EP1178183B1 - Turbine à vapeur à basse pression avec un diffuseur à canaux multiples - Google Patents

Turbine à vapeur à basse pression avec un diffuseur à canaux multiples Download PDF

Info

Publication number
EP1178183B1
EP1178183B1 EP01117519A EP01117519A EP1178183B1 EP 1178183 B1 EP1178183 B1 EP 1178183B1 EP 01117519 A EP01117519 A EP 01117519A EP 01117519 A EP01117519 A EP 01117519A EP 1178183 B1 EP1178183 B1 EP 1178183B1
Authority
EP
European Patent Office
Prior art keywords
diffuser
channel
area
exhaust
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01117519A
Other languages
German (de)
English (en)
Other versions
EP1178183A3 (fr
EP1178183A2 (fr
Inventor
Franz Kreitmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1178183A2 publication Critical patent/EP1178183A2/fr
Publication of EP1178183A3 publication Critical patent/EP1178183A3/fr
Application granted granted Critical
Publication of EP1178183B1 publication Critical patent/EP1178183B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like

Definitions

  • the invention relates to an axially flowed through low-pressure steam turbine with a axial / radial multi-channel diffuser and exhaust steam housing for low-loss guidance of the blasting off steam.
  • a diffuser of this type is described in DE 44 22 700.
  • the one revealed there Diffuser has one after the last row of blades Low-pressure steam turbine axial flow inlet and a radial Flow outlet on.
  • the diffuser is with a view to optimizing the Turbine performance designed by a maximum possible pressure recovery.
  • For this are the first sections of the inner and outer diffuser ring respectively with respect to the hub or the blade carrier in a bending angle aligned. This measure serves to homogenize the Total pressure profile above the channel height of the diffuser in the area of the last Blade row.
  • the diffuser has a radially outwardly curved Baffle, which divides it into an inner and an outer channel.
  • the outer and inner channels are arranged on the flow ribs, which are radial or be flowed diagonally.
  • the baffle serves the Redirection as well as the guidance of the outflow.
  • the flow ribs the purpose of the support of the baffle and in particular a reduction of the twist in the deceleration zone, which also makes it the optimization of the Contribute pressure recovery.
  • realized flow ribs can only at a certain operating load to bring about optimal swirl reduction. at a different operating load, the swirl reduction is not necessarily optimal. A diffuser with this measure therefore only achieves one certain operating load an optimal pressure recovery.
  • the Flow ribs and their attachment to the baffles with a relative associated with great design effort.
  • the supersonic interferes Slit flow with the remaining subsonic flow.
  • EP 581 978 in particular in FIG. 4 of that document, is a multi-channel exhaust gas diffuser for an axial flowed gas turbine with axial flow inlet and radial flow outlet disclosed.
  • This multi-channel diffuser faces along its length is three zones.
  • the first zone is in the style of a bell-shaped diffuser formed and extends einkanalig of the last row of blades to Exit plane of several flow ribs.
  • the diffuser rings also point here Bent angle, which are set so that a homogenization of the Total pressure profile is achieved.
  • the second zone faces downstream from the Flow ribs flow guiding rings, which several channels form.
  • the third zone serves to strongly divert the exhaust gas flow into radial Direction and then flows into the chimney of the gas turbine.
  • the purpose is to use the second-zone guide rings along the length of the third zone continued, where they are curved there.
  • the second zone has low Deflection, but high Difffusor Koch on, the third zone large deflection, but only a very modest diffuser effect.
  • a low pressure steam turbine it is the object of the present invention for a low pressure steam turbine to provide an axial / radial multi-pass diffuser with exhaust steam housing which achieves improved pressure recovery compared to the prior art diffusers, thereby increasing the efficiency of the low pressure steam turbine.
  • the multi-channel diffuser should be optimized for as many operating conditions of the steam turbine as possible and be associated with a reduced design effort.
  • the exhaust steam housing should be tuned to the diffuser in terms of turbine performance.
  • the three-channel diffuser has three partial diffusers, an inner, middle and outer partial diffuser, which are formed by an inner diffuser ring, an outer diffuser ring and two baffles arranged between the diffuser rings.
  • a first portion of the inner diffuser ring is arranged with respect to the hub in an inwardly directed towards the rotor axis bending angle and a first portion of the outer diffuser ring is in a relative to the blade channel at the height of the last blade row outwardly, directed away from the rotor axis bending angle ,
  • the inventive axial / radial three-channel diffuser extend in particular the two baffles over the entire length of the diffuser. you are distributed unevenly between the inner and outer diffuser ring so that the area distribution on the three partial diffusers in the entrance surface of the diffuser is uneven. It accounts for the majority of the Entrance surface on the inner and middle part of the diffuser and a small part of the Entrance surface on the outer part of the diffuser.
  • the baffles are possible arranged near the last row of blades, wherein the distance between the last blade row and the leading edges of the baffles by the for all Operating conditions permissible minimum distance is determined.
  • the diffusion zone of the diffuser is characterized by the following features.
  • the ratio of the exit surface to the entrance surface of the individual partial diffusers is greater than two for the middle part of the diffuser and greater than three for the outside Part diffuser.
  • For the inner partial diffuser is the corresponding geometric Area ratio in a range of 1.5 to 1.8.
  • the ratio of its length to his Channel height in the entrance area at least four.
  • the ratio of length to channel height in the entrance surface at least equal to 10
  • for the inner partial diffuser is the corresponding Ratio at least equal to 2.5. Due to these relatively large length to channel height ratios the deflections of the partial diffusers are corresponding relatively gently.
  • the ratio of the exit surface to the entry surface of the entire diffuser is about two.
  • the exhaust steam housing of the diffuser is designed so that the size the area of the dividing plane between the upper and lower half of the Abdampfgeffeuses on the size of the exit surfaces of the partial diffusers is tuned.
  • the two baffles serve to separate the diffuser channel into three partial diffusers, in which the Beschaufelungsabströmung is performed.
  • the effected Flow guidance is the better the more part diffusers at the same Total diffuser are present.
  • more friction losses and higher barriers the more baffles are arranged.
  • the one chosen here Number, three partial diffusers and two baffles has the advantage that a optimized flow control with reasonable friction losses at the Surfaces of the baffles and obstructions is effected.
  • the baffles and partial diffusers cause a guidance and stabilization of the Beschaufelungsabströmung and a deflection in a radial direction. Since the baffles extend over the entire length of the diffuser, this guide is further supported. The radial extent of the partial diffusers further serves to reduce the tangential velocity in a natural way. The partial diffusers are thereby optimal for all operating conditions with regard to the reduction of the tangential velocity. Furthermore, the design effort for the baffles is relatively small and for the reduction of the tangential speed no further constructive measures such as diversion and flow ribs are necessary.
  • the flow guidance and stabilization is further brought about in particular by the distribution of the diffuser inlet surface on the three partial diffusers.
  • a large part of the inlet surface is omitted on the inner and middle channel, whereby the majority of the flow is guided by the blading to Abdampfgephaseuse.
  • the small part of the entry surface is accounted for by the outer channel, through which the supersonic gap flow and the flow influenced by the gap flow are taken up by the turbine and meridionally deflected and shielded from the majority of the flow to the exhaust steam housing. This shielding avoids flow interferences between most of the flow and the high energy gap flow which would affect the diffuser effect.
  • the minimum distance between the last row of blades and the leading edges of the baffles further contributes to optimum shielding of the slit flow and to avoid flow interference and streamline convergence.
  • the ratio of length to channel height of each partial diffuser of 2.5 and more allows a gentle deflection from the axial, or diagonal, to the radial flow direction, which prevents the separation of the delayed flow, even with a ratio of the exit surface to inlet surface of 1.6.
  • the design of the inventive diffuser is based on an inverse Design process, where initially the prevailing flow fields be determined. After that, the ideal ones are made of them Flow fields are calculated and the geometry of the diffuser due to this ideal flow fields is determined.
  • this three-channel diffuser designed for limit load conditions. At limit load was a Flow field for which a three-channel diffuser with an orientation of the Beginning tangent of his baffles according to the invention the highest Achieved pressure recovery.
  • This interpretation also provides the advantage that a higher turbine power at the same Condenser pressure is achieved or that the same turbine performance at higher Condenser pressure is achieved and thereby a smaller, cheaper Cooling system for the steam turbine is required.
  • the blocksstangenten the baffles are in an angular range around the first break points of the baffles and a Referenzusingstangente, at least approximately through the first break point of the baffle and through the intersection of the rectilinear approximated boundaries of the blade channel.
  • Partial diffuser In a further particular embodiment of the invention is attributable to the outer Partial diffuser accounts for the total flow inlet area of the diffuser Range of 10-12%. The remaining entrance area is 55-60% on the inner Partial diffuser and distributed to 30-35% on the middle part of the diffuser.
  • the distance between the leading edges of the baffles and the trailing edge of the last blade is 4% of the total height of the row of tracks.
  • the leading edges of the baffles are formed profiled at the flow inlet of the diffuser, whereby a gentle acceleration when entering the partial diffusers is effected.
  • the diffusion zone of the diffuser is characterized as follows.
  • the baffles are each supported by struts or struts extending from the inner and outer diffuser rings to the two baffles.
  • the middle part of the diffuser remains free of supports and thus has minimal flow disturbances and losses.
  • exhaust steam zone of the diffuser is on End baffle between the inner and middle part diffuser in a radial Extension arranged a Abdampfleitblech.
  • This Abdampfleitblechblech causes a better flow distribution in the exhaust steam housing, whereby the Minimized flow losses and the capacitor applied uniformly becomes.
  • FIG. 1 shows a three-channel diffuser as part of a low-pressure steam turbine. It leads the blading outflow into an exhaust steam housing 20. From the low-pressure steam turbine, the rotor 1 with rotor axis 2 and a rotor blade 3 of the last blade row are shown.
  • the three-channel diffuser is limited by an inner diffuser ring 4 and an outer diffuser ring 5.
  • the outer diffuser ring 4 is connected to the blade carrier 7.
  • the inner and outer diffuser ring 4 and 5 have in the region of the trailing edge of the blade 3 bending angle ⁇ N or ⁇ Z, whereby, as shown in Figures 1a and 1b, the angle ⁇ N by the first section 4 'of the inner diffuser ring 4 and an extension of the hub 6 and the angle ⁇ Z by the extension of the last section 7 'of the blade carrier 7 and the first portion 5' of the outer diffuser ring 5 are formed.
  • These buckling angles are for example 10-20 ° and contribute to the fact that the most homogeneous possible total pressure profile is achieved at the outlet of the last blade row.
  • the diffuser has in its interior two baffles 8 and 9, which divide the diffuser into three sub-channels, an inner partial diffuser 10, a central partial diffuser 11 and an outer partial diffuser 12.
  • the baffles are supported by supports 13 which extend from the inner and outer diffuser rings 4 and 5 to the baffles. For reasons of strength, the first supports 13 in the direction of flow are thicker than the second supports and each of round cross-section.
  • the middle partial diffuser 10 is in particular free of supports.
  • the baffles are distributed over the channel height of the diffuser with respect to the total pressure profile so that a flow-mechanically optimal surface distribution is achieved on the three sub-channels.
  • the first baffle 8 is arranged so that the inner partial diffuser 10 has a flow inlet surface which is, for example, approximately 60% of the flow inlet area of the entire diffuser.
  • the second baffle 9 is further arranged so that the central part of the diffuser 11, for example, has a flow inlet area of about 30% of the total flow inlet area.
  • the outer partial diffuser 12 has a flow inlet area of, for example, approximately 10% of the total flow inlet area.
  • the diffuser exit surface is designed so that the ratio of the exit surface to the entry surface of the entire diffuser, ie its upper and lower half, is approximately 2. In the case of the individual partial diffusers, the geometric relationships from outlet to inlet surface behave as follows. For example, for the inner partial diffuser 10, the ratio of the exit surface S12 in the upper half of the diffuser to the entrance surface S11 is approximately 1.3.
  • the ratio of exit surface S13 in the lower half of the diffuser is greater to the entrance surface S11 and is approximately 1.6.
  • the exit surface S13 of the inner partial diffuser 10 is therefore located in the lower half of the diffuser more outward than in the upper half. (Although it is actually located in the lower half of the diffuser, it is also marked S13 in this figure and in FIG. 4.)
  • the ratio of the exit surface S22 to the entry surface S21 is approximately 2.1.
  • the ratio of the exit surface S32 to the entry surface S31 is approximately 3.3. Such area ratios are the prerequisite for the efficiency of the turbine can be significantly increased.
  • the diffuser is with a view to a gentle flow of the flow low curvature in relation to the channel height designed.
  • the three Partial diffusers have a large length-to-channel height ratio for this purpose.
  • the inner partial diffuser 10 is larger than 2.7 in the lower half of the diffuser.
  • the Ratios in the example shown are greater than 4.4 or greater than twelve.
  • the inner and outer diffuser ring and the two baffles have in their Cross section for manufacturing reasons, several straight sections, due to the large length-to-channel height ratios in gentle Tilt angles to each other. These gentle angles of inclination allow an improved guidance of the blading outflow. It will be through especially flow interference and flow separation avoided. Due to the relatively large radial extent of the diffuser and the Partial diffusers also become a natural removal of tangential velocities without the help of additional flow ribs or other measures to Reductions in tangential velocities achieved.
  • the three partial diffusers have a gentle deflection due to their radial extent.
  • the total deflection of each partial diffuser is designated by the angles ⁇ 1 , ⁇ 2 and ⁇ 3 in the center line 15 of the individual partial diffusers 10, 11 and 12, respectively. These angles are for example about 70 °, 36 °, and 47 °.
  • the baffles 8 and 9 are approximately formed so that the extension of their initial tangent form the intersection A.
  • the straight-line approximated hub-side and housing-side boundary of the blade channel passes through this intersection A.
  • the starting tangents of the baffles 8 and 9 are aligned in the embodiment shown with respect to the rotor axis 2 in angles ⁇ 1 and ⁇ 2 .
  • the intersection point A between the straight-line approximated hub-side and housing-side boundaries of the blading channel via the turbine end stage and the beginning tangents of the guide plates 8 and 9 form an at least approximately common point of intersection.
  • the initial tangent of the baffle 8 with the straight-line approximated hub-side boundary forms an angle in the range of ⁇ 1 + 8 °.
  • the beginning tangent of the guide plate 9 forms an angle in the range of ⁇ 2 ⁇ 4 °.
  • This geometric design of the baffles with respect to the boundaries of the blading channel also applies to other housing contours and blade types, such as completely conical rectilinear housing contours, for housing contours where the section extends cylindrically or nearly cylindrically over the last row of blades.
  • this geometry is not only applicable to blades with tip seal but also with blades with Deckbändem. In this case, the housing-side boundary of the blade channel passes through the intersection of the trailing edge of the last blade and the shroud.
  • the initial members of the Baffles 8, 9 in an angular range around the first points of intersection B and C of the Baffles 8 and 9 and the reference tangents by the Intersections B and C and lead through the intersection A.
  • the diffuser rings 4 and 5 and baffles 8 and 9 are made in the example shown from several straight sections, at small angles of inclination to each other standing joined together. Instead of sections are also continuous curved baffles and diffuser rings feasible.
  • the partial diffusers 10 and 11 are arranged so that a major part of the flow from the blading through these two partial diffusers flows into the exhaust steam housing 20.
  • a stable guidance of the main part of the flow in the region of the middle part of the diffuser is the most sensitive due to the prevailing Mach numbers on obstructions.
  • the pillar-free central partial diffuser 11 thereby carries that part of the main flow without further disturbances.
  • the high-energy, supersonic gap flow from the last blade row enters the outer partial diffuser 12, the channel height of which is determined in relation to the prevailing gap flow.
  • the gap flow is guided by the outer partial diffuser 12 separately from the main part of the flow in the exhaust steam housing 20.
  • the large length-to-channel height ratio cause a stabilization of the Diffuser flow and a homogenization and lowering of the Total pressure profile at the height of the last row of blades. This will be the Increased pressure recovery of the diffuser and an increase in efficiency of reached all the low-pressure steam turbine.
  • the baffles 8 and 9 extend at the entrance to the diffuser to near the blade row. They are preferably arranged as close as allow the axial, thermal movements of the blade row and a necessary for the various operating conditions safety distance without causing a scratch.
  • the distance a between the leading edges of the baffles 8 and 9 and the trailing edge of the last blades 3 is 4% of the total height h w of the last blade row.
  • the leading edges of the baffles 8 and 9 are formed profiled to allow a smooth flow entry with the least possible overspeeding in the partial diffusers.
  • the leading edges for example, as shown in Figure 2, formed gently pointed, for example according to the form NACA 65, wherein the profiling length e is three times the thickness ⁇ .
  • the baffles are made as thin as possible, so that the Mach numbers rise as slightly as possible. For this purpose, their thickness is for example about 5% of the channel height of the middle part of the diffuser eleventh
  • This Abdampfleitblech 8 ' causes an improvement in the flow in the exhaust steam housing 20 and a homogenization of the flow in the condenser.
  • the Abdampfleitblech 8 ' has a gentle total deflection ⁇ L of about 50 °. This deflection is realized in this embodiment by two sections, the total length of the channel height in the exit plane is in a ratio of about 0.7.
  • FIG. 3 shows a cross section through the exhaust steam housing 20 with an upper one Half 21 and a lower half 22, separated by a dividing plane 23 from each other are separated.
  • the turbine steam passing through the exit surface of the upper half the diffuser enters the upper half 21 of the exhaust steam housing 20, flows then down through the parting plane 23 in the lower half 22 and from there through the exit surface 24 of the exhaust steam housing in the connected there Capacitor.
  • the exhaust steam housing is designed in coordination with the diffuser so that the Exit surface 24 of the exhaust steam housing 20 about 15% larger than that Total exit surface of the diffuser is. This grants a reserve area in the Dividing level for possible obstructions in the outflow.
  • the sum of the exit surfaces of the partial diffusers 11 and 12 the upper half of the diffuser is approximately equal to the surface 25 in the parting plane 23, which between the exhaust steam housing and the Abdampfleitblech 8 'of the Guide plate 8 is formed and hatched in the figure with solid lines is.
  • half of the exit surface S12 of the inner partial diffuser 10 over the entire Rotation of the diffuser equal to the hatched area 26 with dashed lines.
  • the approximation of these surfaces causes the diffuser outflow of the Partial diffusers 11 and 12 at the exit from the diffuser in the exhaust steam housing experiences as equal a large flow area and no bottlenecks. This in turn has a positive effect on the pressure recovery.
  • FIG. 5 shows a variant of the three-channel diffuser with exhaust steam housing according to the invention, which is optimized in comparison with the configuration of FIG.
  • the optimized diffuser with exhaust steam housing is designed, in particular with regard to the inner partial diffuser, so that the outlet surface S12 'of the inner partial diffuser 10 is defined further outside in comparison to the configuration of FIG. If the exit surface S12 'lies further outside as indicated by the dashed line, the ratio of the exit surface to the entry surface of that partial diffuser increases and the efficiency of the turbine is correspondingly increased.
  • the exit surface S12 ' is defined such that the ratio of its area to the entrance surface S11 increases to approximately 1.8, which is a significant increase over the ratio of approximately 1.3 in the variant of FIG.
  • the wall 21 'or hood of the upper half of the exhaust steam housing in comparison to the wall 21 of the exhaust steam housing of Figure 1 is placed radially further outside.
  • the baffle 27 'of the exhaust steam housing is placed axially further out. Accordingly, the deflection angle ⁇ 1 decreases compared to the deflection angle in Figure 1 to about 60 °.
  • Figure 6 shows this variant in the parting plane 23 between the upper and lower half of the diffuser. It also shows how the coordination of the dimensions of the exhaust steam housing and the sizes of the outlet surfaces of the partial diffusers are coordinated.
  • the diffuser is designed so that half of the exit surface S12 'of the inner partial diffuser 10 over the entire rotation of the diffuser is approximately equal to the dashed hatched area 28 in the parting plane 23 between upper and lower half of the diffuser.
  • the surface 28 is formed by the axially further outwardly disposed baffle 27 ', the radially further outside placed hood 21', a turbine-facing wall 31 and the Abdampfleitblech 8 '.
  • the surface 28 is finally closed by a fictitious axially extending line 30 between the Abdampfleitblech 8 'and the wall 31. Further, the sum of the exit surfaces S22 and S32 of the other two partial diffusers is approximately equal to the solidified hatched area 29 in the parting plane. This surface 29, the Abdampfleitblech 8 ', through the line 30, the wall 31 is formed. Further, in this case, the exit surface S13 'in the lower half of the diffuser falls in the same place as the exit surface S12' for the upper half of the diffuser.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (15)

  1. Diffuseur à trois canaux axial/radial avec un boítier de vapeur d'échappement pour turbine à vapeur à basse pression, qui conduit la vapeur d'échappement d'aubage dans le boítier de vapeur d'échappement (20), avec un anneau de diffuseur interne (4), un anneau de diffuseur externe (5) et deux tôles conductrices (8, 9), qui divisent le diffuseur en trois diffuseurs partiels, un diffuseur partiel interne (10), un diffuseur partiel central (11) et un diffuseur partiel externe (12), l'anneau de diffuseur interne (4) étant disposé par rapport au moyeu de la turbine à vapeur à basse pression suivant un angle d'inflexion (N) et l'anneau de diffuseur externe (5) étant disposé par rapport à la dernière pièce partielle (7') du support d'aubes (7) de la turbine à vapeur à basse pression suivant un angle d'inflexion (Z),
    caractérisé en ce que
    les deux tôles conductrices (8, 9) s'étendent sur toute la longueur du diffuseur, et les deux tôles conductrices (8, 9) sont réparties entre l'anneau de diffuseur interne (4) et l'anneau de diffuseur externe (5) de telle sorte que 88 - 90 % de la surface d'entrée du diffuseur reviennent au diffuseurs partiels interne et central (10, 12) et que 10 - 12% de la surface d'entrée revienne au diffuseur partiel externe (12),
    et en ce que les tangentes initiales des tôles conductrices (8, 9) et la limite côté boítier du canal d'aubes du dernier étage coupent la limite côté moyeu approximée à une droite du canal d'aubes approximativement en un point commun.
  2. Diffuseur à trois canaux axial/radial selon la revendication 1,
    caractérisé en ce que
    le rapport de la surface de sortie (S22) à la surface d'entrée (S21) du diffuseur central (11) vaut au moins deux, le rapport de la surface de sortie (S32) à la surface d'entrée (S31) du diffuseur partiel externe (12) vaut au moins trois et le rapport de la surface de sortie (S12) à la surface d'entrée (S11) du diffuseur partiel interne (10) au moins dans la moitié inférieure du diffuseur est compris dans la plage de 1,5 à 1,8.
  3. Diffuseur à trois canaux axial/radial selon la revendication 2,
    caractérisé en ce que
    pour chaque diffuseur partiel (10, 11, 12) au moins dans la moitié inférieure du diffuseur, le rapport de sa longueur à sa hauteur de canal dans le plan d'entrée est d'au moins 2,5.
  4. Diffuseur à trois canaux axial/radial selon la revendication 3,
    caractérisé en ce que
    le rapport de la surface de sortie totale à la surface d'entrée totale du diffuseur à trois canaux vaut environ deux.
  5. Diffuseur à trois canaux axial/radial selon la revendication 4,
    caractérisé en ce que
    la surface d'entrée (S11) du diffuseur partiel interne (10) constitue 55 - 60%, la surface d'entrée (S21) du diffuseur partiel central (11) 30 - 35% et la surface d'entrée (S31) du diffuseur partiel externe (12) 10 - 12% de la surface d'entrée totale du diffuseur.
  6. Diffuseur à trois canaux axial/radial selon la revendication 5,
    caractérisé en ce que
    les tangentes initiales des tôles conductrices (8, 9) se situent chacune dans une plage angulaire de 8° autour des premiers points d'inflexion (B, C) des tôles conductrices (8, 9) et autour de tangentes initiales de référence respectives qui conduisent à travers les premiers points d'inflexion (B, C) des tôles conductrices (8, 9) et à travers le point d'intersection (A) des limites côté moyeu et côté boítier approximées à une droite du canal d'aubes de l'étage terminal.
  7. Diffuseur à trois canaux axial/radial selon la revendication 6,
    caractérisé en ce que
    la distance (a) entre le bord avant des tôles conductrices (8, 9) et le bord arrière de la dernière aube directrice vaut environ 4% de la hauteur totale (hw) de la rangée mobile.
  8. Diffuseur à trois canaux axial/radial selon la revendication 7,
    caractérisé en ce que
    les bords avant des tôles conductrices (8, 9) sont réalisés de manière profilée.
  9. Diffuseur à trois canaux axial/radial selon la revendication 8,
    caractérisé en ce que
    les tôles conductrices (8, 9) sont portées par des supports (13) qui s'étendent depuis l'anneau de diffuseur interne (4) et l'anneau de diffuseur externe (5) vers les tôles conductrices (8, 9) et qui présentent en aval un diamètre croissant, et en ce que le diffuseur partiel central (11) est exempt de supports.
  10. Diffuseur à trois canaux axial/radial selon la revendication 9,
    caractérisé en ce que
    sur la tôle conductrice (8) qui est disposée entre le diffuseur partiel interne (10) et le diffuseur partiel central (11) est disposée une tôle conductrice de vapeur d'échappement (8') dans une prolongation radiale.
  11. Diffuseur à trois canaux axial/radial selon la revendication 10,
    caractérisé en ce que
    les tôles conductrices (8, 9) présentent une épaisseur (δ) qui vaut environ 5% de la hauteur du canal du diffuseur partiel central (11).
  12. Diffuseur à trois canaux axial/radial selon l'une quelconque des revendications précédentes 1 à 11,
    caractérisé en ce que
    la somme de la surface de sortie (S22) du diffuseur partiel central (11) et de la surface de sortie (S32) du diffuseur partiel externe (12) est approximativement égale à la surface (25) dans le plan de séparation (23) entre la moitié supérieure et inférieure du diffuseur, qui est formée entre le capot (21) du boítier de vapeur d'échappement (20) et la tôle conductrice de vapeur d'échappement (8') entre le diffuseur partiel interne (10) et le diffuseur partiel central (11).
  13. Diffuseur à trois canaux axial/radial selon la revendication 12,
    caractérisé en ce que
    la surface de sortie (S12) du diffuseur partiel interne (10) dans la moitié supérieure du diffuseur se situe dans un rapport d'environ 1,3 par rapport à la surface d'entrée (S11) du diffuseur partiel interne (10) et la surface de sortie (S12) du diffuseur partiel interne (10), sur une rotation complète du diffuseur à trois canaux, est égale à la moitié de la surface (26) dans le plan de séparation (23) entre la moitié supérieure (21) et la moitié inférieure (22) du boítier de vapeur d'échappement (20), qui est formée par la paroi d'incidence (27), le capot (21) du boítier de vapeur d'échappement (20) et la tôle conductrice (8) entre les diffuseurs partiels interne et central (11, 12) et la tôle conductrice de vapeur d'échappement (8').
  14. Diffuseur à trois canaux axial/radial selon l'une quelconque des revendications 1 à 11,
    caractérisé en ce que
    la surface de sortie (S12') du diffuseur partiel interne (10) dans la moitié supérieure du diffuseur se situe dans un rapport d'environ 1,8 par rapport à la surface d'entrée (S11) du diffuseur partiel interne (10) et la surface de sortie (S12') du diffuseur partiel interne (10) dans la moitié supérieure du diffuseur, sur une rotation complète du diffuseur à trois canaux, est approximativement égale à la moitié de la surface (28) dans le plan de séparation (23) entre la moitié supérieure (21) et la moitié inférieure (22) du boítier de vapeur d'échappement (20), qui est formée par la paroi d'incidence (27') et le capot (21') du boítier de vapeur d'échappement (20), par la tôle conductrice de vapeur d'échappement (8') ainsi que par une ligne axiale (30) qui conduit de la tôle conductrice de vapeur d'échappement (8') à une paroi (31) du boítier de vapeur d'échappement (20) tournée vers la turbine, et la somme de la surface de sortie (S22) du diffuseur partiel central (11) et de la surface de sortie (S32) du diffuseur partiel externe (12) sur une rotation complète, est approximativement égale à la moitié de la surface (29) dans le plan de séparation (23) entre la moitié inférieure et supérieure du boítier de vapeur d'échappement (20), qui est formée par la tôle conductrice de vapeur d'échappement (8'), par la paroi (31) du boítier de vapeur d'échappement (20) tournée vers la turbine et par la ligne axiale (30) depuis la tôle conductrice de vapeur d'échappement (8') jusqu'à la paroi (31) tournée vers la turbine.
  15. Diffuseur à trois canaux axial/radial selon l'une quelconque des revendications précédentes 11 à 14,
    caractérisé en ce que
    la surface de sortie totale du diffuseur à trois canaux est approximativement plus petite de 15% que la surface de sortie (24) du boítier de vapeur d'échappement (20).
EP01117519A 2000-07-31 2001-07-20 Turbine à vapeur à basse pression avec un diffuseur à canaux multiples Expired - Lifetime EP1178183B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10037684 2000-07-31
DE10037684A DE10037684A1 (de) 2000-07-31 2000-07-31 Niederdruckdampfturbine mit Mehrkanal-Diffusor

Publications (3)

Publication Number Publication Date
EP1178183A2 EP1178183A2 (fr) 2002-02-06
EP1178183A3 EP1178183A3 (fr) 2003-07-23
EP1178183B1 true EP1178183B1 (fr) 2005-05-11

Family

ID=7651095

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01117519A Expired - Lifetime EP1178183B1 (fr) 2000-07-31 2001-07-20 Turbine à vapeur à basse pression avec un diffuseur à canaux multiples

Country Status (4)

Country Link
US (1) US6533546B2 (fr)
EP (1) EP1178183B1 (fr)
JP (1) JP4791658B2 (fr)
DE (2) DE10037684A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102373960A (zh) * 2010-08-20 2012-03-14 通用电气公司 毂部流道轮廓
DE102010044819B4 (de) 2009-09-14 2022-12-15 General Electric Technology Gmbh Axialturbine und ein Verfahren zum Abführen eines Stroms von einer Axialturbine

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10255389A1 (de) * 2002-11-28 2004-06-09 Alstom Technology Ltd Niederdruckdampfturbine mit Mehrkanal-Diffusor
JP4619849B2 (ja) * 2005-03-31 2011-01-26 株式会社日立製作所 タービン排気装置
US20070017947A1 (en) * 2005-07-19 2007-01-25 Tumi, Inc. Backpack with expandable area
EP1892384A1 (fr) * 2006-08-25 2008-02-27 Siemens Aktiengesellschaft Diffuseur pour une turbine à vapeur
EP1970539A1 (fr) * 2007-03-13 2008-09-17 Siemens Aktiengesellschaft Agencement de diffuseur
JP5331715B2 (ja) * 2010-01-07 2013-10-30 株式会社日立製作所 ガスタービン,排気ディフューザおよびガスタービンプラントの改造方法
US8475125B2 (en) 2010-04-13 2013-07-02 General Electric Company Shroud vortex remover
US20120034064A1 (en) * 2010-08-06 2012-02-09 General Electric Company Contoured axial-radial exhaust diffuser
US8870532B2 (en) * 2010-11-15 2014-10-28 General Electric Company Exhaust hood diffuser
US8591185B2 (en) 2010-11-16 2013-11-26 General Electric Company Low pressure exhaust gas diffuser for a steam turbine
WO2012089837A1 (fr) 2010-12-30 2012-07-05 Duerr Cyplan Ltd. Turbomachine
RU111580U1 (ru) * 2011-02-11 2011-12-20 Альстом Текнолоджи Лтд Выпускное устройство для модуля паровой турбины
US20130022444A1 (en) * 2011-07-19 2013-01-24 Sudhakar Neeli Low pressure turbine exhaust diffuser with turbulators
US20130243564A1 (en) * 2012-03-14 2013-09-19 Prakash Bavanjibhai Dalsania Exhaust diffuser for turbine
US20140037439A1 (en) * 2012-08-02 2014-02-06 General Electric Company Turbomachine exhaust diffuser
US9388710B2 (en) 2012-10-01 2016-07-12 General Electric Company Exhaust diffuser arrangement for a turbine system and method of redirecting a flow
US9644496B2 (en) * 2013-03-13 2017-05-09 General Electric Company Radial diffuser exhaust system
US9784283B2 (en) * 2014-06-06 2017-10-10 Baker Hughes Incorporated Diffuser vanes with pockets for submersible well pump
US20170143105A1 (en) * 2014-07-21 2017-05-25 Exxel Outdoors, Llc Backpack having horizontal expansion
EP3054086B1 (fr) * 2015-02-05 2017-09-13 General Electric Technology GmbH Configuration de diffuseur de turbine à vapeur
US10287920B2 (en) * 2015-11-24 2019-05-14 General Electric Company System of supporting turbine diffuser
US10036283B2 (en) 2015-11-24 2018-07-31 General Electric Company System and method for diffuser AFT plate assembly
US10036267B2 (en) 2015-11-24 2018-07-31 General Electric Company System of supporting turbine diffuser outlet
US10041365B2 (en) 2015-11-24 2018-08-07 General Electric Company System of supporting turbine diffuser
US10041377B2 (en) 2015-11-24 2018-08-07 General Electric Company System and method for turbine diffuser
JP6731359B2 (ja) 2017-02-14 2020-07-29 三菱日立パワーシステムズ株式会社 排気ケーシング、及びこれを備える蒸気タービン
JP6745233B2 (ja) * 2017-02-28 2020-08-26 三菱重工業株式会社 タービン及びガスタービン
DE102017121337A1 (de) 2017-09-14 2019-03-14 Abb Turbo Systems Ag Diffusor einer abgasturbine
JP7184638B2 (ja) 2018-12-28 2022-12-06 三菱重工業株式会社 蒸気タービン、及びその排気室
CN110685756B (zh) * 2019-10-10 2022-03-15 中国船舶重工集团公司第七0五研究所 一种低流动压力损失异形渐变排气结构
JP7368260B2 (ja) 2020-01-31 2023-10-24 三菱重工業株式会社 タービン
US11753997B2 (en) * 2020-03-26 2023-09-12 Hamilton Sundstrand Corporation Exhaust baffle component for an air turbine assembly

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1768637U (de) * 1953-10-23 1958-06-19 Licentia Gmbh Ringfoermiger diffusor vor dem abdampf- oder abgasraum einer dampf- oder gasturbine.
CH484358A (de) * 1968-02-15 1970-01-15 Escher Wyss Ag Abströmgehäuse einer axialen Turbomaschine
US4013378A (en) * 1976-03-26 1977-03-22 General Electric Company Axial flow turbine exhaust hood
FR2401311A1 (fr) * 1977-08-25 1979-03-23 Europ Turb Vapeur Dispositif d'echappement pour turbine axiale a fluide condensable
US4157013A (en) * 1977-09-08 1979-06-05 General Motors Corporation Water cooled automotive gas turbine engine
SU857516A1 (ru) * 1978-11-27 1981-08-23 Харьковский Ордена Ленина Политехнический Институт Им. В.И.Ленина Выхлопной патрубок осевой турбины
JPS5763902U (fr) * 1980-10-03 1982-04-16
SU943412A1 (ru) * 1980-12-01 1982-07-15 Предприятие П/Я А-3513 Паротурбинна установка
JPS61135906A (ja) * 1984-12-05 1986-06-23 Toshiba Corp 蒸気タ−ビン
CH672004A5 (fr) * 1986-09-26 1989-10-13 Bbc Brown Boveri & Cie
DE59204947D1 (de) * 1992-08-03 1996-02-15 Asea Brown Boveri Mehrzoniger Diffusor für Turbomaschine
DE4422700A1 (de) * 1994-06-29 1996-01-04 Abb Management Ag Diffusor für Turbomaschine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044819B4 (de) 2009-09-14 2022-12-15 General Electric Technology Gmbh Axialturbine und ein Verfahren zum Abführen eines Stroms von einer Axialturbine
CN102373960A (zh) * 2010-08-20 2012-03-14 通用电气公司 毂部流道轮廓
CN102373960B (zh) * 2010-08-20 2016-03-02 通用电气公司 涡轮设备

Also Published As

Publication number Publication date
DE50106175D1 (de) 2005-06-16
JP2002081301A (ja) 2002-03-22
DE10037684A1 (de) 2002-02-14
EP1178183A3 (fr) 2003-07-23
JP4791658B2 (ja) 2011-10-12
EP1178183A2 (fr) 2002-02-06
US20020127100A1 (en) 2002-09-12
US6533546B2 (en) 2003-03-18

Similar Documents

Publication Publication Date Title
EP1178183B1 (fr) Turbine à vapeur à basse pression avec un diffuseur à canaux multiples
EP1318272B1 (fr) Guide anti-tourbillon pour l'air de refroidissement dans le rotor d'une turbine à gaz
DE4422700A1 (de) Diffusor für Turbomaschine
EP2245275B1 (fr) Aube directrice d'une turbine à géométrie variable de turbochargeur
EP2669474B1 (fr) Canal de passage pour une turbomachine et turbomachine
DE60124572T2 (de) Halbaxial- und kreiselverdichter für ein gasturbinentriebwerk
EP0581978B1 (fr) Diffuseur à zones multiples pour turbomachine
EP1789653B1 (fr) Rotor pour un propulseur
DE60016937T2 (de) Antiwirbelsystem für kreiselverdichter
EP0802305B1 (fr) Turbocompresseur d'un moteur à combustion interne
DE4228879A1 (de) Axialdurchströmte Turbine
DE112007002564T5 (de) Diffusor und Auslasssystem für Turbine
EP2495425A2 (fr) Dispositif de moteur à réaction doté d'un canal de courant auxiliaire
DE102015219556A1 (de) Diffusor für Radialverdichter, Radialverdichter und Turbomaschine mit Radialverdichter
EP2478186B1 (fr) Rotor de turbomachine
EP2881548B1 (fr) Compresseur de turbine à gaz
WO2012080053A1 (fr) Compresseur axial
EP0638732A1 (fr) Diffuseur
EP3431708B1 (fr) Dispositif d'écoulement environnant, turbomachine et application associée
EP3032032B1 (fr) Aubes directrices de sortie et turboréacteur à double flux avec des aubes directrices de sortie
EP3568597B1 (fr) Étage de recirculation et turbomachine à énergie fluidique radiale
EP1288435B1 (fr) Aube de turbine avec au moins un orifice de refroidissement
EP0345700B1 (fr) Carter d'échappement pour turbomachine
DE102009016045A1 (de) Strömungsleitvorrichtung für ein Tauchrohr eines Zyklonabscheiders
EP3390832B1 (fr) Étage de retour d'une turbomachine à énergie fluidique radiale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17P Request for examination filed

Effective date: 20031208

17Q First examination report despatched

Effective date: 20040129

AKX Designation fees paid

Designated state(s): DE IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50106175

Country of ref document: DE

Date of ref document: 20050616

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100723

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50106175

Country of ref document: DE

Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50106175

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50106175

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50106175

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50106175

Country of ref document: DE

Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50106175

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50106175

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50106175

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50106175

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190620

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50106175

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202