EP1180186B2 - Flexible polymer material sheet for stretched constructions and false ceiling comprising this sheet - Google Patents

Flexible polymer material sheet for stretched constructions and false ceiling comprising this sheet Download PDF

Info

Publication number
EP1180186B2
EP1180186B2 EP00910999A EP00910999A EP1180186B2 EP 1180186 B2 EP1180186 B2 EP 1180186B2 EP 00910999 A EP00910999 A EP 00910999A EP 00910999 A EP00910999 A EP 00910999A EP 1180186 B2 EP1180186 B2 EP 1180186B2
Authority
EP
European Patent Office
Prior art keywords
sheet
micro
reliefs
material according
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00910999A
Other languages
German (de)
French (fr)
Other versions
EP1180186A1 (en
EP1180186B1 (en
Inventor
Marc Fontaine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Newmat SA
Original Assignee
Newmat SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8846089&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1180186(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Newmat SA filed Critical Newmat SA
Publication of EP1180186A1 publication Critical patent/EP1180186A1/en
Application granted granted Critical
Publication of EP1180186B1 publication Critical patent/EP1180186B1/en
Publication of EP1180186B2 publication Critical patent/EP1180186B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/002Coverings or linings, e.g. for walls or ceilings made of webs, e.g. of fabrics, or wallpaper, used as coverings or linings
    • E04F13/005Stretched foil- or web-like elements attached with edge gripping devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/08Means for treating work or cutting member to facilitate cutting
    • B26D7/14Means for treating work or cutting member to facilitate cutting by tensioning the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/24Perforating by needles or pins
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/8409Sound-absorbing elements sheet-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/30Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by edge details of the ceiling; e.g. securing to an adjacent wall
    • E04B9/303Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by edge details of the ceiling; e.g. securing to an adjacent wall for flexible tensioned membranes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8414Sound-absorbing elements with non-planar face, e.g. curved, egg-crate shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8457Solid slabs or blocks
    • E04B2001/8476Solid slabs or blocks with acoustical cavities, with or without acoustical filling
    • E04B2001/848Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element
    • E04B2001/8495Solid slabs or blocks with acoustical cavities, with or without acoustical filling the cavities opening onto the face of the element the openings going through from one face to the other face of the element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24281Struck out portion type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0481Puncturing

Definitions

  • the invention relates to the technical field of relatively thin sheet materials, typically less than half a millimeter, used for the realization of ceilings, false ceilings, false walls, wall coverings, by powering these materials in sheet.
  • False ceilings obtained using such materials may incorporate thermal insulators, spotlights or various lighting, as well as ventilation or ventilation openings or sprinklers. Removable, they allow, if necessary, an intervention in the plenum.
  • polymeric materials for stretch ceilings known in the prior art, translucent or opaque, dyed or not in the mass, matt, lacquered, marbled, suede or satin, can thus be used both in industrial and hospital environments, for community amenities, laboratories or homes.
  • the lacquered finish allows a mirror effect often used in shopping centers, a matte finish rather close to a plaster aspect being more usual to traditional decorations.
  • soundproofing panels comprise a perforated plate made of metal or plastic fixed on a mineral wool type support or polyurethane foam.
  • first technique of passive sound absorption by fibrous or porous materials reference may be made, for example, to the following documents: EP-A-013 513 , EP-A-023 618 , EP-A-246 464 , EP-A-524,566 , EP-A-605,784 , EP-A-652 331 , FR-A-2 405 818 , FR-A-2,536,444 , FR-A-2,544,358 , FR-A-2,549,112 , FR-A-2,611,776 , FR-A-2,611,777 , FR-A-2,732,381 , US-A-4,441,580 , US-A-3,948,347 .
  • the panels forming the walls such as for example suspended ceilings are provided with cavities whose volume is calculated to tune them on certain frequency ranges, these cavities being protected by a porous facing.
  • Helmholtz resonators reference may be made, for example, to the documents DE-PS-36 43 481 , FR-A-2,463,235 .
  • the apparent surface of the ceiling panels is embossed or provided with grooves or deep cavities.
  • FR-A-2,381,142 FR-A-2,523,621 , FR-A-2,573,798 , WO-A-80 / 01,183 , WO-A-94/24382 .
  • honeycomb webs form absorbent membranes. This technique, expensive, is sometimes used in recording studios.
  • the document EP 0 816 583 discloses a device for reducing acoustic levels in buildings, comprising acoustic attenuation elements formed of several leaves located at a distance from each other and parallel to each other, suspended vertically, these sheets being made of rigid polymer material such as polycarbonate or polyethylene, these sheets can be wound on a storage cylinder.
  • the document EP 0 399 935 describes an air distribution device for heating, ventilation or air-conditioning purposes, the walls of the air distribution network being constituted by false ceilings made of fabric stretched at least partly permeable to the air for a loss load of about 1Pa for a nominal flow rate of 10 m 3 per hour per m 2 of permeable surface.
  • the document DE 197 54 107C discloses acoustic panels of polyester or metal such as steel or aluminum, placed parallel to each other in suspension.
  • a first object of the invention is to provide a flexible polymeric material, in sheet, suitable for use in tension structures for decoration, masking or display, such as in particular false ceilings, false walls, this material having acoustic properties greatly improved.
  • a second object of the invention is to provide a material as above, the visual appearance of which remains perfectly adapted to its use, both in industrial and hospital environments, as well as for public facilities or modern living quarters. or historical.
  • the invention relates, in a first aspect, to a flexible sheet material (1) having a thickness (e1) of less than half a millimeter, for the production of tensile structures such as, in particular, false ceilings, characterized in that it comprises micro-reliefs extending over a height (h) of a few microns to 100 microns, micro-reliefs (2) formed by embossing the constituent material of the material (1) which thus presents a higher sound absorption coefficient than the same material without said reliefs, the microreliefs being obtained by a needling step, locally pushing the constituent material of the sheet, in a predetermined pattern, to its micro-perforation, the step needling being conducted while the sheet of material is placed under a voltage of the order of that of its final use in a tensile structure.
  • the method of producing a sheet of material as presented above comprises a needling step, locally pushing the constituent material of the sheet to its micro perforation, in a predetermined pattern.
  • the needling step is performed without the sheet undergoes a removal of material.
  • the needles used in the needling process have an extreme diameter less than one tenth of a millimeter, for example of the order of four hundredths of a millimeter.
  • the needling step is conducted while the sheet of material is placed under a voltage of the order of that of its end use in a tensile structure.
  • the invention relates to a false ceiling, characterized in that it comprises a sheet of a material as presented above, energized with respect to support means.
  • the figure 1a is a front view of a material 1 thickness of the order of one tenth of a millimeter, provided with substantially identical micro-reliefs 2 regularly distributed over a square mesh network.
  • On the figure 1b is shown in greatly enlarged view the shape of these reliefs 2, when seen in section perpendicular to the plane of the figure 1 .
  • the dimensions of the micro reliefs are such that they appear almost punctual on the figure 1 .
  • These reliefs 2 are, in the embodiment considered here, in the form of cups substantially of revolution shape about an axis 3 perpendicular to the mean plane of the sheet of material 1 laid flat. These reliefs extend over a small height h, of the order of a few microns to a few tens of microns, and have an apparent opening of the order of two tenths of a millimeter.
  • these micro reliefs are provided with a perforated bottom wall 4.
  • These through holes 19 are derived from a needling needles whose tips have a diameter of the order of a few hundredths of a millimeter, for example 4 hundredths of a millimeter.
  • This needling is performed while the sheet of material 1 is placed under tension.
  • This voltage is of the order of that experienced by the sheet at its place of use, for example in a suspended false ceiling.
  • the through holes 19, of diameter of the order of a few hundredths of a millimeter, are obtained without removal of material.
  • the bottom wall 4 of the micro-perforated reliefs 2 is connected to the edge of the cuvettes by an annular wall 5 of revolution about the axis 3. Where appropriate, this wall 5 may have a thickness e5 less than that e1 measured between the reliefs for the sheet of material 1. This difference in thickness will be all the more marked as the height h of the micro-reliefs 2 is large, thickness e1 given.
  • the reliefs are not all identical, two or more populations of reliefs that can be distinguished, these reliefs being of different shapes.
  • the reliefs are not all substantially punctual, but extend in at least one direction to form micro grooves and micro grooves.
  • all the reliefs are not symmetrical of revolution with respect to an axis substantially perpendicular to the mean plane of the sheet of material 1.
  • the bowl bottoms when viewed in plan, may be square, rectangular, oval, regular polygon-shaped or not.
  • the mesh of the network of micro-reliefs is square, in the embodiment of the figure 1 . In other embodiments, this mesh is not square but rectangular.
  • At least two different micro-relief, mesh and / or p1, p2, p'2 arrays are arranged on the sheet of material 1, as shown in FIG. figure 1c .
  • micro-reliefs Depending on the density of micro-reliefs, the pattern of their distribution, their height, the inventors found that the visual impact of the placement of these reliefs is more or less marked, as well as the impact on the acoustic properties of the sheet of material 1, a dramatic improvement of the acoustic properties that can be achieved however without significant visual impact, the realization of micro-reliefs micro perforated proving particularly at once effective in terms of acoustics and almost undetectable to the look. While keeping a conventional aspect of stretched canvas, thus clearly out of perforated suspended ceilings or mesh, the invention allows in particular to achieve acoustic properties similar to those of suspended ceilings noise.
  • micro-perforations 19 do not substantially alter its visual appearance.
  • the inventors have notably found that the production of micro perforations 19 as represented in FIG. figure 1b is almost undetectable when combined with a matte finish for the visible face 20 of the sheet of material 1.
  • the improved acoustic properties for the material can avoid the introduction of fibrous insulation, which can generate dust and microfibers whose impact on health could be discussed.
  • the sound waves are derived from the propagation of pressure variations in the elastic media, by wave fronts, at a rate depending in the solids, of the modulus of elasticity and the density of the solid (of the order of 500 m / s in a cork and 3100 m / s in a common concrete for example).
  • the spectrum audible by the human ear is formed by the frequencies of the vibrations of the sounds between 16 Hertz and 20 000 Hertz, when these sounds are emitted beyond a certain acoustic pressure (threshold of audibility equal to four phones).
  • the frequency domain of the speech is between 10 and 10 kHz approximately, understandable speech being focused on frequencies between 300 Hz and 3 kHz.
  • the domain of musical frequencies is between about 16Hz and 16kHz, an octave corresponding to a doubling of frequency.
  • Instrument or voice Low frequency (Hz) High frequency (Hz) Violin 200 3000 Piano 30 4000 Flute 250 2500 Cello 70 800 Bass 40 300 Tuba 50 400 Trumpet 200 1000 Organ 16 1600 Low 100 350 Baritone 150 400 Tenor 150 500 Alto 200 800 Soprano 250 1200
  • an absorption index of sounds ⁇ (without units) is defined, this index ⁇ being the normalized difference of the incident and reflected acoustic energy. This index depends on the frequency of the incident sounds. As the sound attenuation in air is a function of temperature, pressure and relative humidity, the measurements of the absorption index must be carried out at known temperature, pressure and humidity (see French standard NF S 30,009). With regard to the measurement standards of this index, reference may be made, for example, to the following documents: international standard ISO 354, French standard NF EN 20354, NF S 31 065, standard ASTM C423 of the United States of America. The table below gives some values of this sound absorption index ⁇ .
  • a reflection index of the sounds p a sound dissipation index ⁇ and a sound transmission index are defined.
  • the echo or reverberation due to the reflection of sounds on an obstacle generates interference that can greatly increase the sound level in a room and make conversations difficult to follow.
  • a reverberation time T 0163 V / ⁇ A where V is the volume of the free space; A is the absorbent surface; ⁇ is the absorption index defined above.
  • the reverberation time is the time at which the acoustic energy has decreased by 60 dB, ie 1 ppm from its initial value.
  • the sheets of material, of dimensions 9'x8 ' were fixed on the surface of a parallelepiped box of glass wool, wall thickness 3/4', dimensions 9'x8'x4 ', the box being placed on a corrugated steel plate.
  • the glass wool box was removed from the reverberation chamber for measurements in an empty chamber.
  • the results of the tests are given in Table I below.
  • Table I The frequencies mentioned in Table I are the center frequencies of the normalized third octave bands. Table I- First series of tests Frequencies (Hz) Test 1b Test 2b Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Test 11 Test 8b 125 0.43 0.71 0.77 0.77 0.37 0.43 0.47 0.80 0.46 0.33 0.42 0.90 160 0.31 0.70 0.68 0.60 0.43 0.45 0.49 0.97 0.59 0.61 0.59 1.01 200 0.18 0.69 0.69 0.66 0.41 0.41 0.40 0.89 0.42 0.49 0.55 0.93 250 0.21 0.63 0.73 0.72 0.49 0.51 0.43 0.88 0.51 0.63 0.61 0.97 315 0.29 0.79 0.87 0.88 0.68 0.73 0.65 0.90 0.70 0.79 0.75 0.94 400 0.39 0.87 1.00 1.03 0.81 0.83 0.70 0.82 0.76 0.83 0.83 0.76 500 0.41 0.82 1.02 1.03 0.82 0.85 0.70 0.75 0.74 0.92 0.93 0.69 630 0.39 0.73 0.98 0.99 0.87
  • perforated NL601 are of the type sold by the applicant under the reference NewLine NL601. These sheets are also provided with large perforations (circular holes of diameter one millimeter), perforations obtained by removal of material. These circular holes are intended, like those of NLM41 sheets, to allow ventilation of the plenum and possible smoke extraction, this range of products NL601 being classified M1 / B1 / Fire 1.
  • the sheets of stretched materials are likely to vibrate and are not rigid and dimensionally stable, the thicknesses h are very low compared to sound insulating panels, so that the model presented above can not be used.
  • Other models known in the field of acoustics, are intended to predict the behavior of perforated diaphragm panels, taking into account the inherent stiffness of the panel and the air compression in the rear part of the panel, as well as its flow through the perforations, which can play a dissipative role.
  • Curves 5, 6 and 7 illustrate the impact of placing an acoustic spray coating on the stretched sheets. The effect of this coating is especially marked in high frequencies.
  • the placement of fibrous insulation (tests 2b, 8, 8b) or the placement of an acoustic spray coating (tests 7 and 9) gives, for frequencies above 400 Hz , results lower than those obtained with perforated sheets with or without spray acoustic coating.
  • the acoustic attenuation properties had a large dissymmetry between low and high frequencies.
  • micro-reliefs and micro-perforations led to results as favorable as the production of large perforations.
  • results obtained with micro-perforations are even better in the field of high frequencies, compared to those obtained by large perforations.
  • the sheet was stretched on the upper face of a parallelepiped box unpainted glass fiber wall thickness of 3/4 ", with a volume equal to 10154.72 cu.ft.
  • the T60 values correspond to the average reverberation times
  • the Acoustic Absorption Coefficient (CAA) and the accuracies The values of NRC and AAC were obtained according to ASTM C423, while for test 12 a 6 "thick layer of polyester wool was obtained in accordance with ASTM C423-90a.
  • the support frame for smooth PVC panels is made of metal tubes with a height of 4 "and a nominal thickness of 1-1 / 2".
  • This frame is fixed externally to the base wall of the reverberation chamber.
  • a 2 "thick fiberglass board (density 3 Ib / cu.ft) is placed directly on the bottom wall of this chamber.
  • the total weight of this fiberglass board is 0.49 psf, the PVC band weighing 0.05 psf.
  • the support frame for smooth PVC panels is made of metal tubes with a height of 4 "and a nominal thickness of 1-1 / 2".
  • This frame is fixed externally to the base wall of the reverberation chamber.
  • a 1 "thick fiberglass board (density 3 lb / cu.ft) is placed directly on the bottom wall of this chamber.
  • the total weight of this fiberglass board is 0.25 psf, the PVC band weighing 0.05 psf.
  • the histograms of figures 8 , 9 and 10 represent the evolutions of the sound absorption coefficients for frequencies between 100 and 5000 Hertz, for tests A, B and C.
  • the flexible polymeric sheet material with improved acoustic properties which has just been described is suitable for use in tensioned structures for decoration or masking such as, in particular, false ceilings and false walls.
  • This material can also be used for billboards, of fixed or scroll type, the attenuation of the reverberation to reduce the noise generated by these panels.
  • this material remains perfectly adapted to use both in industrial and hospital environments, as well as for public facilities or modern living quarters. or historical.

Abstract

A flexible sheet material of thickness less than half a millimeter for making tensioned structures such as false ceilings, in particular, the material including microprojections formed by displacing the material from which it is made, said material presenting an acoustic absorption coefficient which is higher than that of the same material without said projections.

Description

L'invention se rapporte au domaine technique des matériaux en feuille de relativement faible épaisseur, typiquement moins de un demi-millimètre, employés pour la réalisation de sous plafonds, faux plafonds, faux murs, revêtements de parois, par mise sous tension de ces matériaux en feuille.The invention relates to the technical field of relatively thin sheet materials, typically less than half a millimeter, used for the realization of ceilings, false ceilings, false walls, wall coverings, by powering these materials in sheet.

On connaît déjà, dans l'art antérieur, un grand nombre de réalisations de tels matériaux, ainsi que de leurs utilisations dans des faux-plafonds tendus.In the prior art, a large number of embodiments of such materials, as well as their use in suspended ceilings, are already known.

On peut se reporter, à titre d'exemples, aux demandes de brevets en France publiées sous les numéros suivants : 2 767 851, 2 751 682, 2 734 296, 2 712 006, 2 707 708, 2 703 711, 2 699 211, 2 699 209, 2 695 670, 2 691 193, 2 685 036, 2 645 135, 2 630 476, 2 627 207, 2 624 167, 2 623 540, 2 619 531, 2 597 906, 2 611 779, 2 592 416, 2 587 447, 2 561 690, 2 587 392, 2 552 473, 2 537 112, 2 531 012, 2 524 922, 2 475 093, 2 486 127, 2 523 622, 2 310 450,2 270 407, 2 202 997, 2 175 854, 2 145 147, 2 106 407, 2 002 261, 1 475 446, 1 303 930, 1 287 077. On peut se reporter également, à titre d'exemples, aux documents suivants : US-A-5 058 340 , US-A-4 083 157 , EP-A-643 180 , EP-A-652 339 , EP-A-588 748 , EP-A-504 530 , EP-A-338 925 , EP-A-281 468 , EP-A-215 715 , EP-A-089 905 , EP-A-043 466 , WO-A-94/12741 , WO-A-92/18722 . On peut se reporter également aux demandes de brevet en France suivantes issues de la demanderesse : 2 736 615, 2 756 600, 2 727 711, 2 712 325, 2 699 613, 2 695 670, 2 692 302, 2 658 849.By way of example, reference can be made to the French patent applications published under the following numbers: 2 767 851, 2 751 682, 2 734 296, 2 712 006, 2 707 708, 2 703 711, 2 699 211 , 2,699,209, 2,695,670, 2,691,193, 2,685,036, 2,645,135, 2,630,476, 2,627,207, 2,624,167, 2,623,540, 2,619,531, 2,597,906, 2,611,779, 2, 592,416, 2,587,447, 2,561,690, 2,587,392, 2,552,473, 2,537,112, 2,531,012, 2,524,922, 2,475,093, 2,486,127, 2,523,622, 2,310,450.2, 270,407. , 2 202 997, 2 175 854, 2 145 147, 2 106 407, 2 002 261, 1 475 446, 1 303 930, 1 287 077. Reference may also be made, by way of example, to the following documents: US-A-5,058,340 , US-A-4,083,157 , EP-A-643,180 , EP-A-652,339 , EP-A-588 748 , EP-A-504,530 , EP-A-338 925 , EP-A-281,468 , EP-A-215,715 , EP-A-089 905 , EP-A-043 466 , WO-A-94/12741 , WO-A-92/18722 . Reference may also be made to the following French patent applications issued by the Applicant: 2,736,615, 2,756,600, 2,727,711, 2,712,325, 2,699,613, 2,695,670, 2,692,302 and 2,658,849.

Les matériaux connus dans l'art antérieur pour la réalisation de faux plafonds tendus ou de faux murs tendus sont le plus souvent des matériaux polymères pourvus de nombreuses qualités telles que notamment : résistance au feu, étanchéité à l'air comme à la poussière ou à l'humidité, facilité d'entretien.The materials known in the prior art for the production of false ceilings or tight false walls are most often polymeric materials provided with many qualities such as: fire resistance, airtightness as well as dust or humidity, ease of maintenance.

Les faux plafonds obtenus à l'aide de tels matériaux peuvent incorporer des isolants thermiques, des spots ou éclairage divers, ainsi que des ouvertures de ventilation ou d'aération ou des sprinklers. Démontables, ils permettent le cas échéant, une intervention dans le plénum.False ceilings obtained using such materials may incorporate thermal insulators, spotlights or various lighting, as well as ventilation or ventilation openings or sprinklers. Removable, they allow, if necessary, an intervention in the plenum.

Les matériaux polymères pour plafonds tendus connus dans l'art antérieur, translucides ou opaques, teintés ou non dans la masse, mats, laqués, marbrés, daims ou satinés, peuvent ainsi être employés tant en milieu industriel qu'en milieu hospitalier, pour des équipements collectifs, des laboratoires ou des habitations.The polymeric materials for stretch ceilings known in the prior art, translucent or opaque, dyed or not in the mass, matt, lacquered, marbled, suede or satin, can thus be used both in industrial and hospital environments, for community amenities, laboratories or homes.

La finition laquée permet un effet miroir souvent mis en oeuvre dans les centres commerciaux, une finition mat assez proche d'un aspect plâtre étant plus habituelle aux décors traditionnels.The lacquered finish allows a mirror effect often used in shopping centers, a matte finish rather close to a plaster aspect being more usual to traditional decorations.

Malgré leurs nombreux avantages ayant conduit à leur emploi croissant dans des environnements variés, les faux plafonds et faux murs en toile polymère tendue de l'art antérieur ont l'inconvénient majeur de présenter de mauvaises propriétés acoustiques, la réverbération des sons sur de tels plafonds tendus étant notamment élevée.Despite their numerous advantages that have led to their increasing use in various environments, the false ceilings and false walls in tensioned polymer fabric of the prior art have the major disadvantage of presenting poor acoustic properties, the reverberation of sounds on such ceilings. tense being particularly high.

L'atténuation de la réverbération sonore sur les murs et plafonds est un problème technique en soi connu depuis longtemps.The attenuation of sound reverberation on walls and ceilings is a technical problem that has been known for a long time.

Plusieurs solutions techniques ont pu être envisagées.Several technical solutions could be envisaged.

Selon une première technique, des panneaux d'insonorisation comprennent une plaque perforée en métal ou en plastique fixée sur un support de type laine minérale ou mousse polyuréthane. Pour cette première technique d'absorption sonore passive par matériaux fibreux ou poreux, on peut se reporter, par exemple, aux documents suivants : EP-A-013 513 , EP-A-023 618 , EP-A-246 464 , EP-A-524 566 , EP-A-605 784 , EP-A-652 331 , FR-A-2 405 818 , FR-A-2 536 444 , FR-A-2 544 358 , FR-A-2 549 112 , FR-A-2 611 776 , FR-A-2 611 777 , FR-A-2 732 381 , US-A-4 441 580 , US-A-3 948 347 . Cette technique conduit à un ensemble dans lequel le contre-parement phonétiquement absorbant est solidaire d'un parement perforé apparent. Les perforations sont destinées à permettre l'atténuation des ondes par le matériau absorbant acoustique, ce dernier ne pouvant être laissé apparent parce que trop fragile, de surface parfois salissante et d'aspect brut inesthétique.According to a first technique, soundproofing panels comprise a perforated plate made of metal or plastic fixed on a mineral wool type support or polyurethane foam. For this first technique of passive sound absorption by fibrous or porous materials, reference may be made, for example, to the following documents: EP-A-013 513 , EP-A-023 618 , EP-A-246 464 , EP-A-524,566 , EP-A-605,784 , EP-A-652 331 , FR-A-2 405 818 , FR-A-2,536,444 , FR-A-2,544,358 , FR-A-2,549,112 , FR-A-2,611,776 , FR-A-2,611,777 , FR-A-2,732,381 , US-A-4,441,580 , US-A-3,948,347 . This technique leads to an assembly in which the phonetically absorbing counter-parison is integral with an apparent perforated facing. The perforations are intended to allow attenuation of the waves by the acoustic absorbent material, the latter can not be left visible because too fragile, sometimes messy surface and unsightly gross appearance.

Selon une deuxième technique, les panneaux formant les parois telles que par exemple des plafonds suspendus sont pourvus de cavités dont le volume est calculé pour les accorder sur certaines gammes de fréquences, ces cavités étant protégées par un parement poreux. Pour ce deuxième type de technique, mettant en oeuvre des résonateurs d'Helmholtz, on peut se reporter, par exemple, aux documents DE-PS-36 43 481 , FR-A-2 463 235 .According to a second technique, the panels forming the walls such as for example suspended ceilings are provided with cavities whose volume is calculated to tune them on certain frequency ranges, these cavities being protected by a porous facing. For this second type of technique, using Helmholtz resonators, reference may be made, for example, to the documents DE-PS-36 43 481 , FR-A-2,463,235 .

Selon une troisième technique, employée dans le domaine des plafonds suspendus, la surface apparente des panneaux de plafond est gaufrée ou pourvue de rainures ou de cavités profondes. On peut se reporter par exemple aux documents FR-A-2 381 142 , FR-A-2 523 621 , FR-A-2 573 798 , WO-A-80/01 183 , WO-A-94/24382 .According to a third technique, used in the field of suspended ceilings, the apparent surface of the ceiling panels is embossed or provided with grooves or deep cavities. For example, we can refer to documents FR-A-2,381,142 , FR-A-2,523,621 , FR-A-2,573,798 , WO-A-80 / 01,183 , WO-A-94/24382 .

Selon une quatrième technique, des nappes en nid d'abeilles forment membranes absorbantes. Cette technique, onéreuse, est parfois employée dans les studios d'enregistrement.According to a fourth technique, honeycomb webs form absorbent membranes. This technique, expensive, is sometimes used in recording studios.

Le document US 3 782 495 décrit des dalles acoustiques de faux-plafonds suspendus comprenant une feuille métallique ou plastique perforée avec enlèvement de matière, feuille collée sur un cadre au dessous d'un bloc de laine de verre isolant phonique, la feuille plastique pouvant être feutrée, revêtue, imprimée, teinte ou colorée pour obtenir un effet décoratif.The document US 3,782,495 describes acoustical suspended suspended ceiling tiles comprising a perforated sheet metal or plastic sheet, sheet adhered to a frame beneath a block of sound insulating glass wool, the plastic sheet being heat-treated, coated, printed, hue or color to obtain a decorative effect.

Le document EP 0 816 583 décrit un dispositif pour réduire les niveaux acoustiques dans les bâtiments, comportant des éléments d'atténuation acoustique formés de plusieurs feuilles situées à distance les unes des autres et parallèles entre elles, suspendues verticalement, ces feuilles étant en matériau polymère rigide tel que polycarbonate ou polyéthylène, ces feuilles pouvant être enroulées sur un cylindre de stockage.The document EP 0 816 583 discloses a device for reducing acoustic levels in buildings, comprising acoustic attenuation elements formed of several leaves located at a distance from each other and parallel to each other, suspended vertically, these sheets being made of rigid polymer material such as polycarbonate or polyethylene, these sheets can be wound on a storage cylinder.

Le document EP 0 399 935 décrit un dispositif de distribution d'air, à des fins de chauffage, ventilation ou climatisation, les parois du réseau de distribution d'air étant constituées par des faux-plafonds en tissu tendu au moins en partie perméable à l'air pour une perte de charge d'environ 1Pa pour un débit nominal de 10 m3 par heure par m2 de surface perméable.The document EP 0 399 935 describes an air distribution device for heating, ventilation or air-conditioning purposes, the walls of the air distribution network being constituted by false ceilings made of fabric stretched at least partly permeable to the air for a loss load of about 1Pa for a nominal flow rate of 10 m 3 per hour per m 2 of permeable surface.

Le document DE 197 54 107C décrit des panneaux acoustiques en polyester ou métal tel qu'acier ou aluminium, placés parallèlement les uns aux autres en suspension.The document DE 197 54 107C discloses acoustic panels of polyester or metal such as steel or aluminum, placed parallel to each other in suspension.

Aucune des solutions techniques connues dans l'art antérieur pour l'amélioration des propriétés phoniques de parois ou de plafonds suspendus n'est adaptée à la technique particulière des plafonds ou murs tendus.None of the technical solutions known in the prior art for improving the sound properties of walls or suspended ceilings is adapted to the particular technique of ceilings or walls stretched.

Un premier objet de l'invention est de fournir un matériau polymère souple, en feuille, apte à être utilisé pour des structures tendues de décoration, masquage ou d'affichage, telles que notamment faux plafonds, faux murs, ce matériau présentant des propriétés acoustiques grandement améliorées.A first object of the invention is to provide a flexible polymeric material, in sheet, suitable for use in tension structures for decoration, masking or display, such as in particular false ceilings, false walls, this material having acoustic properties greatly improved.

Un deuxième objet de l'invention est de fournir un matériau tel que ci dessus, dont l'aspect visuel reste parfaitement adapté à son utilisation, tant en milieu industriel qu'en milieu hospitalier que pour des équipements collectifs ou des locaux d'habitations modernes ou historiques.A second object of the invention is to provide a material as above, the visual appearance of which remains perfectly adapted to its use, both in industrial and hospital environments, as well as for public facilities or modern living quarters. or historical.

A ces fins, l'invention se rapporte, selon un premier aspect, à un matériau (1) polymère en feuille souple, d'épaisseur (e1) inférieure à un demi-millimètre, pour la réalisation de structures tendues telles que notamment des faux plafonds, caractérisé en ce qu'il comporte des micro-reliefs s'étendant sur une hauteur (h) de quelques microns à 100 microns, micro-reliefs (2) formés par repoussage de la matière constitutive du matériau (1) qui présente ainsi un coefficient d'absorption acoustique plus élevé que le même matériau dépourvu desdits reliefs, les microreliefs étant obtenus par une étape d'aiguilletage, repoussant localement la matière constitutive de la feuille, selon un motif prédeterminé, jusqu'à sa microperforation, l'étape d'aiguilletage étant conduite alors que la feuille de matériau est placée sous une tension de l'ordre de celle de son utilisation final dans une structure tendue.For these purposes, the invention relates, in a first aspect, to a flexible sheet material (1) having a thickness (e1) of less than half a millimeter, for the production of tensile structures such as, in particular, false ceilings, characterized in that it comprises micro-reliefs extending over a height (h) of a few microns to 100 microns, micro-reliefs (2) formed by embossing the constituent material of the material (1) which thus presents a higher sound absorption coefficient than the same material without said reliefs, the microreliefs being obtained by a needling step, locally pushing the constituent material of the sheet, in a predetermined pattern, to its micro-perforation, the step needling being conducted while the sheet of material is placed under a voltage of the order of that of its final use in a tensile structure.

Suivant diverses réalisations, ce matériau présente en outre les caractères suivants, éventuellement combinés :

  • la hauteur des micro-reliefs, mesurée suivant une direction perpendiculaire au plan de ladite feuille au droit de ces micro-reliefs est inférieure à trois fois l'épaisseur de ladite feuille ;
  • ses micro-reliefs forment des saillies sur une seule face de ladite feuille ;
  • chacun de ses micro-reliefs est disposé suivant tes noeuds d'un motif régulier ;
  • tous ses micro-reliefs sont disposés suivant les noeuds d'un seul motif, par exemple à maille carrée ;
  • le matériau est pourvu de micro perforations, d'ouverture inférieure à quatre dixièmes de millimètre ;
  • les micro perforations sont disposées suivant les noeuds d'un motif ;
  • le matériau est choisi parmi le groupe comprenant les chlorures de polyvinyle plastifiés, chlorure de vinylidène et copolymères chlorure de vinyle / chlorure de vinylidène ;
  • la surface occupée par les micro-reliefs est comprise entre 0,5% et 10% de la surface de ladite feuille ;
  • la densité de micro-perforations est comprise entre 2 et 60 par centimètre carré, de préférence 15 à 35 par centimètre carré, et plus particulièrement entre 20 et 30 par centimètre carré.
According to various embodiments, this material also has the following characters, possibly combined:
  • the height of the micro-reliefs, measured in a direction perpendicular to the plane of said sheet at the right of these micro-reliefs is less than three times the thickness of said sheet;
  • its micro-reliefs project on one side of said sheet;
  • each of its micro-reliefs is arranged according to your knots of a regular pattern;
  • all its micro-reliefs are arranged according to the nodes of a single pattern, for example square mesh;
  • the material is provided with micro perforations, opening less than four tenths of a millimeter;
  • the micro-perforations are arranged according to the nodes of a pattern;
  • the material is selected from the group consisting of plasticized polyvinyl chlorides, vinylidene chloride and vinyl chloride / vinylidene chloride copolymers;
  • the surface occupied by the micro-reliefs is between 0.5% and 10% of the surface of said sheet;
  • the micro-perforation density is between 2 and 60 per square centimeter, preferably 15 to 35 per square centimeter, and more particularly between 20 and 30 per square centimeter.

Le procédé de réalisation d'une feuille de matériau telle que présenté ci dessus, comprend une étape d'aiguilletage, repoussant localement la matière constitutive de la feuille jusqu'à sa micro perforation, selon un motif prédéterminé. L'étape d'aiguilletage est réalisée sans que la feuille subisse un enlèvement de matière. Les aiguilles mises en oeuvre dans le procédé d'aiguilletage ont un diamètre extrême inférieur au dixième de millimètre, par exemple de l'ordre de quatre centièmes de millimètres. L'étape d'aiguilletage est conduite alors que la feuille de matériau est placée sous une tension de l'ordre de celle de son utilisation finale dans une structure tendue.The method of producing a sheet of material as presented above, comprises a needling step, locally pushing the constituent material of the sheet to its micro perforation, in a predetermined pattern. The needling step is performed without the sheet undergoes a removal of material. The needles used in the needling process have an extreme diameter less than one tenth of a millimeter, for example of the order of four hundredths of a millimeter. The needling step is conducted while the sheet of material is placed under a voltage of the order of that of its end use in a tensile structure.

L'invention se rapporte, selon un deuxième aspect, à un faux plafond, caractérisé en ce qu'il comprend une feuille d'un matériau tel que présentée ci dessus, mis sous tension par rapport à des moyens de support.According to a second aspect, the invention relates to a false ceiling, characterized in that it comprises a sheet of a material as presented above, energized with respect to support means.

D'autres objets et avantages de l'invention apparaîtront au cours de la description suivante de modes de réalisation, description qui va être effectuée en se référant aux dessins annexés dans lesquels :

  • les figures 1a, 1b et 1c illustrent différents modes de réalisations d'un matériau pour toile tendue selon l'invention ;
  • la figure 2 est un graphe représentant les valeurs de coefficient d'absorption acoustique mesurées, en fonction de la fréquence moyenne tiers d'octave dans quatre conditions expérimentales 1b,2b,3 et 4, ainsi que pour un échantillon de référence étalon ;
  • la figure 3 est un graphe analogue à celui de la figure 2, pour les conditions expérimentales 5, 6 et 7 ;
  • la figure 4 est un graphe analogue à celui de la figure 3, pour les conditions expérimentales 8, 8b, 9, les résultats obtenus pour les conditions 1b, 2b étant reportées sur le graphe de cette figure 4 afin de comparaison ;
  • la figure 5 est un graphe analogue à celui de la figure 2, pour la condition expérimentale 10, les résultats obtenus pour les essais 3, 6 étant reportés sur ce graphe de la figure 5, afin de comparaison ;
  • la figure 6 est un graphe analogue à celui de la figure 2, pour la condition expérimentale 11, les résultats obtenus pour les conditions 4 et 5 étant reportés sur ce graphe de la figure 6, afin de comparaison ;
  • la figure 7 est un graphe analogue à celui de la figure 2, pour les conditions expérimentales 12, 13 et 14 ;
  • la figure 8 est un histogramme des valeurs de coefficient d'absorption sonore en fonction de la valeur de fréquence tiers d'octave, pour les conditions expérimentales A ;
  • la figure 9 est un histogramme analogue à celui de la figure 8, pour les conditions expérimentales B ;
  • la figure 10 est un histogramme analogue à celui de la figure 8, pour les conditions expérimentales C.
Other objects and advantages of the invention will become apparent from the following description of embodiments, which description will be made with reference to the accompanying drawings in which:
  • the Figures 1a, 1b and 1c illustrate different embodiments of a stretched canvas material according to the invention;
  • the figure 2 is a graph representing the measured sound absorption coefficient values, as a function of the average third octave frequency in four experimental conditions 1b, 2b, 3 and 4, as well as for a reference standard sample;
  • FIG. 3 is a graph similar to that of FIG. figure 2 for experimental conditions 5, 6 and 7;
  • the figure 4 is a graph similar to that of FIG. 3, for the experimental conditions 8, 8b, 9, the results obtained for the conditions 1b, 2b being plotted on the graph of this figure 4 for comparison;
  • the figure 5 is a graph similar to that of the figure 2 for the experimental condition 10, the results obtained for the tests 3, 6 being plotted on this graph of the figure 5 , for comparison;
  • the figure 6 is a graph similar to that of the figure 2 , for the experimental condition 11, the results obtained for the conditions 4 and 5 being plotted on this graph of the figure 6 , for comparison;
  • the figure 7 is a graph similar to that of the figure 2 for experimental conditions 12, 13 and 14;
  • the figure 8 is a histogram of the sound absorption coefficient values as a function of the third octave frequency value, for the experimental conditions A;
  • the figure 9 is a histogram similar to that of the figure 8 for experimental conditions B;
  • the figure 10 is a histogram similar to that of the figure 8 , for experimental conditions C.

On se rapporte tout d'abord à la figure 1.We first refer to the figure 1 .

La figure 1a est une vue de face d'un matériau 1 d'épaisseur de l'ordre de un dixième de millimètre, pourvu de micro-reliefs sensiblement identiques 2 régulièrement répartis sur un réseau à maille carrée. Sur la figure 1b est représentée en vue très agrandie la forme de ces reliefs 2, lorsque vus en coupe perpendiculaire au plan de la figure 1. Les dimensions des micro reliefs sont telles qu'ils apparaissent quasi ponctuels sur la figure 1. Ces reliefs 2 se présentent, dans le mode de réalisation considéré ici, sous la forme de cuvettes sensiblement de forme de révolution autour d'un axe 3 perpendiculaire au plan moyen de la feuille de matériau 1 posée à plat. Ces reliefs s'étendent sur une faible hauteur h, de l'ordre de quelques microns à quelques dizaines de microns, et présentent une ouverture apparente de l'ordre de deux dixièmes de millimètres.The figure 1a is a front view of a material 1 thickness of the order of one tenth of a millimeter, provided with substantially identical micro-reliefs 2 regularly distributed over a square mesh network. On the figure 1b is shown in greatly enlarged view the shape of these reliefs 2, when seen in section perpendicular to the plane of the figure 1 . The dimensions of the micro reliefs are such that they appear almost punctual on the figure 1 . These reliefs 2 are, in the embodiment considered here, in the form of cups substantially of revolution shape about an axis 3 perpendicular to the mean plane of the sheet of material 1 laid flat. These reliefs extend over a small height h, of the order of a few microns to a few tens of microns, and have an apparent opening of the order of two tenths of a millimeter.

Dans le mode de réalisation représenté, ces micro reliefs sont pourvus d'une paroi de fond 4 trouée. Ces trous traversant 19 sont issus, d'un aiguilletage par des aiguilles dont les pointes ont un diamètre de l'ordre de quelques centièmes de millimètres, par exemple 4 centièmes de millimètres.In the embodiment shown, these micro reliefs are provided with a perforated bottom wall 4. These through holes 19 are derived from a needling needles whose tips have a diameter of the order of a few hundredths of a millimeter, for example 4 hundredths of a millimeter.

Cet aiguilletage est réalisé alors que la feuille de matériau 1 est placée sous tension. Cette tension est, de l'ordre de celle subie par la feuille sur son lieu d'utilisation, par exemple dans un faux plafond tendu.This needling is performed while the sheet of material 1 is placed under tension. This voltage is of the order of that experienced by the sheet at its place of use, for example in a suspended false ceiling.

Les trous traversant 19, de diamètre de l'ordre de quelques centièmes de millimètres, sont obtenus sans enlèvement de matière.The through holes 19, of diameter of the order of a few hundredths of a millimeter, are obtained without removal of material.

La paroi de fond 4 des reliefs micro perforés 2 est reliée au bord des cuvettes par une paroi annulaire 5 de révolution autour de l'axe 3. Le cas échéant, cette paroi 5 pourra présenter une épaisseur e5 inférieure à celle e1 mesurée entre les reliefs pour la feuille de matériau 1. Cette différence d'épaisseur sera d'autant plus marquée que la hauteur h des micro-reliefs 2 est importante, à épaisseur e1 donnée.The bottom wall 4 of the micro-perforated reliefs 2 is connected to the edge of the cuvettes by an annular wall 5 of revolution about the axis 3. Where appropriate, this wall 5 may have a thickness e5 less than that e1 measured between the reliefs for the sheet of material 1. This difference in thickness will be all the more marked as the height h of the micro-reliefs 2 is large, thickness e1 given.

A titre d'exemple, les valeurs suivantes peuvent être mises en oeuvre :

  • pas p entre les micro-reliefs : 1 mm ;
  • densité de micro-reliefs, par centimètre carré : 25 ;
  • hauteur des reliefs : de quelques microns à 100 microns.
By way of example, the following values can be implemented:
  • not p between micro-reliefs: 1 mm;
  • density of micro-reliefs, per square centimeter: 25;
  • height of the reliefs: from a few microns to 100 microns.

D'autres modes de réalisation peuvent être envisagés.Other embodiments may be envisaged.

Selon un premier type de variante de réalisation, les reliefs ne sont pas tous identiques, deux ou plus de deux populations de reliefs pouvant être distinguées, ces reliefs étant de formes différentes.According to a first type of embodiment variant, the reliefs are not all identical, two or more populations of reliefs that can be distinguished, these reliefs being of different shapes.

Selon un deuxième type de variante de réalisation, éventuellement combiné au premier type ci dessus, les reliefs ne sont pas tous sensiblement ponctuels, mais s'étendent suivant au moins une direction pour former des micro cannelures et micro gorges.According to a second type of embodiment variant, possibly combined with the first type above, the reliefs are not all substantially punctual, but extend in at least one direction to form micro grooves and micro grooves.

Selon un troisième type de variante, éventuellement combiné à l'une ou aux deux types ci dessus, tous les reliefs ne sont pas de symétrie de révolution par rapport à un axe sensiblement perpendiculaire au plan moyen de la feuille de matériau 1.According to a third type of variant, possibly combined with one or both of the above types, all the reliefs are not symmetrical of revolution with respect to an axis substantially perpendicular to the mean plane of the sheet of material 1.

Ainsi, par exemple, les fonds de cuvette, lorsque vus en plan, peuvent être carrés, rectangulaires, ovales, en forme de polygone régulier ou non. La maille du réseau des micro-reliefs est carrée, dans le mode de réalisation de la figure 1. Dans d'autres modes de réalisation, cette maille n'est pas carrée mais rectangulaire.Thus, for example, the bowl bottoms, when viewed in plan, may be square, rectangular, oval, regular polygon-shaped or not. The mesh of the network of micro-reliefs is square, in the embodiment of the figure 1 . In other embodiments, this mesh is not square but rectangular.

Dans certains modes de réalisation, au moins deux réseaux de micro-reliefs, de maille et/ou de pas p1, p2, p'2 différents sont disposés sur la feuille de matériau 1, ainsi qu'il est représenté en figure 1c.In some embodiments, at least two different micro-relief, mesh and / or p1, p2, p'2 arrays are arranged on the sheet of material 1, as shown in FIG. figure 1c .

En fonction de la densité de micro-reliefs, du motif de leur répartition, de leur hauteur, les inventeurs on constaté que l'impact visuel de la mise en place de ces reliefs est plus ou moins marqué, de même que l'impact sur les propriétés acoustiques de la feuille de matériau 1, une amélioration spectaculaire des propriétés acoustiques pouvant être toutefois obtenue sans impact visuel notable, la réalisation de micro-reliefs micro perforés s'avérant notamment tout à la fois efficace en termes d'acoustique et quasi indécelable au regard. Tout en gardant un aspect conventionnel de toile tendue, se démarquant ainsi nettement des plafonds suspendus perforés ou en résille, l'invention permet en particulier d'atteindre des propriétés acoustiques analogues à celles des plafonds suspendus antibruit.Depending on the density of micro-reliefs, the pattern of their distribution, their height, the inventors found that the visual impact of the placement of these reliefs is more or less marked, as well as the impact on the acoustic properties of the sheet of material 1, a dramatic improvement of the acoustic properties that can be achieved however without significant visual impact, the realization of micro-reliefs micro perforated proving particularly at once effective in terms of acoustics and almost undetectable to the look. While keeping a conventional aspect of stretched canvas, thus clearly out of perforated suspended ceilings or mesh, the invention allows in particular to achieve acoustic properties similar to those of suspended ceilings noise.

Lorsqu'une feuille de matériau pourvue de micro perforations est vue selon la flèche F de la figure 1b, les micro perforations 19 n'altèrent pas sensiblement son aspect visuel. Les inventeurs ont notamment constaté que la réalisation de micro perforations 19 telles que représentées en figure 1b est quasi indécelable lorsque combinée à une finition mate pour la face visible 20 de la feuille de matériau 1. Les propriétés acoustiques améliorées pour le matériau permettent d'éviter la mise en place d'isolant fibreux, pouvant générer des poussières et microfibres dont l'impact sur la santé a pu être discuté.When a sheet of material provided with micro-perforations is seen according to the arrow F of the figure 1b micro-perforations 19 do not substantially alter its visual appearance. The inventors have notably found that the production of micro perforations 19 as represented in FIG. figure 1b is almost undetectable when combined with a matte finish for the visible face 20 of the sheet of material 1. The improved acoustic properties for the material can avoid the introduction of fibrous insulation, which can generate dust and microfibers whose impact on health could be discussed.

L'amélioration des propriétés acoustiques des feuilles de matériau, par mise en place de micro reliefs micro-perforés va maintenant être illustrée à l'aide de quelques résultats expérimentaux. Avant de présenter ces résultats, les éléments suivants d'acoustique doivent être rappelés, dans la mesure où ces éléments ne sont pas du domaine de connaissance de l'homme du métier des plafonds et murs en toiles tendues.The improvement of the acoustic properties of the sheets of material, by placing micro-perforated micro-reliefs will now be illustrated with the aid of some experimental results. Before presenting these results, the following elements of acoustics must be recalled, insofar as these elements are not within the domain of those skilled in the art of ceilings and walls in stretched cloths.

Les ondes sonores sont issues de propagation de variations de pression dans les milieux élastiques, par fronts d'ondes, à une vitesse dépendant, dans les solides, du module d'élasticité et de la masse volumique du solide (de l'ordre de 500m/s dans un liège et 3100 m/s dans un béton courant par exemple). Le spectre audible par l'oreille humaine est formé par les fréquences des vibrations des sons comprises entre 16 Hertz et 20 000 Hertz, lorsque ces sons sont émis au delà d'une certaine pression acoustique (seuil d'audibilité égal à quatre phones). Le domaine de fréquence de la parole est compris entre 10 et 10kHz environ, la parole compréhensible étant concentrée sur les fréquences comprises entre 300 Hz et 3kHz. Le domaine des fréquences musicales est compris entre environ 16Hz et 16 kHz, une octave correspondant à un doublement de fréquence. Instrument ou voix Fréquence basse (Hz) Fréquence haute (Hz) Violon 200 3000 Piano 30 4000 Flûte 250 2500 Violoncelle 70 800 Contrebasse 40 300 Tuba 50 400 Trompette 200 1000 Orgue 16 1600 Basse 100 350 Baryton 150 400 Ténor 150 500 Alto 200 800 Soprano 250 1200 The sound waves are derived from the propagation of pressure variations in the elastic media, by wave fronts, at a rate depending in the solids, of the modulus of elasticity and the density of the solid (of the order of 500 m / s in a cork and 3100 m / s in a common concrete for example). The spectrum audible by the human ear is formed by the frequencies of the vibrations of the sounds between 16 Hertz and 20 000 Hertz, when these sounds are emitted beyond a certain acoustic pressure (threshold of audibility equal to four phones). The frequency domain of the speech is between 10 and 10 kHz approximately, understandable speech being focused on frequencies between 300 Hz and 3 kHz. The domain of musical frequencies is between about 16Hz and 16kHz, an octave corresponding to a doubling of frequency. Instrument or voice Low frequency (Hz) High frequency (Hz) Violin 200 3000 Piano 30 4000 Flute 250 2500 Cello 70 800 Bass 40 300 Tuba 50 400 Trumpet 200 1000 Organ 16 1600 Low 100 350 Baritone 150 400 Tenor 150 500 Alto 200 800 Soprano 250 1200

L'absorption des sons peut être obtenue par conversion de l'énergie acoustique en travail de déformation ou de frottement interne dans un matériau absorbant poreux de faible impédance acoustique, ou à l'aide de résonateur dissipant, sous forme de chaleur par frottements internes, l'énergie acoustique des sons de fréquences voisines aux fréquences propres du résonateur. D'une manière conventionnelle, on distingue quatre type d'isolants phonique :

  • les matériaux poreux rigides, tels que bétons poreux et mousses rigides, dans lesquels les réseaux de capillaires forment résistance acoustiques ;
  • les matériaux poreux élastiques tels que laines minérales, feutres, polystyrènes, dans lesquels l'énergie acoustique est dissipée par friction solide ;
  • les matériaux à résonance acoustique, agissant selon le principe des résonateurs d'Helmholtz, tels que panneaux perforés ;
  • les matériaux à résonance mécanique, fonctionnant sur la base de l'oscillateur amorti.
The sound absorption can be obtained by converting acoustic energy into deformation work or internal friction in a porous absorbent material of low acoustic impedance, or by means of dissipating resonator, in the form of heat by internal friction, the acoustic energy of the sounds of frequencies close to the eigenfrequencies of the resonator. In a conventional manner, there are four types of phonic insulators:
  • rigid porous materials, such as porous concretes and rigid foams, in which the capillary networks form acoustic resistance;
  • elastic porous materials such as mineral wools, felts, polystyrenes, in which acoustic energy is dissipated by solid friction;
  • acoustic resonance materials, acting on the principle of Helmholtz resonators, such as perforated panels;
  • mechanical resonance materials, operating on the basis of the damped oscillator.

On définit un indice d'absorption des sons α (sans unités), cet indice α étant la différence normalisée de l'énergie acoustique incidente et réfléchie. Cet indice est fonction de la fréquence des sons incidents. L'atténuation du son dans l'air étant fonction de la température, de la pression et du taux d'humidité relative, les mesures de l'indice d'absorption doivent être effectuées à température, pression et humidité connues (voir norme française NF S 30 009 ). Pour ce qui est des normes de mesures de cet indice, on peut se reporter par exemple aux documents suivants : norme internationale ISO 354, normes françaises NF EN 20354, NF S 31 065, norme des Etats-Unis d'Amérique ASTM C423. Le tableau ci dessous donne quelques valeurs de cet indice d'absorption des sons α. α
pour 125 Hz
α
pour 500 Hz
α
pour 2000 Hz
Crépi sur maçonnerie 0.02 0.02 0.03 Crépi à la chaux 0.03 0.03 0.04 Béton léger 0.07 0.22 0.10 Mortier 0.03 0.03 0.07 Plaque acoustique d'épaisseur 2.5 cm avec 3 cm d'air 0.25 0.23 0.74 appriqué sur un mur 0.15 0.23 0.73 Panneaux isolants d'épaisseur 2 cm appliqué sur un mur 0.13 0.19 0.24 avec 3 cm d'air 0.15 0.23 0.23 avec 3 cm de laine de verre 0.33 0.44 0.37 porte en bois 0.14 0.06 0.10 Parquet 0.05 0.06 0.10 contreplaqué 3mm air 2cm 0.07 0.22 0.10 contreplaqué 3 mm sur un mur 0.07 0.05 0.10
An absorption index of sounds α (without units) is defined, this index α being the normalized difference of the incident and reflected acoustic energy. This index depends on the frequency of the incident sounds. As the sound attenuation in air is a function of temperature, pressure and relative humidity, the measurements of the absorption index must be carried out at known temperature, pressure and humidity (see French standard NF S 30,009). With regard to the measurement standards of this index, reference may be made, for example, to the following documents: international standard ISO 354, French standard NF EN 20354, NF S 31 065, standard ASTM C423 of the United States of America. The table below gives some values of this sound absorption index α. α
for 125 Hz
α
for 500 Hz
α
for 2000 Hz
Rough on masonry 0.02 0.02 0.03 Crimped with lime 0.03 0.03 0.04 Lightweight concrete 0.07 0.22 0.10 Mortar 0.03 0.03 0.07 Acoustic plate thickness 2.5 cm with 3 cm of air 0.25 0.23 0.74 drawn on a wall 0.15 0.23 0.73 Insulating panels thickness 2 cm applied on a wall 0.13 0.19 0.24 with 3 cm of air 0.15 0.23 0.23 with 3 cm of glass wool 0.33 0.44 0.37 wood door 0.14 0.06 0.10 parquet 0.05 0.06 0.10 plywood 3mm air 2cm 0.07 0.22 0.10 plywood 3 mm on a wall 0.07 0.05 0.10

On définit de même un indice de réflexion des sons p, un indice de dissipation des sons δ et un indice de transmission des sons.Similarly, a reflection index of the sounds p, a sound dissipation index δ and a sound transmission index are defined.

A l'interface entre deux milieux, le principe de conservation de l'énergie acoustique implique que : ρ+τ+δ=1, ρ+α=1.At the interface between two environments, the principle of conservation of acoustic energy implies that: ρ + τ + δ = 1, ρ + α = 1.

Plus l'énergie acoustique dissipée par un isolant acoustique est grande, moins l'énergie acoustique réfléchie sera élevée, diminuant l'effet d'écho.The greater the acoustic energy dissipated by an acoustic insulation, the lower the reflected acoustic energy will be, reducing the echo effect.

L'écho ou réverbération due à la réflexion des sons sur un obstacle génère des interférences pouvant augmenter grandement le niveau sonore dans un local et rendre les conversations difficiles à suivre.The echo or reverberation due to the reflection of sounds on an obstacle generates interference that can greatly increase the sound level in a room and make conversations difficult to follow.

Pour cette réverbération, on définit un temps de réverbération T, selon la formule de Sabine T = 0.163 V / αA

Figure imgb0001
où V est le volume de !'espace libre ; A est la surface absorbante ; α est l'indice d'absorption défini ci dessus.For this reverb, we define a reverberation time T, according to Sabine's formula T = 0163 V / αA
Figure imgb0001
where V is the volume of the free space; A is the absorbent surface; α is the absorption index defined above.

Cette formule de Sabine est établie à partir de l'hypothèse d'une répartition parfaitement homogène du champ réverbéré. Le temps de réverbération est le temps au bout duquel l'énergie acoustique a diminué de 60dB, c'est à dire 1 ppm par rapport à sa valeur initiale.This formula of Sabine is established from the assumption of a perfectly homogeneous distribution of the reverberated field. The reverberation time is the time at which the acoustic energy has decreased by 60 dB, ie 1 ppm from its initial value.

Ces notions d'acoustique ayant été rappelées, vont être présentés ci dessous quelques résultats expérimentaux obtenus dans des conditions normalisées.These notions of acoustics having been recalled, will be presented below some experimental results obtained under standardized conditions.

Dans une première série d'essais, douze bandes de matériau ont fait l'objet de tests d'absorption acoustique.In a first series of tests, twelve strips of material were subjected to sound absorption tests.

Les nappes de matériau, de dimensions 9'x8' ont étés fixées sur la surface d'une boîte parallélépipédique de laine de verre, d'épaisseur de paroi 3 / 4', de dimensions 9'x8'x4', la boîte étant posée sur une plaque en acier ondulée.The sheets of material, of dimensions 9'x8 'were fixed on the surface of a parallelepiped box of glass wool, wall thickness 3/4', dimensions 9'x8'x4 ', the box being placed on a corrugated steel plate.

La boîte en laine de verre a été enlevée de la chambre de réverbération pour les mesures dites en chambre vide. Les résultats des essais sont donnés dans le tableau I suivant.The glass wool box was removed from the reverberation chamber for measurements in an empty chamber. The results of the tests are given in Table I below.

Les fréquences mentionnées dans le tableau I sont les fréquences centrales des bandes tiers d'octave normalisées. Tableau I- Première série d'essais Fréquences (Hz) Test 1b Test 2b Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Test 11 Test 8b 125 0.43 0.71 0.77 0.77 0.37 0.43 0.47 0.80 0.46 0.33 0.42 0.90 160 0.31 0.70 0.68 0.60 0.43 0.45 0.49 0.97 0.59 0.61 0.59 1.01 200 0.18 0.69 0.69 0.66 0.41 0.41 0.40 0.89 0.42 0.49 0.55 0.93 250 0.21 0.63 0.73 0.72 0.49 0.51 0.43 0.88 0.51 0.63 0.61 0.97 315 0.29 0.79 0.87 0.88 0.68 0.73 0.65 0.90 0.70 0.79 0.75 0.94 400 0.39 0.87 1.00 1.03 0.81 0.83 0.70 0.82 0.76 0.83 0.83 0.76 500 0.41 0.82 1.02 1.03 0.82 0.85 0.70 0.75 0.74 0.92 0.93 0.69 630 0.39 0.73 0.98 0.99 0.87 0.87 0.68 0.69 0.69 0.91 0.90 0.65 800 0.37 0.69 1.00 1.00 0.93 0.93 0.67 0.68 0.68 0.94 0.93 0.67 1000 0.34 0.61 1.01 1.00 0.97 0.99 0.61 0.63 0.60 0.95 0.93 0.67 1250 0.35 0.58 1.06 1.06 1.02 1.04 0.59 0.61 0.57 1.01 1.00 0.62 1600 0.37 0.56 1.09 1.09 1.05 1.07 0.54 0.57 0.53 1.02 1.00 0.59 2000 0.35 0.48 1.08 1.04 1.07 1.07 0.50 0.50 0.44 0.97 0.97 0.52 2500 0.34 0.43 1.07 1.01 1.07 1.07 0.44 0.43 0.34 0.91 0.88 0.49 3150 0.30 0.36 1.01 0.91 1.01 1.01 0.38 0.36 0.24 0.76 0.70 0.45 4000 0.27 0.32 0.93 0.78 0.97 0.98 0.37 0.33 0.10 0.57 0.46 0.43 CAA 0.35 0.65 0.95 0.95 0.85 0.85 0.55 0.70 0.55 0.85 0.85 0.70 The frequencies mentioned in Table I are the center frequencies of the normalized third octave bands. Table I- First series of tests Frequencies (Hz) Test 1b Test 2b Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Test 11 Test 8b 125 0.43 0.71 0.77 0.77 0.37 0.43 0.47 0.80 0.46 0.33 0.42 0.90 160 0.31 0.70 0.68 0.60 0.43 0.45 0.49 0.97 0.59 0.61 0.59 1.01 200 0.18 0.69 0.69 0.66 0.41 0.41 0.40 0.89 0.42 0.49 0.55 0.93 250 0.21 0.63 0.73 0.72 0.49 0.51 0.43 0.88 0.51 0.63 0.61 0.97 315 0.29 0.79 0.87 0.88 0.68 0.73 0.65 0.90 0.70 0.79 0.75 0.94 400 0.39 0.87 1.00 1.03 0.81 0.83 0.70 0.82 0.76 0.83 0.83 0.76 500 0.41 0.82 1.02 1.03 0.82 0.85 0.70 0.75 0.74 0.92 0.93 0.69 630 0.39 0.73 0.98 0.99 0.87 0.87 0.68 0.69 0.69 0.91 0.90 0.65 800 0.37 0.69 1.00 1.00 0.93 0.93 0.67 0.68 0.68 0.94 0.93 0.67 1000 0.34 0.61 1.01 1.00 0.97 0.99 0.61 0.63 0.60 0.95 0.93 0.67 1250 0.35 0.58 1.06 1.06 1.02 1.04 0.59 0.61 0.57 1.01 1.00 0.62 1600 0.37 0.56 1.09 1.09 1.05 1.07 0.54 0.57 0.53 1.02 1.00 0.59 2000 0.35 0.48 1.08 1.04 1.07 1.07 0.50 0.50 0.44 0.97 0.97 0.52 2500 0.34 0.43 1.07 1.01 1.07 1.07 0.44 0.43 0.34 0.91 0.88 0.49 3150 0.30 0.36 1.01 0.91 1.01 1.01 0.38 0.36 0.24 0.76 0.70 0.45 4000 0.27 0.32 0.93 0.78 0.97 0.98 0.37 0.33 0.10 0.57 0.46 0.43 CAA 0.35 0.65 0.95 0.95 0.85 0.85 0.55 0.70 0.55 0.85 0.85 0.70

Les conditions de ces essais sont présentées dans le tableau II. Tableau II- Conditions expérimentales pour la première série d'essais Numéro du test Type de feuille support Revêtement Sona Spray Acoustical Finish de la société K13 Spray-On Systems Fibre de verre de la société Owens Coming sur plaque acier 1b Lisse Plaque acier Non Non 2b Lisse Plaque acier Non 6" R19 3 Perforée NLM41 Plaque acier Non 6" R19 4 Perforée NL601 Plaque acier Non 6" R19 5 Perforée NL601 Plaque acier 1" Non 6 Perforée NLM41 Plaque acier 1" Non 7 Lisse Plaque acier 1" Non 8 Lisse - Non 6" R19, à 3" de la feuille 8b Lisse - Non 3-7/8" RA24 (1.5 #) à 5.75"de la feuille 9 Lisse Plaque acier 2,25" Non 10 Perforée NLM41 Plaque acier 2,25" Non 11 Perforée NL601 Plaque acier 2,25" Non The conditions of these tests are presented in Table II. Table II- Experimental conditions for the first series of tests Test number Sheet type support Sona Spray Acoustical Finish coating from K13 Spray-On Systems Fiberglass from Owens Coming on steel plate 1b Smooth Steel plate No No 2b Smooth Steel plate No 6 "R19 3 Perforated NLM41 Steel plate No 6 "R19 4 Perforated NL601 Steel plate No 6 "R19 5 Perforated NL601 Steel plate 1 " No 6 Perforated NLM41 Steel plate 1 " No 7 Smooth Steel plate 1 " No 8 Smooth - No 6 "R19, 3" from the sheet 8b Smooth - No 3-7 / 8 "RA24 (1.5 #) to 5.75" from the sheet 9 Smooth Steel plate 2.25 " No 10 Perforated NLM41 Steel plate 2.25 " No 11 Perforated NL601 Steel plate 2.25 " No

Les feuilles dites « perforées NLM41 » sont du type de celles commercialisées par la demanderesse sous la référence NewLine NLM41. Ces feuilles sont pourvues de perforations de grandes dimensions (trous circulaires de diamètre quatre millimètres), obtenus par enlèvement de matière, la densité de trous étant inférieure à un par centimètre carré. Ces trous circulaires sont destinés à permettre une ventilation du plenum et un désenfumage éventuel: cette gamme de produits NLM41 est classée M1/B1/Fire 1.The so-called "perforated NLM41" sheets are of the type sold by the applicant under the reference NewLine NLM41. These sheets are provided with large perforations (circular holes of diameter four millimeters), obtained by removal of material, the hole density being less than one per square centimeter. These circular holes are intended to allow ventilation of the plenum and possible smoke extraction: this range of products NLM41 is classified M1 / B1 / Fire 1.

Les feuilles dites « perforées NL601 » sont du type de celles commercialisées par la demanderesse sous la référence NewLine NL601. Ces feuilles sont, elles aussi, pourvues de perforations de grande taille (trous circulaires de diamètre un millimètre), perforations obtenues par enlèvement de matière. Ces trous circulaires sont destinés, tout comme ceux des feuilles NLM41, à permettre une ventilation du plénum et un désenfumage éventuel, cette gamme de produits NL601 étant classée M1/B1/Fire 1.The sheets called "perforated NL601" are of the type sold by the applicant under the reference NewLine NL601. These sheets are also provided with large perforations (circular holes of diameter one millimeter), perforations obtained by removal of material. These circular holes are intended, like those of NLM41 sheets, to allow ventilation of the plenum and possible smoke extraction, this range of products NL601 being classified M1 / B1 / Fire 1.

Les courbes correspondant à ces résultats sont données en figures 2 à 7:

  • la figure 2 donne les résultats pour les essais 1b, 2b, 3, 4, par rapport à cinq valeurs obtenues pour un étalon de référence ;
  • la figure 3 donne les résultats pour les essais 5, 6, 7, par rapport audit étalon de référence ;
  • la figure 4 est un graphe rassemblant les résultats des essais 8, 8b et 9, comparés à ceux obtenus pour les essais 1b, 2b, et 7 ;
  • la figure 5 est un graphe représentant les résultats obtenus pour l'essai 10, comparés à ceux des essais 3 et 6 ;
  • la figure 6 est un graphe représentant les résultats obtenus pour l'essai 11, comparés à ceux obtenus pour les essais 4 et 5.
The curves corresponding to these results are given in Figures 2 to 7 :
  • the figure 2 gives the results for tests 1b, 2b, 3, 4, compared to five values obtained for a reference standard;
  • Figure 3 gives the results for tests 5, 6, 7, with respect to said reference standard;
  • the figure 4 is a graph summarizing the results of tests 8, 8b and 9, compared to those obtained for tests 1b, 2b, and 7;
  • the figure 5 is a graph representing the results obtained for test 10, compared to those of tests 3 and 6;
  • the figure 6 is a graph representing the results obtained for test 11, compared to those obtained for tests 4 and 5.

La comparaison des courbes 1b et 2b montre l'impact de la mise en place d'un isolant phonique fibreux classique, tel que cela peut être fait dans le plénum.The comparison of the curves 1b and 2b shows the impact of the implementation of a conventional fibrous sound insulation, as it can be done in the plenum.

La comparaison des courbes 3 et 4 d'une part avec les courbes 1b 2b d'autre part montre que la mise en place de perforations sur la feuille tendue permet d'augmenter les propriétés d'absorption acoustique, en particulier aux hautes fréquences, domaine dans lequel la mise en place de l'isolant fibreux s'avère peu efficace. Les inventeurs ont recherché une explication à cette observation. II s'avère que, dans le domaine de l'acoustique, il est connu qu'un panneau perforé rigide d'épaisseur h situé à une distance e d'une paroi et comprenant un nombre n de perforations cylindriques de rayon a, ce panneau étant supporté par quatre tasseaux orthogonaux, présente une pulsation d'efficacité maximale valant ω = c / a 2 e h + 8 a / 3 π 1 / 2

Figure imgb0002
ce panneau se comportant comme un ensemble de résonateurs d'Helmholtz, sa valeur maximale d'absorption acoustique restant tributaire de la valeur du coefficient d'amortissement et du taux de perforation. Ce type de mécanisme est mis en oeuvre dans les plafonds suspendus perforés.The comparison of the curves 3 and 4 on the one hand with the curves 1b 2b on the other hand shows that the placement of perforations on the stretched sheet makes it possible to increase the sound absorption properties, in particular at the high frequencies, the domain in which the introduction of the fibrous insulation is not very effective. The inventors have sought an explanation for this observation. It turns out that, in the field of acoustics, it is known that a rigid perforated panel of thickness h situated at a distance e from a wall and comprising a number n of cylindrical perforations of radius a, this panel being supported by four orthogonal cleats, has a maximum efficiency pulse of ω = vs / at 2 e h + 8 at / 3 π 1 / 2
Figure imgb0002
this panel behaves as a set of Helmholtz resonators, its maximum sound absorption value remaining dependent on the value of the damping coefficient and the perforation rate. This type of mechanism is implemented in perforated suspended ceilings.

Dans le cas des toiles tendues considérées ici, les feuilles de matériaux tendues sont susceptibles de vibrer et ne sont donc pas rigides et indéformables, de plus les épaisseurs h sont très faibles par rapport aux panneaux isolants phoniques, de sorte que le modèle présenté ci dessus ne peut être utilisé. D'autres modèles, connus dans le domaine de l'acoustique, visent à prévoir le comportement de panneaux diaphragmes perforés, tenant compte de la raideur propre du panneau et de la compression de l'air dans la partie arrière du panneau, ainsi que de son écoulement au travers des perforations, pouvant jouer un rôle dissipatif.In the case of the stretched fabrics considered here, the sheets of stretched materials are likely to vibrate and are not rigid and dimensionally stable, the thicknesses h are very low compared to sound insulating panels, so that the model presented above can not be used. Other models, known in the field of acoustics, are intended to predict the behavior of perforated diaphragm panels, taking into account the inherent stiffness of the panel and the air compression in the rear part of the panel, as well as its flow through the perforations, which can play a dissipative role.

Ces modèles très complexes pourraient être éventuellement invoqués vis à vis des résultats obtenus lors des essais 3,4,5,6,10,11.These very complex models could possibly be invoked with respect to the results obtained during the trials 3,4,5,6,10,11.

Les courbes 5, 6 et 7 illustrent l'impact de la mise en place d'un revêtement acoustique en spray sur les feuilles tendues. L'effet de ce revêtement est surtout marqué en fréquences élevées. A l'inverse, comme le montre la figure 4, pour une feuille tendue lisse, la mise en place d'isolant fibreux (essais 2b, 8, 8b) ou la mise en place d'un revêtement acoustique en spray (essais 7 et 9) donne, pour les fréquences supérieures à 400 Hz, des résultats inférieurs à ceux obtenus avec des feuilles perforées avec ou sans revêtement acoustique en spray. Dans tous les cas de figures présentés par les essais 1b,2b,3,4,5,6,7,8,8b,9,10 et 11, les propriétés d'atténuation acoustique présentaient une grande dissymétrie entre fréquences basses et hautes.Curves 5, 6 and 7 illustrate the impact of placing an acoustic spray coating on the stretched sheets. The effect of this coating is especially marked in high frequencies. Conversely, as shown in figure 4 , for a smooth tensioned sheet, the placement of fibrous insulation (tests 2b, 8, 8b) or the placement of an acoustic spray coating (tests 7 and 9) gives, for frequencies above 400 Hz , results lower than those obtained with perforated sheets with or without spray acoustic coating. In all the cases presented by the tests 1b, 2b, 3,4,5,6,7,8,8b, 9,10 and 11, the acoustic attenuation properties had a large dissymmetry between low and high frequencies.

Les inventeurs ont constaté que, de manière inattendue, et sans qu'une explication simple puisse être invoquée, la réalisation de micro-reliefs et de micro perforations conduisait à des résultats aussi favorable que la réalisation de perforations de grande taille. Les résultats obtenus avec des micro-perforations sont mêmes meilleurs dans le domaine des hautes fréquences, par rapport à ceux obtenus par les perforations de grande taille.The inventors have found that, unexpectedly, and without a simple explanation being able to be invoked, the production of micro-reliefs and micro-perforations led to results as favorable as the production of large perforations. The results obtained with micro-perforations are even better in the field of high frequencies, compared to those obtained by large perforations.

Les essais 12, 13 et 14 illustrent ces étonnants résultats. Les conditions de ces essais étaient les suivantes : température= 70F (21,2°C environ), humidité= 64%, pression atmosphérique. Une feuille de matériau micro perforée de 9'x8' a été testée dans un montage type E 1219. Par « micro perforée » on désigne ici, en référence aux essais 12,13 et 14, une feuille de matériau PVC de 17 centièmes de millimètres d'épaisseur, pourvue de micro perforations formées par aiguilletage, sans enlèvement de matière, les aiguilles utilisées ayant un diamètre d'extrémité de l'ordre de 4 centièmes de millimètres, la densité de micro perforations obtenue étant de l'ordre de vint trois par centimètre carré, les perforations étant réparties sur une maille telle que représentée en figure 1 a. La feuille a été tendue sur la face supérieure d'une boîte parallélépipédique non peinte en paroi de fibres de verres d'épaisseur 3 / 4 ", de volume égale à 10154.72 cu.ft. Les résultats dits à « chambre vide » ont étés obtenus sans mise en place de la boîte, la feuille de matériau étant posée sur une plaque d'acier. Pour ces essais à chambre vide, les valeurs T60 correspondent aux temps de réverbération moyens. Le Coefficient d'Absorption Acoustique (CAA) et les précisions ont étés obtenus suivant la norme des Etats-Unis d'Amérique ASTM C423-90a. Les valeurs de NRC et AAC ont été obtenues suivant la norme ASTM C423. Pour l'essai 12, une couche de 6" d'épaisseur de laine de verre R19 de la société Owens Coming a été suspendue dans la boîte, à 3,75" de la feuille de matériau tendue. Pour l'essai 13, une couche de 1" d'épaisseur de fibre de verre RA24 de la société Owens Corning a été suspendue dans la boîte à 8,75" de la feuille de matériau tendue. Pour l'essai 14, aucun matériau n'était placé dans la boîte. Tableau III- Essais N° 12 13 et 14.
Mesures d'absorption acoustique à l'aide d'une chambre à réverbération
Fréq. (Hz) Chambre vide T60 (s) Incert. % Essai 14 T60 (s) Incert. % CAA Préc. Sabins / sq.ft Essai 13 T60 (s) Incert % CAA Préc Sabins / Sq.ft Essai 12 T60 (s) Incert. % CAA Préc. Sabins / Sq.ft
50 1.63 5 1.31 3.23 0.76 0.26 1.37 2.59 0.52 0.26 1.88 15.29 0.84 0.61 63 1.37 7.56 0.96 4.48 2.15 0.50 0.90 3.25 2.59 0.46 1.01 4.61 1.80 0.50 80 1.60 5.44 1.17 14.97 1.61 0.92 1.12 6.42 1.88 0.48 1.15 4.52 1.71 0.36 100 2.40 5.74 2.21 6.64 0.24 0.32 1.96 9.18 0.64 0.36 1.70 2.44 1.17 0.19 125 3.16 2.37 2.81 3.90 0.27 0.11 2.57 3.86 0.51 0.12 2.37 2.67 0.73 0.09 160 3.56 3.22 3.06 1.99 0.32 0.08 2.63 1.95 0.69 0.08 2.56 4.01 0.76 0.13 200 4.01 2.53 3.55 2.31 0.22 0.06 2.94 2.38 0.63 0.07 2.58 2.07 0.96 0.07 250 5.62 1.34 4.37 2.16 0.35 0.04 3.45 2.53 0.77 0.05 3.18 2.06 0.94 0.05 315 6.67 1.77 5.02 1.43 0.34 0.03 3.81 1.58 0.78 0.03 3.54 1.19 0.91 0.03 400 6.25 0.90 4.53 1.65 0.42 0.03 3.64 1.62 0.80 0.03 3.39 1.77 0.93 0.04 500 7.05 0.62 4.82 1.08 0.45 0.03 3.93 1.28 0.78 0.02 3.85 1.43 0.81 0.03 630 7.23 0.73 4.85 1.29 0.47 0.02 3.99 1.44 0.78 0.03 3.95 1.43 0.79 0.03 800 7.23 0.41 4.65 1.01 0.53 0.02 3.89 0.71 0.82 0.01 3.87 0.84 0.83 0.02 1000 7.17 0.45 4.47 1.06 0.58 0.02 3.85 0.59 0.83 0.01 3.88 0.93 0.82 0.02 1250 6.92 0.45 4.17 0.55 0.66 0.01 3.72 0.51 0.86 0.01 3.70 0.52 0.87 0.01 1600 6.25 0.34 3.83 0.61 0.70 0.01 3.50 0.49 0.87 0.01 3.49 0.61 0.88 0.01 2000 5.29 0.43 3.45 0.73 0.70 0.02 3.21 0.47 0.85 0.01 3.21 0.52 0.85 0.01 2500 4.06 0.49 2.90 0.41 0.68 0.01 2.76 0.42 0.80 0.01 2.76 0.59 0.81 0.02 3150 3.37 0.57 2.54 0.59 0.57 0.02 2.45 0.40 0.78 0.02 2.44 0.48 0.78 0.02 4000 2.80 0.48 2.23 0.46 0.63 0.02 2.17 0.36 0.72 0.02 2.17 0.48 0.72 0.02 5000 2.20 0.55 1.85 0.50 0.59 0.03 1.82 0.40 0.66 0.02 1.80 0.48 0.69 0.03 6300 1.67 0.38 1.48 0.44 0.54 0.03 1.45 0.39 0.62 0.02 1.43 0.44 0.68 0.03 8000 1.21 0.53 1.11 0.50 0.50 0.04 1.09 0.68 0.58 0.05 1.08 0.60 0.65 0.05 10000 0.89 0.78 0.83 0.85 0.51 0.09 0.83 0.61 0.58 0.08 0.82 0.64 0.70 0.08
Essays 12, 13 and 14 illustrate these amazing results. The conditions of these tests were as follows: temperature = 70F (about 21.2 ° C.), humidity = 64%, atmospheric pressure. A sheet of micro-perforated material of 9'x8 'was tested in an assembly type E 1219. By "micro-perforated" is meant here, with reference to tests 12, 13 and 14, a sheet of PVC material of 17 hundredths of a millimeter of thickness, provided with micro perforations formed by needling, without removal of material, the needles used having an end diameter of the order of 4 hundredths of a millimeter, the density of micro perforations obtained being of the order of three per square centimeter, the perforations being distributed over a mesh as represented in figure 1 at. The sheet was stretched on the upper face of a parallelepiped box unpainted glass fiber wall thickness of 3/4 ", with a volume equal to 10154.72 cu.ft. The results said to" empty chamber "were obtained without placing the box, the sheet of material being placed on a steel plate For these empty chamber tests, the T60 values correspond to the average reverberation times The Acoustic Absorption Coefficient (CAA) and the accuracies The values of NRC and AAC were obtained according to ASTM C423, while for test 12 a 6 "thick layer of polyester wool was obtained in accordance with ASTM C423-90a. The Owens Coming R19 glass was suspended in the box at 3.75 "from the sheet of tensioned material For Test 13, a 1" thick layer of RA24 fiberglass from Owens Corning was suspended in the box at 8.75 "from the sheet of material t For test 14, no material was placed in the box. Table III- Tests N ° 12 13 and 14.
Sound absorption measurements using a reverberation chamber
Freq. (Hz) Empty room T60 (s) Incert. % Test 14 T60 (s) Incert. % CAA Prev. Sabins / sq.ft Test 13 T60 (s) Incert% CAA Prec Sabins / Sq.ft Test 12 T60 (s) Incert. % CAA Prev. Sabins / Sq.ft
50 1.63 5 1.31 3.23 0.76 0.26 1.37 2.59 0.52 0.26 1.88 15.29 0.84 0.61 63 1.37 7.56 0.96 4.48 2.15 0.50 0.90 3.25 2.59 0.46 1.01 4.61 1.80 0.50 80 1.60 5.44 1.17 14.97 1.61 0.92 1.12 6.42 1.88 0.48 1.15 4.52 1.71 0.36 100 2.40 5.74 2.21 6.64 0.24 0.32 1.96 9.18 0.64 0.36 1.70 2.44 1.17 0.19 125 3.16 2.37 2.81 3.90 0.27 0.11 2.57 3.86 0.51 0.12 2.37 2.67 0.73 0.09 160 3.56 3.22 3.06 1.99 0.32 0.08 2.63 1.95 0.69 0.08 2.56 4.01 0.76 0.13 200 4.01 2.53 3.55 2.31 0.22 0.06 2.94 2.38 0.63 0.07 2.58 2.07 0.96 0.07 250 5.62 1.34 4.37 2.16 0.35 0.04 3.45 2.53 0.77 0.05 3.18 2.06 0.94 0.05 315 6.67 1.77 5.02 1.43 0.34 0.03 3.81 1.58 0.78 0.03 3.54 1.19 0.91 0.03 400 6.25 0.90 4.53 1.65 0.42 0.03 3.64 1.62 0.80 0.03 3.39 1.77 0.93 0.04 500 7.05 0.62 4.82 1.08 0.45 0.03 3.93 1.28 0.78 0.02 3.85 1.43 0.81 0.03 630 7.23 0.73 4.85 1.29 0.47 0.02 3.99 1.44 0.78 0.03 3.95 1.43 0.79 0.03 800 7.23 0.41 4.65 1.01 0.53 0.02 3.89 0.71 0.82 0.01 3.87 0.84 0.83 0.02 1000 7.17 0.45 4.47 1.06 0.58 0.02 3.85 0.59 0.83 0.01 3.88 0.93 0.82 0.02 1250 6.92 0.45 4.17 0.55 0.66 0.01 3.72 0.51 0.86 0.01 3.70 0.52 0.87 0.01 1600 6.25 0.34 3.83 0.61 0.70 0.01 3.50 0.49 0.87 0.01 3.49 0.61 0.88 0.01 2000 5.29 0.43 3.45 0.73 0.70 0.02 3.21 0.47 0.85 0.01 3.21 0.52 0.85 0.01 2500 4.06 0.49 2.90 0.41 0.68 0.01 2.76 0.42 0.80 0.01 2.76 0.59 0.81 0.02 3150 3.37 0.57 2.54 0.59 0.57 0.02 2.45 0.40 0.78 0.02 2.44 0.48 0.78 0.02 4000 2.80 0.48 2.23 0.46 0.63 0.02 2.17 0.36 0.72 0.02 2.17 0.48 0.72 0.02 5000 2.20 0.55 1.85 0.50 0.59 0.03 1.82 0.40 0.66 0.02 1.80 0.48 0.69 0.03 6300 1.67 0.38 1.48 0.44 0.54 0.03 1.45 0.39 0.62 0.02 1.43 0.44 0.68 0.03 8000 1.21 0.53 1.11 0.50 0.50 0.04 1.09 0.68 0.58 0.05 1.08 0.60 0.65 0.05 10000 0.89 0.78 0.83 0.85 0.51 0.09 0.83 0.61 0.58 0.08 0.82 0.64 0.70 0.08

Les valeurs de AAC et NRC obtenues sont données dans le tableau IV ci dessous: Tableau IV- Essais N° 12 13 et 14, valeurs NRC et AAC obtenues NRC AAC Essai 12 0.85 0.87 Essai 13 0.8 0.8 Essai 14 0.5 0.51 The values of AAC and NRC obtained are given in Table IV below: Table IV- Tests N ° 12 13 and 14, NRC and AAC values obtained NRC AAC Trial 12 0.85 0.87 Trial 13 0.8 0.8 Trial 14 0.5 0.51

Les valeurs d'absorption acoustique obtenues lors des essais 12,13 et 14 sont reportées sur le graphe de la figure 7, seules les fréquences comprises entre 125 et 4000 Hz étant prises en compte, afin d'homogénéité de présentation avec les graphes des figures 2 à 6.The sound absorption values obtained during tests 12, 13 and 14 are plotted on the graph of the figure 7 , only the frequencies between 125 and 4000 Hz being taken into account, in order to homogeneity of presentation with the graphs of the Figures 2 to 6 .

La combinaison d'une membrane micro perforée avec un isolant fibreux placé à distance de la paroi rigide permet l'obtention d'une atténuation acoustique homogène sur toute la gamme de fréquences considérée.The combination of a micro-perforated membrane with a fibrous insulation placed at a distance from the rigid wall makes it possible to obtain a homogeneous acoustic attenuation over the entire frequency range considered.

Les essais réalisés pour la première et la deuxième série mentionnées ci dessus mettaient en oeuvre une chambre acoustique à parois en fibres de verre, ce qui ne correspond pas à la disposition réelle des plafonds tendus.The tests carried out for the first and second series mentioned above involved an acoustic chamber with glass fiber walls, which does not correspond to the actual arrangement of the stretch ceilings.

Afin de mieux évaluer l'impact de la présence du support de feuille tendue sur les propriétés d'atténuation acoustique d'ensemble, une troisième série d'essais a été effectuée dans les conditions suivantes.In order to better evaluate the impact of the presence of the stretched sheet support on the overall acoustic attenuation properties, a third series of tests was carried out under the following conditions.

Essai A :Test A:

Des panneaux de 8' x9' de fibres de verre d'un poids total de 0.25psf, d'épaisseur 1" ( densité 3 Ib/cu.ft) entourés d'un cadre tubulaire métallique de 4" de hauteur et de 1-1/2 " d'épaisseur nominale ont étés fixés directement sur la paroi de base de la chambre de réverbération (montage A de la norme ASTM E 795).8 'x 9' fiberglass panels with a total weight of 0.25psf, 1 "thick (density 3 Ib / cu.ft) surrounded by a tubular metal frame 4" high and 1- 1/2 "nominal thickness were attached directly to the base wall of the reverberation chamber (ASTM E 795 mounting A).

Ces cadres formaient support pour des bandes de matériau lisses tendues en PVCThese frames formed a support for PVC strips of smooth material stretched

Essai B :Test B:

Des panneaux de 8' x9' de PVC lisse (5mil) ont étés placé à l'aide d'un montage harpon /rail à 4" de la paroi de fond de la chambre de réverbération (montage E90 de la norme ASTM E 795).8 'x 9' panels of smooth PVC (5mil) were placed using a harpoon / rail assembly at 4 "from the bottom wall of the reverberation chamber (ASTM E 795 E90 fitting) .

Le cadre support des panneaux en PVC lisse est en tubes métalliques de hauteur 4" et d'épaisseur nominale 1-1/2".The support frame for smooth PVC panels is made of metal tubes with a height of 4 "and a nominal thickness of 1-1 / 2".

Ce cadre est fixé par l'extérieur sur la paroi de base de la chambre de réverbération.This frame is fixed externally to the base wall of the reverberation chamber.

Un panneau de fibre de verre de 2" d'épaisseur (densité 3 Ib/cu.ft) étant placé directement sur la paroi de fond de cette chambre.A 2 "thick fiberglass board (density 3 Ib / cu.ft) is placed directly on the bottom wall of this chamber.

Le poids total de ce panneau de fibre de verre est de 0.49 psf, la bande de PVC pesant 0.05 psf.The total weight of this fiberglass board is 0.49 psf, the PVC band weighing 0.05 psf.

Essai C :Test C:

Des panneaux de 8' x9' de PVC lisse (5mil) ont étés placé à l'aide d'un montage harpon /rail à 4" de la paroi de fond de la chambre de réverbération (montage E90 de la norme ASTM E 795).8 'x 9' panels of smooth PVC (5mil) were placed using a harpoon / rail assembly at 4 "from the bottom wall of the reverberation chamber (ASTM E 795 E90 fitting) .

Le cadre support des panneaux en PVC lisse est en tubes métalliques de hauteur 4" et d'épaisseur nominale 1-1/2".The support frame for smooth PVC panels is made of metal tubes with a height of 4 "and a nominal thickness of 1-1 / 2".

Ce cadre est fixé par l'extérieur sur la paroi de base de la chambre de réverbération.This frame is fixed externally to the base wall of the reverberation chamber.

Un panneau de fibre de verre de 1" d'épaisseur (densité 3 lb/cu.ft) étant placé directement sur la paroi de fond de cette chambre.A 1 "thick fiberglass board (density 3 lb / cu.ft) is placed directly on the bottom wall of this chamber.

Le poids total de ce panneau de fibre de verre est de 0.25 psf, la bande de PVC pesant 0.05 psf.The total weight of this fiberglass board is 0.25 psf, the PVC band weighing 0.05 psf.

Les résultats obtenus sont présentés dans le tableau V ci dessous. Tableau V- Résultats obtenus pour les essais A B et C. Coefficient d'absorption acoustique Sabins Essai A Coefficient d'absorption acoustique Essai B Sabins Essai B Coefficient d'absorption acoustique Essai C Sabins Essai C 100 0.05 3.6 0.17 12.5 0.09 6.6 125 0.07 5.3 0.28 20.0 0.14 9.8 160 0.12 8.3 0.47 33.8 0.24 17.2 200 0.21 15.3 0.75 54.3 0.34 24.7 250 0.30 21.6 1.02 73.5 0.52 37.1 315 0.45 32.6 1.11 80.0 0.70 50.3 400 0.66 47.5 1.08 77.9 0.87 62.5 500 0.69 49.6 0.84 60.7 0.69 50.0 630 0.71 50.9 0.66 47.3 0.52 37.1 800 0.72 52.0 0.52 37.3 0.39 27.9 1000 0.74 53.3 0.42 29.9 0.30 21.3 1250 0.78 56.4 0.34 24.8 0.25 18.2 1600 0.83 60.1 0.30 21.3 0.28 19.9 2000 0.87 62.6 0.25 18.2 0.31 22.4 2500 0.92 65.9 0.22 15.7 0.25 17.9 3150 0.94 67.7 0.18 13.2 0.21 14.8 4000 0.98 70.2 0.15 11.0 0.18 13.3 5000 1.01 72.5 0.13 9.3 0.18 13.0 The results obtained are shown in Table V below. Table V- Results obtained for tests AB and C. Sound absorption coefficient Sabins Trial A Sound absorption coefficient Test B Sabins Trial B Sound absorption coefficient Test C Sabins Test C 100 0.05 3.6 0.17 12.5 0.09 6.6 125 0.07 5.3 0.28 20.0 0.14 9.8 160 0.12 8.3 0.47 33.8 0.24 17.2 200 0.21 15.3 0.75 54.3 0.34 24.7 250 0.30 21.6 1.02 73.5 0.52 37.1 315 0.45 32.6 1.11 80.0 0.70 50.3 400 0.66 47.5 1.08 77.9 0.87 62.5 500 0.69 49.6 0.84 60.7 0.69 50.0 630 0.71 50.9 0.66 47.3 0.52 37.1 800 0.72 52.0 0.52 37.3 0.39 27.9 1000 0.74 53.3 0.42 29.9 0.30 21.3 1250 0.78 56.4 0.34 24.8 0.25 18.2 1600 0.83 60.1 0.30 21.3 0.28 19.9 2000 0.87 62.6 0.25 18.2 0.31 22.4 2500 0.92 65.9 0.22 15.7 0.25 17.9 3150 0.94 67.7 0.18 13.2 0.21 14.8 4000 0.98 70.2 0.15 11.0 0.18 13.3 5000 1.01 72.5 0.13 9.3 0.18 13.0

Les valeurs NRC moyen et NRC obtenues pour ces essais A B et C sont précisées ci dessous dans le tableau VI. Tableau VI- Valeurs NRC obtenues pour les essais A B et C. Essai A Essai B Essai C NRC Moyen 0.65 0.633 0.455 NRC 0.65 0.65 0.45 The average NRC and NRC values obtained for these AB and C tests are specified below in Table VI. Table VI- NRC values obtained for tests AB and C. Test A Test B Test C NRC Medium 0.65 0633 0455 NRC 0.65 0.65 0.45

Les valeurs des coefficients d'absorption acoustique ont étés obtenues suivant les termes de la norme ASTM C 423-90a, par un analyseur Bruel Kjaer type 2133.The values of the sound absorption coefficients were obtained according to the terms of ASTM C 423-90a, by a Bruel Kjaer type 2133 analyzer.

Les histogrammes des figures 8, 9 et 10 représentent les évolutions des coefficients d'absorption acoustique pour les fréquences comprises entre 100 et 5000 Hertz, pour les essais A, B et C.The histograms of figures 8 , 9 and 10 represent the evolutions of the sound absorption coefficients for frequencies between 100 and 5000 Hertz, for tests A, B and C.

Le matériau polymère souple, en feuille, à propriétés acoustiques améliorées qui vient d'être décrit est apte à être utilisé pour des structures tendues de décoration ou masquage telles què notamment faux plafonds, faux murs.The flexible polymeric sheet material with improved acoustic properties which has just been described is suitable for use in tensioned structures for decoration or masking such as, in particular, false ceilings and false walls.

Ce matériau peut également être employé pour les panneaux d'affichage, de type fixe ou à défilement, l'atténuation de la réverbération permettant de réduire la nuisance sonore générée par ces panneaux.This material can also be used for billboards, of fixed or scroll type, the attenuation of the reverberation to reduce the noise generated by these panels.

L'aspect visuel du matériau n'étant pas sensiblement modifié par la réalisation de ces micro-reliefs, ce matériau reste parfaitement adapté à une utilisation tant en milieu industriel qu'en milieu hospitalier que pour des équipements collectifs ou des locaux d'habitations modernes ou historiques.As the visual aspect of the material is not substantially modified by the production of these micro-reliefs, this material remains perfectly adapted to use both in industrial and hospital environments, as well as for public facilities or modern living quarters. or historical.

Les propriétés acoustiques obtenues à laide de ces matériaux sont tout à fait comparables à celles de plafonds suspendus conventionnels, ainsi que le montre le tableau ci-dessous, donné à titre indicatif. Tableau VII- Comparaison des propriétés acoustiques d'une feuille micro perforée selon l'invention et de plaques de plafonds conventionnelles. Produit 125Hz 250Hz 500Hz 1000Hz 2000Hz 4000Hz CAA Plaque de plafond suspendu a (Armstrong) 0.23 0.32 0.40 0.87 0.74 0.83 0.55 Plaque de plafond suspendu b (Armstrong) 0.34 0.32 0.40 0.64 0.71 0.76 0.55 Plaque de plafond suspendu c (Armstrong) 0.33 0.31 0.53 0.68 0.62 0.52 0.55 Toile tendue micro-perforée New Mat (assai 14) 0.27 0.35 0.45 0.58 0.70 0.63 0.50 The acoustic properties obtained using these materials are quite comparable to those of ceilings as shown in the table below, given as an indication. Table VII- Comparison of the acoustic properties of a micro-perforated sheet according to the invention and conventional ceiling plates. Product 125Hz 250Hz 500Hz 1000Hz 2000Hz 4000Hz CAA Suspended ceiling plate (Armstrong) 0.23 0.32 0.40 0.87 0.74 0.83 0.55 Suspended ceiling plate b (Armstrong) 0.34 0.32 0.40 0.64 0.71 0.76 0.55 Suspended ceiling plate c (Armstrong) 0.33 0.31 0.53 0.68 0.62 0.52 0.55 New Matte micro-perforated stretch fabric (assai 14) 0.27 0.35 0.45 0.58 0.70 0.63 0.50

Claims (9)

  1. Polymer material (1) in a flexible sheet of a thickness (e1) of less than a half-millimetre, for the production of stretched constructions such as in particular suspended ceilings, characterised in that it comprises micro-reliefs extending over a height (h) from a few microns to 100 microns, micro-reliefs (2) formed by embossing the constituent matter of the material (1) which thus has a higher co-efficient of acoustic absorption than the same material without said reliefs, the microreliefs being obtained by a needling stage, locally embossing the constituent material of the sheet in a predetermined pattern until its microperforation, the needling stage being carried out when the material sheet is placed under a tension of the order of that of its final use in a stretched construction.
  2. Material according to claim 1, characterised in that the height (h) of the micro-reliefs (2) measured in a direction perpendicular to the plane of the said sheet at the level of these micro-reliefs (2) is less than three times the thickness (e1) of said sheet.
  3. Material according to claim 1 or 2, characterised in that the micro-reliefs (2) form projections on a single face of said sheet.
  4. Material according to claim 3, characterised in that all these micro-reliefs (2) are arranged following the nodal points of a single pattern.
  5. Material according to claim 4, characterised in that the pattern has a square mesh.
  6. Material according to any of claims 1 to 5, characterised in that the density of the micro-perforations is between 2 and 60 per square centimetre.
  7. Material according to any of claims 1 to 6, characterised in that it is selected from the group comprising plasticized polyvinyl chloride, vinylidene chloride and vinyl chloride/vinylidene chloride copolymers.
  8. Material according to any of claims 1 to 7, characterised in that the area occupied by the micro-reliefs (2) is between 0.5% and 10% of the total area of said sheet.
  9. Suspended ceiling, characterised in that it comprises a sheet of material as presented in any of claims 1 to 8, tensioned in relation to the support means.
EP00910999A 2000-03-20 2000-03-20 Flexible polymer material sheet for stretched constructions and false ceiling comprising this sheet Expired - Lifetime EP1180186B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2000/000682 WO2001071116A1 (en) 2000-03-20 2000-03-20 Flexible sheet fabrics for tensile structures, method for making same, tensile false ceilings comprising same

Publications (3)

Publication Number Publication Date
EP1180186A1 EP1180186A1 (en) 2002-02-20
EP1180186B1 EP1180186B1 (en) 2005-01-26
EP1180186B2 true EP1180186B2 (en) 2009-01-14

Family

ID=8846089

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00910999A Expired - Lifetime EP1180186B2 (en) 2000-03-20 2000-03-20 Flexible polymer material sheet for stretched constructions and false ceiling comprising this sheet

Country Status (10)

Country Link
US (4) US7059089B1 (en)
EP (1) EP1180186B2 (en)
AT (1) ATE288001T1 (en)
AU (1) AU3300900A (en)
CA (1) CA2374414C (en)
DE (1) DE60017725T3 (en)
DK (1) DK1180186T4 (en)
ES (1) ES2237411T5 (en)
PT (1) PT1180186E (en)
WO (1) WO2001071116A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7637698B2 (en) * 2004-10-22 2009-12-29 Meernik Paul R Tent ground cloth with drainage
US20080307849A1 (en) * 2004-11-26 2008-12-18 Agency For Science, Technology And Research Method And Apparatus For Forming Microstructures
US8367184B2 (en) * 2006-04-27 2013-02-05 3M Innovative Properties Company Structured films having acoustical absorbance properties
US20090108504A1 (en) * 2006-04-27 2009-04-30 Slama David F Methods of making structured films
US7918312B2 (en) * 2007-06-29 2011-04-05 Carlson Gregory L Acoustic reflective panel assembly
FR2926099B1 (en) * 2008-01-09 2010-03-19 Normalu PATCH FOR ACCOUSTIC TIGHTS, SEALED AND PARTIALLY TRANSLUCENT
CN102016194B (en) * 2008-05-05 2013-03-27 3M创新有限公司 Acoustic composite
US20100014282A1 (en) * 2008-07-15 2010-01-21 Michael Danesh Fire-resistant and noise attenuating recessed lighting assembly
US9194124B2 (en) 2011-12-09 2015-11-24 3M Innovative Properties Company Acoustic light panel
US8657067B1 (en) 2012-09-25 2014-02-25 The Boeing Company Acoustic damping device for noise reduction
US9468505B2 (en) 2013-03-15 2016-10-18 American Orthodontics Corporation Self-ligating bracket
WO2015015085A2 (en) * 2013-08-02 2015-02-05 Roquette Freres Flexible storage device comprising a flexible container, and an inner liner
FR3101653B1 (en) 2019-10-02 2022-02-18 Newmat PROFILE ELEMENT FOR FALSE WALL WITH STRETCHED CANVAS, FALSE WALL COMPRISING SUCH PROFILE ELEMENT
FR3105552B1 (en) * 2019-12-23 2022-05-27 Saint Gobain Isover THERMAL AND ACOUSTIC INSULATION ASSEMBLY COMPRISING A THERMAL AND ACOUSTIC INSULATION PRODUCT AND A MEMBRANE ON THE FRONT FACE
FR3120884B1 (en) 2021-03-16 2023-04-14 Newmat Profile for maintaining a fabric for a false ceiling and false ceiling comprising such a profile
FR3140638A1 (en) 2022-10-05 2024-04-12 Newmat Profiled element for stretched canvas slab and slab comprising such a profiled element

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126978A (en) * 1964-03-31 Acoustical and thermal insulation
US1554179A (en) * 1922-09-05 1925-09-15 Dahlberg & Company Sound-absorbing material for walls and ceilings
US1726500A (en) * 1928-12-28 1929-08-27 Burgess Lab Inc C F Sound-deadening construction
US1918149A (en) * 1931-05-08 1933-07-11 Burgess Lab Inc C F Sound transmitting and sound absorbing construction
US2990027A (en) * 1957-07-11 1961-06-27 Celotex Corp Composite sound absorber
US3087577A (en) * 1960-01-18 1963-04-30 Michael J Prestia Ceiling tile with sound attenuating and visual effects
GB914430A (en) 1960-04-12 1963-01-02 Nils Emil Lennart Bergstroem Method for mounting of plastic sheet material, particularly as ceiling covering in a room, and tool for accomplishing the method
FR1303930A (en) 1961-10-18 1962-09-14 Barracudaverken Ab Device for fixing a thin sheet of elastic material between opposing walls of a room in a building
SE309667B (en) 1965-04-12 1969-03-31 Barracuda Center Ab
SE323189B (en) 1968-02-20 1970-04-27 Barracudaverken Ab
US3649430A (en) * 1965-10-21 1972-03-14 American Cyanamid Co Vibration damping laminates
FR1515260A (en) 1967-01-13 1968-03-01 New method of fixing plastic covering for walls and ceilings
SE331184B (en) 1970-02-13 1970-12-14 O Blick
CH531924A (en) * 1970-05-08 1972-12-31 Ici Ltd Process for perforating a film of thermoplastic material and device for carrying out the process
GB1360975A (en) 1970-09-09 1974-07-24 Ici Ltd Suspended ceiling
US3712846A (en) * 1971-06-23 1973-01-23 Carpenter L & Co Acoustical panel
FR2145147A5 (en) 1971-07-06 1973-02-16 Ms Handel Manfred Schier
BE780464A (en) 1972-03-10 1972-07-03 Tombu Gerard IMPROVEMENTS TO THE HANGING PROFILES FOR FIXING TO WALL TABLES.
US3782495A (en) 1972-06-08 1974-01-01 M Nassof Ceiling tile
AU6105873A (en) 1972-08-13 1975-04-10 Ici Ltd Suspended ceilings
FR2270407A1 (en) 1974-03-01 1975-12-05 Moreton Pierre Covering layer with concealed attachment - has layer doubled around angle member fitting behind block secured to surface
US3948347A (en) 1974-11-25 1976-04-06 Gallagher-Kaiser Corporation Acoustical panel
US3965906A (en) * 1975-02-24 1976-06-29 Colgate-Palmolive Company Absorbent article with pattern and method
FR2310450A1 (en) 1975-05-07 1976-12-03 Anthonioz Camille IMPROVEMENTS TO FALSE CEILINGS AND FALSE WALLS
US4055180A (en) * 1976-04-23 1977-10-25 Colgate-Palmolive Company Absorbent article with retained hydrocolloid material
DE2753467A1 (en) 1977-02-18 1978-08-24 Armstrong Cork Co HANGING CEILING SYSTEM
LU77230A1 (en) 1977-04-29 1978-06-01
FR2405818A1 (en) 1977-10-14 1979-05-11 Sable Freres Int PVC coated polyurethane foam backed fabric for acoustic insulation - esp. for lining lorry or tractor cabs etc.
JPS6029349B2 (en) * 1978-10-06 1985-07-10 大日本印刷株式会社 Decorative material manufacturing method
US4213516A (en) 1978-11-29 1980-07-22 American Seating Company Acoustical wall panel
DK4379A (en) 1979-01-04 1980-07-05 Daempa As SOUND ABSORPTION UNIT
US4219376A (en) * 1979-03-05 1980-08-26 L. E. Carpenter & Company, Inc. Flexible acoustical wall covering, method of making same, and wall panel employing same
DE2930123A1 (en) 1979-07-25 1981-02-12 Wilhelmi Holzwerk SOUND-absorbing building board
US4248647A (en) 1979-08-07 1981-02-03 Armstrong Cork Company Method for producing acoustical ceiling tile faced with a smooth distortion free decorative thin plastic film
FR2475093A1 (en) 1980-02-05 1981-08-07 Scherrer Fernand PROFILE CONSISTING OF AN EXTERIOR WALL OF A FALSE CEILING OR A WALL WALL
FR2486127A1 (en) 1980-07-07 1982-01-08 Allemann Roland TENSIONED CEILING
US4441580A (en) 1980-10-17 1984-04-10 Steelcase Inc. Acoustical control media
US4343848A (en) 1980-12-15 1982-08-10 Ethyl Corporation Embossed thermoplastic material
FR2523622A1 (en) 1982-03-18 1983-09-23 Perradin Guy PROCESS FOR PRODUCING FALSE CEILINGS AND FALSE CEILINGS OBTAINED
AU557379B2 (en) 1982-03-22 1986-12-18 Armstrong World Industries, Inc. Acoustical ceiling board
FR2524922A1 (en) 1982-04-13 1983-10-14 Scherrer Fernand Horizontally stretched sheet mounting for false ceilings - has sheet edge hook gripping edge beam shoulder
FR2544358B1 (en) 1982-06-02 1986-04-11 Uzan Daniel PASSIVE ACOUSTIC ABSORBER DEVICE FOR AIR PASSAGE, ALSO ABSORBING LOW FREQUENCIES
FR2531012B1 (en) 1982-07-30 1985-11-08 Gaillard Patrick PROFILE FOR LAYING FABRICS IN WALL COVERING
DE3242940A1 (en) 1982-11-20 1984-05-24 Hans Julius 6303 Hungen Schmitt ACOUSTICALLY EFFECTIVE COMPONENT
FR2537112A1 (en) 1982-12-02 1984-06-08 Bernardy Claude Device for positioning and fixing flexible sheets
IT1169744B (en) 1983-07-12 1987-06-03 Laterlite Spa COLD BITUMINOUS CONGLOMERATE ESPECIALLY FOR ROAD MAINTENANCE AND PROCEDURE FOR ITS PRODUCTION
FR2552473B1 (en) 1983-09-27 1986-10-17 Chiausa Christian METHOD OF PERFORMING FALSE CEILINGS, AND FALSE CEILINGS OBTAINED BY THE IMPLEMENTATION OF THIS PROCESS
FR2573798B2 (en) 1984-11-27 1987-12-24 Thierry Martin IMPROVEMENTS ON WOODEN SLABS WITH INTEGRATED SOUND AND THERMAL INSULATION FOR COVERING FLOORS, WALLS AND THE LIKE
FR2561690B1 (en) 1984-03-21 1987-07-10 Chenel Guy FALSE CEILING ELEMENT
FR2587392B1 (en) 1985-09-13 1991-06-21 Scherrer Fernand FALSE CEILING OR FALSE WALL CONSISTING OF A TENSIONED TABLECLOTH
FR2587447B1 (en) 1985-09-13 1988-09-16 Scherrer Fernand SPOT CHAIR FOR A FALSE CEILING OR FALSE WALL
FR2592416B1 (en) 1985-12-26 1989-06-02 Fibraconsult Management Beratu INSULATING PANEL FOR CEILING, AND METHOD FOR MANUFACTURING THE SAME
FR2597906A1 (en) 1986-04-25 1987-10-30 Bouttier Dominique Fastening device for a stretched flexible false ceiling
DE3643481A1 (en) 1986-05-14 1987-11-19 Pape Hans SOUND ABSORPTION COATING OF AN ACOUSTIC WALL OR ACOUSTIC CEILING
FR2611776A1 (en) 1987-02-24 1988-09-09 Brunel Christian Method and panel for sound absorption
FR2611779B1 (en) * 1987-02-27 1992-04-24 Scherrer Fernand FALSE CEILING COMPRISING A HANGED TENSILE TABLECLOTH ALONG ITS EDGES, WITH A HORIZONTAL SUPPORT FRAME
SE461048B (en) 1987-03-02 1989-12-18 Gyproc Ab PERFORED, SOUND-ABSORBING DISC
FR2619531A1 (en) 1987-08-18 1989-02-24 Nicot Jean Pierre Device for attaching ceilings or stretched fabrics of all types
FR2623540A1 (en) 1987-11-23 1989-05-26 Dur Lumen Stretched fabric false ceiling
FR2624167A1 (en) 1987-12-07 1989-06-09 Ruhlmann Rene Level-compensation section for ceiling or wall coverings, in particular for stretched ceilings
FR2627207A1 (en) 1988-02-12 1989-08-18 Bidini Jean Claude Tensioned fabric ceiling assembly system - uses concealed edging strips and arrow-head anchor elements inserted with special tool
US5491309A (en) * 1988-03-28 1996-02-13 Quilite International Limited Liability Company Acoustical panel system
FR2630476B1 (en) 1988-04-22 1990-08-24 Scherrer Fernand FALSE-CEILING CONSISTING OF A TENSIONED CLOTH HANGED ALONG ITS EDGES, TO A SUPPORT FIXED TO THE WALLS OF A PIECE OF A BUILDING
FR2645135B1 (en) 1989-03-31 1991-08-16 Philippe Jean Pierre METHOD AND INSTALLATION FOR UNLOCKING AN ELEVATOR OR LIFT CAR ACCIDENTALLY IMMOBILIZED BETWEEN TWO LANDINGS
FR2648496B1 (en) * 1989-05-25 1994-04-15 Bader Michel FALSE CEILINGS IN FABRICS TIGHTENED AT LEAST IN PART PERMEABLE USED TO CREATE A VOLUME OF AIR DISTRIBUTION IN HEATING OR AIR CONDITIONING
FR2658849B1 (en) 1990-02-23 1997-04-04 New Mat Sa DEVICE FOR ATTACHING AND HOLDING IN TENSION OF AT LEAST ONE FLEXIBLE SHEET, SHEETS OF FLEXIBLE MATERIAL EQUIPPED WITH AT LEAST ONE MEMBER ACCORDING TO THIS DEVICE AND INSTALLATIONS USING AT LEAST ONE SHEET.
US5058340A (en) 1990-03-16 1991-10-22 Muller Jurgen H Custom stretched ceilings
US5091235A (en) * 1990-05-04 1992-02-25 E. I. Du Pont De Nemours And Company Laminated sill wrap assembly for providing an air infiltration barrier
US5085340A (en) 1990-12-28 1992-02-04 Rubbermaid Incorporated System for locking a waste receptacle
JPH06510340A (en) 1991-04-15 1994-11-17 デラウネイ ジエラール Fixing profile for interior wall decoration with hidden finish
CH683855A5 (en) 1991-07-24 1994-05-31 Zdzislaw Pregowski Sound absorbing plate.
US5169712A (en) * 1991-08-23 1992-12-08 Amoco Corporation Porous film composites
FR2685036B1 (en) 1991-12-13 1995-03-17 Ruhlmann Rene INVISIBLE JOINING DEVICE, PARTICULARLY FOR TIGHT CANVAS.
CH683496A5 (en) 1992-02-04 1994-03-31 Magnetic Elektromotoren Ag Drive for displacement of movable part of mechanism
FR2691193B1 (en) 1992-05-13 1994-08-05 Hosteing Guy PROFILES TO SUPPORT AND TENSION A FALSE CEILING OR A FALSE WALL.
FR2692302B1 (en) 1992-06-16 1994-09-09 Newmat Sa Method for tensioning and mounting a flexible and elastic sheet and means for implementing this method.
FR2695670B1 (en) 1992-09-14 1994-11-25 Newmat Hanging device for a flexible and elastic sheet stretched between two supports to constitute in particular a false ceiling and false ceiling provided with such a hanging device.
FR2698647B1 (en) 1992-12-01 1995-02-03 Andre Bellamy Device for keeping a panel of flexible material stretched by its edges.
FR2699613B1 (en) 1992-12-08 1995-03-31 Newmat Sa Temporary holding accessory at a short distance from a flexible sheet to be stretched between two supports.
FR2699209A1 (en) 1992-12-11 1994-06-17 Swal Sarl Profile strip for holding wall cladding
FR2699211A1 (en) 1992-12-11 1994-06-17 Swal Sarl Extruded strip for fixing coverings to surfaces - includes L=shaped body with shorter leg parallel to surface to be covered and bent back double to form jaws with longer leg extension, this longer leg having provision for permitting fixing of strip to surface
DE9300152U1 (en) 1993-01-08 1993-03-11 Wilhelmi Werke Gmbh & Co Kg, 6335 Lahnau, De
FR2703711A1 (en) 1993-04-08 1994-10-14 Hosteing Guy Improvements made to the implementation of a false ceiling or a false wall
WO1994024382A1 (en) 1993-04-20 1994-10-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. False ceiling
DE4312885A1 (en) * 1993-04-20 1994-10-27 Fraunhofer Ges Forschung Counter-ceiling
DE4315499C2 (en) 1993-05-10 1997-02-06 Kluth Marlene Profile strip for fastening tensioning tracks and for hanging objects
FR2707708B1 (en) 1993-07-12 1996-01-05 Rene Philippe Ruhlmann Removable device for blocking the hanging of stretched fabrics.
FR2712006B1 (en) 1993-11-05 1997-01-24 Marc Gagliardi New device for laying wall coverings and means for this realization.
FI945224A (en) 1993-11-08 1995-05-09 Saint Gobain Isover Absorbent acoustic disc
FR2712325B1 (en) 1993-11-09 1996-02-23 Newmat Sa Method of manufacturing tiles, especially for suspended ceilings.
FR2727711B1 (en) 1994-12-05 1997-01-24 Newmat Sa TENSION SHEET SHEET FOR CONSTRUCTION OF SUSPENDED CEILINGS AND SUSPENDED CEILING PROVIDED WITH SAME
FR2732381A1 (en) 1995-03-29 1996-10-04 Biguet Guy Airborne sound reducing panel
FR2734296B1 (en) 1995-05-17 1997-08-08 Ringaud Jean FIXING PROFILE FOR TENSILE CEILING WITH INVISIBLE FINISH
US5888614A (en) * 1995-06-06 1999-03-30 Donald H. Slocum Microperforated strength film for use as an anti-infiltration barrier
FR2736615B1 (en) 1995-07-13 1997-09-19 Aerospatiale SLOTTED NUT DEVICE FOR MICROSATELLITE, WITH MECHANICAL AND PYROTECHNIC REDUNDANCY
DE19626676A1 (en) * 1996-07-03 1998-01-08 Kaefer Isoliertechnik Device for reducing sound levels in buildings
FR2751682B1 (en) 1996-07-26 1998-09-25 Fernand Scherrer WALL FABRIC TILE
FR2756600B1 (en) 1996-12-04 1999-03-19 Newmat Sa DEVICE FOR FIXING A SHEET TENSIONED BETWEEN TWO OPPOSITE WALLS
FR2767851B3 (en) 1997-08-26 1999-10-29 Guy Luc Piat FALSE TENSE CEILING
DE19754107C1 (en) * 1997-12-05 1999-02-25 Fraunhofer Ges Forschung Sound absorber, for suspension from ceiling
US6977109B1 (en) * 1998-07-24 2005-12-20 3M Innovative Properties Company Microperforated polymeric film for sound absorption and sound absorber using same
US6617002B2 (en) * 1998-07-24 2003-09-09 Minnesota Mining And Manufacturing Company Microperforated polymeric film for sound absorption and sound absorber using same
EP1020846B1 (en) * 1999-01-14 2018-09-19 Nichias Corporation Sound absorbing structure
FR2798945B1 (en) * 1999-09-23 2001-12-07 Saint Gobain Isover ACOUSTIC BUILDING STRUCTURE
US6598701B1 (en) * 2000-06-30 2003-07-29 3M Innovative Properties Company Shaped microperforated polymeric film sound absorbers and methods of manufacturing the same
WO2002036897A1 (en) * 2000-11-06 2002-05-10 Internova International Innovation Company B.V. Method for producing a panel substantially stretched on a frame and resulting panel
US6782971B2 (en) * 2002-02-19 2004-08-31 Ets-Lindgren, L.P. Serviceable acoustic interiors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAEFER ISOLIERTECHNIK: "Microsorber; Faserfrei schallschlucken Rolloabsorber aus Polyester oder Polycarbonat", July 1997 (1997-07-01)

Also Published As

Publication number Publication date
DE60017725T3 (en) 2009-08-13
DE60017725T2 (en) 2006-01-12
WO2001071116A1 (en) 2001-09-27
EP1180186A1 (en) 2002-02-20
AU3300900A (en) 2001-10-03
US20050188633A1 (en) 2005-09-01
US20090297767A1 (en) 2009-12-03
US7467498B2 (en) 2008-12-23
CA2374414A1 (en) 2001-09-27
US7059089B1 (en) 2006-06-13
DE60017725D1 (en) 2005-03-03
US20050186392A1 (en) 2005-08-25
DK1180186T3 (en) 2005-06-06
ES2237411T5 (en) 2009-06-03
DK1180186T4 (en) 2009-05-11
EP1180186B1 (en) 2005-01-26
ATE288001T1 (en) 2005-02-15
ES2237411T3 (en) 2005-08-01
PT1180186E (en) 2005-05-31
CA2374414C (en) 2008-05-20
US8906486B2 (en) 2014-12-09

Similar Documents

Publication Publication Date Title
EP1180186B2 (en) Flexible polymer material sheet for stretched constructions and false ceiling comprising this sheet
Cox et al. Acoustic absorbers and diffusers: theory, design and application
US7677359B2 (en) Sound absorbent
CA2538132C (en) Accoustical sound proofing material and methods for manufacturing same
FR2611777A1 (en) PERFORATED SOUND ABSORPTION PANEL
US11862136B2 (en) Acoustic metamaterial units with the function of soundproof, flow passing and heat; transfer enhancement, the composite structure and the preparation methods thereof
US4607466A (en) Method and apparatus for controlling reverberation of sound in enclosed environments
US20050211500A1 (en) Fibrous faced ceiling panel
US7947615B2 (en) Acoustical canopy system
AU658054B2 (en) Membranous-vibration sound absorbing materials
CA1324580C (en) Sound reduction membrane
AU2014295025A1 (en) Acoustic panel
KR102023366B1 (en) Sound absorbing sandwich panel
WO2007031633A1 (en) Panel-based partition made, in particular from gypsum plaster panels
WO2020212177A1 (en) Acoustic insulation product comprising a backing layer
JP3704688B2 (en) Broadband sound absorbing plate and sound absorbing device
FR3043588A1 (en) MULTILAYER ACOUSTIC PANEL
EP0652331A1 (en) Sound absorbing panel
ITMI971702A1 (en) SOUND ABSORPTION SOUND ABSORBING PANEL FOR RESONANCE AND PROCEDURE FOR ADJUSTING THE RESONANCE FREQUENCY OF THE SAME
US4614553A (en) Method of manufacturing acoustic panels for controlling reverberation of sound in enclosed environments
FR2811350A1 (en) Acoustic lining for building internal walls has layer of viscoelastic foam between wall and outer panel
AU2012205265B2 (en) Acoustical canopy system
Sabine Manufacture and Distribution of Acoustical Materials Over the Past 25 Years
Gunawardena Sound-absorbent materials: some solutions to environmental and maintenance problems encountered in building applications
Antonio Acoustical Design of speech rooms using the complete acoustical palette; Absorption, reflection, Diffusion and isolation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 20011120;LT PAYMENT 20011120;LV PAYMENT 20011120;MK PAYMENT 20011120;RO PAYMENT 20011120;SI PAYMENT 20011120

17Q First examination report despatched

Effective date: 20040309

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: FLEXIBLE POLYMER MATERIAL SHEET FOR STRETCHED CONSTRUCTIONS, METHOD FOR PRODUCING THE SAME AND FALSE CEILING COMPRISING T

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050126

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60017725

Country of ref document: DE

Date of ref document: 20050303

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050426

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20050401350

Country of ref document: GR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20050413

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050509

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20050126

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2237411

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KAEFER ISOLIERTECHNIK GMBH & CO. KG

Effective date: 20050823

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

NLR1 Nl: opposition has been filed with the epo

Opponent name: KAEFER ISOLIERTECHNIK GMBH & CO. KG

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RTI2 Title (correction)

Free format text: FLEXIBLE POLYMER MATERIAL SHEET FOR STRETCHED CONSTRUCTIONS AND FALSE CEILING COMPRISING THIS SHEET

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20090114

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: BREVET MAINTENU DANS UNE FORME MODIFIEE

NLR2 Nl: decision of opposition

Effective date: 20090114

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20090401053

Country of ref document: GR

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20090414

Kind code of ref document: T5

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190328

Year of fee payment: 20

Ref country code: IE

Payment date: 20190322

Year of fee payment: 20

Ref country code: MC

Payment date: 20190327

Year of fee payment: 20

Ref country code: GB

Payment date: 20190329

Year of fee payment: 20

Ref country code: FR

Payment date: 20190328

Year of fee payment: 20

Ref country code: IT

Payment date: 20190329

Year of fee payment: 20

Ref country code: LU

Payment date: 20190328

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20190327

Year of fee payment: 20

Ref country code: NL

Payment date: 20190328

Year of fee payment: 20

Ref country code: AT

Payment date: 20190325

Year of fee payment: 20

Ref country code: DK

Payment date: 20190329

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190402

Year of fee payment: 20

Ref country code: PT

Payment date: 20190326

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20190329

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190419

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60017725

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Expiry date: 20200320

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200319

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200319

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200319

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20200320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200320

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 288001

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200320

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200321