EP1177562B1 - Usage d'un cable pour la realisation d'un cable passe-bas - Google Patents

Usage d'un cable pour la realisation d'un cable passe-bas Download PDF

Info

Publication number
EP1177562B1
EP1177562B1 EP00927330A EP00927330A EP1177562B1 EP 1177562 B1 EP1177562 B1 EP 1177562B1 EP 00927330 A EP00927330 A EP 00927330A EP 00927330 A EP00927330 A EP 00927330A EP 1177562 B1 EP1177562 B1 EP 1177562B1
Authority
EP
European Patent Office
Prior art keywords
cable
cable according
alloy
layer
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00927330A
Other languages
German (de)
English (en)
Other versions
EP1177562A1 (fr
Inventor
Ning Yu
Bruno Giacomini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axon Cable SA
Original Assignee
Axon Cable SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9905981A external-priority patent/FR2793593A1/fr
Application filed by Axon Cable SA filed Critical Axon Cable SA
Publication of EP1177562A1 publication Critical patent/EP1177562A1/fr
Application granted granted Critical
Publication of EP1177562B1 publication Critical patent/EP1177562B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/12Arrangements for exhibiting specific transmission characteristics
    • H01B11/14Continuously inductively loaded cables, e.g. Krarup cables

Definitions

  • the present invention relates to a use of a cable for producing a low-pass cable.
  • an electric transmission cable is intended to convey signals within an electrical or electronic system or between two such systems in a wide frequency range of these signals.
  • a low-pass transmission cable has a low frequency bandwidth, that is to say that it only allows to propagate signals whose frequency is below a certain limit called cable cut-off frequency.
  • the cutoff frequency is defined as that for which the attenuation is equal to 4.3 dB per meter.
  • Low-pass shielded cables are already known in which, in addition to the usual metal braid shielding, an intermediate magnetic absorption layer is formed which, in these known cables, is made of ferrite.
  • Such low-pass cables have a cut-off frequency of the order of 100 MHz in the sense mentioned above. Such a cutoff frequency is considered permissible for a number of applications.
  • this cut-off frequency must be adapted to the maximum frequency of the electrical signals that must pass through the cable.
  • An object of the present invention is to provide a low-pass cable whose cutoff frequency, i.e. the frequency corresponding to an attenuation of 4.3 dB per meter is substantially less than 100 MHz, typically less than or equal to equal to 20 MHz.
  • Another object of the invention is to provide a cable of this type in which the cable transfer impedance Zt does not strongly increase with the frequency of external interfering signals to provide effective protection against electromagnetic interference.
  • the cable retain its magnetic absorption properties in a temperature range corresponding to its current use, i.e., typically up to 260 ° C.
  • the reduction frequency is effectively lowered at a lower value or at the same time. equal to 20 MHz for attenuation of 4.3dB / m and a decrease in the transfer impedance increase for high frequencies.
  • the cable is constituted first of a conductive core 10 which can be constituted of course by several conductive strands for example silver-plated copper.
  • This conductive core can be from AWG08 to AWG26.
  • On the first dielectric layer 12 is formed according to an essential feature of the invention a magnetic absorption layer 14.
  • a second layer 16 of dielectric material is then found, followed by a standard shielding metal braid 18 and finally an insulating outer sheath 20.
  • the external diameters of these different layers have been labeled from D1 to D6.
  • the cable may not include the second dielectric layer 16 interposed between the magnetic absorption layer 14 and the shielding braid 18.
  • the cable may also not have its own shielding layer.
  • it is a bundle of these cables that will include an overblanking, that is to say, shielding means common to the entire cable bundle.
  • the conductive core 10 could be constituted by a plurality of conductive elements, each conductive element being surrounded by its own insulation of dielectric material. These conductive elements are preferably twisted.
  • the first layer of dielectric material 12 is then, in this case, constituted by the different insulations.
  • the magnetic absorption layer is formed around the assembly constituted by the various isolated conductive elements.
  • the magnetic absorbent layer is made of a ferromagnetic metal alloy of the amorphous or nano-crystalline type.
  • This characteristic allows as already explained briefly and as will be demonstrated by reference to the attached curves to obtain a very significant reduction in the cutoff frequency corresponding to the attenuation of 4.3 dB / m, which makes it possible to obtain a transmission of the useful signal under greatly improved conditions since thus obtaining a filtering of the non-useful induced or radiated frequencies, as well as a significant improvement in the transfer impedance.
  • the component of type A determines the intrinsic ferromagnetic properties of the materials, while that of the type B makes it possible to obtain during the solidification of the alloy the amorphous state that only component A can not obtain.
  • the type C it serves as a buffer between crystallization and amorphous solidification, and allows to create a so-called nano-crystalline state in which the ferromagnetic characteristics are just as interesting as in the amorphous state.
  • the absorption layer is preferably obtained by covering micro-wires made with the amorphous or nano-crystalline metal alloy, having a diameter of between 9 microns and 22 microns and preferably covered. individually of glass.
  • the layer thus obtained preferably has a thickness of between 50 and 150 microns.
  • a first cable was made according to the characteristics defined in the table below.
  • a beam of 32 micro-wires made of an alloy having the composition of line XII of Table 1 is used for the production of the magnetic absorption layer.
  • This magnetic absorption layer is obtained by wrapping a cord constituted by the beam of 32 micro-son.
  • a substantially adjacent micro-son layer is obtained.
  • the covering pitch is 1 mm.
  • the attenuation measurement of the cable shown in Figure 3 shows that for an attenuation of 4.3 dB / m the cutoff frequency is 20 MHz, which is much lower than the 100 MHz cutoff frequency of the state. of the technique.
  • the beam comprises 30 to 35 micro-wires and the guide pitch is between 0.25 mm and 1.1 mm.
  • Another cable was made by adopting the same manufacturing techniques as in Example 1 and the same structure for the cable. The difference lies in the fact that the wrapping pitch of the ferromagnetic amorphous metallic material micro-wires is 0.3 mm instead of 1 mm. As shown in Figure 4, the cable has a cutoff frequency which is further lowered for attenuation of 4.3 dB / m since this frequency is of the order of 3 MHz.
  • a third cable was made which differs from the preceding examples only in that the diameter D 3 of the absorption layer is 1.10 mm instead of 1 mm, that is to say that the micro-wires have a diameter of the order of 20 microns. The other parameters are unchanged.
  • the attenuation measurement of this cable shows that the cutoff frequency at 4.3 dB / m is pushed back below 1 MHz.
  • Example 4 Another cable similar to that of Example 4 was made except for the dielectric material used to make the two dielectric layers and the outer sheath.
  • the FEP is replaced by a PTFE / polyimide / PTFE composite film or a polyimide / PTFE composite film.
  • the results of the attenuation measurement show performance in terms of attenuation and cutoff frequency similar to those of Example 2.
  • the difference between the cables 3 and 4 lies in the chemical composition of the micro-wires used, the first corresponding to alloy XII of Table I and the second to alloy XIII of this same table.
  • the cable 1 does not include a magnetic absorption layer
  • the cable 2 comprises a ferrite magnetic absorption layer according to the state of the art
  • the cable 3 comprises an absorption layer according to the invention
  • the alloy ferromagnetic amorphous metal is in accordance with the composition given in Example XIII of Table I.
  • FIG. 5 shows that a very significant improvement in the transfer impedance is obtained for the cables 3 and 4, that is to say for the cables according to the invention. These measurements were carried out according to the triaxial method.
  • FIGS. 6A-6D show the shielding efficiency A expressed in dB / m as a function of the frequency F expressed in MHz for the cables 1 to 4 in a high frequency range of 500 MHz to 2 GHz.
  • the comparison of FIGS. 6A and 6B on the one hand and 6C and 6D on the other hand shows that at these high frequencies, the shielding efficiency cables 3 and 4 according to the invention is much higher (10 to 20 dB / m) than that obtained with the cables 1 and 2 according to the state of the art.
  • a cable is made according to the same characteristics as those of Example 4 but with a conductive core of the AWG26 type.
  • the other construction parameters being identical. Similar performances are obtained in the case of the preceding examples. It would be the same if the conductive core was of the AWG08 type.
  • the cable has its own shield. As already explained, the cable may not have a shielding braid.
  • the magnetic absorption layer is made from one or more ribbons constituted by an amorphous or nano-crystalline ferromagnetic material of which different compositions have been given previously.
  • the ribbon may be manufactured by the Spinning Fast Spinning technique or the Planar Flow Casting (Planar Flow Casting) technique.
  • Ribbons were manufactured from alloys I to XI of Table I. Table II below gives, for each alloy, an embodiment of the ribbon by specifying its dimensions and method of preparation. TABLE II Alloy Ribbon size State Technical Elaboration Thickness ⁇ m Width mm I 4.0 0.3 Amorphous Melt Spinning II 6.0 0.5 Amorphous Melt Spinning III 10.5 1.2 Amorphous Planar flow Casting IV 14.5 2.0 Amorphous Planar flow Casting V 15.0 3.0 Amorphous Planar flow Casting VI 5.0 3.6 Amorphous Planar flow Casting VII 25.5 1.0 Amorphous Planar flow Casting VIII 12.0 3.5 Amorphous Planar flow Casting IX 30.5 0.8 Amorphous Planar flow Casting X 10.0 1.0 Amorphous + nano-cristaliin Planar flow Casting XI 12.5 0.8 Amorphous + nano-crystalline Planar flow Casting
  • the tape can be made using a single tape, the turns overlapping each other, or successively with two ribbons with contiguous turns, spiralages of the two layers being reversed
  • the conductive core is made by concentric stranding or roplay stranding from copper wires coated with Ag, Sn or Ni gauges AwG 8 to 26.
  • the dielectric layer or layers are made of fluorinated thermoplastics by extrusion, polyolefin or PVC by extrusion or polyimide film by taping.
  • the magnetic absorption layer is made, as already indicated, by taping using the ribbons defined in Table II.
  • the magnetic absorption layer is made with at least one ribbon of the ferromagnetic alloy whose width is between 0.3 and 4.0 mm and whose thickness is between 2 and 100 microns.
  • Cable I including a 23 ⁇ m thick ribbon Cable II including 2 strips of thickness 23 ⁇ m superimposed Frequency (MHz) Attenuation (dB / m) Attenuation (dB / m) 10 6.38 11.8 50 15.9 26.6 100 24.8 41.3 150 32.4 53.2 200 39.2 68.1
  • the shield if it exists, is made, by means of a copper wire coated with Ag, Sn or Ni, by braiding or wrapping.
  • the outer sheath can be made of fluorinated thermoplastics, thermoplastic elastomer or PVC by extrusion or polyimide film by taping.
  • Figure 7 shows the attenuation of the cable A expressed in dB / m as a function of the frequency F expressed in MHz.
  • Curve 1 corresponds to the cables of the state of the art and curve II corresponds to the cables of Table II.
  • alloy VI the Curie temperature is equal to 350 ° C. and the crystallization temperature is 510 ° C.
  • these temperatures are respectively 320 ° C. and 500 ° C.
  • alloy XIV they are respectively 300 ° C. and 490 ° C.
  • FIG. 8 shows, for different alloys, the value of the imaginary part of the permeability ( ⁇ ") as a function of the frequency F expressed in MHz.
  • the curves A, B and C respectively correspond to the alloys VI, VII and These curves show that the imaginary part of the permeability, which best represents the magnetic absorption effect, has a very marked maximum around a frequency equal to 10 MHz.

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Insulated Conductors (AREA)
  • Soft Magnetic Materials (AREA)

Description

  • La présente invention a pour objet un usage d'un câble pour la réalisation d'un câble passe-bas.
  • un câble de transmission électrique a pour but de véhiculer les signaux à l'intérieur d'un système électrique ou électronique ou entre deux systèmes de ce type dans un large domaine de fréquence de ces signaux.
  • Un câble de transmission passe-bas présente une bande passante de basse fréquence c'est-à-dire qu'il ne laisse se propager que des signaux dont la fréquence est inférieure à une certaine limite appelée fréquence de coupure du câble.
  • Selon la norme américaine MIL-C-85 485 la fréquence de coupure est définie comme étant celle pour laquelle l'atténuation est égale à 4,3 dB par mètre.
  • On connaît déjà des câbles blindés passe-bas dans lesquels on réalise en plus du blindage habituel par tresse métallique une couche intermédiaire d'absorption magnétique qui dans ces câbles connus est réalisée à base de ferrite. De tels câbles passe-bas présentent une fréquence de coupure de l'ordre de 100 MHz au sens mentionné ci-dessus. Une telle fréquence de coupure est considérée comme admissible pour un certain nombre d'applications. Cependant, lorsque l'on veut avoir une transmission du signal utile sans que celui-ci soit affecté par des perturbations conduites par le câble ou résultant de rayonnement extérieur d'une meilleure qualité, il serait souhaitable de disposer de câbles blindés passe-bas présentant une présence de coupure sensiblement plus faible par exemple au plus égal à quelques dizaines de MHz.
  • Il va de soi que cette fréquence de coupure doit être adaptée à la fréquence maximale des signaux électriques qui doivent transiter par le câble.
  • De toute manière il est souhaitable de disposer de câbles comportant leur propre blindage ou non, dont la fréquence de coupure est très sensiblement inférieure à 100 MHz, fréquence de coupure que l'on obtient avec les câbles passe-bas de l'état de la technique.
  • Un objet de la présente invention est de fournir un câble passe-bas dont la fréquence de coupure, c'est-à-dire la fréquence correspondant à une atténuation de 4,3 dB par mètre est sensiblement inférieure à 100 MHz, typiquement inférieure ou égale à 20 MHz.
  • Un autre objet de l'invention est de fournir un câble de ce type dans lequel l'impédance de transfert Zt du câble ne croisse pas fortement avec la fréquence de signaux parasites externes pour assurer une protection efficace contre les interférences électromagnétiques.
  • Enfin, il est très souhaitable que le câble conserve ses propriétés d'absorption magnétique dans une plage de températures correspondant à son utilisation courante, c'est-à-dire typiquement jusqu'à 260°C.
  • Pour atteindre ces deux objets selon l'invention, le câble blindé passe-bas se caractérise en ce qu'il comprend successivement depuis son centre vers sa périphérie
    • une âme conductrice ;
    • une première couche diélectrique ;
    • une couche d'absorption magnétique en un alliage métallique amorphe ferromagnétique ; et
    • une gaine isolante.
  • De préférence, ledit alliage ferromagnétique a la composition suivante :
    • A80±10% B20±10%
    A représentant le pourcentage total exprimé en atomes des éléments ferromagnétiques de l'alliage choisis dans le groupe comprenant Co, Fe, Mn et Ni ; et
    B représentant le pourcentage total exprimé en atomes des éléments métalloïdes de l'alliage choisis dans le groupe comprenant B, Si et P. Le composé est du type amorphe.
  • En variante, ledit alliage ferromagnétique a la composition suivante :
    • A75±10 % B20±10% C5±3%
    • A représente les éléments ferromagnétiques Co, Fe, Mn et Ni entrant dans la composition soit seul, soit à plusieurs sous forme combinée ;
    • B représente les éléments métalloïdes B, Si et P entrant dans la composition soit seul, soit à plusieurs sous forme combinée ; et
    • C représentant le pourcentage total exprimé en atomes d'un élément métallique choisi dans le groupe comprenant le Cu et le Nb ou du mélange des deux.
  • Grâce à la présence de la couche d'absorption magnétique réalisée en un alliage métallique amorphe ou nano-cristallin ferromagnétique ayant de préférence la composition indiquée ci-dessus, on obtient effectivement, simultanément, un abaissement de la fréquence de coupure à une valeur inférieure ou égale à 20 MHz pour une atténuation de 4,3dB/m et une diminution de l'augmentation de l'impédance de transfert pour les fréquences élevées.
  • D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit de plusieurs modes de réalisation de l'invention donnés à titre d'exemple non limitatif. La description se réfère aux figures annexées sur lesquelles :
    • la figure 1 est une vue en perspective partiellement arrachée d'un câble passe-bas ;
    • la figure 2 est une vue en coupe transversale du câble de la figure 1 ;
    • la figure 3 représente des courbes qui montrent l'atténuation du câble correspondant à l'exemple 1 en fonction de la fréquence ;
    • la figure 4 est une vue similaire pour le câble de l'exemple 2 ;
    • la figure 5 montre des courbes donnant les variations d'impédance de transfert en fonction de la fréquence pour les quatre exemples de câbles correspondant à l'exemple 6 ;
    • les figures 6A à 6D montrent des courbes représentant l'efficacité de blindage en fonction de la fréquence pour les quatre câbles définis dans l'exemple 6 ;
    • la figure 7 montre la courbe d'atténuation (A) du câble correspondant aux exemples du tableau II en fonction de la fréquence (F) ; et
    • la figure 8 montre la variation de la partie imaginaire de la perméabilité du matériau absorbant en fonction de la fréquence.
  • En se référant tout d'abord aux figures 1 et 2, on va décrire la structure générale du câble. Le câble est constitué tout d'abord d'une âme conductrice 10 qui peut être constitué bien sûr par plusieurs brins conducteurs par exemple en cuivre argenté. Cette âme conductrice peut aller de AWG08 à AWG26. Autour de l'âme conductrice 10, on trouve une première couche de matériau diélectrique 12. Sur la première couche diélectrique 12 est réalisée selon une caractéristique essentielle de l'invention une couche 14 d'absorption magnétique. On trouve ensuite une deuxième couche 16 de matériau diélectrique puis une tresse métallique de blindage 18 de type standard et enfin une gaine externe isolante 20. Sur la figure 2, on a repéré de D1 à D6 les diamètres externes de ces différentes couches.
  • Il faut dès à présent mentionner que selon certains modes de réalisation, le câble peut ne pas comporter la deuxième couche de diélectrique 16 interposée entre la couche d'absorption magnétique 14 et la tresse de blindage 18.
  • En variante, le câble peut également ne pas comporter sa propre couche de blindage. Dans ce cas, le plus souvent, c'est un faisceau de ces câbles qui comportera un surblindage, c'est-à-dire des moyens de blindage communs à l'ensemble du faisceau de câbles.
  • En variante, l'âme conductrice 10 pourrait être constituée par plusieurs éléments conducteurs, chaque élément conducteur étant entouré par sa propre isolation en matériau diélectrique. Ces éléments conducteurs sont de préférence torsadés. La première couche en matériau diélectrique 12 est alors, dans ce cas, constituée par les différentes isolations. La couche d'absorption magnétique est réalisée autour de l'ensemble constitué par les différents éléments conducteurs isolés.
  • Selon une caractéristique essentielle de l'invention, la couche absorbante magnétique est réalisée en un alliage métallique ferromagnétique du type amorphe ou nano-cristallin. Cette caractéristique permet comme on l'a déjà expliqué succinctement et comme cela sera démontré par référence aux courbes annexées d'obtenir une diminution très sensible de la fréquence de coupure correspondant à l'atténuation de 4,3 dB/m ce qui permet donc d'obtenir une transmission du signal utile dans des conditions très améliorées puisqu'on obtient ainsi un filtrage des fréquences non utiles induites ou rayonnées, ainsi qu'une amélioration sensible de l'impédance de transfert.
  • De préférence, le matériau ferromagnétique du type amorphe a la composition suivante :
    • A80±10% B20±10%
    et le matériau ferromagnétique nano-cristallin a la composition suivante :
    • A75±10% B20±10% C5±3%
  • Dans ces formules :
    • A représente les éléments ferromagnétiques Co, Fe, Mn et Ni entrant dans la composition soit seul, soit à plusieurs sous forme combinée ;
    • B représente les éléments métalloïdes B, Si et P entrant dans la composition soit seul, soit à plusieurs sous forme combinée ;
    • C représente les éléments métalliques Cu et Nb entrant dans la composition soit seul, soit à plusieurs sous forme combinée.
    • Le pourcentage est en atome et nominal.
    • La tolérance en pourcentage représente la plage dans laquelle les caractéristiques électromagnétiques pour l'application câble passe-bas sont satisfaisantes.
  • En fait, le constituant du type A détermine les propriétés ferromagnétiques intrinsèques des matériaux, alors que celui du type B permet d'obtenir lors de la solidification de l'alliage l'état amorphe que, seul, le constituant A ne peut se procurer. Quant à celui du type C, il sert de tampon entre la cristallisation et la solidification amorphe, et permet de créer un état dit nano-cristallin dans lequel les caractéristiques ferromagnétiques sont tout aussi intéressantes qu'à l'état amorphe.
  • Des alliages particuliers ont été élaborés pour tester leur efficacité en tant que couche d'absorption magnétique. Le tableau I ci-dessous fournit plusieurs compositions d'alliage avec leur état amorphe ou nano-cristallin. TABLEAU I
    Alliage Composition Etat de l'alliage
    I Fe80B20 Amorphe
    II Fe77Si8B15 Amorphe
    III Fe65CO10Si10B15 Amorphe
    IV Fe65Mn10Si10B15 Amorphe
    V CO80Si10B10 Amorphe
    VI CO69Fe5Si12B15 Amorphe
    VII CO69Mn6Si15B10 Amorphe
    VIII CO69Mn5Fe1Si13B12 Amorphe
    IX Ni60Fe20P20 Amorphe
    X CO71Fe4Nb4Si15B6 Amorphe + nano-cristallin
    XI Fe74Cu1 Nb3Si13B9 Amorphe + nano-cristallin
    XII Fe0.8Mn5.6Ni0.2B6.5Si14Co72.6 Amorphe
    XIII Fe0.8Mn6Ni0.1B5.7Si13.9Co79.5 Amorphe
    XIV Co68Fe4Si12B15Mn1 Amorphe
  • Selon un premier mode de mise en oeuvre, la couche d'absorption est obtenue de préférence par guipage de micro-fils réalisés avec l'alliage métallique amorphe ou nano-cristallin, présentant un diamètre compris entre 9 microns et 22 microns et de préférence recouverts individuellement de verre. La couche ainsi obtenue a, de préférence, une épaisseur comprise entre 50 et 150 microns.
  • On va maintenant décrire plusieurs exemples de réalisation du câble passe-bas selon le premier mode de mise en oeuvre.
  • Exemple 1
  • Un premier câble a été réalisé selon les caractéristiques définies dans le tableau ci-dessous. On utilise pour la réalisation de la couche d'absorption magnétique un faisceau de 32 micro-fils réalisés avec un alliage ayant la composition de la ligne XII du tableau 1. Cette couche d'absorption magnétique est obtenue par guipage d'un cordon constitué par le faisceau des 32 micro-fils. On obtient une couche de micro-fils sensiblement jointive. Le pas de guipage est de 1 mm. La mesure d'atténuation du câble montrée par la figure 3 montre que pour une atténuation de 4,3 dB/m la fréquence de coupure est de 20 MHz, ce qui est très inférieure à la fréquence de coupure de 100 MHz de l'état de la technique.
    Composant Matériaux Mise en oeuvre
    Conducteur D1 = 0.76 mm Cu argenté AWG22
    Diélectrique D2 = 0.88 mm FEP Extrusion
    Couche d'absorption D3 = 1.00 mm Faisceau 32 micro-fils Guipage
    Tresse de blindage D5 = 1.55 mm Cu argenté ∅ = 0.102 mm Tressage
    Gaine D6 = 2.00 mm FEP Extrusion
  • Plus généralement, le faisceau comprend 30 à 35 micro-fils et le pas de guidage est compris entre 0,25 mm et 1,1 mm.
  • Exemple 2
  • On a réalisé un autre câble en adoptant les mêmes techniques de fabrication que dans l'exemple 1 et la même structure pour le câble. La différence réside dans le fait que le pas de guipage des micro-fils en matériau métallique amorphe ferromagnétique est de 0,3 mm au lieu de 1 mm. Comme le montre la figure 4, le câble présente une fréquence de coupure qui est encore abaissée pour l'atténuation de 4,3 dB/m puisque cette fréquence est de l'ordre de 3 MHz.
  • Exemple 3
  • On a réalisé un troisième câble qui ne diffère des exemples précédents que par le fait que le diamètre D3 de la couche d'absorption est de 1,10 mm au lieu de 1 mm, c'est-à-dire que les micro-fils ont un diamètre de l'ordre de 20 microns. Les autres paramètres étant inchangés. La mesure d'atténuation de ce câble montre que la fréquence de coupure à 4,3 dB/m est repoussée en dessous de 1 MHz.
  • Exemple 4
  • Un autre câble a été réalisé suivant les spécifications indiquées dans le tableau ci-dessous. On voit que dans ce cas, on a effectivement la présence de la deuxième couche de diélectrique 16 entre la couche absorbante 14 et la tresse de blindage 18. Les résultats sont similaires à ceux obtenus dans le cas de l'exemple 2.
    Composant Matériaux Mise en oeuvre
    Conducteur D1 = 0.76 mm Cu argenté AWG22
    Diélectrique D2 = 0.88 mm FEP Extrusion
    Couche d'absorption D3 = 1.00 mm Faisceau 32 micro-fils Guipage
    Diélectrique D4 = 1.37 mm FEP Extrusion
    Tresse de blindage D5 = 1.82 mm Cu argenté ∅ = 0,102 mm Tressage
    Gaine D6 = 2.30 mm FEP Extrusion
  • Exemple 5
  • On a réalisé un autre câble similaire à celui de l'exemple 4, sauf en ce qui concerne le matériau diélectrique servant à réaliser les deux couches de diélectrique et la gaine externe. Le FEP est remplacé par un film composite PTFE/polyimide/PTFE ou un film composite polyimide/PTFE. Les résultats de la mesure d'atténuation montrent des performances en terme d'atténuation et de fréquence de coupure similaire à celles de l'exemple 2.
    Composant Matériaux Mise en oeuvre
    Conducteur D1 = 0.76 mm Cu étamé AWG22
    Diélectrique D2 = 0.88 mm Film polyimide/.PTFE Rubanage
    Couche d'absorption D3 = 1.10 mm Faisceau 32 micro-fils Guipage
    Diélectrique D4 = 1.35 mm Film polyimide/PTFE Rubanage
    Tresse de blindage D5 = 1.80 mm Cu étamé ∅ = 0.102 mm Tressage
    Gaine D6 = 2.30 mm Film polyimide/PTFE Rubanage
  • Exemple 6
  • Dans l'exemple suivant, on a réalisé 4 câbles numérotés respectivement 1, 2, 3 et 4 pour montrer l'efficacité en termes d'amélioration de l'impédance de transfert des câbles selon l'invention par rapport au câble de l'état de la technique. Le tableau ci-dessous montre la composition des câbles 1, 2, 3 et 4.
    Composant Matériaux
    Câble 1 Câble 2 Câble 3 Câble 4
    Conducteur D1 = 0.76 mm Cu argenté AWG22
    Diélectrique D2 = 0.88 mm FEP
    Couche d'absorption D3 = 1.00 mm FEP ferrite micro-fils 1 micro-fils 2
    Diélectrique D4 = 1.37mm FEP
    Tresse de blindage D5 = 1.82mm Fil Cu argenté 0.102 mm 16x3
    Gaine D6 = 2.30 mm FEP
  • La différence entre les câbles 3 et 4 réside dans la composition chimique des micro-fils utilisés, le premier correspondant à l'alliage XII du tableau I et le second à l'alliage XIII de ce même tableau.
  • Le câble 1 ne comporte pas de couche d'absorption magnétique, le câble 2 comporte une couche d'absorption magnétique en ferrite selon l'état de la technique, le câble 3 comporte une couche d'absorption selon l'invention, l'alliage métallique amorphe ferromagnétique est conforme à la composition donnée dans l'exemple XIII du tableau I.
  • La figure 5 montre que l'on obtient une amélioration très sensible de l'impédance de transfert pour les câbles 3 et 4, c'est-à-dire pour les câbles conformes à l'invention. Ces mesures ont été réalisées selon la méthode triaxiale.
  • De plus, les figures 6A à 6D montrent l'efficacité de blindage A exprimée en dB/m en fonction de la fréquence F exprimée en MHz pour les câbles 1 à 4 dans une plage de fréquences élevées de 500 MHz à 2 GHz. La comparaison des figures 6A et 6B d'une part et 6C et 6D d'autre part montre qu'à ces fréquences élevées, l'efficacité de blindage des câbles 3 et 4 conforme à l'invention est bien supérieure (de 10 à 20 dB/m) à celle qu'on obtient avec les câbles 1 et 2 selon l'état de la technique.
  • Ces mesures ont été réalisées selon la technique de chambre réverbérante conforme à la Norme Mil-STD 1344
  • Exemple 7
  • On réalise un câble suivant les mêmes caractéristiques que celles de l'exemple 4 mais avec une âme conductrice du type AWG26. Les autres paramètres de construction étant identiques. On obtient des performances similaires au cas des exemples précédents. Il en serait de même si l'âme conductrice était du type AWG08.
  • Dans les exemples 1 à 7, le câble comporte son propre blindage. Comme on l'a déjà expliqué, le câble pourrait ne pas avoir de tresse de blindage.
  • Selon un deuxième mode de réalisation, la couche d'absorption magnétique est réalisée à partir d'un ou plusieurs rubans constitués par un matériau ferromagnétique amorphe ou nano-cristallin dont différentes compositions ont été données précédemment.
  • Le ruban peut être fabriqué par la technique de solidification rapide par filage (en anglais Melt Spinning) ou par la technique de solidification rapide par écoulement planaire (en anglais Planar Flow Casting).
  • Ces techniques consistent à projeter, à travers une buse de très faible épaisseur, l'alliage sous forme liquide sur une roue tournant à une vitesse de l'ordre de 2 500 tours par minute. L'alliage liquide se répand sur la périphérie de la roue. En se solidifiant, l'alliage forme un ruban qui peut avoir une très faible épaisseur.
  • Des rubans ont été fabriqués à partir des alliages I à XI du tableau I. Le tableau II ci-après donne, pour chaque alliage, un mode de réalisation du ruban en précisant ses dimensions et son mode d'élaboration. TABLEAU II
    Alliage Dimension du ruban Etat Technique Elaboration
    Epaisseur µm Largeur mm
    I 4.0 0.3 Amorphe Melt Spinning
    II 6.0 0.5 Amorphe Melt Spinning
    III 10.5 1.2 Amorphe Planar flow Casting
    IV 14.5 2.0 Amorphe Planar flow Casting
    V 15.0 3.0 Amorphe Planar flow Casting
    VI 5.0 3.6 Amorphe Planar flow Casting
    VII 25.5 1.0 Amorphe Planar flow Casting
    VIII 12.0 3.5 Amorphe Planar flow Casting
    IX 30.5 0.8 Amorphe Planar flow Casting
    X 10.0 1.0 Amorphe + nano-cristaliin Planar flow Casting
    XI 12.5 0.8 Amorphe + nano-cristallin Planar flow Casting
  • Ces rubans ont été ensuite intégrés dans les câbles conformes à l'invention, avec un pas allant de 0,1 à 1,5 mm, par la technique dite rubanage couramment utilisée dans l'industrie de câblerie.
  • Le rubannage peut être réalisé à l'aide d'un seul ruban, les spires se recouvrant mutuellement, ou successivement à l'aide de deux rubans à spires jointives, les spiralages des deux couches étant inversés
  • A partir des rubans définis par le tableau Il on a réalisé des câbles blindés conformes à l'invention.
  • L'âme conductrice est réalisée par toronnage concentrique ou toronnage en roplay à partir de fils de cuivre revêtus d'Ag, Sn ou Ni de jauges AwG 8 à 26.
  • La ou les couches de diélectrique sont réalisées en thermoplastiques fluorés par extrusion, en polyoléfine ou PVC par extrusion ou encore en film polyimide par rubannage.
  • La couche d'absorption magnétique est réalisée, comme on l'a déjà indiqué, par rubannage à l'aide des rubans définis dans le tableau II.
  • De préférence la couche d'absorption magnétique est réalisée avec au moins un ruban de l'alliage ferromagnétique dont la largeur est comprise entre 0,3 et 4,0 mm et dont l'épaisseur est comprise entre 2 et 100 microns.
  • De plus, les mesures effectuées sur les câbles montrent que l'atténuation augmente en fonction de l'épaisseur de la couche de matériau absorbant. C'est ce que montre le tableau suivant :
    Câble I incluant un ruban d'épaisseur de 23 µm Câble II incluant 2 rubans d'épaisseur 23 µm superposés
    Fréquence (MHz) Atténuation (dB/m) Atténuation (dB/m)
    10 6.38 11.8
    50 15.9 26.6
    100 24.8 41.3
    150 32.4 53.2
    200 39.2 68.1
  • Ainsi, il est possible, en jouant sur le nombre de rubans et/ou l'épaisseur du ou des rubans, d'adapter l'effet d'absorption aux conditions d'utilisation du câble. Il en va de même lorsque la couche absorbante est réalisée avec des micro-fils.
  • Le blindage, s'il existe, est réalisé, à l'aide d'un fil de cuivre revêtu d'Ag, Sn ou Ni, par tressage ou guipage. Enfin, la gaine externe peut être réalisée en thermoplastiques fluorés, en élastomère thermoplastique ou en PVC par extrusion ou encore en film polyimide par rubannage.
  • Les mesures en filtrage à hautes fréquences et en impédance de transfert effectuées sur les câbles décrits précédemment et utilisant un ruban amorphe ou nanocristallin ont donné des résultats similaires à ceux obtenus pour les câbles réalisés à partir de microfils.
  • La figure 7 donne l'atténuation du câble A exprimée en dB/m en fonction de la fréquence F exprimée en MHz. La courbe 1 correspond aux câbles de l'état de la technique et la courbe Il correspond aux câbles du Tableau II.
  • Différentes mesures ont été effectuées, en particulier pour les exemples de composition d'alliage ferromagnétique VI, VII et XIV du Tableau I précédent.
  • Ces mesures montrent que, pour l'alliage VI, la température de Curie est égale à 350°C et la température de cristallisation est de 510°C. Pour l'alliage VII, ces températures sont respectivement de 320°C et de 500°C et pour l'alliage XIV, elles sont respectivement de 300°C et 490°C.
  • Pour les autres alliages, ces mesures sont du même ordre.
  • On voit donc que ces températures sont très supérieures aux températures normales d'utilisation du câble qui n'excèdent pas pratiquement 260°C.
  • Sur la figure 8, on a représenté pour différents alliages, la valeur de la partie imaginaire de la perméabilité (µ") en fonction de la fréquence F exprimée en MHz. Les courbes A, B et C correspondent respectivement au alliages VI, VII et XIV. Ces courbes montrent que la partie imaginaire de la perméabilité, qui représente le mieux l'effet d'absorption magnétique, présente un maximum très marqué autour d'une fréquence égale à 10 MHz.

Claims (12)

  1. Usage d'un câble comprenant successivement depuis son centre vers sa périphérie une âme conductrice (10), une première couche diélectrique (12), une couche d'absorption magnétique en un alliage métallique ferromagnétique à structure amorphe ou nano-cristallin (14) et une gaine isolante (20) pour la réalisation d'un câble passe-bas caractérisé en ce que ledit câble passe-bas présente une fréquence de coupure, correspondant à une atténuation de 4,3 dB/m, inférieure à 20 MHz et utilisable jusqu'à une température de 260°C.
  2. Usage d'un câble selon la revendication 1, caractérisé en ce qu'il comprend en outre une couche de blindage(18) réalisée sur la couche d'absorption.
  3. Usage d'un câble selon la revendication 2, caractérisé en ce qu'il comprend en outre une deuxième couche diélectrique (16) interposée entre la couche absorbante (14) et le blindage (18).
  4. Usage d'un câble selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit alliage ferromagnétique a la composition suivante :
    A80 ± 10 % B20 ± 10 %
    A représentant le pourcentage total exprimé en atomes des éléments ferromagnétiques de l'alliage choisis dans le groupe comprenant Co, Fe, Mn et Ni ; et
    B représentant le pourcentage total exprimé en atomes des éléments métalloïdes de l'alliage choisis dans le groupe comprenant B, Si et P.
  5. Usage d'un câble selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit alliage ferromagnétique a la composition suivante :
    A75±10% B20±10% C5±3%
    - A représente les éléments ferromagnétiques Co, Fe, Mn et Ni entrant dans la composition soit seul, soit à plusieurs sous forme combinée ;
    - B représente les éléments métalloïdes B, Si et P entrant dans la composition soit seul, soit à plusieurs sous forme combinée ; et
    - C représentant le pourcentage total exprimé en atomes d'un élément métallique choisi dans le groupe comprenant le Cu et le Nb ou du mélange des deux.
  6. Usage d'un câble selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ladite couche d'absorption magnétique est constituée par des fils dudit alliage ferromagnétique de diamètre compris entre 9 et 22 micromètres.
  7. Usage d'un câble selon la revendication 6, caractérisé en ce que chaque fil est revêtu d'une couche de verre.
  8. Usage d'un câble selon l'une quelconque des revendications 6 et 7, caractérisé en ce que ladite couche absorbante est constituée par guipage avec un faisceau qui comprend 30 à 35 desdits fils à un pas compris entre 0,25 mm et 1,1 mm.
  9. Usage d'un câble selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ladite couche d'absorption magnétique est constituée par au moins un ruban dudit alliage ferromagnétique dont la largeur est comprise entre 0,3 et 4,00 mm et dont l'épaisseur est comprise entre 2 et 100 microns.
  10. Usage d'un câble selon l'une quelconque des revendications 1 à 9 caractérisé en ce que la ou lesdites couches diélectriques sont réalisées en FEP ou PTFE.
  11. Usage d'un câble selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'âme conductrice (10) est constituée par une pluralité d'éléments conducteurs et en ce que la première couche diélectrique (12) est constituée par une pluralité de revêtements isolants, chaque revêtement recouvrant un desdits éléments conducteurs.
  12. Usage d'un câble selon l'une quelconque des revendications 1 à 11, caractérisé en ce que sa température d'utilisation est au plus égale à 260°C.
EP00927330A 1999-05-11 2000-05-11 Usage d'un cable pour la realisation d'un cable passe-bas Expired - Lifetime EP1177562B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR9905981 1999-05-11
FR9905981A FR2793593A1 (fr) 1999-05-11 1999-05-11 Cable blinde passe-bas
FR0001038A FR2793594B1 (fr) 1999-05-11 2000-01-27 Cable passe-bas
FR0001038 2000-01-27
PCT/FR2000/001275 WO2000068959A1 (fr) 1999-05-11 2000-05-11 Cable passe-bas

Publications (2)

Publication Number Publication Date
EP1177562A1 EP1177562A1 (fr) 2002-02-06
EP1177562B1 true EP1177562B1 (fr) 2007-02-21

Family

ID=26212130

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00927330A Expired - Lifetime EP1177562B1 (fr) 1999-05-11 2000-05-11 Usage d'un cable pour la realisation d'un cable passe-bas

Country Status (4)

Country Link
EP (1) EP1177562B1 (fr)
DE (1) DE60033513T2 (fr)
FR (1) FR2793594B1 (fr)
WO (1) WO2000068959A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003068769A1 (fr) 2002-02-12 2003-08-21 Pfizer Inc. Composes non-peptidiques influant sur l'action de la gnrh
MXPA04012566A (es) 2002-06-13 2005-04-19 Pfizer Agentes no peptidicos reguladores de la gnrh, composiciones farmaceuticas y procedimientos para su uso.
CN1302486C (zh) * 2003-09-15 2007-02-28 北京大学 一种导电高分子-碳纳米管纳米电缆及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3123040A1 (de) * 1981-06-11 1983-01-05 Vacuumschmelze Gmbh, 6450 Hanau Magnetisch abgeschirmtes kabel mit einer abschirmungaus weichmagnetischem material
GB8601270D0 (en) * 1986-01-20 1986-02-26 Raychem Ltd High frequency attenuation cable
FR2615030B1 (fr) * 1987-05-07 1990-08-24 Lesage Christian Gaine souple multicouches concentriques de blindage pour cable electrique

Also Published As

Publication number Publication date
WO2000068959A1 (fr) 2000-11-16
DE60033513T2 (de) 2007-06-21
DE60033513D1 (de) 2007-04-05
FR2793594A1 (fr) 2000-11-17
EP1177562A1 (fr) 2002-02-06
FR2793594B1 (fr) 2001-12-07

Similar Documents

Publication Publication Date Title
EP0964408B1 (fr) Câble pour la transmission d'informations et son procédé de fabrication
EP0485920B1 (fr) Câble électrique à vitesse de propagation élevée
FR2461342A1 (fr) Cables a haute immunite, contre pulse electromagnetique (emp)
EP0554160B1 (fr) Câble électrique haute fréquence
EP2557572B1 (fr) Câble électrique résistant aux décharges partielles
EP3735702B1 (fr) Transformateur de courant ouvrant a noyau magnetique souple
FR2730341A1 (fr) Cable perfectionne a paires differentielles multiples de conducteurs
FR2908895A1 (fr) Cables lisses et multilignes a rapport resistance/poids eleve
FR2693828A1 (fr) Câble pour signaux comportant un écran en polymère recouvert de métal.
EP2765581B1 (fr) Câble électrique résistant aux décharges partielles
EP0504776B1 (fr) Câble coaxial à faibles pertes
CH695074A5 (fr) Câble de données à hautes performances.
FR2850788A1 (fr) Cable de transmission pour le raccordement a des appareils mobiles
EP1177562B1 (fr) Usage d'un cable pour la realisation d'un cable passe-bas
EP2280402B9 (fr) Câble de communication et de transmission multimédia
EP0290343B1 (fr) Assemblage comprenant une gaine souple et des raccords visses
EP0920035A1 (fr) Câble de transmission de données
FR2793593A1 (fr) Cable blinde passe-bas
EP0299125B1 (fr) Structure à propagation passe-bas
FR2748845A1 (fr) Cable electrique de transmission haute frequence
WO2024134122A1 (fr) Câble blindé électrique
EP4203185B1 (fr) Antenne filaire améliorée à large bande de fréquences
EP2725585A1 (fr) Câble de transmission de données a paires ou quartes torsadées
WO1996027197A1 (fr) Cable et cablage blindes et leur procede de fabrication
WO1994014080A2 (fr) Procede de determination de la permeabilite magnetique intrinseque d'elements ferromagnetiques allonges et des proprietes electromagnetiques de composites utilisant de tels elements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: USE OF A CABLE AS LOW PASS CABLE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070314

REF Corresponds to:

Ref document number: 60033513

Country of ref document: DE

Date of ref document: 20070405

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071122

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190510

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190520

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190516

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60033513

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200510