon la revendication 14 ou 15, caractérisé en ce que l'électrolyte aqueux comprend un acide minéral et son sel ou une base minérale et son sel, de préférence NaOH + NaCl concentré à 10% en poids.
    17. Procédé selon la revendication 7, caractérisé en ce que le dépôt électrolytique est réalisé par électrolyse d'un ou plusieurs métaux et leur alliage, par dissolution d'une électrode soluble sous forme de sels, d'oxydes contenant au moins le ou les solides de l'électrode.
    18. Produit multicouche comprenant les couches suivantes :
      support de base en un matériau transparent à la lumière visible et aux ondes électromagnétiques,
      au moins un enduit métallique à haute résolution couvrant moins de 5% de la surface du support,
      au moins une couche de vernis couvrant l'enduit métallique,
      dans lequel l'enduit est disposé sur le support en un motif invisible à l'oeil nu, filtrant une gamme déterminée d'ondes électromagnétiques.
    19. Produit selon la revendication 18, caractérisé par une couche d'enduit métallique supplémentaire couvrant le vernis.
    20. Produit multicouche comprenant les couches suivantes :
      support de base en un matériau transparent à la lumière visible et aux ondes électromagnétiques,
      vernis à haute résolution couvrant moins de 5% de la surface du support
      au moins un enduit métallique couvrant le vernis et filtrant une gamme déterminée d'ondes électromagnétiques.,
      dans lequel le vernis est disposé sur le support en un motif invisible à l'oeil nu.
    21. Produit selon la revendication 20, caractérisé par une couche de vernis supplémentaire couvrant au moins en partie l'enduit métallique.
    22. Produit selon la revendication 21, caractérisé par une couche d'enduit supplémentaire couvrant la deuxième couche de vernis.
    23. Produit selon l'une quelconque des revendications 18 à 22, caractérisé en ce que le support de base est un film polyester.
    24. Produit selon l'une quelconque des revendications 18 à 23, caractérisé en ce que le produit absorbe entre 0 et 95 % des ondes incidentes, réfléchit entre 0 et 100% et/ou transmet entre 0 et 100% des ondes non absorbés en fonction du motif, de la nature et la quantité d'enduit.
    25. Produit selon la revendication 24, caractérisé en ce que le produit absorbe de 0 à 50% de l'énergie des ondes électromagnétiques et réfléchit et/ou transmet l'énergie non absorbée.
    26. Produit selon l'une quelconque des revendications 18 à 25, caractérisé en ce que le produit constitue un filtre à ondes électromagnétiques et transparent à la lumière visible.
    27. Produit selon l'une quelconque des revendications 18 à 25, caractérisé en ce que le produit constitue une filtre opaque aux ondes électromagnétiques et transparent à la lumière visible.
    28. Produit selon l'une quelconque des revendications 18 à 27, caractérisé en ce que les ondes électromagnétiques sont des micro-ondes.
    29. Usage du produit selon l'une quelconque des revendications 18 à 28, en tant qu'emballage pour des produits micro-ondables.
    EP00951325A 1999-07-02 2000-06-30 Procede d'enduction et produits issus du procede Expired - Lifetime EP1194297B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    LU90412 1999-07-02
    LU90412A LU90412B1 (fr) 1999-07-02 1999-07-02 Proc-d- d'enduction et produits issus du proc-d-
    PCT/EP2000/006143 WO2001002186A1 (fr) 1999-07-02 2000-06-30 Procede d'enduction et produits issus du procede

    Publications (2)

    Publication Number Publication Date
    EP1194297A1 EP1194297A1 (fr) 2002-04-10
    EP1194297B1 true EP1194297B1 (fr) 2003-08-27

    Family

    ID=19731820

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00951325A Expired - Lifetime EP1194297B1 (fr) 1999-07-02 2000-06-30 Procede d'enduction et produits issus du procede

    Country Status (10)

    Country Link
    US (1) US6680092B1 (fr)
    EP (1) EP1194297B1 (fr)
    JP (1) JP2003503602A (fr)
    AT (1) ATE248069T1 (fr)
    AU (1) AU6430600A (fr)
    CA (1) CA2376280A1 (fr)
    DE (1) DE60004849T2 (fr)
    DK (1) DK1194297T3 (fr)
    LU (1) LU90412B1 (fr)
    WO (1) WO2001002186A1 (fr)

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US20040209197A1 (en) * 2003-04-17 2004-10-21 Murata Manufacturing Co., Ltd. Photogravure press and method for manufacturing multilayer-ceramic electronic component
    JP4007335B2 (ja) * 2003-04-17 2007-11-14 株式会社村田製作所 グラビアロール、グラビア印刷機および積層セラミック電子部品の製造方法
    TWI332438B (en) * 2004-07-08 2010-11-01 Murata Manufacturing Co Photogravure printing machine, manufacturing method of multilayer ceramic electronic device using the photogravure printing machine and gravure roll
    US7939786B2 (en) 2005-12-14 2011-05-10 Kraft Foods Global Brands Llc Meal kit and cooking tray
    EP2020827B1 (fr) * 2007-07-03 2013-10-23 Whirlpool Corporation Système de blindage pour fours à micro-ondes et four à micro-ondes utilisant ce système de blindage.
    DE102017100074B4 (de) * 2017-01-04 2019-03-14 Miele & Cie. Kg Verfahren zum Behandeln von Gargut und Gargerät zur Durchführung eines solchen Verfahrens

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3615713A (en) * 1969-09-12 1971-10-26 Teckton Inc Selective cooking apparatus
    US4230924A (en) * 1978-10-12 1980-10-28 General Mills, Inc. Method and material for prepackaging food to achieve microwave browning
    US4685997A (en) * 1986-06-16 1987-08-11 Beckett Donald E Production of demetallized packaging material
    US5006684A (en) * 1987-11-10 1991-04-09 The Pillsbury Company Apparatus for heating a food item in a microwave oven having heater regions in combination with a reflective lattice structure
    EP0410274B1 (fr) * 1989-07-25 1995-11-15 Dai Nippon Insatsu Kabushiki Kaisha Procédé de fabrication d'un patron fin
    US5300746A (en) * 1990-11-08 1994-04-05 Advanced Deposition Technologies, Inc. Metallized microwave diffuser films
    US5256846A (en) * 1991-09-05 1993-10-26 Advanced Dielectric Technologies, Inc. Microwaveable barrier films
    US5721007A (en) * 1994-09-08 1998-02-24 The Whitaker Corporation Process for low density additive flexible circuits and harnesses
    US5622652A (en) * 1995-06-07 1997-04-22 Img Group Limited Electrically-conductive liquid for directly printing an electrical circuit component onto a substrate, and a method for making such a liquid
    US5800724A (en) * 1996-02-14 1998-09-01 Fort James Corporation Patterned metal foil laminate and method for making same
    US5759422A (en) * 1996-02-14 1998-06-02 Fort James Corporation Patterned metal foil laminate and method for making same
    KR100654114B1 (ko) * 1998-10-30 2006-12-05 스미또모 가가꾸 가부시끼가이샤 전자파 차단판

    Also Published As

    Publication number Publication date
    ATE248069T1 (de) 2003-09-15
    US6680092B1 (en) 2004-01-20
    CA2376280A1 (fr) 2001-01-11
    DE60004849D1 (de) 2003-10-02
    DE60004849T2 (de) 2004-07-15
    AU6430600A (en) 2001-01-22
    DK1194297T3 (da) 2003-12-22
    JP2003503602A (ja) 2003-01-28
    LU90412B1 (fr) 2001-01-03
    EP1194297A1 (fr) 2002-04-10
    WO2001002186A1 (fr) 2001-01-11

    Similar Documents

    Publication Publication Date Title
    AU641664B2 (en) Demetallization of metal films
    Bishop et al. Vacuum metallizing for flexible packaging
    FR2769440A1 (fr) Procede pour la fabrication d'un dispositif electronique a puce et/ou a antenne et dispositif obtenu par le procede
    EP1766134B1 (fr) Document de securite et/ou de valeur
    EP1194297B1 (fr) Procede d'enduction et produits issus du procede
    EP0522217B2 (fr) Document fiduciaire ou de sécurité comportant un dispositif anti-contrefaçon, et procédé de fabrication d'un tel document
    EP1234680A1 (fr) Procédé d'impression par dépôt d'encre à effet relief
    CA2379781A1 (fr) Procede de fabrication de reperes de securite et reperes de securite
    FR2516448A1 (fr) Procede de fabrication d'une trame d'imprimerie tournante a zones epaissies
    US5149396A (en) Susceptor for microwave heating and method
    EP2425300B1 (fr) Film holographique metallisé et son procédé de fabrication
    CA2337812C (fr) Procede de fabrication d'etiquettes de securite
    EP3373712A1 (fr) Procédé de dépôt de traces conductrices
    FR2675742A1 (fr) Produit pour la protection d'un document contre les falsifications.
    FR3087386A1 (fr) Element de securite pour un document-valeur, son procede de fabrication et document-valeur qui le comporte
    JP4037052B2 (ja) 被覆金属薄膜及びその製造方法
    CH502048A (fr) Procédé de fabrication d'un objet par voie photo-chimique, notamment d'un circuit électrique imprimé ou d'une plaque lithographique
    WO2022003045A1 (fr) Procédés de fabrication de composants optiques de sécurité, composants optiques de sécurité et objets sécurisés équipés de tels composants
    CH631558A5 (fr) Element flexible utilisable pour la fabrication d'une plaque d'impression.
    BE715535A (fr)
    FR2770434A1 (fr) Procede de gravure a l'aide d'un masque de sablage - masque obtenu selon le procede
    FR2717421A1 (fr) Dispositif d'impression masquée inviolable.

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20011220

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17Q First examination report despatched

    Effective date: 20020814

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030827

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030827

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030827

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REF Corresponds to:

    Ref document number: 60004849

    Country of ref document: DE

    Date of ref document: 20031002

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031127

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: BOVARD AG PATENTANWAELTE

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20031217

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040127

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20030827

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040630

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040630

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040528

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20080523

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20080625

    Year of fee payment: 9

    Ref country code: BE

    Payment date: 20080527

    Year of fee payment: 9

    Ref country code: FI

    Payment date: 20080630

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20080523

    Year of fee payment: 9

    Ref country code: DK

    Payment date: 20080626

    Year of fee payment: 9

    Ref country code: IE

    Payment date: 20080613

    Year of fee payment: 9

    Ref country code: NL

    Payment date: 20080617

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20080523

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20080627

    Year of fee payment: 9

    BERE Be: lapsed

    Owner name: *GAJ DEVELOPPEMENT SAS

    Effective date: 20090630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090630

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090630

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20100101

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090630

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090630

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100101

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100101

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090701

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20110712

    Year of fee payment: 12

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20130228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120702