EP1177562B1 - Verwendung eines kabels als tiefpasskabel - Google Patents

Verwendung eines kabels als tiefpasskabel Download PDF

Info

Publication number
EP1177562B1
EP1177562B1 EP00927330A EP00927330A EP1177562B1 EP 1177562 B1 EP1177562 B1 EP 1177562B1 EP 00927330 A EP00927330 A EP 00927330A EP 00927330 A EP00927330 A EP 00927330A EP 1177562 B1 EP1177562 B1 EP 1177562B1
Authority
EP
European Patent Office
Prior art keywords
cable
cable according
alloy
layer
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00927330A
Other languages
English (en)
French (fr)
Other versions
EP1177562A1 (de
Inventor
Ning Yu
Bruno Giacomini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axon Cable SA
Original Assignee
Axon Cable SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9905981A external-priority patent/FR2793593A1/fr
Application filed by Axon Cable SA filed Critical Axon Cable SA
Publication of EP1177562A1 publication Critical patent/EP1177562A1/de
Application granted granted Critical
Publication of EP1177562B1 publication Critical patent/EP1177562B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/12Arrangements for exhibiting specific transmission characteristics
    • H01B11/14Continuously inductively loaded cables, e.g. Krarup cables

Definitions

  • the present invention relates to a use of a cable for producing a low-pass cable.
  • an electric transmission cable is intended to convey signals within an electrical or electronic system or between two such systems in a wide frequency range of these signals.
  • a low-pass transmission cable has a low frequency bandwidth, that is to say that it only allows to propagate signals whose frequency is below a certain limit called cable cut-off frequency.
  • the cutoff frequency is defined as that for which the attenuation is equal to 4.3 dB per meter.
  • Low-pass shielded cables are already known in which, in addition to the usual metal braid shielding, an intermediate magnetic absorption layer is formed which, in these known cables, is made of ferrite.
  • Such low-pass cables have a cut-off frequency of the order of 100 MHz in the sense mentioned above. Such a cutoff frequency is considered permissible for a number of applications.
  • this cut-off frequency must be adapted to the maximum frequency of the electrical signals that must pass through the cable.
  • An object of the present invention is to provide a low-pass cable whose cutoff frequency, i.e. the frequency corresponding to an attenuation of 4.3 dB per meter is substantially less than 100 MHz, typically less than or equal to equal to 20 MHz.
  • Another object of the invention is to provide a cable of this type in which the cable transfer impedance Zt does not strongly increase with the frequency of external interfering signals to provide effective protection against electromagnetic interference.
  • the cable retain its magnetic absorption properties in a temperature range corresponding to its current use, i.e., typically up to 260 ° C.
  • the reduction frequency is effectively lowered at a lower value or at the same time. equal to 20 MHz for attenuation of 4.3dB / m and a decrease in the transfer impedance increase for high frequencies.
  • the cable is constituted first of a conductive core 10 which can be constituted of course by several conductive strands for example silver-plated copper.
  • This conductive core can be from AWG08 to AWG26.
  • On the first dielectric layer 12 is formed according to an essential feature of the invention a magnetic absorption layer 14.
  • a second layer 16 of dielectric material is then found, followed by a standard shielding metal braid 18 and finally an insulating outer sheath 20.
  • the external diameters of these different layers have been labeled from D1 to D6.
  • the cable may not include the second dielectric layer 16 interposed between the magnetic absorption layer 14 and the shielding braid 18.
  • the cable may also not have its own shielding layer.
  • it is a bundle of these cables that will include an overblanking, that is to say, shielding means common to the entire cable bundle.
  • the conductive core 10 could be constituted by a plurality of conductive elements, each conductive element being surrounded by its own insulation of dielectric material. These conductive elements are preferably twisted.
  • the first layer of dielectric material 12 is then, in this case, constituted by the different insulations.
  • the magnetic absorption layer is formed around the assembly constituted by the various isolated conductive elements.
  • the magnetic absorbent layer is made of a ferromagnetic metal alloy of the amorphous or nano-crystalline type.
  • This characteristic allows as already explained briefly and as will be demonstrated by reference to the attached curves to obtain a very significant reduction in the cutoff frequency corresponding to the attenuation of 4.3 dB / m, which makes it possible to obtain a transmission of the useful signal under greatly improved conditions since thus obtaining a filtering of the non-useful induced or radiated frequencies, as well as a significant improvement in the transfer impedance.
  • the component of type A determines the intrinsic ferromagnetic properties of the materials, while that of the type B makes it possible to obtain during the solidification of the alloy the amorphous state that only component A can not obtain.
  • the type C it serves as a buffer between crystallization and amorphous solidification, and allows to create a so-called nano-crystalline state in which the ferromagnetic characteristics are just as interesting as in the amorphous state.
  • the absorption layer is preferably obtained by covering micro-wires made with the amorphous or nano-crystalline metal alloy, having a diameter of between 9 microns and 22 microns and preferably covered. individually of glass.
  • the layer thus obtained preferably has a thickness of between 50 and 150 microns.
  • a first cable was made according to the characteristics defined in the table below.
  • a beam of 32 micro-wires made of an alloy having the composition of line XII of Table 1 is used for the production of the magnetic absorption layer.
  • This magnetic absorption layer is obtained by wrapping a cord constituted by the beam of 32 micro-son.
  • a substantially adjacent micro-son layer is obtained.
  • the covering pitch is 1 mm.
  • the attenuation measurement of the cable shown in Figure 3 shows that for an attenuation of 4.3 dB / m the cutoff frequency is 20 MHz, which is much lower than the 100 MHz cutoff frequency of the state. of the technique.
  • the beam comprises 30 to 35 micro-wires and the guide pitch is between 0.25 mm and 1.1 mm.
  • Another cable was made by adopting the same manufacturing techniques as in Example 1 and the same structure for the cable. The difference lies in the fact that the wrapping pitch of the ferromagnetic amorphous metallic material micro-wires is 0.3 mm instead of 1 mm. As shown in Figure 4, the cable has a cutoff frequency which is further lowered for attenuation of 4.3 dB / m since this frequency is of the order of 3 MHz.
  • a third cable was made which differs from the preceding examples only in that the diameter D 3 of the absorption layer is 1.10 mm instead of 1 mm, that is to say that the micro-wires have a diameter of the order of 20 microns. The other parameters are unchanged.
  • the attenuation measurement of this cable shows that the cutoff frequency at 4.3 dB / m is pushed back below 1 MHz.
  • Example 4 Another cable similar to that of Example 4 was made except for the dielectric material used to make the two dielectric layers and the outer sheath.
  • the FEP is replaced by a PTFE / polyimide / PTFE composite film or a polyimide / PTFE composite film.
  • the results of the attenuation measurement show performance in terms of attenuation and cutoff frequency similar to those of Example 2.
  • the difference between the cables 3 and 4 lies in the chemical composition of the micro-wires used, the first corresponding to alloy XII of Table I and the second to alloy XIII of this same table.
  • the cable 1 does not include a magnetic absorption layer
  • the cable 2 comprises a ferrite magnetic absorption layer according to the state of the art
  • the cable 3 comprises an absorption layer according to the invention
  • the alloy ferromagnetic amorphous metal is in accordance with the composition given in Example XIII of Table I.
  • FIG. 5 shows that a very significant improvement in the transfer impedance is obtained for the cables 3 and 4, that is to say for the cables according to the invention. These measurements were carried out according to the triaxial method.
  • FIGS. 6A-6D show the shielding efficiency A expressed in dB / m as a function of the frequency F expressed in MHz for the cables 1 to 4 in a high frequency range of 500 MHz to 2 GHz.
  • the comparison of FIGS. 6A and 6B on the one hand and 6C and 6D on the other hand shows that at these high frequencies, the shielding efficiency cables 3 and 4 according to the invention is much higher (10 to 20 dB / m) than that obtained with the cables 1 and 2 according to the state of the art.
  • a cable is made according to the same characteristics as those of Example 4 but with a conductive core of the AWG26 type.
  • the other construction parameters being identical. Similar performances are obtained in the case of the preceding examples. It would be the same if the conductive core was of the AWG08 type.
  • the cable has its own shield. As already explained, the cable may not have a shielding braid.
  • the magnetic absorption layer is made from one or more ribbons constituted by an amorphous or nano-crystalline ferromagnetic material of which different compositions have been given previously.
  • the ribbon may be manufactured by the Spinning Fast Spinning technique or the Planar Flow Casting (Planar Flow Casting) technique.
  • Ribbons were manufactured from alloys I to XI of Table I. Table II below gives, for each alloy, an embodiment of the ribbon by specifying its dimensions and method of preparation. TABLE II Alloy Ribbon size State Technical Elaboration Thickness ⁇ m Width mm I 4.0 0.3 Amorphous Melt Spinning II 6.0 0.5 Amorphous Melt Spinning III 10.5 1.2 Amorphous Planar flow Casting IV 14.5 2.0 Amorphous Planar flow Casting V 15.0 3.0 Amorphous Planar flow Casting VI 5.0 3.6 Amorphous Planar flow Casting VII 25.5 1.0 Amorphous Planar flow Casting VIII 12.0 3.5 Amorphous Planar flow Casting IX 30.5 0.8 Amorphous Planar flow Casting X 10.0 1.0 Amorphous + nano-cristaliin Planar flow Casting XI 12.5 0.8 Amorphous + nano-crystalline Planar flow Casting
  • the tape can be made using a single tape, the turns overlapping each other, or successively with two ribbons with contiguous turns, spiralages of the two layers being reversed
  • the conductive core is made by concentric stranding or roplay stranding from copper wires coated with Ag, Sn or Ni gauges AwG 8 to 26.
  • the dielectric layer or layers are made of fluorinated thermoplastics by extrusion, polyolefin or PVC by extrusion or polyimide film by taping.
  • the magnetic absorption layer is made, as already indicated, by taping using the ribbons defined in Table II.
  • the magnetic absorption layer is made with at least one ribbon of the ferromagnetic alloy whose width is between 0.3 and 4.0 mm and whose thickness is between 2 and 100 microns.
  • Cable I including a 23 ⁇ m thick ribbon Cable II including 2 strips of thickness 23 ⁇ m superimposed Frequency (MHz) Attenuation (dB / m) Attenuation (dB / m) 10 6.38 11.8 50 15.9 26.6 100 24.8 41.3 150 32.4 53.2 200 39.2 68.1
  • the shield if it exists, is made, by means of a copper wire coated with Ag, Sn or Ni, by braiding or wrapping.
  • the outer sheath can be made of fluorinated thermoplastics, thermoplastic elastomer or PVC by extrusion or polyimide film by taping.
  • Figure 7 shows the attenuation of the cable A expressed in dB / m as a function of the frequency F expressed in MHz.
  • Curve 1 corresponds to the cables of the state of the art and curve II corresponds to the cables of Table II.
  • alloy VI the Curie temperature is equal to 350 ° C. and the crystallization temperature is 510 ° C.
  • these temperatures are respectively 320 ° C. and 500 ° C.
  • alloy XIV they are respectively 300 ° C. and 490 ° C.
  • FIG. 8 shows, for different alloys, the value of the imaginary part of the permeability ( ⁇ ") as a function of the frequency F expressed in MHz.
  • the curves A, B and C respectively correspond to the alloys VI, VII and These curves show that the imaginary part of the permeability, which best represents the magnetic absorption effect, has a very marked maximum around a frequency equal to 10 MHz.

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Insulated Conductors (AREA)
  • Soft Magnetic Materials (AREA)

Claims (12)

  1. Verwendung eines Kabels, das von innen nach außen eine Ader (10), eine erste dielektrische Schicht (12), eine Magnetabsorptionsschicht aus einer ferromagnetischen Metall-Legierung mit amorpher oder nanokristalliner Struktur (14) und eine Isolierhülle (20) zur Ausführung eines Tiefpasskabels umfasst,
    dadurch gekennzeichnet, dass das Tiefpasskabel eine Schnittfrequenz, die einer Dämpfung um 4,3 dB/m entspricht, unter 20 MHz und bis zu einer Temperatur von 260 °C einsetzbar aufweist.
  2. Verwendung eines Kabels nach Anspruch 1,
    dadurch gekennzeichnet, dass es ferner eine Abschirmschicht (18) umfasst, die auf der Absorptionsschicht ausgeführt ist.
  3. Verwendung eines Kabels nach Anspruch 2,
    dadurch gekennzeichnet, dass es ferner eine zweite dielektrische Schicht (16) umfasst, die zwischen der Absorptionsschicht (14) und der Abschirmung (18) eingefügt ist.
  4. Verwendung eines Kabels nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass die ferromagnetische Legierung die folgende Zusammensetzung hat:
    A80±10% B20±10%
    wobei A den prozentualen Gesamtanteil an Atomen der ferromagnetischen Elemente der Legierung darstellt, die aus der Gruppe bestehend aus Co, Fe, Mn und Ni gewählt sind; und
    B den prozentualen Gesamtanteil an Atomen der Halbmetall-Elemente der Legierung darstellt, die aus der Gruppe bestehend aus B, Si und P gewählt sind.
  5. Verwendung eines Kabels nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass die ferromagnetische Legierung die folgenden Zusammensetzung hat:
    A75±10% B20 ± 10 % C5±3%
    wobei A die ferromagnetischen Elemente Co, Fe, Mn und Ni darstellt, die entweder alleine oder zu mehreren kombiniert in die Zusammensetzung eingehen;
    wobei B die Halbmetall-Elemente B, Si und P darstellt, die entweder alleine oder zu mehreren kombiniert in die Zusammensetzung eingehen;
    wobei C den prozentualen Gesamtanteil an Atomen eines Metall-Elements darstellt, das aus der Gruppe bestehend aus Cu und Nb oder einer Mischung von beiden. gewählt ist.
  6. Verwendung eines Kabels nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass die Magnetabsorptionsschicht aus Drähten der ferromagnetischen Legierung mit einem Durchmesser zwischen 9 und 22 Mikrometern gebildet ist.
  7. Verwendung eines Kabels nach Anspruch 6,
    dadurch gekennzeichnet, dass jeder Draht mit einer Glasschicht umhüllt ist.
  8. Verwendung eines Kabels nach einem der Ansprüche 6 oder 7,
    dadurch gekennzeichnet, dass die Absorptionsschicht durch Umwicklung mit einem Bündel gebildet ist, das 30 bis 35 der Drähte mit einem Abstand von 0,25 mm bis 1,1 mm umfasst.
  9. Verwendung eines Kabels nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass die Magnetabsorptionsschicht aus wenigstens einem Band der ferromagnetischen Legierung gebildet ist, dessen Breite zwischen 0,3 und 4,00 mm und dessen Dicke zwischen 2 und 100 Mikrometer liegt.
  10. Verwendung eines Kabels nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, dass die dielektrische(n) Schicht(en) aus FEP oder PTFE ausgeführt sind.
  11. Verwendung eines Kabels nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass die Ader (10) aus einer Vielzahl leitender Elemente gebildet ist, und dass die erste dielektrische Schicht (12) aus einer Vielzahl isolierender Umhüllungen gebildet ist, wobei jede Umhüllung eines der leitenden Elemente bedeckt.
  12. Verwendung eines Kabels nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet, dass seine Einsatztemperatur maximal 260 °C beträgt.
EP00927330A 1999-05-11 2000-05-11 Verwendung eines kabels als tiefpasskabel Expired - Lifetime EP1177562B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR9905981 1999-05-11
FR9905981A FR2793593A1 (fr) 1999-05-11 1999-05-11 Cable blinde passe-bas
FR0001038 2000-01-27
FR0001038A FR2793594B1 (fr) 1999-05-11 2000-01-27 Cable passe-bas
PCT/FR2000/001275 WO2000068959A1 (fr) 1999-05-11 2000-05-11 Cable passe-bas

Publications (2)

Publication Number Publication Date
EP1177562A1 EP1177562A1 (de) 2002-02-06
EP1177562B1 true EP1177562B1 (de) 2007-02-21

Family

ID=26212130

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00927330A Expired - Lifetime EP1177562B1 (de) 1999-05-11 2000-05-11 Verwendung eines kabels als tiefpasskabel

Country Status (4)

Country Link
EP (1) EP1177562B1 (de)
DE (1) DE60033513T2 (de)
FR (1) FR2793594B1 (de)
WO (1) WO2000068959A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003068769A1 (en) 2002-02-12 2003-08-21 Pfizer Inc. Non-peptide compounds affecting the action of gonadotropin-releasing hormone (gnrh)
AU2003233127A1 (en) 2002-06-13 2003-12-31 Pfizer Inc. Non-peptide gnrh agents, pharmaceutical compositions and methods for their use
CN1302486C (zh) * 2003-09-15 2007-02-28 北京大学 一种导电高分子-碳纳米管纳米电缆及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3123040A1 (de) * 1981-06-11 1983-01-05 Vacuumschmelze Gmbh, 6450 Hanau Magnetisch abgeschirmtes kabel mit einer abschirmungaus weichmagnetischem material
GB8601270D0 (en) * 1986-01-20 1986-02-26 Raychem Ltd High frequency attenuation cable
FR2615030B1 (fr) * 1987-05-07 1990-08-24 Lesage Christian Gaine souple multicouches concentriques de blindage pour cable electrique

Also Published As

Publication number Publication date
DE60033513T2 (de) 2007-06-21
WO2000068959A1 (fr) 2000-11-16
DE60033513D1 (de) 2007-04-05
EP1177562A1 (de) 2002-02-06
FR2793594B1 (fr) 2001-12-07
FR2793594A1 (fr) 2000-11-17

Similar Documents

Publication Publication Date Title
EP0964408B1 (de) Informationsübertragungskabel und sein Herstellungsverfahren
EP0485920B1 (de) Elektrisches Kabel mit hoher Übertragungsgeschwindigkeit
FR2461342A1 (fr) Cables a haute immunite, contre pulse electromagnetique (emp)
EP0554160B1 (de) Elektrisches Hochfrequenzkabel
EP2557572B1 (de) Teilentladungsbeständiges elektrisches kabel
EP3735702B1 (de) Kabelumbaustromwandler mit einem flexiblen magnetkern
FR2730341A1 (fr) Cable perfectionne a paires differentielles multiples de conducteurs
FR2908895A1 (fr) Cables lisses et multilignes a rapport resistance/poids eleve
FR2693828A1 (fr) Câble pour signaux comportant un écran en polymère recouvert de métal.
EP2765581B1 (de) Elektrisches Kabel, das resistent gegen Teilentladungen ist
EP0504776B1 (de) Verlustarmes Koaxialkabel
CH695074A5 (fr) Câble de données à hautes performances.
FR2850788A1 (fr) Cable de transmission pour le raccordement a des appareils mobiles
WO2011020967A1 (fr) Cable de communication de donnees
EP1177562B1 (de) Verwendung eines kabels als tiefpasskabel
EP2280402B9 (de) Multimedia Kommunikations - und Übertragungskabel
EP0290343B1 (de) Anordnung bestehend aus einem abschirmantel fur ein kabel und damit verbundene verschraubung
EP0920035A1 (de) Datenübertragungskabel
FR2793593A1 (fr) Cable blinde passe-bas
EP0299125B1 (de) Tiefpass-Propagationsstruktur
FR2748845A1 (fr) Cable electrique de transmission haute frequence
WO2024134122A1 (fr) Câble blindé électrique
EP4203185B1 (de) Verbesserte breitbandige drahtantenne
FR2497597A1 (fr) Cable coaxial avec filtre a bande passant a basse frequence
EP2725585A1 (de) Verdrilltes Zweier- oder Vierer-Datenübertragungskabel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: USE OF A CABLE AS LOW PASS CABLE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070314

REF Corresponds to:

Ref document number: 60033513

Country of ref document: DE

Date of ref document: 20070405

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071122

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190510

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190520

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190516

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60033513

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200510