EP1174841B1 - Circuit d'économie d'énergie pour un dispositif de mesure - Google Patents

Circuit d'économie d'énergie pour un dispositif de mesure Download PDF

Info

Publication number
EP1174841B1
EP1174841B1 EP20010116633 EP01116633A EP1174841B1 EP 1174841 B1 EP1174841 B1 EP 1174841B1 EP 20010116633 EP20010116633 EP 20010116633 EP 01116633 A EP01116633 A EP 01116633A EP 1174841 B1 EP1174841 B1 EP 1174841B1
Authority
EP
European Patent Office
Prior art keywords
power
current
measurement
excess
specified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010116633
Other languages
German (de)
English (en)
Other versions
EP1174841A1 (fr
Inventor
Winfried Rauer
Karl Griessbaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vega Grieshaber KG
Original Assignee
Vega Grieshaber KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7649188&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1174841(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Vega Grieshaber KG filed Critical Vega Grieshaber KG
Publication of EP1174841A1 publication Critical patent/EP1174841A1/fr
Application granted granted Critical
Publication of EP1174841B1 publication Critical patent/EP1174841B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/02Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage

Definitions

  • the invention relates to a measuring device for measuring an industrial process variable for a given maximum power consumption by the measuring device. More particularly, the invention relates to a measuring device for connection to a current loop, in particular a 4-20 mA current loop, or to a digital communication.
  • Means for measuring a process variable are used to capture a process variable and pass the measured values to subsequent processing.
  • the transmission of the measured values can be done via a current loop or via a digital communication. In both cases, it is advantageous if the measuring device takes their required power from the two lines, via which the measured value is passed.
  • a measuring device powered by a current loop has limited power available. This power depends on the supply voltage and the current (according to the measured value to be output). Conventional measuring devices are dimensioned so that they get along with the minimum available power, d. H. only need the power available at minimum current and voltage. If more power is available, this additional power is dissipated in one power stage and not used in the measuring system to improve the measurement.
  • Measuring devices which are controlled via digital communication often have a constant current consumption, since this is necessary for the data transmission.
  • the available power depends on the applied terminal voltage.
  • Conventional measuring devices are here designed so that the measuring circuit has a constant power consumption, which corresponds to the performance with minimum supply voltage. Additionally offered power with larger supply voltage is also converted into power loss here.
  • the object of the invention is to provide a measuring device of the type mentioned, which is able to adapt its power requirement to the available power without the risk of false readings of the measured value.
  • the aim is to use as much of the total absorbed power as possible to fulfill the measuring task, so that, on the one hand, the speed and quality of the measurement are optimized. Theoretically, therefore, the total power corresponding to the respective measured value to be displayed would be consumed by the correspondingly frequent function of the transmitter. In practice, for safety's sake, there will still be a certain difference between the available power and the performance of the measurement task of the power consumed, so that there will be no power shortage and thus no malfunction of the sensor can arise. The excess of power is converted in the measuring device in power loss (heat). The sum of both absorbed powers must be exactly the same, so that the total current absorbed by the sensor corresponds to a defined value. This Value is specified for the sensor within a current loop (4 - 20 mA) by the measured value currently being output.
  • the value of the current consumed constantly corresponds to the general specifications in connection with the communication protocol used.
  • the determination of the current excess can be done either by direct measurement of excess current or excess power. However, it is also possible indirectly to determine the current surplus by measuring current or absorbed power for performing the measurement task and measuring available power or knowledge of the available current via subtraction. If one chooses the path of the indirect excess determination, one can achieve a substantial simplification with little disadvantage by pointing to individual measurements of the current or performance determination is omitted and these are replaced by appropriate estimates and compliance with larger reserves.
  • the invention is suitable for any measuring devices for process variables, provided that these measuring devices externally a power consumption, usually a varying maximum power consumption is specified.
  • a power consumption usually a varying maximum power consumption is specified.
  • This is, for example, the specification of the power consumption in the case of supply by means of a current loop, since in each case (as long as the measured value to be displayed) only the maximum amount of power that corresponds to the current that can flow to indicate the correct measured value in the supply lines may be used ,
  • the invention is particularly suitable for sensors such as level sensors.
  • sensors such as level sensors.
  • the invention will be described below with reference to two embodiments, which are on the one hand to a radar level sensor, on the other hand to an ultrasonic level sensor.
  • a radar level sensor on the other hand to an ultrasonic level sensor.
  • ultrasonic level sensor Today, such sensors are regularly operated via current loops or digital communications and are therefore subject to the difficulties to be overcome according to the invention.
  • a preferred implementation of the invention employs a current stage which is generally turned on in parallel with the other components of the measuring device.
  • the power stage is used to consume the power (“power dissipation") left over by deducting from the total power (indicated by the measured value display function) the power requirement of the measuring equipment during measuring operation.
  • This not consumed Power surplus is, as already indicated, a measure of the reserve still available in the system for an increase in the measurement performance without being comparable to that in the prior art ( EP 0 687 375 ) deficit comes.
  • Such a current stage offers various possibilities for measuring the power surplus, as will be described below on the basis of exemplary embodiments.
  • the instantaneous power surplus can be measured directly. He can alternatively be estimated in advance.
  • known data of the measuring device for example the relatively large power consumption of individual components, can be used.
  • a first exemplary embodiment of a measuring arrangement according to the invention is a radar level sensor.
  • the sensor measures the level in a container.
  • the measured value is either a current loop with z. B. 4 - 20 mA or via a digital communication, eg. B. a fieldbus passed.
  • FIG. 1 shows a part of such a radar sensor 101. Shown is the generic part, which is independent of how the measured value is passed.
  • the sensor is controlled by a microcontroller 106 whose program is located in a program memory 107. It uses an EEPROM 109 and a RAM 108 for its data.
  • the microcontroller controls the RF front end 103, which generates radar signals, sends them to the antenna 114, and processes the received signals. These signals are processed by the receiver 104 and forwarded digitized by means of an A / D converter 105 to the microcontroller.
  • the microcontroller determines a measured value from the digital signals. He gives this after a possible conversion via a control line 16 to the current level cf. below, which adjusts a current depending on it, or to the digital interface, which transmits the measured value via a digital communication.
  • the control lines 16 and 17 are used as a connection to the digital interface.
  • the microcontroller has the ability to to put the RF front end, the receiver or other circuit parts via stand-by signals in a state of rest with reduced power consumption, or turn them off completely, as described below.
  • To measure the current power consumption of the sensor optionally serve measuring lines 18-20 and an A / D converter 110 which is connected to the microcontroller 106.
  • the microcontroller has a mode with reduced power consumption. Capacitors 111, 112, and 113 reduce the current fluctuations that occur when the components are turned on and off.
  • FIG. 2 shows as a second exemplary embodiment, a similarly constructed ultrasonic sensor.
  • a power supply 202 which is connected to supply lines 14 and 15 with a flow stage.
  • the sensor is controlled by a microcontroller 206 whose program is located in a program memory 207. It uses an EEPROM 209 and a RAM 208 for its data.
  • the microcontroller controls the ultrasonic transmitter 203, which supplies drive signals for the sound transducer 214.
  • the transducer 214 thereby generates sound waves that are emitted and reflected by a reflective medium.
  • the received signals convert the sound transducer into electrical signals which are supplied to the receiver 204.
  • This amplifies and filters the signal before it is detected by the A / D converter 205 from the microcontroller 206.
  • the microcontroller 206 determines therefrom a measured value, which it forwards after a possible conversion via the control line 16 to the current stage, which adjusts a current depending on it, or to the digital interface, which forwards it via a digital communication.
  • FIG. 3 A first preferred realization of the solution according to the invention for the embodiments according to FIGS. 1 and 2 is in FIG. 3 shown. It is used to measure the power surplus that is available for the optimization of the measuring device operation in each case by means of a power stage 302.
  • the current stage 302 is connected at 11 and 12 with a current loop 4 - 20 mA.
  • the current flowing into the terminals of the measuring device is divided into a portion flowing into the supply line 14 and a portion flowing into the current stage 302.
  • the current through the supply line 14 is used by the measuring device for working, the current through the current stage is not used for the supply of the measuring device, it is a measure of the current power surplus.
  • the microcontroller measures this excess, in FIG. 3 represented as a voltage measurement via a resistor R302, and adjusts the current consumption of the sensor so that there is always a sufficient, albeit small possible surplus. Decreases the excess, parts of the measuring device z. B. the transmission and reception area, or even the entire signal generation and processing area in a power-saving idle state. It is possible, with a corresponding reduction of the excess, to realize a temporary suspension of the operation, as in the prior art EP 0 687 375 described.
  • the power stage has the ability to compensate for short-term fluctuations in the current account without a deficit.
  • Variations can z. B. be a momentarily increased power consumption or a fluctuation of the supply voltage.
  • a more accurate measurement of the power surplus results when additionally measuring the voltage at the supply line + 14 with the aid of the measuring line 19. By multiplying the current and the voltage, the surplus power is obtained directly.
  • FIG. 4 shows alternative ways to build the power stage 402. It is here in series with the supply lines 14, 15. It is a Z-diode 403 alternatively an electronic circuit, which has a variable current consumption depending on the voltage downstream.
  • the electronic circuit is usually preferable.
  • the total current of the complete measuring device is also sensed via a resistor R401 and regulated accordingly.
  • the current splits after the current step into a part that is used to supply the measuring device supply line + 14 and an excess part that is absorbed by the Zener diode.
  • the measurement of the excess is via the voltage drop across a resistor R402, since the current through R402 is a measure of the current power surplus.
  • the determination of the power surplus becomes more accurate if one additionally measures the voltage on the supply line + 14 with the measuring line 18.
  • FIG. 13 is one opposite FIG. 4 improved circuit shown.
  • a current stage 1302 is connected in series with the supply lines. It is followed by a circuit 1303, which absorbs excess power. To do this, it senses the voltage on the supply line + 14 and, with the help of a line 1304, the voltage before the current stage.
  • the circuit 1303 receives exactly the same amount of current that the voltage drop across the current stage 1302 as small as possible to reduce power loss, but remains large enough so that the current stage can keep the current constant, even if fluctuations in the supply voltages or power consumption of Sensors occur. A measure of the excess power therefore results from the current through the circuit 1303, the z. B. via the voltage drop across R1302 using the measuring line 20 is measured.
  • the determination of the power surplus becomes more accurate if one additionally measures the voltage on the supply line + 14 with the measuring line 18.
  • FIG. 5 is a current level 502 comparable to that in FIG. 3 shown.
  • the instantaneous power surplus is not directly measured here.
  • the power requirement of the measuring device is determined. From the difference between the known current flowing in the current loop and the current demand of the measuring device through R502, a measure of the excess can be derived. Again, the excess power can be determined more accurately by an additional measurement of the voltage available on the supply line + 14 voltage by means of measuring line 19.
  • FIG. 6 represents a current stage 602, similar FIG. 4 , In contrast to the measuring device according to FIG. 4 However, the surplus is not directly measured here, but determines the input power at the terminals of the measuring device and the power consumption, which requires the measuring device for supply.
  • the input power results from the known current flowing in the current loop and the input voltage measured via measuring line 19.
  • the power consumption that the measuring device requires for the supply is determined from the current through R602 and the voltage of the supply + 14 measured via measuring line 18. The difference between the two services is a measure of the current surplus of power.
  • the power consumption of the measuring device 101, 102 is essentially determined by one or more large consumers. If one receives information about the power consumption of these components, one can make a statement about the power consumption of the measuring device by z. B. assumes a worst-case value for the unknown power consumption of the other components. In addition, the available power is determined, such. Tie FIGS. 3 to 6 and from this determines the surplus power. On the basis of the power surplus, the microcontroller determines whether parts of the measuring device have to be put in said quiescent state in order to control the power consumption of the measuring device.
  • FIG. 7 shows as a further preferred embodiment of the invention, a radar sensor, which receives a statement about the power consumption of the receiver 704 using a measuring line 715.
  • the senor supplies this by means of a current loop or a digital communication is irrelevant.
  • the same procedure can be carried out. It is important only to identify one or more main consumers, whose current power requirement is determined.
  • the available power For a rough estimate of how much surplus is currently available, it may be sufficient to determine only the available power. This can be z. B. from input current and input voltage determine.
  • the input current is known, since it is specified by the microcontroller via the control line 16 of the current stage, the input voltage is, as in the FIGS. 8 and 9 shown, measured by means of a measuring line 18.
  • the quiescent states of the individual components can now be used to adapt the absorbed power of the sensor to the available power so that a certain power surplus always remains.
  • the current which the measuring device may take from the digital bus must be constant, it is usually fixed. Again, there is the need to adjust the power consumption of the measuring device to the range of services. The way in which this is to be realized, corresponds to the previous versions. It is only to be noted that the current through the current stage does not depend on the measured value, but is usually fixed.
  • FIG. 12 Exemplary is in FIG. 12 a part of such a measuring device shown.
  • the current stage 1202 keeps the current constant in times when no communication takes place.
  • the digital interface 1203 receives data via the control line 16 from the microcontroller, which transmits it in a modulated form to the current stage, which changes the current accordingly.
  • the type of modulation depends on the specifications of the digital communication used.
  • Data is received by the signals on the supply line + 14 or at the power stage 1202 are detected by the digital interface 1203 and forwarded demodulated via the control line 17 to the microcontroller.
  • the measurement of the excess becomes, as in FIG. 3 already explained, by measuring the voltage drop across R1202 with the measuring line 18 or additionally the voltage on the supply line + 14 with the measuring line 19.
  • the other methods described so far are applicable to measuring devices with digital communication.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measurement Of Current Or Voltage (AREA)

Claims (17)

  1. Dispositif de mesure d'une variable de processus pour une puissance absorbée prédéfinie, maximale, par le dispositif de mesure, comprenant
    un dispositif de régulation (302, 402, 502, 602, 802, 902, 1002, 1102, 1202, 1302 ; 403, 603, 903, 1103, 1203, 1303 ; 106, 206, 706) pour réguler l'opération de mesure du dispositif de mesure en adaptation à la puissance absorbée prédéfinie, et
    le dispositif de régulation (302, 402, 502, 602, 802, 902, 1002, 1102, 1202, 1302 ; 403, 603, 903, 1103, 1203, 1303 ; 106, 206, 706) réglant la puissance absorbée pour l'opération de mesure du dispositif de mesure (101, 201, 301, 401, 501, 601, 701, 801, 901, 1001, 1101, 1201, 1301) de telle sorte que
    le dispositif de régulation (302, 402, 502, 602, 802, 902, 1002, 1102, 1202, 1302 ; 403, 603, 903, 1103, 1203, 1303 ; 106, 206, 706) approche cette puissance absorbée de la puissance absorbée prédéfinie, sans dépasser par le haut la puissance absorbée prédéfinie,
    la puissance absorbée prédéfinie étant déterminée par un courant prédéfini, et
    le dispositif de régulation (302, 402, 502, 602, 802, 902, 1002, 1102, 1202, 1302 ; 403, 603, 903, 1103, 1203, 1303 ; 106, 206, 706) réglant la puissance requise pour l'opération de mesure du dispositif de mesure en fonction du courant prédéfini, et
    le dispositif de régulation mesurant ou évaluant à l'avance un excédent de puissance, dont la puissance absorbée prédéfinie du dispositif de mesure dépasse par le haut la puissance absorbée pour l'opération de mesure et, après détermination de l'excédent de puissance à un instant donné, approche par le type et la fréquence de la mise en oeuvre des cycles de mesure la puissance absorbée du dispositif de mesure de la puissance absorbée prédéfinie, de sorte que l'excédent de puissance est minimisé, et
    le dispositif de régulation, en présence d'une réduction de l'excédent de puissance, abaissant la fréquence de la mise en oeuvre des cycles de mesure et, en présence d'une hausse de l'excédent de puissance, élevant la fréquence de la mise en oeuvre des cycles de mesure.
  2. Dispositif de mesure selon la revendication 1, dans lequel la puissance absorbée prédéfinie est en outre déterminée par une tension d'alimentation prédéfinie.
  3. Dispositif de mesure selon la revendication 2, dans lequel le dispositif de régulation (302, 402, 502, 602, 802, 902, 1002, 1102, 1202, 1302 ; 403, 603, 903, 1103, 1203, 1303 ; 106, 206, 706) règle la puissance requise pour l'opération de mesure du dispositif de mesure en fonction du courant prédéfini et de la tension d'alimentation.
  4. Dispositif de mesure selon la revendication 1, dans lequel le dispositif de régulation (302, 402, 502, 602, 802, 902, 1002, 1102, 1202, 1302 ; 403, 603, 903, 1103, 1203, 1303 ; 106, 206, 706) mesure ou évalue à l'avance la puissance requise pour l'opération de mesure du dispositif de mesure complet ou d'au moins un consommateur principal (704) du dispositif de mesure (701) et règle l'opération de mesure en conformité avec le résultat.
  5. Dispositif de mesure selon l'une des revendications 1 - 4, dans lequel le dispositif de mesure est réalisé pour la connexion à une boucle de courant (11, 12), telle que par exemple une boucle de courant 4 - 20 mA.
  6. Dispositif de mesure selon l'une des revendications 1 - 5, dans lequel le dispositif de mesure est réalisé pour la connexion à une communication numérique.
  7. Dispositif de mesure selon l'une des revendications 1 - 6 pour la connexion à une boucle de courant (11, 12), comprenant un microprocesseur (106, 206, 706), une mémoire de programme (107, 207, 707), qui mémorise un programme pour l'exécution par le microprocesseur (106, 206 , 706), un ou plusieurs composants EEPROM et/ou RAM (108, 208, 708 ; 109, 209, 709), des éléments de circuit (103, 104 ; 203, 204 ; 703, 704), qui présentent un mode opérationnel et un état de repos à faible consommation de courant, et un niveau de courant (302, 402, 502, 602, 802, 902, 1002, 1102, 1302) contrôlé par le microprocesseur (106, 206, 706), qui règle la valeur d'un courant passant dans la boucle de courant de telle sorte qu'il la met en corrélation, de manière prédéfinie, avec la valeur de mesure des variables de processus, en convertissant en dissipation de puissance une puissance excédentaire, dépassant la valeur de mesure dans le niveau de courant, l'exécution du programme de mesure par le microprocesseur (106, 206, 706) étant interrompue en fonction du courant réglé par la boucle de courant ou en fonction du courant réglé par la boucle de courant et de la tension d'alimentation.
  8. Dispositif de mesure selon la revendication 7, dans lequel le nombre des cycles de mesure par intervalle de temps est réglé par le microprocesseur (106, 206, 706) en fonction du courant réglé de la boucle de courant ou en fonction du courant réglé de la boucle de courant et de la tension d'alimentation appliquée aux bornes du dispositif de mesure.
  9. Dispositif de mesure selon l'une des revendications 1 - 6 pour la connexion à une boucle de courant (11, 12), comprenant un microprocesseur (106, 206, 706), une mémoire de programme (107, 207, 707), qui mémorise un programme pour l'exécution par le microprocesseur, un ou plusieurs composants EEPROM et/ou RAM (108, 208, 708 ; 109, 209, 709), des éléments de circuit (103, 104 ; 203, 204 ; 703, 704), qui présentent un mode opérationnel et un état de repos à faible consommation de courant, et un niveau de courant (302, 402, 502, 1302) contrôlé par le microprocesseur, qui règle la valeur d'un courant passant dans la boucle de courant de telle sorte qu'il la met en corrélation, de manière prédéfinie, avec la valeur de mesure des variables de processus, en convertissant en dissipation de puissance une puissance excédentaire, dépassant la valeur de mesure dans le niveau de courant, la puissance excédentaire, convertie dans le niveau de courant (302, 402, 502, 1302) en dissipation de puissance étant mesurée et, si cette puissance excédentaire se situe au-dessus d'une valeur prédéfinie déterminée, le nombre des cycles de mesure par intervalle de temps est élevé par le microprocesseur et, si la puissance excédentaire se situe au-dessous d'une valeur prédéfinie déterminée, le nombre des cycles de mesure par intervalle de temps est abaissé par le microprocesseur.
  10. Dispositif de mesure selon l'une des revendications 1 - 6, réalisé pour la connexion à une communication numérique (8, 9), comprenant : un microprocesseur (106, 206, 706), une mémoire de programme (107, 207, 707), qui mémorise un programme pour l'exécution par le microprocesseur, un ou plusieurs composants EEPROM et/ou RAM (108, 208, 708 ; 109, 209, 709), des éléments de circuit (103, 104 ; 203, 204 ; 703, 704), qui présentent un mode opérationnel et un état de repos à faible consommation de courant, et un niveau de courant (1202) contrôlé par le microprocesseur, l'exécution du programme de mesure par le microprocesseur étant interrompue en fonction de la tension d'alimentation.
  11. Dispositif de mesure selon la revendication 10, dans lequel le nombre des cycles de mesure par intervalle de temps est réglé par le microprocesseur en fonction de la tension d'alimentation.
  12. Dispositif de mesure selon l'une des revendications 1 - 6, réalisé pour la connexion à une communication numérique (8, 9), comprenant : un microprocesseur (106, 206, 706), une mémoire de programme (107, 207, 707), qui mémorise un programme pour l'exécution par le microprocesseur, un ou plusieurs composants EEPROM et/ou RAM (108, 208, 708 ; 109, 209, 709), des éléments de circuit (103, 104 ; 203, 204 ; 703, 704), qui présentent un mode opérationnel et un état de repos à faible consommation de courant, et un niveau de courant (1202) contrôlé par le microprocesseur (106, 206, 706), qui convertit une puissance excédentaire dans le niveau de courant en dissipation de puissance, la puissance excédentaire, convertie dans le niveau de courant (1202) en dissipation de puissance, étant mesurée et, si cette puissance excédentaire se situe au-dessus d'une valeur prédéfinie déterminée, le nombre des cycles de mesure par intervalle de temps est élevé par le microprocesseur (106, 206, 706) et, si la puissance excédentaire se situe au-dessous d'une valeur prédéfinie déterminée, le nombre des cycles de mesure par intervalle de temps est abaissé par le microprocesseur (106, 206, 706).
  13. Procédé de réglage d'un dispositif de mesure d'une variable de processus pour une puissance absorbée maximale, prédéfinie, par le dispositif de mesure, comprenant la détermination de la puissance absorbée prédéfinie par un courant prédéfini, la mesure ou l'évaluation à l'avance d'un excédent de puissance à un instant donné, qui devrait être converti dans le dispositif de mesure en dissipation de puissance, le réglage de la puissance absorbée pour l'opération de mesure du dispositif de mesure en fonction du courant prédéfini par réglage du type et de la fréquence de la mise en oeuvre de cycles de mesure, de sorte que la puissance absorbée du dispositif de mesure est approchée de la puissance absorbée prédéfinie, sans dépasser cette dernière par le haut, et que l'excédent de puissance est minimisé, et
    la fréquence de la mise en oeuvre des cycles de mesure étant abaissée en présence d'une réduction de l'excédent de puissance et la fréquence de la mise en oeuvre des cycles de mesure étant élevée en présence d'une hausse de l'excédent de puissance.
  14. Procédé selon la revendication 13, dans lequel l'excédent de puissance à un instant donné est déterminé par mesure directe du courant excédentaire.
  15. Procédé selon la revendication 13, dans lequel l'excédent de puissance à un instant donné est déterminé par mesure directe de la puissance excédentaire.
  16. Procédé selon la revendication 13, dans lequel l'excédent de puissance à un instant donné est déterminé indirectement par mesure du courant ou de la puissance absorbée pour la mise en oeuvre de l'objectif de mesure et par mesure de la puissance disponible.
  17. Procédé selon la revendication 16, dans lequel,
    pour la détermination de la puissance absorbée pour la mise en oeuvre de l'objectif de mesure, seule la puissance absorbée des éléments de circuit, qui ont le plus souvent de l'importance comme connu en soi, est prise en compte.
EP20010116633 2000-07-17 2001-07-12 Circuit d'économie d'énergie pour un dispositif de mesure Expired - Lifetime EP1174841B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000134685 DE10034685B4 (de) 2000-07-17 2000-07-17 Energiesparschaltung
DE10034685 2004-07-17

Publications (2)

Publication Number Publication Date
EP1174841A1 EP1174841A1 (fr) 2002-01-23
EP1174841B1 true EP1174841B1 (fr) 2015-04-01

Family

ID=7649188

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010116633 Expired - Lifetime EP1174841B1 (fr) 2000-07-17 2001-07-12 Circuit d'économie d'énergie pour un dispositif de mesure

Country Status (2)

Country Link
EP (1) EP1174841B1 (fr)
DE (1) DE10034685B4 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022211796A1 (de) 2022-11-08 2024-05-08 Vega Grieshaber Kg Verfahren zum Temperieren eines Messgeräts

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020149379A1 (en) 2000-01-12 2002-10-17 Winfried Rauer Electronic measuring device for detecting a process variable, in particular a radar or ultrasonic filling level measuring device, and a method for operating a measuring device of this type
DE10059815A1 (de) * 2000-12-01 2002-06-13 Grieshaber Vega Kg Elektronische Messvorrichtung zur Erfassung einer Prozessvariablen, insbesondere Radar- oder Ultraschall-Füllstandsmessvorrichtung und Verfahren zum Betreiben einer solchen Messvorrichtung
DE102005039438A1 (de) 2005-08-18 2007-02-22 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Optimierung des Leistungsverbrauchs einer elektrischen Schaltungskomponente
DE102005040763B4 (de) * 2005-08-26 2022-02-10 Cedes Ag Türsensoranordnung
DE102018205111B3 (de) 2018-04-05 2019-05-02 Vega Grieshaber Kg Messgerät mit Energiemanagement
DE102022119145A1 (de) 2022-07-29 2024-02-01 Endress+Hauser Flowtec Ag Anschlussschaltung für ein Feldgerät und Feldgerät

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2445337C2 (de) * 1974-09-23 1986-05-15 Philips Patentverwaltung Gmbh, 2000 Hamburg Schaltungsanordnung zur Übertragung von elektrischen Meßwertsignalen
US4339750A (en) * 1980-08-20 1982-07-13 Rosemount Inc. Low power transmitter
US4926340A (en) * 1986-07-10 1990-05-15 Rosemount Inc. Low power process measurement transmitter
DE3742119A1 (de) * 1987-12-11 1989-06-22 Siemens Ag Datenverarbeitungssystem
CA1311032C (fr) * 1989-03-31 1992-12-01 Stanley Chlebda Systeme de telemesure a deux fils comportant un dispositif emetteur a alimentation stabilisee
US5416723A (en) * 1993-03-03 1995-05-16 Milltronics Ltd. Loop powered process control transmitter
US5650571A (en) * 1995-03-13 1997-07-22 Freud; Paul J. Low power signal processing and measurement apparatus
US5959372A (en) * 1997-07-21 1999-09-28 Emerson Electric Co. Power management circuit
EP1147463B1 (fr) * 1998-11-03 2006-08-02 AMETEK, Inc. Alimentation electrique a rendement eleve pour dispositif a deux conducteurs a alimentation en boucle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022211796A1 (de) 2022-11-08 2024-05-08 Vega Grieshaber Kg Verfahren zum Temperieren eines Messgeräts

Also Published As

Publication number Publication date
EP1174841A1 (fr) 2002-01-23
DE10034685B4 (de) 2010-07-08
DE10034685A1 (de) 2002-01-31

Similar Documents

Publication Publication Date Title
EP1301914B1 (fr) Dispositif de mesure servant a mesurer une variable de processus
EP0883097B1 (fr) Dispositif pour la transmission de signaux entre un émetteur et un récepteur
EP1989519B1 (fr) Separation de potentiel pour un radar de detection de niveau de remplissage
DE69932554T2 (de) Stromversorgungseinrichtung und Verfahren für ein mobiles Fernsprech- Endgerät
DE60102613T2 (de) Sendeleistungsanpassung in einem Leser für elektromagnetische Transponder
DE60102509T2 (de) Vorhandenseinbestätigung eines elektromagnetischen Transponders in dem Feld eines Phasendemodulation-Lesers
EP2641062B1 (fr) Appareil de mesure permettant de déterminer et/ou de surveiller au moins une grandeur de processus
EP3182073B1 (fr) Appareil de mesure de niveau de remplissage comprenant des unités fonctionnelles en série
EP1337987A1 (fr) Appareil de mesure electronique pour detecter une variable de processus, et procede pour actionner un tel dispositif de mesure
DE60101867T2 (de) Überprüfung der Anwesenheit eines elektromagnetischen Transponders im Feld eines Lese-Terminals mit Amplitudendemodulation
EP1174841B1 (fr) Circuit d'économie d'énergie pour un dispositif de mesure
EP1966876A1 (fr) Circuiterie d'alimentation d'un appareil de terrain de la technologie de l'automatisation
EP3187836A1 (fr) Capteur de niveau de fluide du type de durée de propagation comprenant un accumulateur d'énergie à longue stockage
EP1745405B1 (fr) Circuit d'emission pour systeme de transpondeur permettant de transmettre un signal numerique par l'intermediaire d'une antenne d'emission
EP2710745A1 (fr) Procédé et dispositif de communication au moyen d'un transformateur
DE10304683B4 (de) System und Verfahren für adaptiven variablen Magnetfeldgenerator
EP0997747B1 (fr) Méthode pour optimiser l'opération d'un commutateur de proximité et commutateur de proximité à opération optimisée
WO2018050422A1 (fr) Adaptation de la puissance d'émission et/ou de réception dans un appareil de terrain
AT401127B (de) Kontaktloses datenübertragungssystem
WO2012084444A1 (fr) Appareil de mesure
DE102017112755B4 (de) Messumformerspeisegerät
EP1801727B1 (fr) Station d'écriture/lecture d'un système RFID ainsi que procédé pour la communication entre une station d'écriture/lecture et un transpondeur
AT398145B (de) Kontaktloses, induktives datenübertragungssystem zwischen mindestens einer sende- und empfangsstation und einem oder mehreren transpondern
DE102015216220A1 (de) Treiber für eine Kommunikation mit einem Transponder, insbesondere Treiber zum Einbau in ein Kraftfahrzeug und zur quasi-resonanten Kommunikation mit einem mobilen Transponder für ein Fahrzeugzugangs- und/oder Startsystem eines Kraftfahrzeugs
DE10058008A1 (de) Vorrichtung zur Nutzsignalgewinnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020619

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20060518

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141023

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50116467

Country of ref document: DE

Effective date: 20150521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50116467

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180725

Year of fee payment: 18

Ref country code: FR

Payment date: 20180723

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180725

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50116467

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731