EP1164331B1 - Müllverbrennungsanlage mit Abgasrückführung - Google Patents

Müllverbrennungsanlage mit Abgasrückführung Download PDF

Info

Publication number
EP1164331B1
EP1164331B1 EP01202285A EP01202285A EP1164331B1 EP 1164331 B1 EP1164331 B1 EP 1164331B1 EP 01202285 A EP01202285 A EP 01202285A EP 01202285 A EP01202285 A EP 01202285A EP 1164331 B1 EP1164331 B1 EP 1164331B1
Authority
EP
European Patent Office
Prior art keywords
gas
waste
incineration
zone
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01202285A
Other languages
English (en)
French (fr)
Other versions
EP1164331A1 (de
Inventor
Marcellus Antonius Jozef Van Berlo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gemeente Amsterdam Gemeentelijke Dienst Afvalverwerking
Original Assignee
Gemeente Amsterdam Gemeentelijke Dienst Afvalverwerking
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gemeente Amsterdam Gemeentelijke Dienst Afvalverwerking filed Critical Gemeente Amsterdam Gemeentelijke Dienst Afvalverwerking
Publication of EP1164331A1 publication Critical patent/EP1164331A1/de
Application granted granted Critical
Publication of EP1164331B1 publication Critical patent/EP1164331B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/101Combustion in two or more stages with controlled oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/106Combustion in two or more stages with recirculation of unburned solid or gaseous matter into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/10Waste heat recuperation reintroducing the heat in the same process, e.g. for predrying

Definitions

  • the invention in question relates to a method for burning waste in a waste incinerator according to the preamble of claim 1, as well as a high efficiency waste incinerator.
  • Waste incinerators and the way in which they work, are known in practice.
  • the waste material to be incinerated is placed on a support with holes in it, generally known as the incinerator grid, wherein combustion air as primary gas is brought from below up through the incinerator grid and the waste material.
  • This combustion air supplies the necessary oxygen required for the incineration.
  • This air is often pre-heated in order to make the waste burn better, since the hot combustion air has a heating effect on the material to be incinerated, and also partly helps to dry the waste material so that it is easier to ignite.
  • the invention aims at providing an improved technique as mentioned in the opening words, wherein these drawbacks can be lessened.
  • the invention aims at providing a technique wherein the efficiency of the installation can be improved and wherein the emission of dangerous substances can be lessened.
  • the invention provides a method as described in the preamble, which is characterised by the features of the characterizing part of claim 1.
  • a method according to the invention can especially be advantageously carried out using the measures as described in the claims stated later in this document.
  • a primary gas is used in the first zone that has a low oxygen content. Because of the low oxygen content, an increase in temperature does not automatically result in the waste material actually combusting. Therefore, even a temperature higher than 300°C, for example 450°C or higher, can also be applied. Because the primary gas serves in the first instance to heat and dry the compact parts of the waste material, in principle this does not result in any problems. In the second instance the easily combustible parts of the waste material combust as a result of the primary part gas supply, which therefore takes place with a deficiency of oxygen. This means that the incineration on the waste bed only partly takes place.
  • the primary gas in the first zone serves in the first place to dry the waste material that has been placed in the incinerator.
  • the primary gas that is supplied to the first zone is fed in at a temperature from 50°C to 300°C, preferably from 150°C to 300°C.
  • the pre-heating of the primary gas for a waste incinerator requires a great deal of energy, and is especially necessary if the waste material is difficult to burn. The pre-heating of the primary gases is therefore dependent on the so-called thermal value of the waste material.
  • the primary gas is at a temperature of approximately 100°C in the case of a thermal value of 11,000 kilojoules per kilogram, while the temperature of the primary gases should be approximately 180°C in the case of waste material with a thermal value of around 7,000 kilojoules. These values are based on the use of air as the primary gas, both as pre-heating and as ignition gas.
  • the waste material that is placed in a waste incinerator for incineration varies enormously both in its content and its humidity.
  • the dampness that can exist in the waste material it is important how this dampness is spread through the waste material. If one part of the waste material is relatively dry and therefore easily combustible, this part will ensure that the damper waste material surrounding it will dry rapidly and thereby combust. In practice the dry and damp parts of the waste material are not homogeneously divided, so the combustion takes place in a very irregular way.
  • Waste material that is easily combustible and has a high thermal value demands a very low pre-heating of the primary gas. If air pre-heating is used, this results in a very fierce fire above the waste bed, wherein the firing in the waste bed is very strongly sub-stoichiometric, which results in very high temperatures locally in the incineration chamber. In this case air pre-heating is unnecessary.
  • Waste material that is easily combustible but that has a low thermal value also does not require air pre-heating. In addition, there is less chance of a strong sub-stoichiometric combustion.
  • Waste material that is not easily combustible and that has a high thermal value requires primary air at a high temperature in order to achieve enough combustion of the waste material on the one hand, and on the other hand because of this the actual burning of the waste material will easily result in a simple sub-stoichiometric combustion. A careful regulation of the temperature of the primary gases is therefore necessary to control the combustion.
  • the invention provides an improved technique as stated previously, wherein the temperature is controlled for each partial primary gas supply.
  • This enables a regulation wherein the temperature of the primary gas is increased only in the zones where it is necessary, because of the composition of the waste material.
  • the primary gas that is supplied to the first zone is at a temperature of from 50°C to 450°C, preferably in the range 50°C to 300°C, with the strongest preference for the range 150°C to 300°C.
  • the aim is to choose a temperature in the first zone that is so high that in many cases pre-heating can be reduced to zero in the other zones.
  • a relatively low airflow for the first zone from 5% to 15% of the total primary airflow
  • relatively little energy is used for the pre-heating.
  • the figure shows a schematic outline of a waste incinerator according to the preferred design of the invention.
  • the incinerator shown has four different part gas supplies for primary gas (1, 2, 3, 4). These are introduced under the incinerator grid (5), on top of which is the waste bed (6).
  • the supply pipes for the first, second and third part supplies of the primary gas are equipped with an air pre-heater (7, 8).
  • Waste material is placed on the incinerator grid (5) above the first primary gas supply (1), wherein it is pervaded from below by waste gas that originates from the waste incinerator.
  • This waste gas has a low oxygen content.
  • the primary gas from the first part gas supply (1) will flow through the waste bed (6) by means of the available gas channels.
  • the waste material that comes into direct contact with such a channel is dried more than the rest of the waste material. If the partly dried waste material is moved on to a position where the second part of the primary gas (2) is supplied, because this secondary part of the supply contains oxygen, the flame front is practically immediately progressing downwards through these channels.
  • the flue gases that are formed in the flame front above the waste bed are not made up of homogeneous parts. Because of the inhomogeneous composition of the waste material, some parts of it are well incinerated and therefore in those places the oxygen in the primary gas will have reacted. In other parts, where the incineration has not taken place to any large extent, part of the oxygen supplied by the primary gas supply will not have reacted and thereby will remain in the flue gas. By adding a secondary gas a good mix of these flue gasses can be achieved.
  • an oxygen bearing gas is supplied with an adequate O 2 content (preferably a surplus) in order to burn off the remaining CO and any other possible combustible waste products in the flue gases. Because this occurs downstream, the flue gases are homogenous and already somewhat cooler and so the formation of nitrous oxides is less. Especially the fact that the flue gases are now already mixed, local peak temperatures that cause the most formation of nitrous oxides do not arise.
  • the subdivision of the supply of primary gas into several zones, as shown in the four zones in the illustration (1, 2, 3, 4), which successively pass through the waste material to be incinerated (6) achieves an optimum combustion. This can especially be achieved because the temperature can be independently regulated for each zone. Because in practice it is difficult to judge the thermal value of the waste material and its ignition behaviour in advance well enough to depend on it, the regulation of the temperature setting of the primary gas takes place by tracking the flame front for each zone. This can be done by hand or via an automatic measurement of the flame front with the help of video cameras for visible light and/or infrared light.
  • the primary gases that are supplied to the first zone (1) can be of a high temperature without any problem, because the oxygen content of these is very low.
  • the oxygen content can be 0% by volume or more.
  • the incineration above the first zone is therefore limited.
  • the maximum temperature of the flames in the first zone is thereby reduced in proportion to the available oxygen percentage, wherein no damage to the waste grid can arise. In particular damage by drops of melted metal that weld themselves to the surface of the grid is avoided. With current techniques wherein a water-cooled grid is usually used, it is not possible to obtain this advantage to such a high degree.
  • the reaction of waste gas in the first zone is also limited.
  • the waste material can therefore be fully pre-dried without all the material being incinerated in the first zone. This results in a good combustion situation in the second zone, where it is possible that no more air pre-heating is necessary, but where the incineration can still be well regulated.
  • a homogeneous incineration can especially be achieved in the second zone when the incinerator grid (5) is placed at a lower point, as described earlier.
  • the waste gas recirculation is supplied as the primary gas in the first zone.
  • the waste gas from the incinerator flue after passing through a dust filter (11) are recirculated to the first zone.
  • the oxygen percentage and the temperature are in this case reasonably firmly fixed (depending on the process design) and cannot be used for the actual control of the combustion process.
  • the amount (the flow) of primary gas in the first zone is very easy to vary across a wide range.
  • waste gases from gas burners, gas-driven boilers, gas motors or gas turbines are used for example.
  • gas motors on the basis of available waste gas such as the biological gas that results from fermentation produced by purifying sewage water, for example. Because in this case the heat from the waste gases from the motor are also used efficiently, the efficiency increases significantly compared to the conventional separate set-up of the bio-gas motor wherein only the generated electricity and heat from the cooling water is used.
  • the waste gases arising from this can be mixed with air from the outside in order to achieve the required temperature combined with the required oxygen percentage, wherein a certain percentage of oxygen is still added to these gases.
  • the amount of air that is added to the waste gases from the outside depends on the temperature that is necessary for the primary gas in the first zone. In general this will be from 100°C to 270°C.
  • the oxygen percentage in this case will be from 0 % to 15 %.
  • the recovery of the heat from the burning of the gas in the gas boiler will result in a higher efficiency for the entire installation.
  • Waste gas from a gas turbine can also be used in a suitable way. Especially in the case of waste gases from a gas turbine or gas motor, these can have a temperature higher than 270°C, for example 450°C or higher. If the waste contains some humidity and the flow in the first primary zone is not too high, even with these temperatures the pyrolisis may be limited so that sufficient caloric value remains in the waste, so as to get a good combustion in the successive (second) zone. Mixing with cool air or cooler recirculation waste gas is possible as well. The invention is therefore also adaptable for similar cases wherein the temperature of the primary gas supply is higher than 300°C.
  • the waste gases from the waste incinerator as shown in the figure, which are extracted after they have passed through the dust filter (11), are at a temperature of from 100°C to 270°C.
  • a problem that can occur using similar waste gas recirculation is corrosion at 'cold spots' and the leaking of the recirculation gases to the outside in places where high pressure is present. Because of the temperature of the recirculation gases, similar corrosion is possible as the result of condensation of the recirculating gas in the pipes supplying gas to the incineration zone, for example underneath the incinerator grid (5).
  • any leakage of the recirculating gases in this housing (12) will not lead to direct problems in the surrounding area because the leaked gases will be taken up and diluted in the housing (12). These gases can then be passed on to the incineration zone.
  • the second part of the supply of the primary gas is used to maintain the surroundings of the supply of the first part of the gas supply (1) at the required, higher, temperature so that no condensation can take place.
  • the supply (1), and especially the funnel under the grid (5) for the first zone, as shown in Figure 2 are situated in this case in a casing (12) which is kept at a temperature that is regulated by the second part of the gas supply, and which can also be kept at a higher pressure according to a further recommended implementation.
  • this supply of the first part of the gas is insulated and surrounded by the air pre-heated by an air pre-heater, cold bridges can be prevented by this construction.
  • this air-preheater is the heater of the second part of the primary gas supply (7) this heater should work continuously at a sufficiently high temperature. If necessary, a bypass can be provided in this case wherein the primary gas that is supplied to the second zone does not pass through the air pre-heater (7). It is also possible, using a control valve, to provide a connection between the pre-heated air coming from the housing and the funnel for the first part of the gas supply in order to add oxygen-rich air to the first part of the supply.
  • the waste gas that is used for recirculation should preferably be withdrawn from the waste incinerator via a baghouse filter or electrostatic filter (11), so that the amount of dust in the recirculating gas is low and no problems arise with deposits occurring in the pipes.
  • the temperature of the recirculation gas is from 170°C to 270°C, preferably in the area of 190°C and 230°C. This temperature must be high enough to prevent problems with the condensation of the waste gases, but also low enough for it to be treated by common baghouse filter materials, for example a special catalytic layer on the baghouse filter material.
  • the primary air for the first zone is regulated in order to control the fire in the second and third zones.
  • the range of the gas supply via the first zone must be approximately 2.5% to 25% of the total amount of primary gas.
  • 10% of the total is enough to dry the waste material well, through the high temperature of the recirculation gases used.
  • the drying process is more than good and the amount of the gas supply can be reduced to 5%.
  • the amount can be increased to 20%.
  • the incinerator grid (5) in the first zone, on which the waste material to be burnt (6) is initially placed does not have to be equipped with water cooling.
  • condensation of water from the recirculated gas can especially occur on the cooled parts.
  • the recirculation gases have a very low oxygen content but a relatively high temperature, so that virtually no combustion takes place in the waste material above the first zone.
  • flame temperatures can exist of up to a maximum of 500°C if the oxygen content is lower than 10% by volume. Because of the low oxygen content and the low temperature, the flame front can however hardly creep downwards. This means that damage to the incinerator grid (5) in the first zone by overheating of the grid cannot occur.
  • the waste material from the first zone that reaches the second zone is, however, very well dried and easily combustible.
  • a primary air supply is added with a normal oxygen content. This causes the flame front to move downwards virtually instantaneously.
  • the incinerator grid in the second zone (5) is water-cooled. Because of the oxygen content as well as the good mix of the oxygen and the waste material to be burned, a very fierce fire will occur in the incinerator bed that burns right up to the grid (5).
  • the very easily combustible parts of the waste material (especially synthetic materials) already lose part of their thermal values and the peak temperatures in the second and third zones are lower than in the case where the waste material in the first zone is completely incinerated, as is the usual case when oxygen-rich air is used.
  • the heat that the grid (5) absorbs and gives off to the cooling water is re-used in a suitable way.
  • the primary gas for the second and third zones can be used without any further air pre-heating (7, 8), thereby lowering grid and flame temperature as well as reducing NO x formation.
  • the gas that is supplied to the second and third zones can therefore be fresh air that can be supplied directly from the outside.
  • the energy saving that is achieved by this it has the advantage that when the air is cold, the air speed will be lower for an equal supply of oxygen, wherein less flue dust will be created.
  • the amount of oxygen that is supplied via the second and third zones to the waste material that is to be burnt (6) must be approximately stoichiometric or somewhat less (from 0.8 to 1.0 times the amount of oxygen necessary for the combustion).
  • the amount of air that is supplied to the second and third zones is approximately from 25% to 30% of the total amount of gas that is used as the primary and third air supply. The result of this is that the highest heat develops in the waste bed itself.
  • the coal residue that is to say the percentage of unburned carbon
  • the quality of the resulting slag is therefore improved on account of the good drying in the first zone.
  • the gas that is used for the second and third zones should preferably not be pre-heated, and in the case of a good enough supply of waste material that can therefore be pre-dried in order to achieve a rapid combustion in the second zone, an air pre-heater (7, 8) can be omitted if required.
  • the last zone is a final incineration and cooling zone that only receives from 5% to 15% of the total amount of gas.
  • Recirculated gas can possibly be used here. This has the advantage that the CO 2 and H 2 O contained in the recirculated gas, if necessary supplemented with extra water, reacts with the calcium in the slag, wherein this goes through a rapid ageing process and there exists a lower pH value in any later leaching. In this way the quality of the slag is improved because there is less leaching.
  • the incineration in the main incineration zone is not going very well it can be useful to temporarily use an increased oxygen content directly after the main incineration zone in order to bring about a good combustion of the lower ash layer.
  • recirculated gas that is to say waste gas from the incinerator
  • the preference is the percentage is from 5% to 30% of the total amount of air supplied, preferably from 10% to 20%.
  • waste transport As the primary regulator for the capacity of the plant.
  • the supply of waste material to the grid must be adjusted in order to obtain a good layer thickness.
  • the individual regulating of the temperature in each zone proposed in Claim 2 it is possible to temporarily support a local lack of combustion in the main combustion zone without adapting the amount of the air supply.
  • the limiting of the formation of NO x and the negative influence on the waste throughput aim to keep the nominal air temperature in the main combustion zone as low as possible. This can be controlled by influencing the drying process in the first zone. For this a fixed, as low as possible, oxygen percentage is aimed for in principle, and a high temperature in the first primary gas supply. In this way the first primary gas supply becomes the primary regulating quantity for the drying of the waste material. This flow is regulated such that a good combustion takes place in the second zone, but not more than what is needed to prevent too fierce combustion.
  • the invention provides a much-improved technique for burning waste material in a waste incinerator.
  • the extra investments that are necessary for the recirculation of the waste gas and the more complex construction for the supply of the recirculation gases to the first zone are compensated for by the fact that the waste gas cleaning can be carried out on a smaller scale, and the fact that a lot less energy is needed for the preheating of the primary part of the gas supply.
  • the advantages are especially achieved because the incineration is better and because this results in an ash layer of a better quality.
  • waste material with a wide range of thermal values from 5,000 to 16,000 kilojoules per kilogram

Claims (18)

  1. Verfahren zur Müllverbrennung in einem Verbrennungsapparat mit den Schritten:
    Zuführen von Müll zu einem Verbrennungsbereich, der ein Verbrennungsgitter enthält, wobei der Müll zu einer ersten Seite des Verbrennungsgitters zugeführt wird und während des Verfahrens zu einer zweiten Seite bewegt wird,
    Zuführen eines Primärgases von unten durch das Verbrennungsgitter und den darauf angeordneten Müll, um den Müll in einem Verbrennungsbereich, der sich von dem Verbrennungsgitter zu einer ersten Stufe oberhalb des Verbrennungsgitters erstreckt, zumindest teilweise zu verbrennen,
    wobei der Verbrennungsbereich zumindest zwei Bereiche aufweist, und der Müll zu einem ersten Bereich zugeführt wird, und wobei während des Verfahrens der Müll zu einem nachfolgenden verbundenen Bereich bewegt wird; ein erstes Partialprimärgas zu dem ersten Bereich mit einem Sauerstoffgehalt von weniger als 20 Vol.% und einer Temperatur von 50°C bis 450°C, vorzugsweise von 50°C bis 300°C, zugeführt wird, und ein nachfolgendes Partialprimärgas zu dem zumindest einen nachfolgenden Bereich zugeführt wird; und
    dadurch gekennzeichnet, dass die Temperatur für jede einzelne Partialprimärgaszufuhr gesteuert wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die erste Partialprimärgaszufuhr Abgas von einem Verbrennungsapparat enthält, vorzugsweise Abgas von einem Müllverbrennungsapparat, einem Gaskessel, einem Gasdruckerzeuger oder einer Gasturbine, wobei Abgas von einem Müllverbrennungsapparat am vorteilhaftesten ist.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass der Aufbau der ersten Partialprimärgaszufuhr, soweit diese Abgas aus einem Verbrennungsapparat enthält, durch ein Gehäuse eingeschlossen ist, und das Gehäuse mit Gasen einer Temperatur und/oder einem Druck, die gleich oder höher sind als die Temperatur oder der Druck der ersten Primärgaszufuhr, versorgt wird.
  4. Verfahren nach Anspruch 2 oder 3,
    dadurch gekennzeichnet, dass das Abgas von einem Verbrennungsapparat gefiltert wird, vorzugsweise durch einen Staubfilter.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass Sekundärgas nahe der ersten Stufe oberhalb des Verbrennungsgitters zugeführt wird und ein drittes Gas bei einer zweiten Stufe oberhalb der ersten Stufe zugeführt wird, wobei das Sekundärgas einen Sauerstoffgehalt von < 20 Vol.% aufweist, und das dritte Gas einen höheren Sauerstoffgehalt als das Sekundärgas aufweist.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet, dass das Sekundärgas Abgas von einem Müllverbrennungsapparat enthält.
  7. Verfahren nach Anspruch 5 oder 6,
    dadurch gekennzeichnet, dass das dritte Gas Außenluft enthält.
  8. Verfahren nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass das Primärgas in dem ersten Bereich einen Sauerstoffgehalt von 0% bis 15%, vorzugsweise von 0% bis 10% aufweist.
  9. Verfahren nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, dass das Primärgas über zumindest drei Partialzufuhren zugeführt wird, wobei zumindest:
    - eine erste Partialgaszufuhr einen O2-Gehalt von 0% bis 15% aufweist und 2% bis 25% der Gesamtmenge des Primärgases bildet;
    - eine oder mehrere Partialgaszufuhren 15% bis 90% der Gesamtmenge an Primärgas bilden; und
    - eine letzte Partialgaszufuhr 5% bis 25% der Gesamtmenge an Primärgas bildet.
  10. Verfahren nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, dass das Gehäuse mit Gasen von einer nachfolgenden Partialprimärgaszufuhr versorgt wird.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet, dass die Gase von dem Gehäuse anschließend dem Verbrennungsbereich zugeführt werden, beispielsweise durch deren Vermischen mit der ersten Partialprimärgaszufuhr.
  12. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet, dass die Gase von dem Gehäuse anschließend einem nachfolgenden Verbrennungsbereich, beispielsweise über eine Seitenwandung oder als Sekundärgas in dem Heizkessel, als Verbrennungsgas zugeführt werden.
  13. Verfahren nach einem der Ansprüche 10 bis 12,
    dadurch gekennzeichnet, dass das Gehäuse mit Gasen bei einer Temperatur von mindestens 150°C versorgt wird.
  14. Verfahren nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet, dass die Leitung für die Zufuhr von Rezirkulationsgasen in einer Leitung eingeschlossen ist, die mit Gasen bei einer Temperatur und/oder einem Druck, die gleich oder höher sind als die der ersten Partialprimärgaszufuhr, versorgt wird.
  15. Verfahren nach einem der Ansprüche 1 bis 14,
    dadurch gekennzeichnet, dass die erste Partialgaszufuhr gesteuert wird, um die Verbrennung in dem verbundenen Hauptverbrennungsbereich hauptsächlich durch Variieren des Ausflusses der ersten Partialprimärgaszufuhr zu beeinflussen, und der Sauerstoffgehalt und/oder die Temperatur nachfolgend oder gleichzeitig variiert wird.
  16. Müllverbrennungsofen für eine Müllverbrennungsapparatur, bestehend aus einem Verbrennungsgitter (5) für den zu verbrennenden Müll (6), Mitteln zum Bewegen des zu verbrennenden Mülls von einer ersten zu einer zweiten Seite, Primärgaszuführungsmitteln (1, 2, 3, 4) unterhalb des Verbrennungsgitters, Sekundärgaszuführungsmittel (9) bei einer ersten Stufe oberhalb des Verbrennungsgitters und Tertiärgaszuführungsmittel (10) bei einer zweiten Stufe oberhalb des Verbrennungsgitters und oberhalb des Sekundärgaszuführungsmittels, wobei das Sekundärgaszuführungsmittel mit einem Abgasauslass von der Müllverbrennungsapparatur verbunden ist,
    dadurch gekennzeichnet, dass ein Temperaturfühler und ein Heizer zur Steuerung jeder einzelnen Primärgaszufuhrtemperatur vorgesehen sind.
  17. Müllverbrennungsofen nach Anspruch 16,
    dadurch gekennzeichnet, dass das Primärgaszuführungsmittel mit einem Abgasauslass von einem Gasbrenner, einem Gaskessel, einem Gasdruckerzeuger, einer Gasturbine, einer Kanalisationsabwasserkläranlage oder einem Biogasdruckerzeuger verbunden ist.
  18. Müllverbrennungsofen nach Anspruch 16,
    dadurch gekennzeichnet, dass das Primärgaszuführungsmittel aus zumindest zwei getrennten Zuführungen besteht, wobei das erste Primärgaszuführungsmittel nahe der ersten Seite unterhalb des Verbrennungsgitters angeordnet ist, und das zweite Primärgaszuführungsmittel nahe der zweiten Seite unterhalb des Verbrennungsgitters angeordnet ist, und das erste Primärgaszuführungsmittel mit einem Abgasauslass von einer Müllverbrennungsapparatur verbunden ist.
EP01202285A 2000-06-14 2001-06-14 Müllverbrennungsanlage mit Abgasrückführung Expired - Lifetime EP1164331B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1015519 2000-06-14
NL1015519A NL1015519C2 (nl) 2000-06-14 2000-06-14 Rookgasrecirculatie bij een afvalverbrandingsinstallatie.

Publications (2)

Publication Number Publication Date
EP1164331A1 EP1164331A1 (de) 2001-12-19
EP1164331B1 true EP1164331B1 (de) 2006-09-06

Family

ID=19771591

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01202285A Expired - Lifetime EP1164331B1 (de) 2000-06-14 2001-06-14 Müllverbrennungsanlage mit Abgasrückführung

Country Status (8)

Country Link
EP (1) EP1164331B1 (de)
AT (1) ATE338917T1 (de)
CY (1) CY1105828T1 (de)
DE (1) DE60122829T2 (de)
DK (1) DK1164331T3 (de)
ES (1) ES2272406T3 (de)
NL (1) NL1015519C2 (de)
PT (1) PT1164331E (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105351944A (zh) * 2015-12-10 2016-02-24 重庆三峰卡万塔环境产业有限公司 一种改进的炉排炉垃圾焚烧装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497187B2 (en) * 2001-03-16 2002-12-24 Gas Technology Institute Advanced NOX reduction for boilers
AT412500B (de) * 2002-10-29 2005-03-25 Wilde Andreas Ing Verfahren zum verbrennen von kleinstückeligem brennstoff
US7146916B2 (en) * 2004-05-14 2006-12-12 Eco/Technologies, Llc Starved air inclined hearth combustor
DE102006005464B3 (de) * 2006-02-07 2007-07-05 Forschungszentrum Karlsruhe Gmbh Verfahren zur primärseitigen Stickoxidminderung in einem zweistufigen Verbrennungsprozess
DE102009014010B4 (de) * 2009-03-19 2012-02-23 Georg Fischer Gmbh & Co. Kg Brenner für festes, stückiges Brennmaterial
EP2505919A1 (de) * 2011-03-29 2012-10-03 Hitachi Zosen Inova AG Verfahren zur Optimierung des Ausbrands von Abgasen einer Verbrennungsanlage durch Homogenisierung der Abgase über dem Brennbett mittels Abgas-Einspritzung
JP5871207B2 (ja) * 2012-06-12 2016-03-01 Jfeエンジニアリング株式会社 廃棄物焼却炉及び廃棄物焼却方法
JP6260058B2 (ja) * 2014-09-12 2018-01-17 三菱重工環境・化学エンジニアリング株式会社 ストーカ式焼却炉
CN107631301A (zh) * 2016-08-01 2018-01-26 北京北控环保工程技术有限公司 立式焚烧炉及危废物分区焚烧系统
DE102017008123A1 (de) * 2017-08-30 2019-02-28 Martin GmbH für Umwelt- und Energietechnik Feuerungsanlage und Verfahren zum Betreiben einer Feuerungsanlage
CN112783236B (zh) * 2019-11-11 2022-06-14 株式会社盖亚 一种用于烘干机的自动冷却切换的烘干控制方法
JP7051792B2 (ja) * 2019-12-18 2022-04-11 三菱重工業株式会社 燃焼設備の状態特定装置、状態特定方法およびプログラム
CN113406282B (zh) * 2021-06-18 2022-08-30 国网安徽省电力有限公司电力科学研究院 电站锅炉尾部烟道氧量场标定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3345867A1 (de) * 1983-12-19 1985-06-27 Wärmetechnik Dr. Pauli GmbH, 8035 Gauting Verfahren und vorrichtung zur thermischen verwertung von rueckstaenden
JPH0247648B2 (ja) * 1984-12-17 1990-10-22 Hitachi Shipbuilding Eng Co Nenshohaigasuomochiitaboirachuubunofushokuboshihoho
DE3915992A1 (de) * 1988-05-19 1989-11-23 Theodor Koch Verfahren zur reduktion von stickstoffoxiden
US5762008A (en) * 1993-04-20 1998-06-09 Martin Gmbh Fuer Umwelt- Und Enetgietechnik Burning fuels, particularly for incinerating garbage
DE4402172C2 (de) * 1994-01-26 2000-09-28 Steinmueller Gmbh L & C Verfahren zur Verbrennung von Brennstoff und Anlage zur Durchführung des Verfahrens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105351944A (zh) * 2015-12-10 2016-02-24 重庆三峰卡万塔环境产业有限公司 一种改进的炉排炉垃圾焚烧装置

Also Published As

Publication number Publication date
EP1164331A1 (de) 2001-12-19
DE60122829D1 (de) 2006-10-19
CY1105828T1 (el) 2011-02-02
PT1164331E (pt) 2007-01-31
DK1164331T3 (da) 2007-01-02
DE60122829T2 (de) 2007-03-15
ATE338917T1 (de) 2006-09-15
NL1015519C2 (nl) 2001-12-28
ES2272406T3 (es) 2007-05-01

Similar Documents

Publication Publication Date Title
EP1164331B1 (de) Müllverbrennungsanlage mit Abgasrückführung
KR100705204B1 (ko) 화격자식(火格子式) 폐기물 소각로 및 그 연소 제어방법
CA2121295C (en) Method for burning fuels, particularly for incinerating garbage
US5762008A (en) Burning fuels, particularly for incinerating garbage
CA2222819C (en) Method and device for producing and utilizing gas from waste materials
US4679268A (en) Method and apparatus for burning solid waste products using a plurality of multiple hearth furnaces
WO2006117579A1 (en) Method and apparatus for gasifying and burning pellets made from herbaceous plants
JP2004084981A (ja) 廃棄物焼却炉
CA1160456A (en) Process of heat-treating pellets
JP2621895B2 (ja) 炉用廃金属の予熱方法および装置
US5031549A (en) Method of introducing air into a rotary combustor
JP2007127355A (ja) ごみ焼却溶融方法及びこれに用いるごみ焼却溶融装置
JP2013257065A (ja) 廃棄物焼却炉及び廃棄物焼却方法
CN113405104A (zh) 一种大容量高负荷的双炉膛垃圾焚烧装置
CN111623345A (zh) 多前拱调温生物质气化热风炉
KR101282581B1 (ko) 폐기물 고형연료를 이용한 보일러의 연소장치
CN217928780U (zh) 一种循环流化床热风炉系统
CN2372565Y (zh) 一种内燃式生活垃圾焚烧炉
CN218972677U (zh) 尾气焚烧装置
JPS61208420A (ja) 乾留ガス化炉燃焼方法
JP3285740B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
EP1106918A1 (de) Wasserhitzer und verfharen zum Umleiten von Verbrennungspasen darin.
CN2536955Y (zh) 常压节能环保热水锅炉
LV12242B (en) METHOD AND EQUIPMENT FOR COMBUSTION OF FUEL GAS
JP2020118314A (ja) 燃焼炉及びその起動方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020619

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20041111

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060906

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60122829

Country of ref document: DE

Date of ref document: 20061019

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20060404140

Country of ref document: GR

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20061124

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2272406

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20080623

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20090622

Year of fee payment: 9

Ref country code: ES

Payment date: 20090629

Year of fee payment: 9

Ref country code: IE

Payment date: 20090618

Year of fee payment: 9

Ref country code: MC

Payment date: 20090619

Year of fee payment: 9

Ref country code: NL

Payment date: 20090630

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090622

Year of fee payment: 9

Ref country code: FI

Payment date: 20090624

Year of fee payment: 9

Ref country code: LU

Payment date: 20090625

Year of fee payment: 9

Ref country code: PT

Payment date: 20090605

Year of fee payment: 9

Ref country code: SE

Payment date: 20090623

Year of fee payment: 9

Ref country code: TR

Payment date: 20090605

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090623

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090624

Year of fee payment: 9

Ref country code: FR

Payment date: 20090618

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090825

Year of fee payment: 9

Ref country code: GB

Payment date: 20090623

Year of fee payment: 9

Ref country code: GR

Payment date: 20090629

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090627

Year of fee payment: 9

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20101214

BERE Be: lapsed

Owner name: GEMEENTE AMSTERDAM, GEMEENTELIJKE DIENST AFVALVER

Effective date: 20100630

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100614

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101214

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100614

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100614

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110104

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100614

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100614

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100614

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20060404140

Country of ref document: GR

Effective date: 20110104