EP1190996A2 - Einrichtung zum Zerstäuben von Schmelzen - Google Patents

Einrichtung zum Zerstäuben von Schmelzen Download PDF

Info

Publication number
EP1190996A2
EP1190996A2 EP01890269A EP01890269A EP1190996A2 EP 1190996 A2 EP1190996 A2 EP 1190996A2 EP 01890269 A EP01890269 A EP 01890269A EP 01890269 A EP01890269 A EP 01890269A EP 1190996 A2 EP1190996 A2 EP 1190996A2
Authority
EP
European Patent Office
Prior art keywords
lance
immersion tube
outlet opening
melt
dip tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01890269A
Other languages
English (en)
French (fr)
Other versions
EP1190996A3 (de
Inventor
Alfred Dipl.-Ing. Edlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tribovent Verfahrensentwicklung GmbH
Original Assignee
Tribovent Verfahrensentwicklung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tribovent Verfahrensentwicklung GmbH filed Critical Tribovent Verfahrensentwicklung GmbH
Publication of EP1190996A2 publication Critical patent/EP1190996A2/de
Publication of EP1190996A3 publication Critical patent/EP1190996A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0884Spiral fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0892Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting nozzle; controlling metal stream in or after the casting nozzle
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/024Methods of cooling or quenching molten slag with the direct use of steam or liquid coolants, e.g. water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/062Jet nozzles or pressurised fluids for cooling, fragmenting or atomising slag

Definitions

  • the invention relates to a device for atomization of melts, in particular slag melts, with a Tundish, a cross-section that increases in the manner of a Laval nozzle Outlet opening for the melt and a dip tube, the lower edge of the outlet opening to form a Grips annular gap and one arranged in the interior of the dip tube Lance for a propellant.
  • Devices of the type mentioned above can be atomized and granulating slag and for spray atomization of metal melting are used, with particularly small Droplet sizes can be realized and at the same time in In the case of slag, rapid cooling and thus glazing the slag can be caused.
  • Slag melting can be a subsequent grinding of fine-grained solidified and glazed particles for use as hydraulic binders become unnecessary.
  • the dip tube forms an underflow weir, and it can by appropriate Setting the distance between the lower edge of the dip tube and the edge of the tundish outlet opening defined layer thickness can be set, which is the thickness of the jacket of the tubular melt beam, as it from the Exhaust opening emerges, defined.
  • the propellant fluid lance can be in known manner with steam propellant or liquids operated, being in the case of the use of steam corresponding geometry of the outlet opening of the lance and the like
  • Pressure the flow conditions set so can be that the propellant fluid at the speed of sound emerges from the blowing lance nozzle and subsequently in the area the outlet opening designed as a Laval nozzle rapidly expands, even supersonic speeds in this area can be achieved.
  • Flow conditions can also lead to pressure surges come in an underexpanded free jet, whereby an optimal shredding effect is naturally only guaranteed can be if a homogeneous thickness of the emerging Slag jet guaranteed in the area of the outlet opening can be. Due to the rapid cooling, was already proposed the area of the annular gap accordingly heat to prevent the bottom edge from growing and thus to prevent irregular coating thickness of the melt jet.
  • the invention now aims at very small-scale Set up a correspondingly small annular gap to be able to do a faster shredding and a enables faster glassy solidification of slags, whereby the selected annular gap width is exactly maintained at the same time can be.
  • Device according to the invention essentially in that the Dip tube with a drive for rotating movement around its Axis is connected.
  • the fact that the dip tube with a Drive is connected to the rotating movement about its axis, takes advantage of the thixotropic behavior Slag with additional shear and shear forces Significant liquefaction of the melt in the annular gap achieved, which results in a finer disintegration leaves.
  • the rotation of the dip tube turns on wear-related, even grinding in and thus one ensures constant annular gap height, making reproducible Results can be achieved over a long period of time.
  • the axial adjustability of the dip tube for setting the gap width of the annular gap and the corresponding adjustability of the propellant fluid lance can thus the optimal conditions for a quick and efficient Set disintegration and optimize within wide limits. This applies in particular to training courses where Propellant gas exits the fluid lance at the speed of sound and in the divergent Laval area of the tundish outlet opening accelerated to supersonic speed.
  • the training is advantageously made so that the lance in Inside of the dip tube, especially with the interposition of labyrinth seals, is leaking.
  • Labyrinth seal allows a corresponding sealing of the rotating dip tube opposite the propellant fluid lance, whereby at the same time the training is advantageously made such that the lance on its adjacent the nozzle for the propellant fluid Outer jacket at least one guide body or swirl body having.
  • Optimal conditions and particularly small-scale facilities can be achieved in that the nozzle mouth of the lance protrudes beyond the lower edge of the dip tube, although with advantage the rotating immersion tube and the propellant fluid lance are height adjustable are stored.
  • labyrinth seals is the extent of such height adjustability in narrow Limits to each other's height adjustment Component bound, with a defined relative adjustment the lance also a defined one relative to the rotating immersion tube Adjustment of the gap width of the labyrinth seal allows and allowed it in the way that sucked in Control the amount of false gas or false air.
  • the design according to the invention is such that the rotary drive of the dip tube is set to rotational speeds of 3 - 15 min -1 .
  • 1 is the bottom of a slag tundish referred to, wherein the liquid level of a liquid Slag or a melt 2 is indicated with 3.
  • a dip tube 4 which has a pinion 5 connected to a rotary drive formed by a motor 6 is.
  • a rotary drive of the dip tube 4 causes.
  • the area of Annular gap a between the lower edge of the dip tube 4 and the edge of the outlet opening 8 for the slag 4 shear forces due to the slow rotation of the dip tube introduced due to the thixotropic behavior of the Melt 2 to a significant liquefaction of the melt 2 contribute, creating an extremely thin-walled jet over the Opening 8 exits.
  • the outlet opening 8 is here kind of a Laval nozzle designed so that with supercritical Feeding a fluid formed an underexpanded jet can be.
  • the driving fluid is via a line 9 and a lance 10 is expelled through a nozzle 11, whereby at a supersonic speed in accordance with supercritical pressure conditions and therefore a high shear stress is achieved.
  • An additional baffle can be arranged which hinders a backflow.
  • Such a backflow A swirl body also acts efficiently in gases 12 on the outside of the propellant fluid lance 10.
  • the Lance 10 carries ring disks 13, which with corresponding Ring grooves or projections 14 on the inside of the rotatable Combed stored dip tube 4 and in this way a kind Form the labyrinth seal.
  • One in the direction of arrow 15 Intake of false gas is throttled in the way via the swirl body 12 in the area of the nozzle mouth, whereby at the same time a rotational acceleration is achieved and a backflow of gas is effectively countered.
  • the slag or melt solidifies relatively quickly after exiting from the slag outlet opening 8 due to the particularly fine-grain dispersion, so that it can be found with particularly small-sized devices.
  • Particularly advantageous conditions can be achieved by supplying propellant gas in the pressure range between 2 and 30 bar at temperatures between 20 ° and 1300 ° C via the lance 10, and rotating the immersion tube 4 at a speed of 3 to 15 min -1 becomes. Due to the uniform rotation and the liquefaction of the melt achieved in this way in the area of the annular gap a, a constant annular gap height can be maintained over a long period of time, as a result of which the corresponding disintegration conditions can be kept constant over a long period of time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

Bei einer Einrichtung zum Zerstäuben von Schmelzen, insbesondere Schlackenschmelzen, mit einem Tundish, einer nach Art einer Lavaldüse im Querschnitt zunehmenden Auslaßöffnung (8) für die Schmelze (2) und einem Tauchrohr (4), dessen Unterkante die Auslaßöffnung (8) unter Ausbildung eines Ringspaltes (a) umgreift und einer im Inneren des Tauchrohres (4) angeordneten Lanze (10) für ein Treibfluid ist das Tauchrohr (4) mit einem Antrieb (6) zur drehenden Bewegung um seine Achse verbunden. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Einrichtung zum Zerstäuben von Schmelzen, insbesondere Schlackenschmelzen, mit einem Tundish, einer nach Art einer Lavaldüse im Querschnitt zunehmenden Auslaßöffnung für die Schmelze und einem Tauchrohr, dessen Unterkante die Auslaßöffnung unter Ausbildung eines Ringspaltes umgreift und einer im Inneren des Tauchrohres angeordneten Lanze für ein Treibfluid.
Einrichtungen der eingangs genannten Art können zum Zer-stäuben und Granulieren von Schlacken sowie zum Sprühzerstäuben vom Metallschmelzen eingesetzt werden, wobei besonders kleine Tröpfchengrößen realisiert werden können und gleichzeitig im Falle von Schlacken eine rasche Abkühlung und damit ein Verglasen der Schlacken bewirkt werden kann. Beim Einsatz von Schlackenschmelzen kann ein nachfolgendes Mahlen von feinstkörnig erstarrten und verglasten Partikeln für den Einsatz als hydraulische Bindemittel entbehrlich werden. Das Tauchrohr bildet hierbei ein Unterlauf-Wehr aus, und es kann durch entsprechende Einstellung des Abstandes zwischen der Unterkante des Tauchrohres und dem Rand der Tundishauslaßöffnung eine definierte Schichtstärke eingestellt werden, welche die Dicke des Mantels des rohrförmigen Schmelzestrahles, wie er aus der Auslaßöffnung austritt, definiert. Die Treibfluidlanze kann in bekannter Weise mit Dampftreibgas oder auch Flüssigkeiten betrieben werden, wobei im Falle der Verwendung von Dampf bei entsprechender Geometrie der Auslaßöffnung der Lanze und entsprechendem Druck die Strömungsbedingungen so eingestellt werden können, daß das Treibfluid mit Schallgeschwindigkeit aus der Treiblanzendüse austritt und in der Folge im Bereich der als Lavaldüse ausgebildeten Auslaßöffnung rasch expandiert, wobei in diesem Bereich sogar Überschallgeschwindigkeiten erreicht werden. Aufgrund der in weiten Grenzen veränderlichen Strömungsbedingung kann es hierbei auch zu Druckstößen in einem unterexpandierten Freistrahl kommen, wobei eine optimale Zerkleinerungswirkung naturgemäß nur dann garantiert werden kann, wenn eine homogene Dicke des austretenden Schlackenstrahls im Bereich der Austrittsöffnung gewährleistet werden kann. Aufgrund der raschen Abkühlung wurde bereits vorgeschlagen, den Bereich des Ringspaltes entsprechend zu beheizen, um ein Zuwachsen an der Unterkante und damit eine unregelmäßige Mantelstärke des Schmelzestrahles zu verhindern.
Um zu verhindern, daß über das Tauchrohr Falschluft eingesaugt wird, wurde bereits vorgeschlagen, das Unterlaufwehr nach Art eines Topfes mit einem Deckel auszubilden, wobei im Bereich der höhenverstellbaren Lanze eine entsprechende Dichtung erforderlich war. Eine Reihe von Schlacken zeichnen sich durch thixotropes Verhalten aus, und Unregelmäßigkeiten im Schlackenzufluß können auf diese Weise zu starken Unregelmäßigkeiten in der Schichtstärke führen.
Die Erfindung zielt nun darauf ab, bei überaus kleinbauenden Einrichtungen einen entsprechend kleinen Ringspalt einstellen zu können, welcher eine raschere Zerkleinerung und ein rascheres glasartiges Erstarren von Schlacken ermöglicht, wobei gleichzeitig die gewählte Ringspaltbreite exakt eingehalten werden kann. Zur Lösung dieser Aufgabe besteht die erfindungsgemäße Einrichtung im wesentlichen darin, daß das Tauchrohr mit einem Antrieb zur drehenden Bewegung um seine Achse verbunden ist. Dadurch, daß das Tauchrohr mit einem Antrieb zur drehenden Bewegung um seine Achse verbunden ist, wird unter Ausnutzung des thixotropen Verhaltens derartiger Schlacke unter Einbringen zusätzlicher Scher- und Schubkräfte im Ringspalt eine signifikante Verflüssigung der Schmelze erzielt, wodurch sich eine feinere Desintegration erzielen läßt. Gleichzeitig wird durch die Rotation des Tauchrohres ein verschleißbedingtes, gleichmäßiges Einschleifen und damit eine konstante Ringspalthöhe gewährleistet, wodurch reproduzierbare Ergebnisse über einen langen Zeitraum erzielt werden können. Gemeinsam mit den axialen Verstellbarkeiten des Tauchrohres zur Einstellung der Spaltbreite des Ringspaltes und der entsprechenden Verstellbarkeit der Treibfluidlanze lassen sich somit die optimalen Verhältnisse für eine rasche und effiziente Desintegration einstellen und in weiten Grenzen optimieren. Dies gilt insbesondere für Ausbildungen, bei denen Treibgas mit Schallgeschwindigkeit aus der Fluidlanze austritt und im divergierenden Lavalbereich der Tundishauslaßöffnung auf Überschallgeschwindigkeit beschleunigt.
Mit Rücksicht auf die erfindungsgemäß geforderte Rotierbarkeit des Tauchrohres und den Umstand, daß Falschgas bzw. Falschluft lediglich gedrosselt zuströmen soll, um die Zerkleinerungswirkung im Bereich der durch das Treibfluid ausgeübten Scherbeanspruchung der flüssigen Schmelze nicht zu beeinträchtigen, ist mit Vorteil die Ausbildung so getroffen, daß die Lanze im Inneren des Tauchrohres, insbesondere unter Zwischenschaltung von Labyrinthdichtungen, undicht geführt ist. Eine derartige Labyrinthdichtung erlaubt eine entsprechende Abdichtung des rotierenden Tauchrohres gegenüber der Treibfluidlanze, wobei gleichzeitig mit Vorteil die Ausbildung so getroffen ist, daß die Lanze an ihrem der Austrittsdüse für das Treibfluid benachbarten Außenmantel wenigstens einen Leitkörper bzw. Drallkörper aufweist. Mit einer derartigen Ausbildung kann durch die angesaugte Falschluft zusätzlich noch eine Rotationskomponente zur Verbesserung der Zerkleinerungswirkung auf den Schlackenstrahl aufgebracht werden, wobei das über den Drallkörper und die entsprechende Labyrinthdichtung zugeführte Falschgas bzw. die zugeführte Falschluft eine Rotationsbeschleunigung des Falschgases bzw. der Falschluft bewirkt.
Optimale Verhältnisse und besonders kleinbauende Einrichtungen lassen sich dadurch erzielen, daß die Düsenmündung der Lanze über die Unterkante des Tauchrohres vorragt, wobei mit Vorteil das rotierende Tauchrohr und die Treibfluidlanze höhenverstellbar gelagert sind. Bei Verwendung von Labyrinthdichtungen ist das Ausmaß einer derartigen Höhenverstellbarkeit in engen Grenzen an die jeweilige Höhenverstellung des jeweils anderen Bauteiles gebunden, wobei eine definierte Relativverstellung der Lanze relativ zum rotierenden Tauchrohr auch eine definierte Verstellung der Spaltbreite der Labyrinthdichtung ermöglicht und es auf die Art und Weise erlaubt, die angesaugte Falschgas- bzw. Falschluftmenge zu steuern.
Mit Vorteil ist die Ausbildung erfindungsgemäß so getroffen, daß der Drehantrieb des Tauchrohres auf Drehgeschwindigkeiten von 3 - 15 min-1 eingestellt ist.
Die Erfindung wird nachfolgend anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispieles näher erläutert.
In der Zeichnung ist mit 1 der Boden eines Schlackentundish bezeichnet, wobei der Flüssigkeitsspiegel einer flüssigen Schlacke bzw. einer Schmelze 2 mit 3 angedeutet ist. In die Schmelze 2 taucht ein Tauchrohr 4 ein, welches über ein Ritzel 5 mit einem von einem Motor 6 gebildeten Drehantrieb verbunden ist. Durch Rotation des Ritzels 5 im Sinne des Pfeiles 7 wird ein Drehantrieb des Tauchrohres 4 bewirkt. Im Bereich des Ringspaltes a zwischen der Unterkante des Tauchrohres 4 und dem Rand der Auslaßöffnung 8 für die Schlacke werden hierbei durch die langsame Rotation des Tauchrohres 4 Schubkräfte eingebracht, die aufgrund des thixotropen Verhaltens der Schmelze 2 zu einer signifikanten Verflüssigung der Schmelze 2 beitragen, wodurch ein überaus dünnwandiger Strahl über die Öffnung 8 austritt. Die Austrittsöffnung 8 ist hierbei nach Art einer Lavaldüse gestaltet, sodaß bei überkritischer Zuführung eines Fluids ein unterexpandierter Strahl ausgebildet werden kann. Treibfluid wird hierzu über eine Leitung 9 und eine Lanze 10 über eine Düse 11 ausgestoßen, wobei bei entsprechend überkritischen Druckverhältnissen eine Überschallgeschwindigkeit und damit eine hohe Scherbeanspruchung erzielt wird. Prinzipiell kann im Bereich des Ausstoßes des Fluidstrahles ein zusätzlicher Leitapparat angeordnet sein, welcher eine Rückströmung behindert. Einer derartigen Rückströmung von Gasen wirkt aber effizient auch ein Drallkörper 12 an der Außenseite der Treibfluidlanze 10 entgegen. Die Lanze 10 trägt Ringscheiben 13, welche mit entsprechenden Ringnuten bzw. Vorsprüngen 14 an der Innenseite des rotierbar gelagerten Tauchrohres 4 kämmen und auf diese Weise eine Art Labyrinthdichtung ausbilden. Ein in Richtung des Pfeiles 15 angesaugtes Falschgas gelangt auf die Art und Weise gedrosselt über den Drallkörper 12 in den Bereich der Düsenmündung, wodurch gleichzeitig eine Rotationsbeschleunigung erzielt wird und einem Rückströmen von Gas wirkungsvoll begegnet wird.
Die Schlacke bzw. Schmelze erstarrt bei dieser Ausbildung aufgrund der besonders feinkörnigen Dispersion relativ rasch nach dem Austritt aus der Schlackenaustrittsöffnung 8, sodaß mit besonders kleinbauenden Einrichtungen das Auslangen gefunden werden kann. Besonders vorteilhafte Verhältnisse lassen sich dadurch erzielen, daß Treibgas im Druckbereich zwischen 2 und 30 bar bei Temperaturen zwischen 20° und 1300° C über die Lanze 10 zugeführt wird, und das Tauchrohr 4 mit einer Geschwindigkeit von 3 bis 15 min-1 in Rotation versetzt wird. Durch die gleichmäßige Rotation und die auf diese Weise erzielte Verflüssigung der Schmelze im Bereich des Ringspaltes a kann einen konstante Ringspalthöhe über einen langen Zeitraum aufrechterhalten werden, wodurch die entsprechenden Desintegrationsbedingungen über einen langen Zeitraum konstant gehalten werden können.

Claims (6)

  1. Einrichtung zum Zerstäuben von Schmelzen, insbesondere Schlackenschmelzen, mit einem Tundish, einer nach Art einer Lavaldüse im Querschnitt zunehmenden Auslaßöffnung für die Schmelze und einem Tauchrohr, dessen Unterkante die Auslaßöffnung unter Ausbildung eines Ringspaltes umgreift und einer im Inneren des Tauchrohres angeordneten Lanze für ein Treibfluid, dadurch gekennzeichnet, daß das Tauchrohr (4) mit einem Antrieb (6) zur drehenden Bewegung um seine Achse verbunden ist.
  2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Lanze (10) im Inneren des Tauchrohres (4), insbesondere unter Zwischenschaltung von Labyrinthdichtungen (13, 14), undicht geführt ist.
  3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Lanze (10) an ihrem der Austrittsdüse (11) für das Treibfluid benachbarten Außenmantel wenigstens einen Leitkörper (12) bzw. Drallkörper aufweist.
  4. Einrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Düsenmündung (11) der Lanze (10) über die Unterkante des Tauchrohres (4) vorragt.
  5. Einrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das rotierende Tauchrohr (4) und die Treibfluidlanze (10) höhenverstellbar gelagert sind.
  6. Einrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Drehantrieb (6) des Tauchrohres (4) auf Drehgeschwindigkeiten von 3 - 15 min-1 eingestellt ist.
EP01890269A 2000-09-20 2001-09-19 Einrichtung zum Zerstäuben von Schmelzen Withdrawn EP1190996A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT6932000 2000-09-20
AT6932000U 2000-09-20

Publications (2)

Publication Number Publication Date
EP1190996A2 true EP1190996A2 (de) 2002-03-27
EP1190996A3 EP1190996A3 (de) 2003-01-15

Family

ID=3497319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01890269A Withdrawn EP1190996A3 (de) 2000-09-20 2001-09-19 Einrichtung zum Zerstäuben von Schmelzen

Country Status (1)

Country Link
EP (1) EP1190996A3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660223B2 (en) * 2000-02-22 2003-12-09 Holcim Ltd. Device for atomizing liquid melts
EP1394131A2 (de) * 2002-08-29 2004-03-03 Tribovent Verfahrensentwicklung GmbH Verfahren zum Zerstäuben und Granulieren von Schmelzen sowie Vorrichtung zur Durchführung dieses Verfahren
WO2016184455A1 (de) 2015-05-19 2016-11-24 Technische Universität Bergakademie Freiberg Vorrichtung und verfahren zum zerstäuben von schmelzen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826598A (en) * 1971-11-26 1974-07-30 Nuclear Metals Inc Rotating gas jet apparatus for atomization of metal stream
US4659020A (en) * 1985-10-22 1987-04-21 The Babcock & Wilcox Company Quick adjustable shatter jet mechanism
US4905899A (en) * 1985-11-12 1990-03-06 Osprey Metals Limited Atomisation of metals
DE4019563A1 (de) * 1990-06-15 1991-12-19 Mannesmann Ag Verfahren zur herstellung von metallpulver
WO2000032306A1 (de) * 1998-12-01 2000-06-08 Holderbank Financiere Glarus Ag Verfahren zum granulieren von flüssigen schlackenschmelzen sowie vorrichtung zur durchführung dieses verfahrens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826598A (en) * 1971-11-26 1974-07-30 Nuclear Metals Inc Rotating gas jet apparatus for atomization of metal stream
US4659020A (en) * 1985-10-22 1987-04-21 The Babcock & Wilcox Company Quick adjustable shatter jet mechanism
US4905899A (en) * 1985-11-12 1990-03-06 Osprey Metals Limited Atomisation of metals
DE4019563A1 (de) * 1990-06-15 1991-12-19 Mannesmann Ag Verfahren zur herstellung von metallpulver
WO2000032306A1 (de) * 1998-12-01 2000-06-08 Holderbank Financiere Glarus Ag Verfahren zum granulieren von flüssigen schlackenschmelzen sowie vorrichtung zur durchführung dieses verfahrens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660223B2 (en) * 2000-02-22 2003-12-09 Holcim Ltd. Device for atomizing liquid melts
EP1394131A2 (de) * 2002-08-29 2004-03-03 Tribovent Verfahrensentwicklung GmbH Verfahren zum Zerstäuben und Granulieren von Schmelzen sowie Vorrichtung zur Durchführung dieses Verfahren
EP1394131A3 (de) * 2002-08-29 2007-01-17 Holcim Ltd. Verfahren zum Zerstäuben und Granulieren von Schmelzen sowie Vorrichtung zur Durchführung dieses Verfahren
WO2016184455A1 (de) 2015-05-19 2016-11-24 Technische Universität Bergakademie Freiberg Vorrichtung und verfahren zum zerstäuben von schmelzen
DE102015107876A1 (de) 2015-05-19 2016-11-24 Technische Universität Bergakademie Freiberg Vorrichtung und Verfahren zum Zerstäuben von Schmelzen

Also Published As

Publication number Publication date
EP1190996A3 (de) 2003-01-15

Similar Documents

Publication Publication Date Title
EP0124023B1 (de) Vorrichtung und Verfahren zur Zerstäubung von flüssigen Metallen zwecks Erzeugung eines feinkörnigen Pulvers
DE3505659A1 (de) Schmelz-zerstaeubung mit reduzierter gasstroemung sowie vorrichtung zum zerstaeuben
DE10126100A1 (de) Verfahren und Vorrichtung zum Kaltgasspritzen
DE3505660A1 (de) Vorrichtung und verfahren zum zerstaeuben instabiler schmelzstroeme
DE2240643C3 (de) Düsenstein für Gießpfannen an Metallverdüsungsanlagen
EP3297781A1 (de) Vorrichtung und verfahren zum zerstäuben von schmelzen
DE3049053A1 (de) Verfahren und vorrichtung zur abtrennung von schlacke und zum ausgiessen einer stahlschmelze aus einem behaelter
DE3505662A1 (de) Verfahren zum herstellen feinen pulvers aus geschmolzenem metall sowie vorrichtung zum zerstaeuben
EP1190996A2 (de) Einrichtung zum Zerstäuben von Schmelzen
EP1051238B1 (de) Verfahren zum granulieren von flüssigen schlackenschmelzen sowie vorrichtung zur durchführung dieses verfahrens
DE843137C (de) Rohrzufuehrung fuer das schmelzfluessige Giessgut beim stetigen Giessen von Metallen
AT409598B (de) Einrichtung zum zerstäuben von schmelzen
DE2457903B2 (de) Verfahren und Vorrichtung zum Zerstäuben einer Hochtemperaturschmelze, insbesondere Metallschmelze
DE4019563C2 (de)
DE102018125605A1 (de) Verfahren zur additiven Fertigung eines Bauteils
DE19801832C2 (de) Verfahren und Vorrichtung zur Herstellung von kugelförmigen Teilchen nahezu gleichen Durchmessers
DE2049458C3 (de) Vorrichtung zur Herstellung von Metallgranulat und Verfahren zu deren Betrieb
DE2732340A1 (de) Schieberverschluss und verfahren zum betrieb desselben
EP1394131A2 (de) Verfahren zum Zerstäuben und Granulieren von Schmelzen sowie Vorrichtung zur Durchführung dieses Verfahren
DE102017130744B4 (de) Vorrichtung und Verfahren zum thermischen Spritzen
DE2607379B2 (de) Vorrichtung zum spuelen von stahl
EP1234889B1 (de) Einrichtung zum Zerstäuben und Granulieren von Schmelzen
EP1182270A1 (de) Einrichtung zum Zerstäuben von flüssigen Medien, insbesondere flüssigen Schmelzen
AT412093B (de) Vorrichtung zum zerstäuben von schmelzen
DE1802884A1 (de) Verfahren zum Zufuehren des Giessmetalls in die Durchlaufgiessform einer Metall-,insbesondere Stahl-Stranggiessanlage und Giessmetallzufuehrungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 04B 5/00 A, 7C 21B 3/08 B

17P Request for examination filed

Effective date: 20021213

17Q First examination report despatched

Effective date: 20030502

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030913