EP1182416B1 - Heat exchanger tube with inner offset fins with variable height - Google Patents

Heat exchanger tube with inner offset fins with variable height Download PDF

Info

Publication number
EP1182416B1
EP1182416B1 EP01119589A EP01119589A EP1182416B1 EP 1182416 B1 EP1182416 B1 EP 1182416B1 EP 01119589 A EP01119589 A EP 01119589A EP 01119589 A EP01119589 A EP 01119589A EP 1182416 B1 EP1182416 B1 EP 1182416B1
Authority
EP
European Patent Office
Prior art keywords
rib
ribs
zones
heat
exchange pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01119589A
Other languages
German (de)
French (fr)
Other versions
EP1182416A3 (en
EP1182416A2 (en
Inventor
Christoph Dr.-Ing. Walther
Rolf Dipl.-Ing. Wamsler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP1182416A2 publication Critical patent/EP1182416A2/en
Publication of EP1182416A3 publication Critical patent/EP1182416A3/en
Application granted granted Critical
Publication of EP1182416B1 publication Critical patent/EP1182416B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/005Rolls with a roughened or textured surface; Methods for making same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/227Surface roughening or texturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

A heat transfer tube with a finned inner surface is divided into at least two zones (Z1 to Zm) in a peripheral direction. The fins extend at an angle of inclination alpha with respect to the longitudinal axis of the tube, are arranged in the individual zones (Z1 to Zm) in any desired periodic combination and sequence of at least two fin heights (H1 to Hn, H1>H2> . . . >Hn). Adjacent zones border thereby on one another so that the fin sequence is staggered for at least one fin in longitudinal direction of the tube. Modifications include the finned inner surface being divided into groups of zones, in which the angle of inclination of the fins is uniform, however, varies between adjacent groups.

Description

Die Erfindung betrifft ein Wärmeaustauschrohr mit einer inneren strukturierten Oberfläche nach dem Oberbegriff des Anspruchs 1 (vgl. etwa JP-A-4/158.193 ) bzw. der Ansprüche 2/3 (vgl. etwa DE-A-196 28 280 ). Das Wärmeaustauschrohr ist insbes. zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohrinnenseite geeignet. Es bietet aber auch Vorteile bei der Kondensation von Dämpfen.The invention relates to a heat exchange tube having an inner structured surface according to the preamble of claim 1 (cf. JP-A-4/158193 ) or the claims 2/3 (see DE-A-196 28 280 ). The heat exchange tube is esp. For evaporation of liquids from pure substances or mixtures on the tube inside suitable. But it also offers advantages in the condensation of vapors.

Ein weltweiter Wettbewerb bei Wärmeaustauschern, z.B. Lamellenblock-Wärmeaustauschern (vgl. Fig. 1) für die Kälte- und Klimatechnik, erfordert hochleistende, mit wenig Material (geringes resultierendes Rohrgewicht) und kostengünstig in wenigen Arbeitsschritten produzierte Wärmeaustauschrohre. Die Wärmeaustauschrohre werden in oftmals zwischen Verdampfung und Kondensation umschaltbaren Lamellenblock-Wärmeaustauschern eingesetzt und sind dabei zumeist horizontal in die Lamellenblock-Wärmeaustauscher eingebaut.Global competition in heat exchangers, e.g. Laminated-block heat exchangers (see Fig. 1) for the refrigeration and air conditioning technology, requires high-performance, with little material (low resulting tube weight) and inexpensive in a few steps produced heat exchange tubes. The heat exchange tubes are used in often switchable between evaporation and condensation finned block heat exchangers and are usually installed horizontally in the finned block heat exchangers.

Zum Stand der Technik zählt ein Wärmeaustauschrohr nach

  • US-A-5.332.034 , bei dem in zwei nacheinander erfolgenden Walzgängen zunächst Rippen einheitlicher Höhe auf ein Band gewalzt werden und im zweiten Walzgang Mulden in die Rippen geformt werden. Dabei wird das aus den Rippen verdrängte Material seitlich der Rippen in die Kanäle hinein verschoben. Das zweistufige Walzverfahren erfordert mehrere hintereinander geschaltete Walzwerkzeuge bei entsprechend höherem wirtschaftlichen Aufwand. Zudem wird durch diesen zweistufigen Walzprozeß eine Reduzierung des Rohrgewichtes trotz des Ausformens der Mulden nicht erreicht. Die Mulden benachbarter Rippen sind fluchtend angeordnet, so daß sich in Wandnähe neben den parallel zu und zwischen den Rippen verlaufenden Kanälen eine zweite prädestinierte Strömungsrichtung in Richtung der fluchtenden Mulden ergibt. Diese zweite Vorzugsrichtung dient zwar dem Queraustausch zwischen den Kanälen der erstgenannten Vorzugsrichtung, der zusätzlichen Turbulenzerzeugung und Steigerung der Verdampfungsleistung, doch erschwert andererseits die Existenz einer zweiten Vorzugsrichtung die gewünschte Ausbildung einer Drallströmung im wandnahen Bereich.
  • DE-A-196 12 470 , bei dem auf der inneren Oberfläche parallel und alternierend (oder auch einander kreuzend) hohe und niedrige Rippen mit zusätzlich in die Rippen eingebrachten Mulden ausgeformt sind. Auch hier sind die Mulden benachbarter Rippen fluchtend angeordnet.
  • DE-A-196 28 280 , bei dem in Umfangsrichtung des Rohres sektionsweise zwischen zwei verschiedenen Richtungen für die Ausrichtung der Rippen gewechselt wird. Eine Drallströmung kann sich hier - aufgrund der fehlenden Vorzugsrichtung und im Gegensatz zu helixförmigen Strukturen - nicht ausbilden. Diese Form der Strukturierung der inneren Oberfläche erweist sich bei Verdampfung als wenig geeignet, da deutlich geringere Verdampfungsleistungen erzielt werden als in Rohren, deren Oberfläche eine eindeutige Vorzugsrichtung für die wandnahe Strömung aufweist. Bei Kondensation hingegen erweist sich diese Art der Oberflächenstrukturierung als vorteilhaft.
  • JP-A-4/158.193 , bei dem in Umfangsrichtung des Rohres sektionsweise zwischen Bereichen niedriger und hoher Rippenhöhe unterschieden wird. Allerdings wird so neben der ersten Vorzugsrichtung in Richtung der fluchtenden Rippenelemente eine zweite in Längsrichtung des Rohres über die kleinen Rippen hinweg verlaufende ausgebildet, wodurch insbesondere die Verdampferleistung stark negativ beeinflußt wird, da das strömende Fluid nicht mehr unbedingt in eine auch die obere Rohrhälfte benetzende Drallströmung gezwungen wird, sondern schlicht entlang der Sektionen niedriger Rippenhöhe und über diese kleinen Elemente hinweg in axialer Richtung abfließt.
The prior art includes a heat exchange tube
  • US-A-5332034 in which in two successive rolling passes first ribs of uniform height are rolled onto a belt and formed in the second rolling pass troughs in the ribs. In this case, the material displaced from the ribs is laterally of the ribs in the channels moved into it. The two-stage rolling process requires several successively connected rolling tools at a correspondingly higher cost. In addition, a reduction in the tube weight is not achieved despite the molding of the wells by this two-stage rolling process. The wells of adjacent ribs are arranged in alignment, so that there is a second predestined flow direction in the direction of the aligned wells next to the wall next to the parallel to and between the ribs extending channels. Although this second preferred direction serves the transverse exchange between the channels of the former preferred direction, the additional turbulence generation and increase the evaporation performance, but on the other hand, the existence of a second preferred direction complicates the desired formation of a swirl flow in the near-wall region.
  • DE-A-196 12 470 in which on the inner surface parallel and alternating (or even crossing) high and low ribs are formed with additionally introduced into the ribs troughs. Again, the troughs of adjacent ribs are arranged in alignment.
  • DE-A-196 28 280 in which in the circumferential direction of the tube is changed in sections between two different directions for the orientation of the ribs. A swirling flow can not form here - due to the lack of preferential direction and in contrast to helical structures. This form of structuring the inner surface proves to be less suitable for evaporation, since significantly lower evaporation rates are achieved than in pipes whose surface has a clear preferred direction for the near-wall flow. In condensation, however, this type of surface structuring proves to be advantageous.
  • JP-A-4/158193 , in which a distinction is made in the circumferential direction of the pipe sections between areas low and high rib height. However, in addition to the first preferred direction in the direction of the aligned rib elements, a second extending in the longitudinal direction of the tube over the small ribs away, which in particular the evaporator performance is strongly adversely affected, since the flowing fluid is no longer necessarily in a swirling the upper half tube swirl flow is forced, but simply along the sections of low rib height and flows over these small elements away in the axial direction.

Aufgabe der Erfindung ist es, ein Wärmeaustauschrohr mit einer inneren Oberflächenstruktur zu schaffen, welche die Vorteile einer im Vergleich zum Stand der Technik guten oder verbesserten Verdampfungsleistung und gleichzeitig eines gegenüber dem Stand der Technik reduzierten Rohrgewichtes und eines verminderten, nach Anzahl der Arbeits- und Walzschritte zählenden Produktionsaufwandes verbindet.The object of the invention is to provide a heat exchange tube with an internal surface structure, which has the advantages of a good or improved compared to the prior art evaporation performance and at the same time reduced compared to the prior art tube weight and a reduced number of working and rolling steps connecting production costs.

Die Aufgabe wird bei Wärmeaustauschrohren nach dem Oberbegriff der Ansprüche 1, 2 und 3 erfindungsgemäß dadurch gelöst, daß die Rippen in den einzelnen Zonen (Z1 bis Zm) in Rohrlängsrichtung in beliebiger periodischer Kombination und Abfolge mindestens zweier Rippenhöhen (H1 bis Hn, H1>H2>...>Hn) angeordnet sind, wobei benachbarte Zonen (Z1 bis Zm) so aneinander grenzen, dass am Übergang zweier Zonen die Rippenabfolge in Rohrlängsrichtung um mindestens eine Rippe gegeneinander versetzt ist.The object is achieved in heat exchange tubes according to the preamble of claims 1, 2 and 3 according to the invention that the ribs in the individual zones (Z 1 to Z m ) in the tube longitudinal direction in any periodic combination and sequence of at least two rib heights (H 1 to H n , H 1 > H 2 >...> H n ), wherein adjacent zones (Z 1 to Z m ) adjoin one another such that at the transition of two zones the fin sequence is offset in the tube longitudinal direction by at least one rib.

Damit ergeben sich folgende Vorteile der Erfindung:

  • Durch den alternierenden Wechsel hoher und niedriger Rippen in deren Längsrichtung bietet sich über die Rippen niedriger Höhe hinweg die Möglichkeit eines Queraustausches zwischen den Kanälen mit einer entsprechenden zusätzlichen Turbulenzerzeugung. Es wird allerdings durch die versetzte Anordnung der Rippen niedriger Höhe eine der fluchtenden Anordnung der Mulden aus US-A-5.332.034 ähnliche, zweite und störende Vorzugsrichtung vermieden.
  • Es liegt genau eine eindeutige Vorzugsrichtung der wandnahen Strömung vor, so daß durch die so erzwungene Drallströmung eine für eine gute und verbesserte Verdampfungsleistung erforderliche, vollständige Benetzung des gesamten Rohrumfangs und gerade der oben liegenden Abschnitte der inneren Rohroberfläche erzielt wird. Bei Strukturen ohne eine einheitliche Vorzugsrichtung, wie DE-A-196 28 280 , kommt es hingegen zu einer Austrocknung der oberen Abschnitte des Rohrumfangs und somit zu einer starken Reduzierung der Verdampfungsleistung.
  • Im Gegensatz zum nachträglichen Formen der Mulden in einem zweiten Walzgang kann diese Struktur in einem einzigen Walzgang erzeugt werden, so daß anstelle des Verdrängens von Material aus den Rippen heraus in die Kanäle hinein, tatsächlich eine Materialeinsparung und eine Gewichtsreduzierung erzielt und zudem eine Verminderung des nach Anzahl der Arbeits- und Walzschritte zählenden Produktionsaufwandes erreicht wird.
  • Strukturen mit zonenweise variierendem Steigungswinkel der Rippen nach Anspruch 2 bzw. 3, bieten vor allem aus umformtechnischer Sicht bedeutende Vorteile, da sich evtl. auftretende, durch die schräg zur Bandrichtung verlaufenden Nuten und Rippen bedingte Seitenkräfte im Walzprozeß zumindest teilweise kompensieren können und so die Bandführung erleichtert wird. Ihre wärmetechnische Leistung kann durch die erfindungsgemäß durch die verschiedenen Höhen, Fußbreiten und Querschnittsformen der Rippen unterschiedlicher Höhe zusätzlich in die Oberflächenstruktur eingebrachten Kanten, scharfkantige oder auch abgerundete Vor- und Rücksprünge noch gesteigert werden.
This results in the following advantages of the invention:
  • Due to the alternating change of high and low ribs in the longitudinal direction offers over the ribs of low height, the possibility of a cross exchange between the channels with a corresponding additional turbulence generation. However, it is due to the staggered arrangement of the ribs low height one of the aligned arrangement of the wells US-A-5332034 similar, second and disturbing preferred direction avoided.
  • There is exactly one unambiguous preferred direction of the near-wall flow, so that a required for a good and improved evaporation performance, complete wetting of the entire pipe circumference and just the overhead sections of the inner pipe surface is achieved by the forced swirl flow. For structures without a uniform preferred direction, such as DE-A-196 28 280 However, it comes to a drying of the upper portions of the tube circumference and thus to a strong reduction in evaporation performance.
  • In contrast to the subsequent shaping of the troughs in a second rolling pass, this structure can be produced in a single pass, so that instead of displacing material out of the fins into the passages, material savings and weight reduction are achieved, and also a reduction in the after-pass Number of labor and rolling steps counting production costs is achieved.
  • Structures with zonewise varying pitch angle of the ribs according to claim 2 or 3, offer significant advantages especially from Umformtechnischer perspective, since possibly occurring, caused by the obliquely to the belt direction grooves and ribs side forces in the rolling process can at least partially compensate and so the tape guide is relieved. Their thermal performance can be further increased by the present invention by the different heights, foot widths and cross-sectional shapes of the ribs of different heights additionally introduced into the surface structure edges, sharp-edged or rounded projections and recesses.

Die Ansprüche 4 bis 19 betreffen bevorzugte Ausführungsformen der erfindungsgemäßen Wärmeaustauschrohre.Claims 4 to 19 relate to preferred embodiments of the heat exchange tubes according to the invention.

Durch die verschiedenen Höhen, Fußbreiten und Querschnittsformen der Rippen unterschiedlicher Höhe werden zusätzlich Kanten, scharfkantige oder auch abgerundete Vor- und Rücksprünge in die Oberflächenstruktur und in die seitlichen Begrenzungen der wandnahen Kanäle eingebracht, die einer weiteren Turbulenzerzeugung und - insbesondere bei Gemischen - einem Stören und Aufreißen sich eventuell ausbildender Temperatur- und Konzentrationsgrenzschichten dienen und als zusätzliche Dampfblasenkeime zur Verfügung stehen. (Vorteil gegenüber DE-A-196 12 470 ).Due to the different heights, foot widths and cross-sectional shapes of the ribs of different height edges, sharp-edged or rounded projections and recesses are introduced into the surface structure and in the lateral boundaries of the near-wall channels, which further turbulence generation and - especially in mixtures - a disturbance and Breaking up possibly forming temperature and concentration boundary layers serve and are available as additional Dampfblasenkeime. (Advantage over DE-A-196 12 470 ).

Die Herstellung des erfindungsgemäßen Wärmeaustauschrohres basiert beispielhaft auf dem im Folgenden näher beschriebenen Verfahren. Üblicherweise wird Kupfer oder eine Kupferlegierung als Material der Wärmeaustauschrohre verwendet, jedoch ist die vorliegende Erfindung nicht in dieser Weise beschränkt. Vielmehr kann jeder Metalltyp zur Anwendung kommen, z.B. Aluminium. Zunächst wird ein metallisches Flachband einem einstufigen Walzprägeschritt unterworfen, in dem es zwischen einer Strukturwalze mit einer zur erfindungsgemäßen Struktur komplementären Oberflächengestaltung und einer Stützwalze hindurchgeführt wird. Dabei wird eine Seite des Flachbandes mit der erfindungsgemäßen Struktur versehen, während die zweite Seite glatt bleibt oder auch eine hier nicht näher beschriebene Strukturierung aufweist. Lediglich die dem nachfolgenden Verschweißen dienenden Randbereiche der ersten Seite können eventuell andersartig strukturiert werden oder auch unstrukturiert bleiben. Nach dem Walzprägeschritt wird das strukturierte Flachband zu einem Schlitzrohr eingeformt, in einem Schweißprozess längsnahtgeschweißt und das Rohr gegebenenfalls noch in einem abschließenden Ziehprozeß auf den gewünschten Aussendurchmesser gebracht. Eine mögliche Beeinflussung des Wärmeübertragungsvermögens des erfindungsgemäßen Wärmeaustauschrohres durch den die Schweißnaht umgebenden, andersartig strukturierten oder auch unstrukturierten Bereich ist unbedeutend und kann vernachlässigt werden.The production of the heat exchange tube according to the invention is based, for example, on the method described in more detail below. Usually, copper or a copper alloy is used as the material of the heat exchange tubes, but the present invention is not limited in this way. Rather, any type of metal can be used, eg aluminum. First, a metallic flat strip is subjected to a single-stage roll embossing step in which it is passed between a textured roll having a surface configuration complementary to the structure according to the invention and a backing roll. In this case, one side of the flat strip is provided with the structure according to the invention, while the second side remains smooth or has a structuring not described here in detail. Only the marginal areas of the first page serving for the subsequent welding can possibly be structured differently or remain unstructured. After the roll embossing step, the structured flat strip is formed into a slot tube, longitudinally welded in a welding process, and the tube is optionally brought to the desired outside diameter in a final drawing process. A possible influence on the heat transfer capacity of the heat exchange tube according to the invention by the weld seam surrounding, differently structured or unstructured area is insignificant and can be neglected.

Der Anspruch 20 betrifft die bevorzugte Ausführungsform einer Strukturwalze zur Herstellung der erfindungsgemäßen Wärmeaustauschrohre. Der modulare Aufbau der Walze aus Scheiben bzw. Ringen, der ein schnelles Erstellen und Bewerten zahlreicher Strukturvarianten im Rahmen eines Versuchsplanes und eine zügige Anpassung der Oberflächenstrukturierung an neue Fluide und veränderte Betriebszustände durch Änderung der Zahl, Form und (Nuten-)Geometrie der Scheiben und Ringe bzw. durch Austausch einzelner Scheiben/Ringe nach dem Baukastenprinzip ermöglicht, zeigt sich als weiterer Vorteil der Erfindung.Claim 20 relates to the preferred embodiment of a structure roller for producing the heat exchange tubes according to the invention. The modular structure of the wheel of discs or rings, the rapid creation and evaluation of numerous structural variants in the context of a design plan and a rapid adaptation of surface structuring to new fluids and changed operating conditions by changing the number, shape and (slot) geometry of the discs and Rings or by replacing individual discs / rings made possible on the modular principle, shows itself as a further advantage of the invention.

Die Erfindung wird anhand der folgenden Ausführungsbeispiele näher erläutert.The invention will be explained in more detail with reference to the following embodiments.

Es zeigt:

Fig. 1
einen Lamellenblock-Wärmeaustauscher nach dem Stand der Technik,
Fig.2
perspektivisch einen Abschnitt eines innenberippten Wärmeaustauschrohres,
Fig.3
schematisch eine Draufsicht eines erfindungsgemäßen Wärmeaustauschrohres mit aufgeklappter, berippter Innenoberfläche,
Fig.4
im vergrößerten Maßstab einen Querschnitt senkrecht zu den Rippenmittellinien durch eine hohe und eine niedrige Rippe nach Fig.3,
Fig.5
schematisch eine Draufsicht eines erfindungsgemäßen Wärmeaustauschrohres analog zu Fig.3, bei dem hohe und niedrige Rippen jeweils durch einen Spalt voneinander getrennt sind,
Fig.6
schematisch den Aufbau einer Strukturwalze zur Herstellung der erfindungsgemäßen Wärmeaustauschrohre,
Fig.7
in Schwarzweiß-Darstellung eine Draufsicht eines erfindungsgemäßen Wärmeaustauschrohres mit aufgeklappter Innenoberfläche, die in vier Zonen aufgeteilt ist,
Fig.8
eine Innenoberfläche nach Fig.7, bei der hohe und niedrige Rippen jeweils durch einen Spalt getrennt sind,
Fig. 9
in Schwarzweiß-Darstellung eine Draufsicht eines weiteren erfindungsgemäßen Wärmeaustauschrohres mit aufgeklappter Innenoberfläche, die in sechs Zonen aufgeteilt ist, wobei die Rippen positive und negative Steigungswinkel aufweisen, und
Fig. 10
in Schwarzweiß-Darstellung eine Draufsicht eines weiteren erfindungsgemäßen Wärmeaustauschrohres mit aufgeklappter Innenoberfläche, die in sechs Zonen aufgeteilt ist, wobei die Rippen in den beiden mittleren Zonen einen anderen Steigungswinkel aufweisen als die Rippen in den beiden jeweiligen Randzonen.
It shows:
Fig. 1
a prior art fin block heat exchanger,
Fig.2
in perspective, a portion of a innenberippten heat exchange tube,
Figure 3
FIG. 2 schematically a top view of a heat exchange tube according to the invention with unfolded, ribbed inner surface, FIG.
Figure 4
on an enlarged scale a cross-section perpendicular to the rib center lines through a high and a low rib according to Figure 3,
Figure 5
3 is a schematic plan view of a heat exchange tube according to the invention analogous to FIG. 3, in which high and low ribs are separated from each other by a gap,
Figure 6
FIG. 2 schematically shows the structure of a structure roller for producing the heat exchange tubes according to the invention, FIG.
Figure 7
in black and white representation, a top view of a heat exchange tube according to the invention with unfolded inner surface, which is divided into four zones,
Figure 8
an inner surface according to Figure 7, in which high and low ribs are each separated by a gap,
Fig. 9
in black and white representation of a plan view of another heat exchange tube according to the invention with unfolded inner surface, which is divided into six zones, wherein the ribs have positive and negative pitch angles, and
Fig. 10
in black and white representation of a plan view of another heat exchange tube according to the invention with unfolded inner surface, which is divided into six zones, wherein the ribs in the two central zones have a different pitch angle than the ribs in the two respective edge zones.

Fig. 1 zeigt einen Lamellenblock-Wärmeaustauscher nach dem Stand der Technik mit horizontal angeordneten Wärmeaustauschrohren 1 und nicht näher bezifferten Lamellen.Fig. 1 shows a fin block heat exchanger according to the prior art with horizontally disposed heat exchange tubes 1 and not numbered fins.

In Fig. 2 ist ein Längenabschnitt eines längsnahtgeschweißten Wärmeaustauschrohres 1 mit dem Außendurchmesser D dargestellt. Das Wärmeaustauschrohr 1 weist eine glatte äußere Oberfläche und eine strukturierte Innenoberfläche auf.In Fig. 2, a longitudinal section of a longitudinally welded heat exchange tube 1 is shown with the outer diameter D. The heat exchange tube 1 has a smooth outer surface and a textured inner surface.

Fig. 3 zeigt schematisch eine Draufsicht auf die aufgeklappte Innenoberfläche eines solchen berippten Wärmeaustauschrohres 1. Die Innenoberfläche ist in Umfangsrichtung in vier Zonen (Z1 bis Z4) aufgeteilt. In jeder Zone (Z1 bis Z4) sind alternierend (in Rohrlängsrichtung) hohe Rippen 2 (Rippenhöhe H1) und niedrige Rippen 3 (Rippenhöhe H2) eingeformt, die durch Nuten 4 voneinander getrennt sind. Die Rippen 2, 3 - und die Nuten 4 - verlaufen schräg zur Rohrlängsrichtung, d.h. die Mittellinien 5 der Rippen 2, 3 bilden mit der Rohrlängsrichtung den Steigungswinkel α. Benachbarte Zonen (Z1 bis Z4) sind so gegeneinander versetzt, daß an den Grenzen der Zonen (Z1 bis Z4) jeweils eine hohe Rippe 2 und eine niedrige Rippe 3 zusammenstoßen. Die Rippenlänge innerhalb einer Zone, gemessen längs der Mittellinien 5 der Rippen 2, 3, ist mit L bezeichnet.Fig. 3 shows schematically a plan view of the unfolded inner surface of such a finned heat exchange tube 1. The inner surface is divided in the circumferential direction into four zones (Z 1 to Z 4 ). In each zone (Z 1 to Z 4 ) are alternately formed (in the tube longitudinal direction) high ribs 2 (rib height H 1 ) and low ribs 3 (rib height H 2 ), which are separated by grooves 4. The ribs 2, 3 - and the grooves 4 - extend obliquely to the tube longitudinal direction, ie the center lines 5 of the ribs 2, 3 form the pitch angle α with the tube longitudinal direction. Adjacent zones (Z 1 to Z 4 ) are offset from each other so that at the boundaries of the zones (Z 1 to Z 4 ) each have a high rib 2 and a low rib 3 collide. The rib length within a zone, measured along the center lines 5 of the ribs 2, 3, is denoted by L.

Fig.4 zeigt im Detail die Rippenteilung t (Abstand von Rippenmitte zu Rippenmitte, gemessen senkrecht zu den Rippenmittellinien 5), die Flankenwinkel γ1 bzw. γ2, die Rippenhöhen H1 bzw. H2 und die Rippenfußbreiten F1 bzw. F2. Die Flankenwinkel γ1, γ2 und die Fußbreiten F1, F2 werden ebenfalls in einer Querschnittsebene senkrecht zu den Rippenmittellinien 5 gemessen.4 shows in detail the rib pitch t (distance from the center of the rib to the middle of the rib measured perpendicular to the rib center lines 5), the flank angles γ 1 and γ 2 , the rib heights H 1 and H 2 and the rib foot widths F 1 and F 2, respectively , The flank angles γ 1 , γ 2 and the foot widths F 1 , F 2 are also measured in a cross-sectional plane perpendicular to the rib center lines 5.

Fig. 5 zeigt schematisch und analog zu Fig.3 eine Draufsicht auf die aufgeklappte Innenoberfläche eines berippten Wärmeaustauschrohres 1, bei der hohe und niedrige Rippen am Übergang benachbarter Zonen jeweils durch einen Spalt 12 der Länge B (gemessen längs der verlängerten Mittellinien 5 der Rippen 2, 3) voneinander getrennt sind.5 shows, schematically and analogously to FIG. 3, a plan view of the unfolded inner surface of a finned heat exchange tube 1, with high and low fins at the transition of adjacent zones respectively through a gap 12 of length B (measured along the extended centerlines 5 of the fins 2 , 3) are separated from each other.

In Fig. 6 ist schematisch der Aufbau einer Strukturwalze 6 zur Herstellung der erfindungsgemäßen Wärmeaustauschrohre 1 dargestellt.In Fig. 6, the structure of a structure roller 6 for producing the heat exchange tubes 1 according to the invention is shown schematically.

Die Walze 6 ist aus mehreren Scheiben 7 aufgebaut, die in Umfangsrichtung gegeneinander versetzt sind. In die einzelnen Scheiben 7 sind alternierend tiefe und weniger tiefe Nuten 8, 9 eingebracht, die beim Abrollen der Walze 6 auf dem Blechband 10 in einem Walzprägevorgang die hohen Rippen 2 und die niedrigeren Rippen 3 in den einzelnen Zonen Z1 bis Z5 erzeugen. Nach der Strukturierung wird das Blechband 10 zu einem Schlitzrohr geformt und längsgeschweißt (Schweißnaht 11).The roller 6 is composed of a plurality of discs 7, which are offset in the circumferential direction against each other. In the individual disks 7 are alternately deep and less deep grooves 8, 9 are introduced, which produce the high ribs 2 and the lower ribs 3 in the individual zones Z 1 to Z 5 when rolling the roller 6 on the strip 10 in a roll embossing. After structuring, the sheet metal strip 10 is formed into a slot tube and longitudinally welded (weld seam 11).

Die Fig. 7 bis 10 zeigen in Schwarzweiß-Darstellung weitere Ausführungsformen der Erfindung, wobei die Rippenspitzen/-flanken weiß und der Grund der zwischen den Rippen 2, 3 verlaufenen Nuten 4 schwarz gehalten wird.7 to 10 show in black and white representation of further embodiments of the invention, wherein the rib tips / flanks white and the bottom of the running between the ribs 2, 3 grooves 4 is kept black.

Die Fig. 7 und 8 zeigen eine Ausführungsform mit jeweils vier Zonen (Z1 bis Z4), wobei sich die Fig.8 durch die zusätzliche Anordnung von Spalten 12 der Länge B zwischen hohen Rippen 2 und niedrigen Rippen 3 unterscheidet. Diese Verhältnisse sind anhand der Darstellung gemäß Fig. 5 verdeutlicht.FIGS. 7 and 8 show an embodiment with four zones each (Z 1 to Z 4 ), wherein FIG. 8 differs by the additional arrangement of gaps 12 of length B between high ribs 2 and low ribs 3. These relationships are illustrated by the representation of FIG. 5.

Die Innenoberfläche des Wärmeaustauschrohres 1 nach Fig. 9 ist in 6 Zonen (Z1 bis Z6) aufgeteilt. In der Gruppe G1 mit den drei Zonen (Z1 bis Z3) verlaufen die Rippen 2, 3 unter dem Steigungswinkel α, in der Gruppe 2 mit den drei Zonen (Z4 bis Z6) unter dem bzgl. der Grenzlinie zwischen benachbarten Gruppen spiegelsymmetrisch entgegen gesetzten (negativen) Winkel α' = -α.The inner surface of the heat exchange tube 1 of FIG. 9 is divided into 6 zones (Z 1 to Z 6 ). In the group G 1 with the three zones (Z 1 to Z 3 ) extend the ribs 2, 3 at the pitch angle α, in the group 2 with the three zones (Z 4 to Z 6 ) under the respect. The boundary line between adjacent Groups of mirror symmetry opposed (negative) angles α '= -α.

Die Innenoberfläche des Wärmeaustauschrohres 1 nach Fig. 10 ist ebenfalls in 6 Zonen (Z1 bis Z6) aufgeteilt. In den Gruppen G1 und G3 mit den Zonen Z1/Z2 und Z5/Z6 verlaufen die Rippen 2, 3 unter dem Steigungswinkel α, in der Gruppe 2 mit den Zonen Z3/Z4 unter einem betragsmäßig anderen Steigungswinkel |α'| ≠ |α|.The inner surface of the heat exchange tube 1 of Fig. 10 is also divided into 6 zones (Z 1 to Z 6 ). In the groups G 1 and G 3 with the zones Z 1 / Z 2 and Z 5 / Z 6 , the ribs 2, 3 extend under the pitch angle α, in the group 2 with the zones Z 3 / Z 4 under a different pitch angle | α '| ≠ | α |.

Zahlenbeispiel:Numerical example:

Zur Herstellung eines Wärmeaustauschrohres 1 mit einem Aussendurchmesser von D = 7 mm wird die Strukturwalze 6 aufgebaut aus 19 Scheiben 7 des Durchmessers 33 mm und der Stärke 1,2 mm, so dass die resultierende Strukturierung der Innenoberfläche des Wärmeaustauschrohres 1 vor dem abschließenden Ziehprozeß entsprechend Fig. 2 aus 19 1,2 mm breiten Zonen besteht, in denen sich in Längsrichtung des Bandes 10 alternierend hohe und niedrigere Rippen 2, 3 abwechseln und unter einem Winkel von α = 14,3° gegenüber der Längsrichtung des Flachbandes 10 verlaufen. Je Zone sind in dieser Ausführung bei einem Schnitt in Umfangsrichtung genau eine hohe und eine niedrigere Rippe 2, 3 enthalten, so dass insgesamt in Umfangsrichtung 19 hohe Rippen 2 und 19 niedrigere Rippen 3 resultieren. Die Rippenhöhen betragen H1 = 0,14 mm bzw. H2 = 0,07 mm, die Flankenwinkel γ = 45°, die Längen der Rippen L = 4,86 mm und die Teilung (der Abstand hohe - niedrige Rippe gemessen senkrecht zur Rippe) beträgt t = 0,58 mm. Als Versatz der Zonen bzw. als Winkelversatz der Scheiben 7 der Strukturwalze 6 gegeneinander wird ein Winkel von 90° eingestellt.To produce a heat exchange tube 1 with an outer diameter of D = 7 mm, the structure roller 6 is constructed from 19 discs 7 of diameter 33 mm and 1.2 mm thick, so that the resulting structuring of the inner surface of the heat exchange tube 1 before the final drawing process shown in FIG 2 consists of 19 1.2 mm wide zones in which alternating in the longitudinal direction of the belt 10 alternate high and low ribs 2, 3 and at an angle of α = 14.3 ° relative to the longitudinal direction of the flat strip 10. Depending on the zone, in this embodiment, exactly one high and one lower rib 2, 3 are included in a section in the circumferential direction, so that overall high ribs 2 and 19 result in lower ribs 3 in the circumferential direction 19. The rib heights are H 1 = 0.14 mm or H 2 = 0.07 mm, the flank angle γ = 45 °, the lengths of the ribs L = 4.86 mm and the pitch (the distance high - low rib measured perpendicular to Rib) is t = 0.58 mm. As an offset of the zones or as an angular offset of the discs 7 of the structure roller 6 against each other, an angle of 90 ° is set.

Claims (20)

  1. Heat-exchange pipe (1) having a ribbed inner surface which is divided in a peripheral direction into at least two zones (Z1 to Zm), ribs (2, 3) of differing rib height which extend at an angle of pitch α relative to the longitudinal axis of the pipe alternating in adjacent zones (Z1 to Zm),
    characterised in that
    the ribs (2, 3) are arranged in the individual zones (Z1 to Zm) in the longitudinal direction of the pipe in any desired periodic combination and sequence of at least two rib heights (H1 to Hn, H1>H2>...>Hn), adjacent zones (Z1 to Zm) adjoining each other in such a manner that, at the transition of two zones, the rib sequence is mutually offset in the longitudinal direction of the pipe by at least one rib.
  2. Heat-exchange pipe (1) having a ribbed inner surface which is divided in a peripheral direction into at least two groups (G1 to Gp) of zones (Z1 to Zm), each group comprising at least two zones and the angle of pitch (α, α') of the ribs (2, 3) in the zones of a group being uniform in each case, but varying between adjacent groups in such a manner that, when counting from a group G1 in groups with an uneven number, there is a differently valued angle of pitch α of the ribs (2, 3) from the angle of pitch α' in groups with an even number (|α'| ≠ |α|),
    characterised in that
    the ribs (2, 3) are arranged in the individual zones (Z1 to Zm) in the longitudinal direction of the pipe in any desired periodic combination and sequence of at least two rib heights (H1 to Hn, H1>H2>...>Hn), adjacent zones (Z1 to Zm) of a group adjoining each other in such a manner that, at the transition of two zones of a group, the rib sequence is mutually offset in the longitudinal direction of the pipe by at least one rib.
  3. Heat-exchange pipe (1) having a ribbed inner surface which is divided in a peripheral direction into at least two groups (G1 to Gp) of zones (Z1 to Zm), each group comprising at least two zones and the angle of pitch (α, α') of the ribs (2, 3) in the zones of a group being uniform in each case, but varying between adjacent groups in such a manner that, when counting from a group G1 in groups with an uneven number, there is an angle of pitch α of the ribs (2, 3), and in groups having an even number, an angle of pitch α' = -α of the ribs (2, 3) that is opposite in a mirror-symmetrical manner relative to the borderline between adjacent groups,
    characterised in that
    the ribs (2, 3) are arranged in the individual zones (Z1 to Zm) in the longitudinal direction of the pipe in any desired periodic combination and sequence of at least two rib heights (H1 to Hn, H1>H2>...>Hn), adjacent zones (Z1 to Zm) of a group adjoining each other in such a manner that, at the transition of two zones of a group, the rib sequence is mutually offset in the longitudinal direction of the pipe by at least one rib.
  4. Heat-exchange pipe according to any one of claims 1 to 3,
    characterised in that
    in each zone (Z1 to Zm), in periodic repetition, precisely one rib having the rib height Hi (i=1 to n) is followed by precisely one rib having the rib height Hj (j=1 to n, j ≠ i, Hj ≠ Hi) and optionally other ribs having the heights Hk (k=1 to n, k ≠ i,j, Hk ≠ Hi, Hj) in the longitudinal direction of the pipe.
  5. Heat-exchange pipe according to any one of claims 1 to 3,
    characterised in that
    in each zone (Z1 to Zm), in periodic repetition, two or more ribs having the rib height Hi (i = 1 to n) are followed in each case by precisely one rib having the rib height Hj (j = 1 to n, j ≠ i, Hj ≠ Hi) and optionally other ribs having the heights Hk (k = 1 to n, k ≠ i, j , Hk ≠ Hi,Hj) in the longitudinal direction of the pipe.
  6. Heat-exchange pipe according to any one of claims 1 to 3,
    characterised in that
    in each zone (Z1 to Zm), in periodic repetition, precisely one rib having the rib height Hi (i = 1 to n) is followed in each case by two or more ribs having the rib height Hj (j = 1 to n, j ≠ i, Hj ≠ Hi) and optionally other ribs having the heights Hk (k = 1 to n, k ≠ i, j , Hk ≠ Hi,Hj) in the longitudinal direction of the pipe.
  7. Heat-exchange pipe according to any one of claims 1 to 3,
    characterised in that
    in each zone (Z1 to Zm), in periodic repetition, two or more ribs having the rib height Hi (i = 1 to n) are followed in each case by two or more ribs having the rib height Hj (j = 1 to n, j ≠ i, Hj ≠ Hi) and optionally other ribs having the heights Hk (k = 1 to n, k ≠ i, j , Hk ≠ Hi,Hj) in the longitudinal direction of the pipe.
  8. Heat-exchange pipe according to one or more of claims 1 to 7, characterised in that
    with an outer pipe diameter of D = 3 to 20 mm, the angle of pitch α is from 5 to 85°, the largest rib height H1 is from 0.05 to 0.5 mm and the rib length for each zone L is from 0.5 to 15 mm.
  9. Heat-exchange pipe according to claim 8, characterised in that
    with an outer pipe diameter of D = 6 to 12.7 mm, the angle of pitch α is from 10 to 40°, the largest rib height H1 is from 0.1 to 0.3 mm and the rib length for each zone L is from 0.5 to 10 mm.
  10. Heat-exchange pipe according to one or more of claims 1 to 9, characterised in that
    the rib heights Hj (j=2 to n), compared with the largest rib height H1, Hj/H1 are from 0.1 to 0.9, in particular 0.2 to 0.8.
  11. Heat-exchange pipe according to one or more of claims 4 to 9, characterised in that
    the rib height H2, compared with the largest rib height H1, H2/H1 is from 0.2 to 0.7, in particular 0.4 to 0.6.
  12. Heat-exchange pipe according to one or more of claims 1 to 11, characterised in that
    the rib distribution t is from 0.1 to 0.8 mm and the flank angle γ1 to γn is from 10 to 60°.
  13. Heat-exchange pipe according to claim 12, characterised in that
    the rib distribution t is 0.2 to 0.6 mm and the flank angle γ1 to γn is from 20 to 50°.
  14. Heat-exchange pipe according to one or more of claims 1 to 13, characterised in that
    the cross-sections of the ribs (2, 3) are geometrically similar.
  15. Heat-exchange pipe according to one or more of claims 1 to 13, characterised in that
    the cross-sections of the ribs (2, 3) are geometrically different.
  16. Heat-exchange pipe according to one or more of claims 1 to 15, characterised in that
    two ribs (2, 3) of adjacent zones (Z1 to Zm), one of which is located in the extension of the centre line (5) of the other, are separated from each other in each case by means of a gap (12).
  17. Heat-exchange pipe according to claim 16, characterised in that
    the gap length is B < 0.5 x rib length L.
  18. Heat-exchange pipe according to claim 17, characterised in that
    the gap length is B < 0.2 x rib length L.
  19. Heat-exchange pipe according to one or more of claims 1 to 18, characterised in that
    it has at least one weld seam (11), in particular in the longitudinal direction of the pipe.
  20. Method for producing a heat-exchange pipe according to one or more of claims 1 to 19, having a structure roller,
    characterised in that
    the structure roller is constructed from discs or rings (7), the number and width of which corresponds to the number and width of the zones (Z1 to Zm) of the heat-exchange pipe (1), and which have grooves (8, 9) which extend in an inclined manner and which have different depths in an alternating manner and which are mutually offset in a peripheral direction.
EP01119589A 2000-08-25 2001-08-16 Heat exchanger tube with inner offset fins with variable height Expired - Lifetime EP1182416B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10041919A DE10041919C1 (en) 2000-08-25 2000-08-25 Internally finned heat exchange tube has fins in individual zones arranged so that adjacent zones have fins offset at zone transition
DE10041919 2000-08-25

Publications (3)

Publication Number Publication Date
EP1182416A2 EP1182416A2 (en) 2002-02-27
EP1182416A3 EP1182416A3 (en) 2006-01-04
EP1182416B1 true EP1182416B1 (en) 2007-10-03

Family

ID=7653844

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01119589A Expired - Lifetime EP1182416B1 (en) 2000-08-25 2001-08-16 Heat exchanger tube with inner offset fins with variable height

Country Status (6)

Country Link
US (2) US6631758B2 (en)
EP (1) EP1182416B1 (en)
JP (1) JP2002115987A (en)
CN (1) CN1243950C (en)
AT (1) ATE374916T1 (en)
DE (2) DE10041919C1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10156374C1 (en) * 2001-11-16 2003-02-27 Wieland Werke Ag Heat exchange tube structured on both sides has inner fins crossed by secondary grooves at specified rise angle
DE10210016B9 (en) * 2002-03-07 2004-09-09 Wieland-Werke Ag Heat exchange tube with a ribbed inner surface
DE10218912A1 (en) 2002-04-27 2003-11-06 Modine Mfg Co Corrugated heat exchanger body
US20040099409A1 (en) * 2002-11-25 2004-05-27 Bennett Donald L. Polyhedral array heat transfer tube
DE102008030423B4 (en) 2007-12-05 2016-03-03 GIB - Gesellschaft für Innovation im Bauwesen mbH Pipe with a surface profile-modified outer surface by pimples
DE102008001435A1 (en) 2008-04-28 2009-10-29 Basf Se Process for transferring heat to a monomeric acrylic acid, acrylic acid-Michael oligomers and acrylic acid polymer dissolved liquid containing
US20110079370A1 (en) * 2009-07-17 2011-04-07 Textron Inc. Non-Uniform Height And Density Fin Design For Heat Sink
JP2011144989A (en) * 2010-01-13 2011-07-28 Mitsubishi Electric Corp Heat transfer tube for heat exchanger, heat exchanger, refrigerating cycle device and air conditioner
CN103339460B (en) * 2011-01-28 2017-01-18 开利公司 Current-carrying tube for heat exchanger
US9964364B2 (en) * 2012-05-10 2018-05-08 Arconic Inc. Multi-layer aluminum alloy sheet product for tubes for heat exchangers
US9599410B2 (en) * 2012-07-27 2017-03-21 General Electric Company Plate-like air-cooled engine surface cooler with fluid channel and varying fin geometry
CN103433323A (en) * 2013-08-05 2013-12-11 江苏天潭科技材料有限公司 Production method of internal thread aluminum pipe
US20150219405A1 (en) * 2014-02-05 2015-08-06 Lennox Industries Inc. Cladded brazed alloy tube for system components
CN105627789B (en) * 2015-12-30 2017-07-28 青岛金玉大商贸有限公司 A kind of heat exchanger of intercommunicating pore number change
CN105571165B (en) * 2015-12-30 2017-11-17 佛山市顺德区北滘镇信威电器有限公司 A kind of inner rib plate height Axial changes solar water heater
CN105571347B (en) * 2015-12-30 2017-09-08 青岛酒店管理职业技术学院 A kind of different intercommunicating pore finned heat exchanger of row's spacing
CN105571348B (en) * 2015-12-30 2017-05-31 青岛酒店管理职业技术学院 The heat exchanger that a kind of finned tube angle is gradually changed
US10823067B2 (en) * 2016-05-11 2020-11-03 General Electric Company System for a surface cooler with OGV oriented fin angles
DE102017100652B4 (en) * 2017-01-13 2022-09-29 Schmidt & Bender Gmbh & Co. Kg Reversing system for telescopic sights and telescopic sights with such
CN107328272B (en) * 2017-08-22 2023-08-22 无锡马山永红换热器有限公司 High-efficiency plate-fin water cooler
US20200126891A1 (en) * 2018-10-19 2020-04-23 Board Of Trustees Of The University Of Arkansas Combined Integration Of Phase Change Materials Into Conduction-Convection-Latent Heat Optimized Thermal Management Through Novel Geometries Enabled In Additive Manufactured Heat Sinks

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189497A (en) * 1984-10-05 1986-05-07 Hitachi Ltd Heat transfer pipe
JPH02161290A (en) * 1988-12-15 1990-06-21 Furukawa Electric Co Ltd:The Inner face processed heat transfer tube
JP3014432B2 (en) * 1990-10-23 2000-02-28 古河電気工業株式会社 Heat transfer tube manufacturing method
JP2785851B2 (en) * 1991-02-18 1998-08-13 日立電線株式会社 Heat exchanger tubes for heat exchangers
US5332034A (en) 1992-12-16 1994-07-26 Carrier Corporation Heat exchanger tube
JPH0875384A (en) * 1994-07-01 1996-03-19 Hitachi Ltd Heat transfer tube for non-azeotrope refrigerant, heat exchanger using the same tube, assembling method and refrigerating air conditioner using the same exchanger
US5791405A (en) * 1995-07-14 1998-08-11 Mitsubishi Shindoh Co., Ltd. Heat transfer tube having grooved inner surface
US5704424A (en) * 1995-10-19 1998-01-06 Mitsubishi Shindowh Co., Ltd. Heat transfer tube having grooved inner surface and production method therefor
JP3572497B2 (en) * 1996-03-22 2004-10-06 東洋ラジエーター株式会社 Welded pipe with internal groove for heat exchanger for air conditioning
DE19612470A1 (en) * 1996-03-28 1997-10-02 Km Europa Metal Ag Exchanger tube
KR100245383B1 (en) * 1996-09-13 2000-03-02 정훈보 Pipe with crossing groove and manufacture thereof
TW445299B (en) * 1996-10-16 2001-07-11 Shinetsu Chemical Co Method of producing hydrogen absorbing alloy powder, and electrode using hydrogen absorbing alloy powder produced by said method
JPH1183368A (en) * 1997-09-17 1999-03-26 Hitachi Cable Ltd Heating tube having grooved inner surface
JPH11108579A (en) * 1997-10-02 1999-04-23 Kobe Steel Ltd Pipe with grooved inner face
JP2000121272A (en) * 1998-10-14 2000-04-28 Mitsubishi Shindoh Co Ltd Heat exchanger tube with internal groove and heat exchanger
MY120261A (en) * 1998-11-24 2005-09-30 Furukawa Electric Co Ltd Internal-grooved heat exchanger tube and metal strip machining roll for internal-grooved heat exchanger tube
JP2000205781A (en) * 1999-01-06 2000-07-28 Mitsubishi Shindoh Co Ltd Inner surface grooved heat transfer tube

Also Published As

Publication number Publication date
US6631758B2 (en) 2003-10-14
ATE374916T1 (en) 2007-10-15
US20030006031A1 (en) 2003-01-09
CN1243950C (en) 2006-03-01
US20030111215A1 (en) 2003-06-19
EP1182416A3 (en) 2006-01-04
JP2002115987A (en) 2002-04-19
CN1340689A (en) 2002-03-20
US6722420B2 (en) 2004-04-20
DE10041919C1 (en) 2001-10-31
DE50113077D1 (en) 2007-11-15
EP1182416A2 (en) 2002-02-27

Similar Documents

Publication Publication Date Title
EP1182416B1 (en) Heat exchanger tube with inner offset fins with variable height
DE19628280C2 (en) Heat transfer tube with a grooved inner surface
DE4404357C1 (en) Heat exchange core for condensing vapour (steam)
DE10038624C2 (en) Heat transfer tube with twisted inner fins
DE10101589C1 (en) Heat exchanger tube and process for its production
EP0733871B1 (en) Heat transfer tube for a heat exchanger
DE60005602T2 (en) Liquid-carrying pipe and its use in an automotive radiator
EP1113237B1 (en) Heat exchange tube structured on both sides and process for making same
EP1518084B1 (en) Stacked panel-shaped heat transmitter
DE2431162A1 (en) FIBER TUBE
DE2657307A1 (en) PIPE HEAD FOR A HEAT EXCHANGER
EP3572760B1 (en) Package for heat and/or material transfer
EP0221095A1 (en) Vortex packing and process for its manufacture.
DE10054158A1 (en) Multi-chamber pipe with circular flow channels
DE2721321A1 (en) HEAT TRANSFER WITH A WALL-LIKE SEPARATION FOR THE TWO MEDIA INVOLVED IN THE HEAT TRANSFER
DE2613747B2 (en) Tubular heat exchanger
DE2735762C2 (en) Finned tube and device for its manufacture
DE10210016B9 (en) Heat exchange tube with a ribbed inner surface
EP1668303B1 (en) Soldered heat exchanger network
DE19706544A1 (en) Packing for rectification column of air separation plant
DE3635940A1 (en) SLAT
EP0177904A2 (en) Device for exchange of heat between two gases conducted in cross-flow to each other
DE19846347A1 (en) Heat exchanger of aluminum or aluminum alloy is composed in layered structure of extruded profile tubes of rectangular configuration with several adjacent channels separated by longitudinal ribs
DE2547213A1 (en) SCREW-SEAM PROFILE TUBE
DE2755521A1 (en) HEAT TRANSFER PIPE AND METHOD FOR THE PRODUCTION THEREOF

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010816

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50113077

Country of ref document: DE

Date of ref document: 20071115

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080110

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080303

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090831

Year of fee payment: 9

Ref country code: GB

Payment date: 20090812

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100824

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50113077

Country of ref document: DE

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100816

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831