EP1177562B1 - Verwendung eines kabels als tiefpasskabel - Google Patents
Verwendung eines kabels als tiefpasskabel Download PDFInfo
- Publication number
- EP1177562B1 EP1177562B1 EP00927330A EP00927330A EP1177562B1 EP 1177562 B1 EP1177562 B1 EP 1177562B1 EP 00927330 A EP00927330 A EP 00927330A EP 00927330 A EP00927330 A EP 00927330A EP 1177562 B1 EP1177562 B1 EP 1177562B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cable
- cable according
- alloy
- layer
- ferromagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/02—Cables with twisted pairs or quads
- H01B11/12—Arrangements for exhibiting specific transmission characteristics
- H01B11/14—Continuously inductively loaded cables, e.g. Krarup cables
Definitions
- the present invention relates to a use of a cable for producing a low-pass cable.
- an electric transmission cable is intended to convey signals within an electrical or electronic system or between two such systems in a wide frequency range of these signals.
- a low-pass transmission cable has a low frequency bandwidth, that is to say that it only allows to propagate signals whose frequency is below a certain limit called cable cut-off frequency.
- the cutoff frequency is defined as that for which the attenuation is equal to 4.3 dB per meter.
- Low-pass shielded cables are already known in which, in addition to the usual metal braid shielding, an intermediate magnetic absorption layer is formed which, in these known cables, is made of ferrite.
- Such low-pass cables have a cut-off frequency of the order of 100 MHz in the sense mentioned above. Such a cutoff frequency is considered permissible for a number of applications.
- this cut-off frequency must be adapted to the maximum frequency of the electrical signals that must pass through the cable.
- An object of the present invention is to provide a low-pass cable whose cutoff frequency, i.e. the frequency corresponding to an attenuation of 4.3 dB per meter is substantially less than 100 MHz, typically less than or equal to equal to 20 MHz.
- Another object of the invention is to provide a cable of this type in which the cable transfer impedance Zt does not strongly increase with the frequency of external interfering signals to provide effective protection against electromagnetic interference.
- the cable retain its magnetic absorption properties in a temperature range corresponding to its current use, i.e., typically up to 260 ° C.
- the reduction frequency is effectively lowered at a lower value or at the same time. equal to 20 MHz for attenuation of 4.3dB / m and a decrease in the transfer impedance increase for high frequencies.
- the cable is constituted first of a conductive core 10 which can be constituted of course by several conductive strands for example silver-plated copper.
- This conductive core can be from AWG08 to AWG26.
- On the first dielectric layer 12 is formed according to an essential feature of the invention a magnetic absorption layer 14.
- a second layer 16 of dielectric material is then found, followed by a standard shielding metal braid 18 and finally an insulating outer sheath 20.
- the external diameters of these different layers have been labeled from D1 to D6.
- the cable may not include the second dielectric layer 16 interposed between the magnetic absorption layer 14 and the shielding braid 18.
- the cable may also not have its own shielding layer.
- it is a bundle of these cables that will include an overblanking, that is to say, shielding means common to the entire cable bundle.
- the conductive core 10 could be constituted by a plurality of conductive elements, each conductive element being surrounded by its own insulation of dielectric material. These conductive elements are preferably twisted.
- the first layer of dielectric material 12 is then, in this case, constituted by the different insulations.
- the magnetic absorption layer is formed around the assembly constituted by the various isolated conductive elements.
- the magnetic absorbent layer is made of a ferromagnetic metal alloy of the amorphous or nano-crystalline type.
- This characteristic allows as already explained briefly and as will be demonstrated by reference to the attached curves to obtain a very significant reduction in the cutoff frequency corresponding to the attenuation of 4.3 dB / m, which makes it possible to obtain a transmission of the useful signal under greatly improved conditions since thus obtaining a filtering of the non-useful induced or radiated frequencies, as well as a significant improvement in the transfer impedance.
- the component of type A determines the intrinsic ferromagnetic properties of the materials, while that of the type B makes it possible to obtain during the solidification of the alloy the amorphous state that only component A can not obtain.
- the type C it serves as a buffer between crystallization and amorphous solidification, and allows to create a so-called nano-crystalline state in which the ferromagnetic characteristics are just as interesting as in the amorphous state.
- the absorption layer is preferably obtained by covering micro-wires made with the amorphous or nano-crystalline metal alloy, having a diameter of between 9 microns and 22 microns and preferably covered. individually of glass.
- the layer thus obtained preferably has a thickness of between 50 and 150 microns.
- a first cable was made according to the characteristics defined in the table below.
- a beam of 32 micro-wires made of an alloy having the composition of line XII of Table 1 is used for the production of the magnetic absorption layer.
- This magnetic absorption layer is obtained by wrapping a cord constituted by the beam of 32 micro-son.
- a substantially adjacent micro-son layer is obtained.
- the covering pitch is 1 mm.
- the attenuation measurement of the cable shown in Figure 3 shows that for an attenuation of 4.3 dB / m the cutoff frequency is 20 MHz, which is much lower than the 100 MHz cutoff frequency of the state. of the technique.
- the beam comprises 30 to 35 micro-wires and the guide pitch is between 0.25 mm and 1.1 mm.
- Another cable was made by adopting the same manufacturing techniques as in Example 1 and the same structure for the cable. The difference lies in the fact that the wrapping pitch of the ferromagnetic amorphous metallic material micro-wires is 0.3 mm instead of 1 mm. As shown in Figure 4, the cable has a cutoff frequency which is further lowered for attenuation of 4.3 dB / m since this frequency is of the order of 3 MHz.
- a third cable was made which differs from the preceding examples only in that the diameter D 3 of the absorption layer is 1.10 mm instead of 1 mm, that is to say that the micro-wires have a diameter of the order of 20 microns. The other parameters are unchanged.
- the attenuation measurement of this cable shows that the cutoff frequency at 4.3 dB / m is pushed back below 1 MHz.
- Example 4 Another cable similar to that of Example 4 was made except for the dielectric material used to make the two dielectric layers and the outer sheath.
- the FEP is replaced by a PTFE / polyimide / PTFE composite film or a polyimide / PTFE composite film.
- the results of the attenuation measurement show performance in terms of attenuation and cutoff frequency similar to those of Example 2.
- the difference between the cables 3 and 4 lies in the chemical composition of the micro-wires used, the first corresponding to alloy XII of Table I and the second to alloy XIII of this same table.
- the cable 1 does not include a magnetic absorption layer
- the cable 2 comprises a ferrite magnetic absorption layer according to the state of the art
- the cable 3 comprises an absorption layer according to the invention
- the alloy ferromagnetic amorphous metal is in accordance with the composition given in Example XIII of Table I.
- FIG. 5 shows that a very significant improvement in the transfer impedance is obtained for the cables 3 and 4, that is to say for the cables according to the invention. These measurements were carried out according to the triaxial method.
- FIGS. 6A-6D show the shielding efficiency A expressed in dB / m as a function of the frequency F expressed in MHz for the cables 1 to 4 in a high frequency range of 500 MHz to 2 GHz.
- the comparison of FIGS. 6A and 6B on the one hand and 6C and 6D on the other hand shows that at these high frequencies, the shielding efficiency cables 3 and 4 according to the invention is much higher (10 to 20 dB / m) than that obtained with the cables 1 and 2 according to the state of the art.
- a cable is made according to the same characteristics as those of Example 4 but with a conductive core of the AWG26 type.
- the other construction parameters being identical. Similar performances are obtained in the case of the preceding examples. It would be the same if the conductive core was of the AWG08 type.
- the cable has its own shield. As already explained, the cable may not have a shielding braid.
- the magnetic absorption layer is made from one or more ribbons constituted by an amorphous or nano-crystalline ferromagnetic material of which different compositions have been given previously.
- the ribbon may be manufactured by the Spinning Fast Spinning technique or the Planar Flow Casting (Planar Flow Casting) technique.
- Ribbons were manufactured from alloys I to XI of Table I. Table II below gives, for each alloy, an embodiment of the ribbon by specifying its dimensions and method of preparation. TABLE II Alloy Ribbon size State Technical Elaboration Thickness ⁇ m Width mm I 4.0 0.3 Amorphous Melt Spinning II 6.0 0.5 Amorphous Melt Spinning III 10.5 1.2 Amorphous Planar flow Casting IV 14.5 2.0 Amorphous Planar flow Casting V 15.0 3.0 Amorphous Planar flow Casting VI 5.0 3.6 Amorphous Planar flow Casting VII 25.5 1.0 Amorphous Planar flow Casting VIII 12.0 3.5 Amorphous Planar flow Casting IX 30.5 0.8 Amorphous Planar flow Casting X 10.0 1.0 Amorphous + nano-cristaliin Planar flow Casting XI 12.5 0.8 Amorphous + nano-crystalline Planar flow Casting
- the tape can be made using a single tape, the turns overlapping each other, or successively with two ribbons with contiguous turns, spiralages of the two layers being reversed
- the conductive core is made by concentric stranding or roplay stranding from copper wires coated with Ag, Sn or Ni gauges AwG 8 to 26.
- the dielectric layer or layers are made of fluorinated thermoplastics by extrusion, polyolefin or PVC by extrusion or polyimide film by taping.
- the magnetic absorption layer is made, as already indicated, by taping using the ribbons defined in Table II.
- the magnetic absorption layer is made with at least one ribbon of the ferromagnetic alloy whose width is between 0.3 and 4.0 mm and whose thickness is between 2 and 100 microns.
- Cable I including a 23 ⁇ m thick ribbon Cable II including 2 strips of thickness 23 ⁇ m superimposed Frequency (MHz) Attenuation (dB / m) Attenuation (dB / m) 10 6.38 11.8 50 15.9 26.6 100 24.8 41.3 150 32.4 53.2 200 39.2 68.1
- the shield if it exists, is made, by means of a copper wire coated with Ag, Sn or Ni, by braiding or wrapping.
- the outer sheath can be made of fluorinated thermoplastics, thermoplastic elastomer or PVC by extrusion or polyimide film by taping.
- Figure 7 shows the attenuation of the cable A expressed in dB / m as a function of the frequency F expressed in MHz.
- Curve 1 corresponds to the cables of the state of the art and curve II corresponds to the cables of Table II.
- alloy VI the Curie temperature is equal to 350 ° C. and the crystallization temperature is 510 ° C.
- these temperatures are respectively 320 ° C. and 500 ° C.
- alloy XIV they are respectively 300 ° C. and 490 ° C.
- FIG. 8 shows, for different alloys, the value of the imaginary part of the permeability ( ⁇ ") as a function of the frequency F expressed in MHz.
- the curves A, B and C respectively correspond to the alloys VI, VII and These curves show that the imaginary part of the permeability, which best represents the magnetic absorption effect, has a very marked maximum around a frequency equal to 10 MHz.
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Insulated Conductors (AREA)
- Soft Magnetic Materials (AREA)
Claims (12)
- Verwendung eines Kabels, das von innen nach außen eine Ader (10), eine erste dielektrische Schicht (12), eine Magnetabsorptionsschicht aus einer ferromagnetischen Metall-Legierung mit amorpher oder nanokristalliner Struktur (14) und eine Isolierhülle (20) zur Ausführung eines Tiefpasskabels umfasst,
dadurch gekennzeichnet, dass das Tiefpasskabel eine Schnittfrequenz, die einer Dämpfung um 4,3 dB/m entspricht, unter 20 MHz und bis zu einer Temperatur von 260 °C einsetzbar aufweist. - Verwendung eines Kabels nach Anspruch 1,
dadurch gekennzeichnet, dass es ferner eine Abschirmschicht (18) umfasst, die auf der Absorptionsschicht ausgeführt ist. - Verwendung eines Kabels nach Anspruch 2,
dadurch gekennzeichnet, dass es ferner eine zweite dielektrische Schicht (16) umfasst, die zwischen der Absorptionsschicht (14) und der Abschirmung (18) eingefügt ist. - Verwendung eines Kabels nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass die ferromagnetische Legierung die folgende Zusammensetzung hat:A80±10% B20±10%wobei A den prozentualen Gesamtanteil an Atomen der ferromagnetischen Elemente der Legierung darstellt, die aus der Gruppe bestehend aus Co, Fe, Mn und Ni gewählt sind; und
B den prozentualen Gesamtanteil an Atomen der Halbmetall-Elemente der Legierung darstellt, die aus der Gruppe bestehend aus B, Si und P gewählt sind. - Verwendung eines Kabels nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass die ferromagnetische Legierung die folgenden Zusammensetzung hat:A75±10% B20 ± 10 % C5±3%wobei A die ferromagnetischen Elemente Co, Fe, Mn und Ni darstellt, die entweder alleine oder zu mehreren kombiniert in die Zusammensetzung eingehen;
wobei B die Halbmetall-Elemente B, Si und P darstellt, die entweder alleine oder zu mehreren kombiniert in die Zusammensetzung eingehen;
wobei C den prozentualen Gesamtanteil an Atomen eines Metall-Elements darstellt, das aus der Gruppe bestehend aus Cu und Nb oder einer Mischung von beiden. gewählt ist. - Verwendung eines Kabels nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass die Magnetabsorptionsschicht aus Drähten der ferromagnetischen Legierung mit einem Durchmesser zwischen 9 und 22 Mikrometern gebildet ist. - Verwendung eines Kabels nach Anspruch 6,
dadurch gekennzeichnet, dass jeder Draht mit einer Glasschicht umhüllt ist. - Verwendung eines Kabels nach einem der Ansprüche 6 oder 7,
dadurch gekennzeichnet, dass die Absorptionsschicht durch Umwicklung mit einem Bündel gebildet ist, das 30 bis 35 der Drähte mit einem Abstand von 0,25 mm bis 1,1 mm umfasst. - Verwendung eines Kabels nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass die Magnetabsorptionsschicht aus wenigstens einem Band der ferromagnetischen Legierung gebildet ist, dessen Breite zwischen 0,3 und 4,00 mm und dessen Dicke zwischen 2 und 100 Mikrometer liegt. - Verwendung eines Kabels nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet, dass die dielektrische(n) Schicht(en) aus FEP oder PTFE ausgeführt sind. - Verwendung eines Kabels nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet, dass die Ader (10) aus einer Vielzahl leitender Elemente gebildet ist, und dass die erste dielektrische Schicht (12) aus einer Vielzahl isolierender Umhüllungen gebildet ist, wobei jede Umhüllung eines der leitenden Elemente bedeckt. - Verwendung eines Kabels nach einem der Ansprüche 1 bis 11,
dadurch gekennzeichnet, dass seine Einsatztemperatur maximal 260 °C beträgt.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9905981 | 1999-05-11 | ||
FR9905981A FR2793593A1 (fr) | 1999-05-11 | 1999-05-11 | Cable blinde passe-bas |
FR0001038 | 2000-01-27 | ||
FR0001038A FR2793594B1 (fr) | 1999-05-11 | 2000-01-27 | Cable passe-bas |
PCT/FR2000/001275 WO2000068959A1 (fr) | 1999-05-11 | 2000-05-11 | Cable passe-bas |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1177562A1 EP1177562A1 (de) | 2002-02-06 |
EP1177562B1 true EP1177562B1 (de) | 2007-02-21 |
Family
ID=26212130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00927330A Expired - Lifetime EP1177562B1 (de) | 1999-05-11 | 2000-05-11 | Verwendung eines kabels als tiefpasskabel |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1177562B1 (de) |
DE (1) | DE60033513T2 (de) |
FR (1) | FR2793594B1 (de) |
WO (1) | WO2000068959A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003068769A1 (en) | 2002-02-12 | 2003-08-21 | Pfizer Inc. | Non-peptide compounds affecting the action of gonadotropin-releasing hormone (gnrh) |
AU2003233127A1 (en) | 2002-06-13 | 2003-12-31 | Pfizer Inc. | Non-peptide gnrh agents, pharmaceutical compositions and methods for their use |
CN1302486C (zh) * | 2003-09-15 | 2007-02-28 | 北京大学 | 一种导电高分子-碳纳米管纳米电缆及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3123040A1 (de) * | 1981-06-11 | 1983-01-05 | Vacuumschmelze Gmbh, 6450 Hanau | Magnetisch abgeschirmtes kabel mit einer abschirmungaus weichmagnetischem material |
GB8601270D0 (en) * | 1986-01-20 | 1986-02-26 | Raychem Ltd | High frequency attenuation cable |
FR2615030B1 (fr) * | 1987-05-07 | 1990-08-24 | Lesage Christian | Gaine souple multicouches concentriques de blindage pour cable electrique |
-
2000
- 2000-01-27 FR FR0001038A patent/FR2793594B1/fr not_active Expired - Lifetime
- 2000-05-11 DE DE60033513T patent/DE60033513T2/de not_active Expired - Lifetime
- 2000-05-11 WO PCT/FR2000/001275 patent/WO2000068959A1/fr active IP Right Grant
- 2000-05-11 EP EP00927330A patent/EP1177562B1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE60033513T2 (de) | 2007-06-21 |
WO2000068959A1 (fr) | 2000-11-16 |
DE60033513D1 (de) | 2007-04-05 |
EP1177562A1 (de) | 2002-02-06 |
FR2793594B1 (fr) | 2001-12-07 |
FR2793594A1 (fr) | 2000-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0964408B1 (de) | Informationsübertragungskabel und sein Herstellungsverfahren | |
EP0485920B1 (de) | Elektrisches Kabel mit hoher Übertragungsgeschwindigkeit | |
FR2461342A1 (fr) | Cables a haute immunite, contre pulse electromagnetique (emp) | |
EP0554160B1 (de) | Elektrisches Hochfrequenzkabel | |
EP2557572B1 (de) | Teilentladungsbeständiges elektrisches kabel | |
EP3735702B1 (de) | Kabelumbaustromwandler mit einem flexiblen magnetkern | |
FR2730341A1 (fr) | Cable perfectionne a paires differentielles multiples de conducteurs | |
FR2908895A1 (fr) | Cables lisses et multilignes a rapport resistance/poids eleve | |
FR2693828A1 (fr) | Câble pour signaux comportant un écran en polymère recouvert de métal. | |
EP2765581B1 (de) | Elektrisches Kabel, das resistent gegen Teilentladungen ist | |
EP0504776B1 (de) | Verlustarmes Koaxialkabel | |
CH695074A5 (fr) | Câble de données à hautes performances. | |
FR2850788A1 (fr) | Cable de transmission pour le raccordement a des appareils mobiles | |
WO2011020967A1 (fr) | Cable de communication de donnees | |
EP1177562B1 (de) | Verwendung eines kabels als tiefpasskabel | |
EP2280402B9 (de) | Multimedia Kommunikations - und Übertragungskabel | |
EP0290343B1 (de) | Anordnung bestehend aus einem abschirmantel fur ein kabel und damit verbundene verschraubung | |
EP0920035A1 (de) | Datenübertragungskabel | |
FR2793593A1 (fr) | Cable blinde passe-bas | |
EP0299125B1 (de) | Tiefpass-Propagationsstruktur | |
FR2748845A1 (fr) | Cable electrique de transmission haute frequence | |
WO2024134122A1 (fr) | Câble blindé électrique | |
EP4203185B1 (de) | Verbesserte breitbandige drahtantenne | |
FR2497597A1 (fr) | Cable coaxial avec filtre a bande passant a basse frequence | |
EP2725585A1 (de) | Verdrilltes Zweier- oder Vierer-Datenübertragungskabel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20011029 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: USE OF A CABLE AS LOW PASS CABLE |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070314 |
|
REF | Corresponds to: |
Ref document number: 60033513 Country of ref document: DE Date of ref document: 20070405 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20071122 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190510 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190520 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190516 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60033513 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20200510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20200510 |