EP1184553B1 - Verfahren und Vorrichtung zum Betreiben einer direkteinspritzenden Brennkraftmaschine eines Kraftfahrzeugs - Google Patents

Verfahren und Vorrichtung zum Betreiben einer direkteinspritzenden Brennkraftmaschine eines Kraftfahrzeugs Download PDF

Info

Publication number
EP1184553B1
EP1184553B1 EP20010118574 EP01118574A EP1184553B1 EP 1184553 B1 EP1184553 B1 EP 1184553B1 EP 20010118574 EP20010118574 EP 20010118574 EP 01118574 A EP01118574 A EP 01118574A EP 1184553 B1 EP1184553 B1 EP 1184553B1
Authority
EP
European Patent Office
Prior art keywords
torque
internal combustion
combustion engine
losses
minimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010118574
Other languages
English (en)
French (fr)
Other versions
EP1184553A2 (de
EP1184553A3 (de
Inventor
Juergen Pantring
Michael Oder
Werner Hess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1184553A2 publication Critical patent/EP1184553A2/de
Publication of EP1184553A3 publication Critical patent/EP1184553A3/de
Application granted granted Critical
Publication of EP1184553B1 publication Critical patent/EP1184553B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1006Engine torque losses, e.g. friction or pumping losses or losses caused by external loads of accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque

Definitions

  • the invention relates to a method for operating a direct-injection internal combustion engine of a motor vehicle, wherein the internal combustion engine is operated in at least a first and a second operating mode. In this case, a moment of the internal combustion engine in the first operating mode substantially depends on a throttle position. In the second mode, the internal combustion engine is operated almost unthrottled. At least on the basis of an accelerator pedal position of the motor vehicle, a driver's desired torque of the internal combustion engine requested by the driver of the motor vehicle is determined.
  • the invention also relates to a corresponding internal combustion engine of a motor vehicle, a corresponding control device for an internal combustion engine, a corresponding computer program with program code means and a corresponding computer program product with program code means.
  • a control system for a drive unit in a vehicle is known.
  • a desired value for the output torque of the drive train of a vehicle is formed at least depending on the driver's request, which is converted into a translation of an operating unit and a target value for the output from a drive unit of the vehicle torque.
  • This desired value is fed to a further device which, taking into account variables affecting the torque, provides a torque corresponding to the predetermined desired value by setting the performance parameters of the drive unit. It is provided, inter alia, the torque requirement in addition to consumers, to whose operation the drive unit has to apply a certain torque such.
  • air conditioning, power steering, etc. to take into account the loss moment of the drive unit by means of maps and the torque correction of an idle controller.
  • DE 196 19 324 A1 discloses a method and a device for controlling a drive unit of a vehicle.
  • a desired value for a torque to be generated by the drive unit is derived from the degree of actuation of a control element.
  • the derived from the degree of actuation target torque is related to a predetermined maximum and a predetermined minimum torque.
  • the predetermined maximum and the predetermined minimum torque are each currently taken from speed-dependent maps and fed to an interpolation unit.
  • a torque request of the driver of the motor vehicle is taken from another map and also fed to the interpolation unit.
  • the interpolation unit determines, based on the torque request of the driver and the maximum and the minimum torque as output variable, a driver setpoint torque.
  • Modern direct-injection internal combustion engines in motor vehicles can be operated in different operating modes, wherein the torque generated by the engine not only, as in an internal combustion engine according to DE 196 19 324 A1, is dependent on the adjustable by the throttle air filling of the combustion chamber, but in certain modes the torque of the internal combustion engine is determined by the injected amount of fuel. Due to this different type of torque dependence in the various operating modes, the implementation of an accelerator pedal actuation by the driver of the motor vehicle into a corresponding desired torque of the driver of the motor vehicle is made more difficult.
  • a method of operating a direct injection internal combustion engine of a motor vehicle wherein the internal combustion engine is operated in at least a first and a second mode, wherein a torque of the internal combustion engine in the first mode substantially depends on a throttle position, wherein the Internal combustion engine is operated virtually unthrottled in the second mode, wherein at least on the basis of an accelerator pedal position of the motor vehicle requested by the driver of the motor vehicle driver's desired torque of the engine is further developed over the prior art in that when determining the driver's desired torque at least one moment difference from current torque losses and minimum torque losses.
  • a switchover from the second to the first operating mode can take place, for example, in order to initiate a regeneration of a storage catalytic converter. After regeneration would be transferred with unchanged accelerator pedal position back to the second mode.
  • the current torque losses take into account at least throttle losses and friction losses in the current operating mode, that the minimum torque losses are determined at least taking into account a minimum pressure difference of ambient pressure and intake manifold pressure and that the driver's desired torque is determined as an internal torque of the internal combustion engine.
  • a development of the method according to the invention provides that the minimum torque losses as a function of the speed of the internal combustion engine and the minimum pressure difference from ambient pressure and intake manifold pressure are taken from an applicable map or that a minimum engine torque is determined, which takes into account at least the sum of minimum torque losses and other torque losses, the further torque losses take into account at least the torque losses by ancillaries.
  • This development according to the invention makes it possible to determine the minimum torque losses in a particularly simple manner.
  • a preferred development provides that a maximum engine torque is determined which is independent of the current operating mode. Through this development can be dispensed with the separate determination of the maximum torque in all modes, resulting in advantages in terms of storage space and speed of the control unit in the motor vehicle.
  • a preferred embodiment provides that a relative driver's request and / or an absolute driver's request is formed at least on the basis of the accelerator pedal position and an engine speed.
  • driver's desired torque is determined either (relative driver's request) from the sum of the minimum engine torque, the torque difference and the product of relative driver's request and the difference of maximum engine torque and minimum engine torque or or (absolute driver's request) from the Sum of the minimum engine torque, the torque difference and absolute driver's request is determined.
  • a direct injection internal combustion engine of a motor vehicle the at least in a first and a second mode is operable, wherein a moment of the internal combustion engine in the first mode substantially depends on a throttle position, wherein the internal combustion engine in the second mode is almost unthrottled operable, with an accelerator pedal, with means to determine at least on the basis of an accelerator pedal position requested by the driver of the motor vehicle driver's desired torque of the internal combustion engine is further developed over the prior art that means are available to determine at least a torque difference from current torque losses and minimum torque losses in the determination of the driver's desired torque consider.
  • the internal combustion engine according to the invention offers the advantages compared to the prior art of the methods described above.
  • the computer program according to the invention has program code means for carrying out all steps of the method according to the invention when the program is executed on a computer, in particular a control unit for an internal combustion engine of a motor vehicle.
  • the invention is thus realized by a program stored in the control unit, so that this control unit provided with the program represents in the same way the invention as the method to whose execution the program is suitable.
  • the invention Computer program product has program code means which are stored on a computer-readable data carrier in order to carry out the method according to the invention when the program product is executed on a computer, in particular a control unit for an internal combustion engine of a motor vehicle.
  • the invention is realized by a data carrier, so that the inventive method can be performed when the program product or the data carrier is integrated into a control device for an internal combustion engine, in particular a motor vehicle.
  • a data carrier or as a computer program product in particular an electrical storage medium can be used, for example a read-only memory (ROM), an EPROM or even an electrical non-volatile memory such as a CD-ROM or DVD.
  • FIG. 1 shows an internal combustion engine 1 is shown, in which a piston 2 in a cylinder 3 back and forth.
  • the cylinder 3 is provided with a combustion chamber 4, to which via valves 5, an intake pipe 6 and an exhaust pipe 7 are connected.
  • an injection valve 8 that can be controlled with a signal TI and a spark plug 9 that can be activated with a signal ZW are connected to the combustion chamber 4.
  • the signals TI and ZW are in this case transmitted from a control unit 16 to the injection valve 8 and the spark plug 9.
  • the intake pipe 6 is provided with an air mass sensor 10 and the exhaust pipe 7 with a lambda sensor 11.
  • the air mass sensor 10 measures the air mass of the fresh air supplied to the intake pipe 6 and generates a signal LM in response thereto.
  • the lambda sensor 11 measures the oxygen content of the exhaust gas in the exhaust pipe 7 and generates a signal lambda in dependence thereon.
  • the signals of the air mass sensor 10 and the lambda sensor 11 are supplied to the control unit 16.
  • a throttle valve 12 is housed, the rotational position is adjustable by means of a signal DK.
  • the exhaust pipe 7 may be connected via a not shown here exhaust gas recirculation line with the intake pipe 6.
  • the control of the exhaust gas recirculation can, for example, via a controllable by the control unit 16, also not shown here, the exhaust gas recirculation valve.
  • the throttle valve 12 In a first operating mode, the homogeneous operation of the internal combustion engine 1, the throttle valve 12 is partially opened or closed depending on the desired, supplied air mass.
  • the fuel is from the injection valve 8 is injected into the combustion chamber 4 during a suction phase caused by the piston 2.
  • the injected fuel is swirled and thus distributed in the combustion chamber 4 is substantially uniform / homogeneous.
  • the fuel-air mixture is compressed during the compression phase, to then be ignited by the spark plug 9. Due to the expansion of the ignited fuel, the piston 2 is driven.
  • the throttle valve 12 is opened wide.
  • the fuel is injected from the injection valve 8 during a caused by the piston 2 compression phase in the combustion chamber 4.
  • the fuel is ignited with the aid of the spark plug 9, so that the piston 2 is driven in the now following working phase by the expansion of the ignited fuel.
  • a crankshaft 14 In stratified operation as well as in homogeneous operation, a crankshaft 14 is set into rotary motion by the driven piston, over which ultimately the wheels of the motor vehicle are driven. On the crankshaft 14, a gear is arranged, the teeth of which are scanned by a directly opposite rotational speed sensor 15. The speed sensor 15 generates a signal from which the rotational speed n of the crankshaft 14 is determined and transmits this signal n to the control unit 16.
  • the fuel mass injected from the injection valve 8 into the combustion chamber in stratified operation and in homogeneous operation is controlled and / or regulated by the control unit 16, in particular with regard to low fuel consumption and / or low pollutant development.
  • the inventive definition of Ignition angle ZW takes place in the control unit 16.
  • the control unit 16 is provided with a microprocessor which has stored in a storage medium program code which is adapted to carry out the entire control and / or regulation of the internal combustion engine 1 according to the invention.
  • the control unit 16 is acted upon by input signals representing operating variables of the internal combustion engine measured by means of sensors.
  • the control unit 16 with the air mass sensor 10, the lambda sensor 11 and the speed sensor 15 is connected.
  • the control unit 16 is connected to an accelerator pedal sensor 17, which generates a signal FP, which indicates the position of a driver-actuatable accelerator pedal / accelerator pedal and thus the torque requested by the driver. This moment is referred to below as the driver's desired torque.
  • the control unit 16 generates output signals with which the behavior of the internal combustion engine 1 can be influenced by actuators in accordance with the desired control and / or regulation.
  • the control unit 16 is connected to the injection valve 8, the spark plug 9 and the throttle valve 12 and generates the signals required for their control TI, ZW and DK.
  • control unit 16 the inventive method is further implemented, which will be explained in more detail below.
  • FIG. 2 shows an overview of the torques in the drive train of a motor vehicle.
  • the operating behavior of an engine 201 and thus also the torque generated by the engine depend significantly on the air mass 202, the fuel mass 203 and the ignition angle or the ignition time 204. These are the authoritative ones Influencing factors that influence the torque generated by the motor 201. Of course, there are other possibilities of influence, which will not be discussed in detail in the context of this description.
  • the torque 205 generated by the engine 201 directly from the combustion is referred to below as the internal torque 205 of the internal combustion engine. If the charge cycle and friction losses 206 are subtracted from the inner torque 205, the actual engine torque 207 which can be tapped approximately at the crankshaft of the engine is obtained.
  • the engine torque 207 is referred to below as indexed torque 207. Be deducted from the indexed moment 207, the torque components that must be spent on ancillaries such as generator, air compressor, etc., so there is the clutch torque 209, which is available at the clutch of the internal combustion engine. If the clutch losses 210 are subtracted from the clutch torque 209 which is available at the input of the clutch, the transmission torque 211 available at the input of the transmission is obtained. The transmission torque 211 available at the input of the transmission is increased again by gearbox and gearbox torque Translation losses 212 reduced to finally get the actual drive torque 213.
  • the drive torque 213 may also be referred to as wheel torque.
  • the core of the method according to the invention which is described in more detail below in the context of FIGS. 3 and 4 is to determine an operator request torque of the internal combustion engine as internal torque 205 of the internal combustion engine based on an accelerator pedal position of the motor vehicle.
  • the control unit 16 shown in FIG. 1 contains a function (moment coordinator) for requesting the information requested by the driver of the motor vehicle To coordinate driver request torque with the other present torque requirements, eg from a vehicle dynamics control, to a coordinated total torque.
  • the coordinated total torque is thus the relevant desired torque that is to be generated by the internal combustion engine.
  • FIG. 3 shows a first embodiment of the method according to the invention.
  • the accelerator pedal operation is interpreted by the driver of the motor vehicle as a relative moment request.
  • a relative driver request 304 (mrfa) is taken from an applicable map 303 (kfmrel).
  • This relative driver request (mrfa) is supplied to a multiplication unit 305.
  • the multiplication unit 305 is supplied with the difference between the maximum engine torque 306 (mimax) and the minimum engine torque 307 (mimin_min).
  • the result of the multiplication block 305 is supplied to the addition unit 308.
  • the minimum motor torque 307 (mimin_min) is added.
  • the result or output torque of the block 308 is supplied to an adder 309.
  • the adder 309 is further supplied with the moment difference 310 (mdslw) according to the invention.
  • the moment difference 310 (mdslw) results as the result of the subtraction unit 311, to which the input side the actual torque losses 312 (mds) and the minimum torque losses 313 (mds_min) are supplied.
  • the current torque losses 312 (mds) and the minimum torque losses 313 (mds_min) are the output 317 of a map 314 (kfmds), which torque losses as a function of the speed of the internal combustion engine (nmot) and the minimum pressure difference (dpmin) from ambient pressure (pu) and intake manifold pressure (ps) contains.
  • the map 314 is permanently supplied with the engine speed 302 (nmot).
  • the map 314 (kfmds) is now alternately or by the shown in Figure 3 or indicated switches with the current pressure difference 315 (dp) from ambient pressure (pu) and intake manifold pressure (ps) and the minimum pressure difference 316 (dpmin) from ambient pressure (pu) and intake manifold pressure (ps) addressed.
  • the current torque losses (mds) or the minimum torque losses (mds_min) are thus alternately available, depending on the addressing of the input of the characteristic map.
  • the output signals of the characteristic map 314 (kfmds) are buffered in a buffer, not shown in FIG. 3, so that the current torque losses 312 (mds) and the minimum torque losses 313 (mds_min) are available at the inputs of the subtraction block 311 at all times.
  • the moment difference 310 (mdslw) results from the difference between the instantaneous torque losses 312 (mds) and the minimum torque losses 313 (mds_min).
  • the desired driver input torque 318 is available as internal engine torque (mifa).
  • the maximum engine torque (mimax) is the maximum possible internal engine torque from combustion. This maximum possible engine torque can according to the invention for all modes (both throttled, throttled as well as unthrottled operating modes) are the same.
  • the minimum engine torque results from the sum of minimum torque losses (mds_min) and the losses by ancillaries and other consumers (mdv), where the sum of the two torque components can be provided with a scaling factor, for example, the difference of engine speed (nmot) and idle speed can result.
  • the current torque losses (mds) and the minimum torque losses (mds_min) each contain the torque losses due to throttling and friction.
  • driver command torque (mifa)
  • the constant clutch pedal position (pedal) when switching to a different operating mode sets the identical clutch torque for both the output and the target operating mode. This ensures that the driver of the motor vehicle feels no jolt of the motor vehicle by jumping the clutch torque.
  • FIG. 4 shows a further embodiment of the method according to the invention.
  • the predetermined by the driver of the motor vehicle accelerator pedal position is interpreted as an absolute driver's request.
  • an absolute driver request 404 (mi_soll) is taken from an applicable map 403 (kfmabs), which is fed to an addition unit 408.
  • the result of the addition block 408 is supplied to a further addition block 409 to which the torque difference 410 (mdslw) is fed as a further input signal.
  • the moment difference 410 can also be seen analogously to the moment difference 310 in FIG.
  • the result of the addition block 409 is equivalent to FIG. 3 an inner driver request torque 411 (mifa).

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer direkteinspritzenden Brennkraftmaschine eines Kraftfahrzeugs, wobei die Brennkraftmaschine in wenigstens einer ersten und einer zweiten Betriebsart betrieben wird. Dabei hängt ein Moment der Brennkraftmaschine in der ersten Betriebsart im wesentlichen von einer Drosselklappenstellung ab. In der zweiten Betriebsart wird die Brennkraftmaschine nahezu ungedrosselt betrieben. Wenigstens anhand einer Fahrpedalstellung des Kraftfahrzeugs wird ein vom Fahrer des Kraftfahrzeugs angefordertes Fahrerwunschmoment der Brennkraftmaschine bestimmt. Die Erfindung betrifft ebenfalls eine entsprechende Brennkraftmaschine eines Kraftfahrzeugs, ein entsprechendes Steuergerät für eine Brennkraftmaschine, ein entsprechendes Computerprogramm mit Programmcode-Mitteln und ein entsprechendes Computerprogrammprodukt mit Programmcode-Mitteln.
  • Stand der Technik
  • Aus der DE 41 41 947 A1 ist ein Steuersystem für eine Antriebseinheit in einem Fahrzeug bekannt. Bei dieser bekannten Vorrichtung wird zumindest abhängig vom Fahrerwunsch ein Soll-Wert für das Abtriebsmoment des Antriebsstranges eines Fahrzeugs gebildet, welcher in eine Übersetzung einer Betriebseinheit und in einen Soll-Wert für das von einer Antriebseinheit des Fahrzeugs abzugebenden Drehmoment umgesetzt wird. Dieser Soll-Wert wird einer weiteren Vorrichtung zugeführt, welche unter Berücksichtigung von das Drehmoment beeinflussenden Größen durch Einstellung der Leistungsparameter der Antriebseinheit ein den vorgegebenen Soll-Wert entsprechendes Drehmoment bereitstellt. Dabei ist u. a. vorgesehen, den Drehmomentenbedarf zusätzlich auf Verbraucher, zu deren Betrieb die Antriebseinheit ein gewisses Drehmoment aufzubringen hat wie z. B. Klimaanlage, Servolenkung etc., das Verlustmoment der Antriebseinheit jeweils mittels Kennfeldern sowie der Drehmomentkorrektur eines Leerlaufreglers zu berücksichtigen.
  • Die DE 196 19 324 A1 offenbart ein Verfahren und eine Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs. Hierbei wird aus dem Betätigungsgrad eines Bedienelements ein Soll-Wert für ein von der Antriebseinheit zu erzeugendes Drehmoment abgeleitet. Dabei wird das aus dem Betätigungsgrad abgeleitete Soll-Moment auf ein vorgegebenes maximales und ein vorgegebenes minimales Moment bezogen. Das vorgegebene maximale und das vorgegebene minimale Moment werden jeweils aktuell aus drehzahlabhängigen Kennfeldern entnommen und einer Interpolationseinheit zugeführt. In Abhängigkeit von der Betätigung des Fahrpedals und der aktuellen Motordrehzahl wird aus einem weiteren Kennfeld ein Momentenwunsch des Fahrers des Kraftfahrzeugs entnommen und ebenfalls der Interpolationseinheit zugeführt. Die Interpolationseinheit bestimmt auf Grundlage des Momentenwunsches des Fahrers und des maximalen und des minimalen Moments als Ausgangsgröße ein Fahrer-Soll-Moment.
  • Moderne direkteinspritzende Brennkraftmaschinen in Kraftfahrzeugen können in unterschiedlichen Betriebsarten betrieben werden, wobei das von der Brennkraftmaschine erzeugte Drehmoment nicht nur, wie bei einer Brennkraftmaschine entsprechend der DE 196 19 324 A1, von der durch die Drosselklappe einstellbaren Luftfüllung des Brennraums abhängig ist, sondern in bestimmten Betriebsarten das Drehmoment der Brennkraftmaschine durch die eingespritzte Kraftstoffmenge bestimmt wird. Durch diese unterschiedliche Art der Drehmomentabhängigkeit in den verschiedenen Betriebsarten wird die Umsetzung einer Fahrpedalbetätigung durch den Fahrer des Kraftfahrzeugs in ein entsprechendes Wunschmoment des Fahrers des Kraftfahrzeugs erschwert.
  • Aufgabe
  • Es ist somit die Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zu schaffen, das bzw. die in den verschiedenen Betriebsarten jeweils zuverlässig aus der Fahrpedalstelllung ein vom Fahrer des Kraftfahrzeugs angefordertes Fahrerwunschmoment der Brennkraftmaschine bestimmt. Diese Aufgabe wird mit den Merkmalen der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.
  • Vorteile der Erfindung
  • Ein Verfahren zum Betreiben einer direkteinspritzenden Brennkraftmaschine eines Kraftfahrzeugs, wobei die Brennkraftmaschine in wenigstens einer ersten und einer zweiten Betriebsart betrieben wird, wobei ein Moment der Brennkraftmaschine in der ersten Betriebsart im wesentlichen von einer Drosselklappenstellung abhängt, wobei die Brennkraftmaschine in der zweiten Betriebsart nahezu ungedrosselt betrieben wird, wobei wenigstens anhand einer Fahrpedalstellung des Kraftfahrzeugs ein vom Fahrer des Kraftfahrzeugs angefordertes Fahrerwunschmoment der Brennkraftmaschine bestimmt wird, ist gegenüber dem Stand der Technik dadurch weitergebildet, dass bei der Bestimmung des Fahrerwunschmoments wenigstens eine Momentendifferenz aus aktuellen Momentenverlusten und minimalen Momentenverlusten berücksichtigt wird. Durch diese erfindungsgemäße Weiterbildung gegenüber dem Stand der Technik wird erreicht, dass in jeder Betriebsart die gleiche Fahrpedalstellung in das gleiche Fahrerwunschmoment umgesetzt wird. Hierdurch wird insbesondere ein Ruck beim Umschalten zwischen den Betriebsarten vermieden. Eine Umschaltung von der zweiten in die erste Betriebsart kann beispielsweise erfolgen, um eine Regeneration eines Speicherkatalysators einzuleiten. Nach erfolgter Regeneration würde bei unveränderter Fahrpedalstellung zurück in die zweite Betriebsart übergegangen werden.
  • Vorteilhafte Weiterbildungen sehen vor, dass die aktuellen Momentenverluste wenigstens Drosselverluste und Reibungsverluste in der aktuellen Betriebsart berücksichtigen, dass die minimalen Momentenverluste wenigstens unter Berücksichtigung einer minimalen Druckdifferenz aus Umgebungsdruck und Saugrohrdruck bestimmt werden und dass das Fahrerwunschmoment als ein inneres Moment der Brennkraftmaschine bestimmt wird. Diese erfindungsgemäßen Weiterbildungen stellen eine exakte Umsetzung des erfindungsgemäßen Verfahrens sicher, damit die Bestimmung des Fahrerwunschmomentes in jedem Betriebszustand exakt erfolgt.
  • Eine Weiterbildung des erfindungsgemäßen Verfahrens sieht vor, dass die minimalen Momentenverluste in Abhängigkeit von der Drehzahl der Brennkraftmaschine und der minimalen Druckdifferenz aus Umgebungsdruck und Saugrohrdruck aus einem applizierbaren Kennfeld entnommen werden oder dass ein minimales Motormoment bestimmt wird, das wenigstens die Summe aus minimalen Momentenverlusten und weiteren Momentenverlusten berücksichtigt, wobei die weiteren Momentenverluste wenigstens die Momentenverluste durch Nebenaggregate berücksichtigen. Diese erfindungsgemäße Weiterbildung ermöglicht auf besonders einfache Weise die Bestimmung der minimalen Momentenverluste.
  • Eine bevorzugte Weiterbildung sieht vor, dass ein maximales Motormoment bestimmt wird, das unabhängig von der aktuellen Betriebsart ist. Durch diese Weiterbildung kann auf die separate Bestimmung des maximalen Moments in allen Betriebsarten verzichtet werden, wodurch sich in Bezug auf Speicherplatz und Geschwindigkeit des Steuergerätes im Kraftfahrzeug Vorteile ergeben.
  • Eine bevorzugte Weiterbildung sieht vor, dass ein relativer Fahrerwunsch und/oder ein absoluter Fahrerwunsch wenigstens anhand der Fahrpedalstellung und einer Motordrehzahl gebildet wird.
  • Die bevorzugte Weiterbildung sieht vor, dass das Fahrerwunschmoment entweder (relativer Fahrerwunsch) aus der Summe von dem minimalem Motormoment, der Momentendifferenz und dem Produkt aus relativem Fahrerwunsch und der Differenz von maximalem Motormoment und minimalem Motormoment bestimmt wird bzw. oder (absoluter Fahrerwunsch) aus der Summe von dem minimalem Motormoment, der Momentendifferenz und absolutem Fahrerwunsch bestimmt wird.
  • Eine direkteinspritzende Brennkraftmaschine eines Kraftfahrzeugs, die wenigstens in einer ersten und einer zweiten Betriebsart betreibbar ist, wobei ein Moment der Brennkraftmaschine in der ersten Betriebsart im wesentlichen von einer Drosselklappenstellung abhängt, wobei die Brennkraftmaschine in der zweiten Betriebsart nahezu ungedrosselt betreibbar ist, mit einem Fahrpedal,
    mit Mitteln, um wenigstens anhand einer Fahrpedalstellung ein vom Fahrer des Kraftfahrzeugs angefordertes Fahrerwunschmoment der Brennkraftmaschine zu bestimmen, ist gegenüber dem Stand der Technik dadurch weitergebildet, dass Mittel vorhanden sind, um bei der Bestimmung des Fahrerwunschmoments wenigstens eine Momentendifferenz aus aktuellen Momentenverlusten und minimalen Momentenverlusten zu berücksichtigen. Die erfindungsgemäße Brennkraftmaschine bietet die zum zuvor beschriebenen Verfahren äquivalenten Vorteile gegenüber dem Stand der Technik.
  • Von besonderer Bedeutung ist die Realisierung des erfindungsgemäßen Verfahrens in der Form eines Steuergerätes für eine Brennkraftmaschine, insbesondere eines Kraftfahrzeugs. Hierbei sind Mittel zur Durchführung der Schritte des zuvor beschriebenen Verfahrens vorgesehen.
  • Von besonderer Bedeutung sind weiterhin die Realisierungen in Form eines Computerprogramms mit Programmcode-Mitteln und in Form eines Computerprogrammprodukts mit Programmcode-Mitteln. Das erfindungsgemäße Computerprogramm weist Programmcode-Mittel auf, um alle Schritte des erfindungsgemäßen Verfahrens durchzuführen, wenn das Programm auf einem Computer, insbesondere einem Steuergerät für eine Brennkraftmaschine eines Kraftfahrzeugs, ausgeführt wird. In diesem Fall wird also die Erfindung durch ein in dem Steuergerät abgespeichertes Programm realisiert, so dass dieses mit dem Programm versehene Steuergerät in gleicher Weise die Erfindung darstellt wie das Verfahren, zu dessen Ausführung das Programm geeignet ist. Das erfindungsgemäße Computerprogrammprodukt weist Programmcode-Mittel auf, die auf einem computerlesbaren Datenträger gespeichert sind, um das erfindungsgemäße Verfahren durchzuführen, wenn das Programmprodukt auf einem Computer, insbesondere einem Steuergerät für eine Brennkraftmaschine eines Kraftfahrzeugs ausgeführt wird. In diesem Fall wird also die Erfindung durch einen Datenträger realisiert, so dass das erfindungsgemäße Verfahren ausgeführt werden kann, wenn das Programmprodukt bzw. der Datenträger in ein Steuergerät für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs integriert wird. Als Datenträger bzw. als Computerprogrammprodukt kann insbesondere ein elektrisches Speichermedium zur Anwendung kommen, beispielsweise ein Read-Only-Memory (ROM), ein EPROM oder auch ein elektrischer Permanentspeicher wie beispielsweise eine CD-ROM oder DVD.
  • Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den nachfolgenden Figuren dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. ihrer Darstellung in der Zeichnung.
  • Beschreibung von Ausführungsbeispielen
  • Figur 1
    zeigt eine erfindungsgemäße Brennkraftmaschine,
    Figur 2
    zeigt eine Übersicht zu den Drehmomenten im Antriebsstrang eines Kraftfahrzeugs,
    Figur 3
    zeigt ein erstes Ausführungsbeispiel des erfindungsgemäßen Verfahrens und
    Figur 4
    zeigt ein zweites Ausführungsbeispiel des erfindungsgemäßen Verfahrens.
  • In der Figur 1 ist eine Brennkraftmaschine 1 dargestellt, bei der ein Kolben 2 in einem Zylinder 3 hin- und herbewegbar ist. Der Zylinder 3 ist mit einem Brennraum 4 versehen, an den über Ventile 5 ein Ansaugrohr 6 und ein Abgasrohr 7 angeschlossen sind. Des Weiteren sind mit dem Brennraum 4 ein mit einem Signal TI ansteuerbares Einspritzventil 8 und eine mit einem Signal ZW ansteuerbare Zündkerze 9 verbunden. Die Signale TI und ZW werden hierbei von einem Steuergerät 16 an das Einspritzventil 8 bzw. die Zündkerze 9 übertragen.
  • Das Ansaugrohr 6 ist mit einem Luftmassensensor 10 und das Abgasrohr 7 mit einem Lambdasensor 11 versehen. Der Luftmassensensor 10 misst die Luftmasse der dem Ansaugrohr 6 zugeführten Frischluft und erzeugt in Abhängigkeit davon ein Signal LM. Der Lambdasensor 11 misst den Sauerstoffgehalt des Abgases in dem Abgasrohr 7 und erzeugt in Abhängigkeit davon ein Signal Lambda. Die Signale des Luftmassensensors 10 und des Lambdasensors 11 werden dem Steuergerät 16 zugeführt.
  • In dem Ansaugrohr 6 ist eine Drosselklappe 12 untergebracht, deren Drehstellung mittels eines Signals DK einstellbar ist. Weiterhin kann das Abgasrohr 7 über eine hier nicht dargestellte Abgasrückführungsleitung mit dem Ansaugrohr 6 verbunden sein. Die Steuerung der Abgasrückführung kann beispielsweise über ein vom Steuergerät 16 ansteuerbares, hier ebenfalls nicht dargestelltes, Abgasrückführventil erfolgen.
  • In einer ersten Betriebsart, dem Homogenbetrieb der Brennkraftmaschine 1, wird die Drosselklappe 12 in Abhängigkeit von der erwünschten, zugeführten Luftmasse teilweise geöffnet bzw. geschlossen. Der Kraftstoff wird von dem Einspritzventil 8 während einer durch den Kolben 2 hervorgerufenen Ansaugphase in den Brennraum 4 eingespritzt. Durch die gleichzeitig angesaugte Luft wird der eingespritzte Kraftstoff verwirbelt und damit im Brennraum 4 im Wesentlichen gleichmäßig/homogen verteilt. Danach wird das Kraftstoff-Luft-Gemisch während der Verdichtungsphase verdichtet, um dann von der Zündkerze 9 entzündet zu werden. Durch die Ausdehnung des entzündeten Kraftstoffs wird der Kolben 2 angetrieben.
  • In einer zweiten Betriebsart, dem Schichtbetrieb der Brennkraftmaschine 1, wird die Drosselklappe 12 weit geöffnet. Der Kraftstoff wird von dem Einspritzventil 8 während einer durch den Kolben 2 hervorgerufenen Verdichtungsphase in den Brennraum 4 eingespritzt. Dann wird mit Hilfe der Zündkerze 9 der Kraftstoff entzündet, so dass der Kolben 2 in der nunmehr folgenden Arbeitsphase durch die Ausdehnung des entzündeten Kraftstoffs angetrieben wird.
  • Im Schichtbetrieb wie auch im Homogenbetrieb wird durch den angetriebenen Kolben eine Kurbelwelle 14 in eine Drehbewegung versetzt, über die letztendlich die Räder des Kraftfahrzeugs angetrieben werden. Auf der Kurbelwelle 14 ist ein Zahnrad angeordnet, dessen Zähne von einem unmittelbar gegenüber angeordneten Drehzahlsensor 15 abgetastet werden. Der Drehzahlsensor 15 erzeugt ein Signal, aus dem die Drehzahl n der Kurbelwelle 14 ermittelt wird und übermittelt dieses Signal n an das Steuergerät 16.
  • Die im Schichtbetrieb und im Homogenbetrieb von dem Einspritzventil 8 in den Brennraum eingespritzte Kraftstoffmasse wird von dem Steuergerät 16 insbesondere im Hinblick auf einen geringen Kraftstoffverbrauch und/oder eine geringe Schadstoffentwicklung gesteuert und/oder geregelt. Auch die erfindungsgemäße Festlegung der Zündwinkel ZW erfolgt in dem Steuergerät 16. Zu diesem Zweck ist das Steuergerät 16 mit einem Mikroprozessor versehen, der in einem Speichermedium Programmcode abgespeichert hat, der dazu geeignet ist, die gesamte erfindungsgemäße Steuerung und/oder Regelung der Brennkraftmaschine 1 durchzuführen.
  • Das Steuergerät 16 ist von Eingangssignalen beaufschlagt, die mittels Sensoren gemessene Betriebsgrößen der Brennkraftmaschine darstellen. Beispielsweise ist das Steuergerät 16 mit dem Luftmassensensor 10, dem Lambdasensor 11 und dem Drehzahlsensor 15 verbunden. Des Weiteren ist das Steuergerät 16 mit einem Fahrpedalsensor 17 verbunden, der ein Signal FP erzeugt, das die Stellung eines von einem Fahrer betätigbaren Fahrpedals/Gaspedals und damit das von dem Fahrer angeforderte Moment angibt. Dieses Moment wird im Weiteren auch als Fahrerwunschmoment bezeichnet. Das Steuergerät 16 erzeugt Ausgangssignale, mit denen über Aktoren das Verhalten der Brennkraftmaschine 1 entsprechend der erwünschten Steuerung und/oder Regelung beeinflusst werden kann. Beispielsweise ist das Steuergerät 16 mit dem Einspritzventil 8, der Zündkerze 9 und der Drosselklappe 12 verbunden und erzeugt die zu deren Ansteuerung erforderlichen Signale TI, ZW und DK.
  • In das Steuergerät 16 ist weiterhin das erfindungsgemäße Verfahren implementiert, das im Weiteren ausführlicher dargelegt wird.
  • Figur 2 zeigt eine Übersicht zu den Drehmomenten im Antriebsstrang eines Kraftfahrzeugs. Das Betriebsverhalten eines Motors 201 und somit auch das von dem Motor erzeugte Drehmoment hängt maßgeblich von der Luftmasse 202, der Kraftstoffmasse 203 und dem Zündwinkel bzw. dem Zündzeitpunkt 204 ab. Dies sind die maßgeblichen Einflussfaktoren, die das von dem Motor 201 erzeugte Moment beeinflussen. Selbstverständlich existieren weitere Einflussmöglichkeiten, auf die im Rahmen dieser Beschreibung nicht näher eingegangen wird. Das von dem Motor 201 unmittelbar aus der Verbrennung erzeugte Moment 205 wird im Weiteren als inneres Moment 205 der Brennkraftmaschine bezeichnet. Werden von dem inneren Moment 205 die Ladungswechsel- und Reibungsverluste 206 abgezogen, so erhält man das eigentliche Motormoment 207, das näherungsweise an der Kurbelwelle des Motors abgegriffen werden kann. Das Motormoment 207 wird im Weiteren als indiziertes Moment 207 bezeichnet. Werden von dem indizierten Moment 207 die Momentenanteile abgezogen, die für Nebenaggregate wie beispielsweise Generator, Klimakompressor usw. aufgewendet werden müssen, so ergibt sich das Kupplungsmoment 209, das an der Kupplung der Brennkraftmaschine zur Verfügung steht. Werden von dem Kupplungsmoment 209, das am Eingang der Kupplung zur Verfügung steht, die Kupplungsverluste 210 subtrahiert, so erhält man das am Eingang des Getriebes zur Verfügung stehende Getriebemoment 211. Das am Eingang des Getriebes zur Verfügung stehende Getriebemoment 211 wird nochmals um Getriebe- und Übersetzungsverluste 212 verringert, um schließlich das eigentliche Antriebsmoment 213 zu erhalten. Das Antriebsmoment 213 kann auch als Radmoment bezeichnet werden.
  • Der Kern des im Folgenden, im Rahmen der Figuren 3 und 4 näher beschriebenen erfindungsgemäßen Verfahrens besteht darin, anhand einer Fahrpedalstellung des Kraftfahrzeugs ein vom Fahrer des Kraftfahrzeugs angefordertes Fahrerwunschmoment der Brennkraftmaschine als inneres Moment 205 der Brennkraftmaschine zu bestimmen. Das in Figur 1 dargestellte Steuergerät 16 enthält eine Funktion (Momentenkoordinator), um das vom Fahrer des Kraftfahrzeugs angeforderte Fahrerwunschmoment mit den weiteren vorliegenden Momentenanforderungen, z.B. von einer Fahrdynamikregelung, zu einem koordinierten Gesamtmoment zu koordinieren. Das koordinierte Gesamtmoment ist somit das relevante Sollmoment, das von der Brennkraftmaschine erzeugt werden soll.
  • Figur 3 zeigt ein erstes Ausführungsbeispiel des erfindungsgemäßen Verfahrens. Hierbei wird die Fahrpedalbetätigung durch den Fahrer des Kraftfahrzeugs als relativer Momentenwunsch interpretiert. In Abhängigkeit von einer Fahrpedalstellung 301 (pedal) und der aktuellen Motordrehzahl 302 (nmot) wird aus einem applizierbaren Kennfeld 303 (kfmrel) ein relativer Fahrerwunsch 304 (mrfa) entnommen. Dieser relative Fahrerwunsch (mrfa) wird einer Multiplikationseinheit 305 zugeführt. Weiterhin wird der Multiplikationseinheit 305 die Differenz aus maximalem Motormoment 306 (mimax) und minimalem Motormoment 307 (mimin_min) zugeführt. Das Ergebnis des Multiplikationsblocks 305 wird der Additionseinheit 308 zugeführt. Hier wird zum Ausgangsmoment der Multiplikationseinheit 305 das minimale Motormoment 307 (mimin_min) hinzuaddiert. Das Ergebnis bzw. das Ausgangsmoment des Blocks 308 wird einem Addierer 309 zugeführt. Dem Addierer 309 wird weiterhin die erfindungsgemäße Momentendifferenz 310 (mdslw) zugeführt. Die Momentendifferenz 310 (mdslw) ergibt sich als Ergebnis der Subtraktionseinheit 311, der eingangsseitig die aktuellen Momentenverluste 312 (mds) und die minimalen Momentenverluste 313 (mds_min) zugeführt werden. Die aktuellen Momentenverluste 312 (mds) und die minimalen Momentenverluste 313 (mds_min) sind das Ausgangssignal 317 eines Kennfelds 314 (kfmds), welches Momentenverluste in Abhängigkeit von der Drehzahl der Brennkraftmaschine (nmot) und der minimalen Druckdifferenz (dpmin) aus Umgebungsdruck (pu) und Saugrohrdruck (ps) enthält. Dem Kennfeld 314 wird permanent die Motordrehzahl 302 (nmot) zugeführt. Das Kennfeld 314 (kfmds) wird nun abwechselnd bzw. durch den in der Figur 3 dargestellten bzw. angedeuteten Schalter mit der aktuellen Druckdifferenz 315 (dp) aus Umgebungsdruck (pu) und Saugrohrdruck (ps) und der minimalen Druckdifferenz 316 (dpmin) aus Umgebungsdruck (pu) und Saugrohrdruck (ps) adressiert. Als Ausgangssignal 317 des Kennfelds 314 (kfmds) stehen somit abwechselnd, je nach Adressierung des Eingangs des Kennfelds, die aktuellen Momentenverluste (mds) oder die minimalen Momentenverluste (mds_min) zur Verfügung. Die Ausgangssignale des Kennfelds 314 (kfmds) werden in einem in der Figur 3 nicht dargestellten Zwischenspeicher gepuffert, damit die aktuellen Momentenverluste 312 (mds) sowie die minimalen Momentenverluste 313 (mds_min) zu jedem Zeitpunkt an den Eingängen des Subtraktionsblocks 311 zur Verfügung stehen. Aus der Differenz der aktuellen Momentenverluste 312 (mds) und der minimalen Momentenverluste 313 (mds_min) ergibt sich die erfindungsgemäße Momentendifferenz 310 (mdslw). Als Ausgangssignal des Addierers 309 steht das gesuchte Fahrerwunschmoment 318 als inneres Motormoment (mifa) zur Verfügung.
  • Alternativ zu der Zwischenspeicherung der Ausgangssignale 317 des Kennfelds 314 kann es selbstverständlich vorgesehen sein, zwei Kennfelder entsprechend Kennfeld 314 vorzusehen, damit die Bestimmung der aktuellen Momentenverluste (mds) und der minimalen Momentenverluste (mds_min) zu jedem Zeitpunkt parallel erfolgen kann.
  • Unter dem maximalen Motormoment (mimax) ist das maximal mögliche innere Motormoment aus der Verbrennung zu verstehen. Dieses maximal mögliche Motormoment kann erfindungsgemäß für alle Betriebsarten (sowohl gedrosselte, angedrosslete als auch ungedrosselte Betriebsarten) gleich gewählt werden.
  • Das minimale Motormoment (mimin_min) ergibt sich aus der Summe von minimalen Momentenverlusten (mds_min) und den Verlusten durch Nebenaggregate und sonstige Verbraucher (mdv), wobei die Summe der beiden Momentenanteile mit einem Skalierungsfaktor versehen sein kann, der sich beispielsweise aus der Differenz von Motordrehzahl (nmot) und Leerlaufdrehzahl ergeben kann.
  • Die aktuellen Momentenverluste (mds) und die minimalen Momentenverluste (mds_min) enthalten jeweils die Momentenverluste durch Drosselung und Reibung.
  • Die Folge der erfindungsgemäßen Bestimmung des Fahrerwunschmoments (mifa) ist, dass sich bei konstanter Fahrpedalstellung (pedal) bei der Umschaltung in eine andere Betriebsart sowohl für die Ausgangs- als auch für die Zielbetriebsart das identische Kupplungsmoment einstellt. Hierdurch wird gewährleistet, dass der Fahrer des Kraftfahrzeugs keinen Ruck des Kraftfahrzeugs durch einen Sprung des Kupplungsmoments spürt.
  • Figur 4 zeigt ein weiteres Ausführungsbeispiel des erfindungsgemäßen Verfahrens. Im Rahmen der Figur 4, und hier liegt der Unterschied zur Figur 3, wird die vom Fahrer des Kraftfahrzeugs vorgegebene Fahrpedalstellung als absoluter Fahrerwunsch interpretiert.
  • Entsprechend der Fahrpedalstellung 401 (pedal) und der aktuellen Motordrehzahl 402 (nmot) wird aus einem applizierbaren Kennfeld 403 (kfmabs) ein absoluter Fahrerwunsch 404 (mi_soll) entnommen, der einer Additionseinheit 408 zugeführt wird. Der Additionseinheit 408 wird weiterhin das minimale Motormoment 407 (mimin_min) zugeführt. Das minimale Motormoment 407 entspricht hierbei demjenigen nach 307 in Figur 3. Das Ergebnis des Additionsblocks 408 wird einem weiteren Additionsblock 409 zugeführt, dem als weiteres Eingangssignal die Momentendifferenz 410 (mdslw) zugeführt wird. Auch die Momentendifferenz 410 ist analog zur Momentendifferenz 310 in Figur 3 zu sehen. Das Ergebnis des Additionsblocks 409 ist äquivalent zur Figur 3 ein inneres Fahrer-Wunsch-Moment 411 (mifa).

Claims (15)

  1. Verfahren zum Betreiben einer direkteinspritzenden Brennkraftmaschine eines Kraftfahrzeugs,
    - wobei die Brennkraftmaschine in wenigstens einer ersten und einer zweiten Betriebsart betrieben wird,
    - wobei ein Moment der Brennkraftmaschine in der ersten Betriebsart (HOM) im wesentlichen von einer Drosselklappenstellung abhängt,
    - wobei die Brennkraftmaschine in der zweiten Betriebsart (SCH) nahezu ungedrosselt betrieben wird,
    - wobei wenigstens anhand einer Fahrpedalstellung (pedal) des Kraftfahrzeugs ein vom Fahrer des Kraftfahrzeugs angefordertes Fahrerwunschmoment (mifa) der Brennkraftmaschine bestimmt wird,
    dadurch gekennzeichnet,
    dass bei der Bestimmung des Fahrerwunschmoments (mifa) wenigstens eine Momentendifferenz (mdslw) aus aktuellen Momentenverlusten (mds) und minimalen Momentenverlusten (mds_min) berücksichtigt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die aktuellen Momentenverluste (mds) wenigstens Drosselverluste und Reibungsverluste in der aktuellen Betriebsart berücksichtigen.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die minimalen Momentenverluste (mds_min) wenigstens unter Berücksichtigung einer minimalen Druckdifferenz (dpmin) aus Umgebungsdruck (pu) und Saugrohrdruck (ps) bestimmt werden.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Fahrerwunschmoment (mifa) als ein inneres Moment (205) der Brennkraftmaschine bestimmt wird.
  5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die minimalen Momentenverluste (mds_min) in Abhängigkeit von der Drehzahl der Brennkraftmaschine (nmot) und der minimalen Druckdifferenz (dpmin) aus Umgebungsdruck (pu) und Saugrohrdruck (ps) aus einem applizierbaren Kennfeld (kfmds) entnommen werden.
  6. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein minimales Motormoment (mimin min) bestimmt wird, das wenigstens die Summe aus minimalen Momentenverlusten (mds_min) und weiteren Momentenverlusten (mdv) berücksichtigt.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die weiteren Momentenverluste (mdv) wenigstens die Momentenverluste durch Nebenaggregate berücksichtigen.
  8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein maximales Motormoment (mimax) bestimmt wird, das unabhängig von der aktuellen Betriebsart (HOM,SCH) ist.
  9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein relativer Fahrerwunsch (mrfa) und/oder ein absoluter Fahrerwunsch (mi_soll) wenigstens anhand der Fahrpedalstellung (pedal) und einer Motordrehzahl (nmot) gebildet wird.
  10. Verfahren nach den Ansprüchen 6, 8 und 9, dadurch gekennzeichnet, dass das Fahrerwunschmoment (mifa) aus der Summe von
    - dem minimalem Motormoment (mimin_min),
    - der Momentendifferenz (mdslw) und
    - dem Produkt aus relativem Fahrerwunsch (mrfa) und der Differenz von maximalem Motormoment (mimax) und minimalem Motormoment (mimin_min)
    bestimmt wird (mifa = mimin_min + mdslw + mrfa x (mimax-mimin_min)).
  11. Verfahren nach den Ansprüchen 6, 8 und 9, dadurch gekennzeichnet, dass das Fahrerwunschmoment (mifa) aus der Summe von
    - dem minimalem Motormoment (mimin_min),
    - der Momentendifferenz (mdslw) und
    - absolutem Fahrerwunsch (mi_soll)
    bestimmt wird (mifa = mimin_min + mdslw + mi_soll).
  12. Direkteinspritzende Brennkraftmaschine eines Kraftfahrzeugs, die wenigstens in einer ersten und einer zweiten Betriebsart betreibbar ist,
    - wobei ein Moment der Brennkraftmaschine in der ersten Betriebsart (HOM) im wesentlichen von einer Drosselklappenstellung abhängt,
    - wobei die Brennkraftmaschine in der zweiten Betriebsart (SCH) nahezu ungedrosselt betreibbar ist,
    - mit einem Fahrpedal,
    - mit Mitteln, um wenigstens anhand einer Fahrpedalstellung (pedal) ein vom Fahrer des Kraftfahrzeugs angefordertes Fahrerwunschmoment (mifa) der Brennkraftmaschine zu bestimmen,
    dadurch gekennzeichnet,
    dass Mittel vorhanden sind, um bei der Bestimmung des Fahrerwunschmoments (mifa) wenigstens eine Momentendifferenz (mdslw) aus aktuellen Momentenverlusten (mds) und minimalen Momentenverlusten (mds_min) zu berücksichtigen.
  13. Steuergerät für eine Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, mit Mittel zur Durchführung der Schritte des Verfahrens nach wenigstens einem der Ansprüche von 1 bis 11, dadurch gekennzeichnet, dass Mittel vorhanden sind, um bei der Bestimmung des Fahrerwunschmoments (mifa) wenigstens eine Momentendifferenz (mdslw) aus aktuellen Momentenverlusten (mds) und minimalen Momentenverlusten (mds_min) zu berücksichtigen.
  14. Computerprogramm mit Programmcode-Mitteln, um alle Schritte von jedem beliebigen der Ansprüche 1 bis 11 durchzuführen, wenn das Programm auf einem Computer, insbesondere einem Steuergerät für eine Brennkraftmaschine, ausgeführt wird.
  15. Computerprogrammprodukt mit Programmcode-Mitteln, die auf einem computerlesbaren Datenträger gespeichert sind, um das Verfahren nach jedem beliebigen der Ansprüche 1 bis 11 durchzuführen, wenn das Programmprodukt auf einem Computer, insbesondere einem Steuergerät für eine Brennkraftmaschine, ausgeführt wird.
EP20010118574 2000-09-04 2001-08-02 Verfahren und Vorrichtung zum Betreiben einer direkteinspritzenden Brennkraftmaschine eines Kraftfahrzeugs Expired - Lifetime EP1184553B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10043691 2000-09-04
DE2000143691 DE10043691A1 (de) 2000-09-04 2000-09-04 Verfahren und Vorrichtung zum Betreiben einer direkteinspitzenden Brennkraftmaschine eines Kraftfahrzeugs

Publications (3)

Publication Number Publication Date
EP1184553A2 EP1184553A2 (de) 2002-03-06
EP1184553A3 EP1184553A3 (de) 2004-08-11
EP1184553B1 true EP1184553B1 (de) 2006-06-14

Family

ID=7655028

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010118574 Expired - Lifetime EP1184553B1 (de) 2000-09-04 2001-08-02 Verfahren und Vorrichtung zum Betreiben einer direkteinspritzenden Brennkraftmaschine eines Kraftfahrzeugs

Country Status (4)

Country Link
EP (1) EP1184553B1 (de)
JP (1) JP2002129999A (de)
DE (2) DE10043691A1 (de)
ES (1) ES2266058T3 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4033173B2 (ja) * 2004-06-01 2008-01-16 トヨタ自動車株式会社 内燃機関の制御装置
DE102006020062A1 (de) 2006-04-29 2007-10-31 Dr.Ing.H.C. F. Porsche Ag Verfahren zur Steuerung einer Brennkraftmaschine
FR3102214B1 (fr) * 2019-10-16 2021-10-08 Psa Automobiles Sa Groupe motopropulseur comprenant un dispositif de contrôle déterminant un couple de perte d’un moteur à combustion.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4141947C2 (de) 1991-12-19 2002-02-07 Bosch Gmbh Robert Steuersystem für eine Antriebseinheit in einem Flugzeug
DE19619320A1 (de) 1995-10-07 1997-04-10 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19612455C2 (de) * 1996-03-28 1999-11-11 Siemens Ag Verfahren zum Ermitteln eines Solldrehmoments an der Kupplung eines Kraftfahrzeugs

Also Published As

Publication number Publication date
EP1184553A2 (de) 2002-03-06
ES2266058T3 (es) 2007-03-01
DE50110123D1 (de) 2006-07-27
EP1184553A3 (de) 2004-08-11
JP2002129999A (ja) 2002-05-09
DE10043691A1 (de) 2002-03-14

Similar Documents

Publication Publication Date Title
DE4239711B4 (de) Verfahren und Vorrichtung zur Steuerung eines Fahrzeugs
EP1292764B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE19833909A1 (de) Vorrichtung und Verfahren zur drehmomentgestützten Fahrzeuggeschwindigkeitsregelung
WO1999001654A1 (de) System zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE10206155B4 (de) Anpassung einer Fahrerforderung an atmosphärische Bedingungen
DE19813381A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP1066458B1 (de) Verfahren zum betreiben einer brennkraftmaschine
WO2007036411A1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE19928825C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Steuergerät für eine Brennkraftmaschine sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
DE10120713A1 (de) Verfahren zur Erzeugung einer Schaltinformation und Schaltinformationsanzeige
EP1184553B1 (de) Verfahren und Vorrichtung zum Betreiben einer direkteinspritzenden Brennkraftmaschine eines Kraftfahrzeugs
EP1099051B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE19719760A1 (de) System zum Betreiben einer direkteinspritzenden Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19928824C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1859136B1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
EP1081363B1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1184557B1 (de) Verfahren zum Betreiben einer Brennkraftmaschine eines Kraftfahrzeugs
DE10043689A1 (de) Verfahren zur Verlustmomentenadaption bei einer Brennkraftmaschine
DE19931826B4 (de) Verfahren zum Steuern einer Brennkraftmaschine
WO1999067524A2 (de) Verfahren zum betreiben einer brennkraftmaschine
EP1032757B1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE19618849A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine eines Fahrzeugs
DE19925788A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10249687B4 (de) Verfahren zur Steuerung eines automatisierten Schaltgetriebes
DE10149238A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 02D 11/10 B

Ipc: 7F 02D 41/30 A

17P Request for examination filed

Effective date: 20050211

AKX Designation fees paid

Designated state(s): DE ES FR IT

17Q First examination report despatched

Effective date: 20050412

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REF Corresponds to:

Ref document number: 50110123

Country of ref document: DE

Date of ref document: 20060727

Kind code of ref document: P

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2266058

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140827

Year of fee payment: 14

Ref country code: FR

Payment date: 20140819

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140827

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150802

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161027

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110123

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301