EP1157187B1 - Metallschmelze-bohrverfahren - Google Patents
Metallschmelze-bohrverfahren Download PDFInfo
- Publication number
- EP1157187B1 EP1157187B1 EP00905039A EP00905039A EP1157187B1 EP 1157187 B1 EP1157187 B1 EP 1157187B1 EP 00905039 A EP00905039 A EP 00905039A EP 00905039 A EP00905039 A EP 00905039A EP 1157187 B1 EP1157187 B1 EP 1157187B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- melt
- foregoing
- drilling
- pipeline
- elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 52
- 229910052751 metal Inorganic materials 0.000 claims abstract description 87
- 239000002184 metal Substances 0.000 claims abstract description 87
- 239000011435 rock Substances 0.000 claims abstract description 60
- 239000000155 melt Substances 0.000 claims abstract description 58
- 238000002844 melting Methods 0.000 claims abstract description 13
- 230000008018 melting Effects 0.000 claims abstract description 13
- 230000000694 effects Effects 0.000 claims abstract description 7
- 230000004927 fusion Effects 0.000 claims abstract 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 50
- 229910002804 graphite Inorganic materials 0.000 claims description 50
- 239000010439 graphite Substances 0.000 claims description 50
- 239000004020 conductor Substances 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims description 3
- 239000011150 reinforced concrete Substances 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 2
- 238000007711 solidification Methods 0.000 claims description 2
- 230000008023 solidification Effects 0.000 claims description 2
- 239000012768 molten material Substances 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 239000002699 waste material Substances 0.000 abstract description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 38
- 229910052742 iron Inorganic materials 0.000 description 19
- 239000000463 material Substances 0.000 description 14
- 239000007789 gas Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000009415 formwork Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000009416 shuttering Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000013517 stratification Methods 0.000 description 2
- 230000003319 supportive effect Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- -1 Copper can be worked Chemical class 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000012803 melt mixture Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000006263 metalation reaction Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000010878 waste rock Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B4/00—Drives for drilling, used in the borehole
- E21B4/06—Down-hole impacting means, e.g. hammers
- E21B4/14—Fluid operated hammers
Definitions
- the present invention relates to a melt-drilling method for introduction dimensionally accurate bores, in particular of large diameter, in rock, at the Abraumschmelze in by the effect of temperature and pressure Cracked surrounding rock is compressed and during drilling By solidifying melt a borehole casing is created.
- This known drill head made of a high temperature resistant metal, such as e.g. Molybdenum or tungsten is, by means of heating elements on a Temperature above the melting temperature (1000 - 2000 ° C) of the rock heated and by means of consuming extensible jacking rods under high Pressure in the rock, which then melts pressed.
- a high temperature resistant metal such as e.g. Molybdenum or tungsten
- the drill head is subject to the Corrosion of the molten rock a great wear, so that this sometimes has to be changed.
- a melt drilling rig and a method of operating the plant, which are of the compression of the overburden into the surrounding rock and the Borehole casing makes use of is also known from DE 195 01 437 A1 known.
- the device described here is used in salt tunnels and uses the molten salt itself as a drilling medium.
- the known systems must be equipped with complex supply lines be equipped to the enormous amount of energy over several kilometers Drill depth to be fed to the drill head for heating.
- the object of the invention is an energy-saving universally applicable To provide drilling method with which in each rock substrate, both horizontal as well as vertical, especially in continuous jacking Deep holes, shafts and tunnels, especially with large ones Borehole diameters, e.g. more than 1 meter, ready-made can be.
- the invention also aims to special materials for general Use to be proposed in melt drilling methods.
- Bohrmedium a metal-containing melt through line elements the is fed by melting to be worn borehole bottom.
- heated metal containing to carry out the drilling process Melt which is understood to mean pure molten metal, e.g. Molten iron of about 2000 ° C filling temperature, as low viscosity Drilling medium is poured into the drilling direction in the first line element, so that the molten metal directly above the bottom of the hole from the last Leaves line element and the rock of the bottom of the hole melts and erodes.
- Melt which is understood to mean pure molten metal, e.g. Molten iron of about 2000 ° C filling temperature, as low viscosity Drilling medium is poured into the drilling direction in the first line element, so that the molten metal directly above the bottom of the hole from the last Leaves line element and the rock of the bottom of the hole melts and erodes.
- the solidified melt which is also a melt mixture of Metal and rock can form, forms between conduction element and Drill hole inside a pressure seal, so that due to the extremely high Temperature gradients in the rock and the pressure generated automatically Tearing of the rock material takes place, especially the lighter Abraumschmelze is pressed into the surrounding rock.
- the loss of molten metal which is due to the compression and the Solidification can, at the beginning of the hole, the first line element through a tracking of molten metal can be compensated.
- This tracking can be both continuous and discontinuous, since the volume of on the bottom of the hole upstanding melt column acts as a stock.
- the method of the invention thus opens up the possibility, even at depths of over 10 kilometers in a single step downhole holes, without promoting the wellbore melt and use coolant, with this method at temperatures above 3000 ° C, rock pressures of above 100 ⁇ 10 6 Pa (1000 bar), melt cutting pressures of up to 1000 ⁇ 10 6 Pa (10,000 bar) or more, and with a line element weight of over 10,000 t at the drilling target, which conventional mechanical drilling technology can not provide.
- melt used as a drilling medium magnetic metals, e.g. Contains iron, cobalt or nickel, or completely consists of such a metal or metal alloys.
- magnetic metals e.g. Contains iron, cobalt or nickel, or completely consists of such a metal or metal alloys.
- erfindungsgmä O method can also be used with various non-magnetic Molten metals, e.g. Copper can be worked, but offers e.g. Iron smelting here in particular, since the cost of such Melt are low, iron is readily available and at atmospheric pressure one high evaporation point of about 3000 ° C has.
- the drilling devices can not only be the invention Device, but to act around all the Schmelzbohrvortechnischen, as e.g. out US Pat. No. 3,357,505 and especially DE 2 554 101 are known.
- the line elements that are preferred for Implementation of the method according to the invention are used, such formed in that with the melted or solidified melt mass in Contact surfaces are made of a high temperature resistant material.
- the material is e.g. so chosen that its coefficient of friction is less than 0.5 and the material a has low surface tension to ensure that between Material and melt no wetting takes place.
- Graphite can be used as a material material for the drilling device and in particular for the line elements meet all required requirements. This is graphite For example, parallel to the stratification, a good heat and electricity conductor, acts but perpendicular to the stratification as an insulator. Graphite can therefore be used for thermal Isolation of the molten metal and also used for power line. It has Furthermore, a high strength and high lubricity, can be like metal edit and in the green state dimensionally pre-form and traversformen.
- graphite lies in the fact that it is both of metal as well as the rock melts, as desired, is not wetted and at Normal pressure in a non-oxidizing atmosphere to about 3000 ° C temperature resistant is.
- graphite is characterized by the fact that the Strength with increasing temperature also increases, the train or Compressive strength at about 2500 ° C its maximum of about 100 or 400 MPa reached.
- the drilling method is preferably under Schutzgasatmos Georgre carried out, or at least started.
- the protective gas is Argon, which does not by itself prefer due to its high density escapes the borehole. As drilling progresses, the Graphite elements no longer an oxygen atmosphere, so that the Protective gas supply can be adjusted.
- conduit elements used for the process are substantially individual cylinder pieces, in particular from the graphite to be understood, which have a central bore.
- the individual cylinder pieces where the ratio of outside diameter to large inside diameter, and in particular larger than 10 to 1, can be joined together so that a graphite tubing is formed in the Melt drilling method according to the invention both the function of Melt drilling head, drill rig body and supply and pressure linkage takes over.
- the melt can additionally be heated by electricity to ensure that the melt in the heated liquid state reaches the bottom of the hole.
- an iron melt as an electrically conductive liquid both the Function of the energy transport to the meltable rock as well as the Take over the function of the conductor.
- the flow of current can here at a topmost line element, i. at the Start of the hole through the metal melt guided in the line elements, via the molten metal present at the bottom of the hole back over the outer solidified metallic borehole casing to be closed. It is too possible, the flow through the graphite tubing to the melt above the To conduct borehole bottom.
- the current for heating the molten metal can in this case directly or inductively in the Melt be coupled.
- Conducting elements e.g. further graphite cylinders on the respective previous element be attached.
- the thickness of the melt cushion under the graphite tubing is about 10 centimeters.
- the drilling speed is about 5 mm per second, with too Note that the hole according to the invention without a Bohrkopf circuit, done without cooling and without promotion of overburden.
- a Bohrkopf crisp is unnecessary because of the graphite existing line elements may be mechanically identical, so that a any burn on the lowest element is not detrimental. However, should Care should be taken here that the exposed to a possible burn each lowest cable segment in the vicinity of the combustion zone none having electrical elements whose burnup destroys or malfunctions leads.
- An essential point of the inventive concept is that between the solidified cast metal well casing and the outside of graphite existing pipelines due to the extraordinary Material properties of the graphite no obstructive adhesion arises, so that the graphite tubing actually without significant friction losses in the depth can slide and later is just as easy to lift.
- Electromagnetic control tensile, holding or compressive forces on the Line elements are exercised.
- the depth of gravity of the Line elements is therefore manipulated, so that the thickness of the Melt pad on which the conduit elements are adjustable.
- the later uplift can be further facilitated by the fact that the finished Borehole supportive flooded with particular pressurized water is, wherein in the case of intended fluid mining or energy training of the lower production range of such a well remains uncoated and the Melt-glazed borehole wall under the delivery pressure of the water broken up and released the fluids or high temperature geothermal water become.
- controllable magnetic devices which act as a valve for the supplied molten metal, so that the Flow of the molten metal can be influenced in the interior of the line elements.
- valves (solenoid valves) according to the invention, it is possible that in each line element by locking the solenoid valve a Part of the entire molten metal strand rising on the bottom of the borehole is worn, so that the increasing weight of the molten metal strand on several breakpoints can be distributed, which result from the fact that the individual line elements of the graphite tube strand with the holding / guiding magnet held in the cast iron casing of the well become.
- the weight pressure of the molten metal column It is possible to vary the weight pressure of the molten metal column. It can be supplied to the bottom of the well, for example, by the targeted opening of the gas valves a predefined amount of molten metal or impulsively the entire weight of the molten metal strand in the bottom of the hole come into effect by simultaneous opening of all solenoid valves. At a depth of 10,000 m, the pressure of the molten iron column already exceeds 700 ⁇ 16 6 Pa (7000 bar).
- pulse-like control of the valves can be in the melt above the Borehole bottom causing a vibration that causes a suction effect, thereby freed the bottom of the hole from molten rock and so the Drilling progress increased.
- the magnetic devices according to the invention for the formation of Holding / guiding magnets or solenoid valves or others Control devices whose effects are based on magnetic forces can e.g. consist of embedded in insulating graphite conductive graphite coils. It is also conceivable, the devices from in coil-shaped graphite channels to form flowing molten metal. Here, the channels in the graphite be formed existing Kauslementen.
- melt-drilling process in a protective gas-filled pilot hole begins, which is lined with a metal tube, which at the surface, is anchored in particular in a reinforced concrete ceiling.
- This steel pipe Pre-drilling should have a depth of about 30 to 50 meters, taking at least the bottom meter of metal piping should be left free.
- the reinforced concrete ceiling is designed to be thick and surrounds the well bore over a large area, thus at the start of the molten metal drilling operation and at the onset crushing of the molten rock and possible molten metal parts in the surrounding rock a breakthrough of Melt is prevented to the surface.
- the first hole is turned off in the metallic pre-drilled hole Lowered line element, which by means of a manipulator device and / or takes place with the help of arranged in the elements guide / holding magnets.
- the molten metal is in the interior of the pipe filled until the molten metal between the inserted into the well Conduit elements and the inner wall of the conventional pilot hole to the Ascending edge of metal tube shuttering. There she connects to this by welding.
- the diameter of the graphite tubing is so too dimensioned that the outside of the pipe elements and the inside of the Metal tube in the heated state abut each other to a Penetrate the liquid molten metal to prevent.
- the lowermost acting as a drill pipe element at least one Magnetpumpen- / nozzle arrangement, by means of which the molten metal in Form shot at least one melt jet on the bottom of the hole can be.
- induction coils by the flowing Molten metal itself may be formed (corresponding coil-shaped Flow channels in the drill head), it is possible to overheat the melt jet in such a way that a jet of extraordinarily high temperature of several thousand degrees or a plasma jet with which an extraordinary rate of drilling progresses reach.
- This superheated melt or plasma jet generated when entering the Melt a local overheating, especially in the middle area, so that there the rock erosion is optimized.
- the Melting jet directed to the places in the borehole bottom, where the removal is lowest.
- About the uneven rock erosion in the borehole bottom can be such picture that electrical pulses e.g. over the melt column and / or the graphite pipeline sent to the bottom of the hole and the duration of the there reflected pulses are measured.
- About the area of Melting column / graphite tube and the duration of the pulses can be such a create topographic image of the bottom of the borehole, evaluate it and evaluate one Achieve control of the melt jet.
- the drilling process can be advantageously also optimized by the Melt is rotated above the bottom of the hole in rotation, so that the towards the molten metal lighter rock melt upwards and through the centrifugal force is conveyed to the outside and pressed into the cracks.
- the rotation of the melt can be effected by the magnet arrangement which also deflects the melt jets.
- the axis of rotation of the melt is given by the melt jet, so that the axis of rotation of Melt is adjustable.
- the controls may be around at least three conductor in contact with the melt act in the line elements are embedded. By controlling these conductors with Polyphase flow, a Schmelzerotation can be achieved. By different currents at the phases will be the axis of rotation of the rotating melt, in particular by about up to 60 °.
- melt fractions are heated by the current flow, whereby the Melt fractions remain liquid and by gravity back towards Fall back to the bottom of the hole.
- a recovery of the molten metal fractions from the rock tears is also still favored by that arranged by the in the line elements Magnets exerted an attraction on the pressed molten metal parts can be.
- a schematic embodiment of the invention is shown in the figure shown.
- the pre-drilling with insertion and anchoring of a thick-walled metal pipe (3), e.g. Made of steel, in the underground ensures the start of the molten metal drilling process without additional cooling.
- the control of the molten metal cone (14) takes place in the Line elements provided control lines from the surface.
- the molten iron and the liberated rock melt fill the available Space around the drill head element (18) of the graphite tubing (1) under pressure increase in the melt.
- Part of the molten iron is above the drill head element (18) of the holding magnet (8) to the graphite tubing (I) in a desired Strength, such as the metal tube of the pilot hole, concentrated and to a uniform cast iron casing (11) in continuously progressive Melt drilling process formed.
- the lighter rock melt drifts on and under the pressure of the pumped melt or under pressure of advancing graphite tubing (1) because of the rock splitting into Side rock pressed.
- Compressed iron melt is subject to heating by means of current flow and flows when advancing the graphite tubing (I) due to gravity back into the deeper melting zone around the Melt cone (14) back.
- the drilling progress rate increases with the temperature and relative Pressure increase in the melt beam compared to the ambient melt and its impulse sequence (suction effect) as well as with the circulating speed of the Melting jet or the rotational speed of the rotating melt.
- the weight of the graphite casing string increases (1) along with molten metal strand, until its weight and that for the Melt compression necessary pressure in the molten zone in equilibrium and the graphite tubing (1) slides on a melt pad.
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Processing Of Solid Wastes (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
Claims (28)
- Schmelzbohrverfahren zur Einbringung maßhaltiger Bohrungen, insbesondere von großem Durchmesser, in Gestein, bei dem die Abraumschmelze in das durch Temperatur- und Druckeinwirkung aufgerissene Umgebungsgestein verpreßt wird und bei dem während des Bohrens durch erstarrende Schmelze eine Bohrlochverschalung (11) erstellt wird, dadurch gekennzeichnet, daß als Bohrmedium eine reine Metallschmelze (2) durch Leitungselemente (9) dem durch Aufschmelzung abzutragenden Bohrlochgrund (19) zugeführt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die aus dem untersten Leitungselement (9) über dem Bohrlochgrund (19) austretende reine Metallschmelze (2) zwischen die Außenseite der Leitungselemente (9) und die Bohrlochinnenwand geführt wird und dort erstarrt.
- Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die erstarrte Schmelze einen Druckverschluß bildet.
- Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die reine Metallschmelze (2) durch Strom geheizt wird.
- Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der Stromfluß durch die in der Leitung (9) geführte Schmelze (2) und die erstarrte Bohrlochverschalung (11) geschlossen ist.
- Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß mit Bohrfortschritt am Bohrungsanfang weitere Leitungselemente (9) am jeweils vorherigen Element (9) befestigt werden.
- Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß der durch Verpressung und Erstarrung entstandene Schwund an Metallschmelze (2) am Bohrungsanfang durch Schmelzenachführung (10) kompensiert wird.
- Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß der Schmelzbohrvorgang in einer Vorbohrung beginnt, die mit einem Metallrohr (3) ausgekleidet ist, welches an der Oberfläche, insbesondere in einer Stahlbetondecke verankert ist.
- Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß der Schmelzbohrvorgang unter Schutzgasatmosphäre begonnen wird.
- Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Leitungselemente (9) bis kurz über den Bohrgrund (19) in das Metallrohr abgesenkt werden.
- Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Absenkung der Leitungselemente (9) mittels einer Manipulatorvorrichtung und/oder mit Hilfe der in den Elementen (9) angeordneten Führungs-/Haltemagnete (8) erfolgt.
- Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß zur Rückgewinnung/Hebung der Leitungselemente (9) in den Leitungselementen (9) angeordnete Magnetvorrichtungen (8) angesteuert werden.
- Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß zur vereinfachten Rückgewinnung/Hebung der Leitungselemente (9) das Bohrloch insbesondere mit Druckwasser geflutet wird.
- Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das unterste Leitungselement (9) wenigstens eine Magnetpumpen-/-düsenanordnung (4,5) aufweist, mittels derer die Metallschmelze in Form wenigstens eines Schmelze-/Plasmastrahles (15) auf den Bohrlochgrund (19) geschossen wird.
- Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß wenigstens das unterste Leitungselement (9) mindestens eine Steueranordnung (6) aufweist, über die die Schmelze-/Plasmastrahlen (15) ausgerichtet werden und/oder mittels der die über dem Bohrgrund (19) befindliche Metallschmelze in Drehung versetzt wird.
- Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß der Schmelzestrahl (15) insbesondere mittels einer Induktionsspulenanordnung weiter erhitzt wird und einen Plasmastrahl bildet.
- Verwendung einer reinen Metallschmelze als Bohrmedium zur Durchführung des Verfahrens nach einem der vorherigen Ansprüche.
- Bohrvorrichtung zur Herstellung von Schmelzbohrungen in Gestein, mit der das abzutragende Gestein aufschmelzbar ist und mittels der durch die im Schmelzvorgang entstandene und/oder in das Bohrloch eingebrachte Schmelze eine aus erstarrter Schmelze gebildete Bohrlochverschalung (11) erstellbar ist, mit einem Rohrstrang (1), der elementweise aus mehreren Leitungselementen (9) zusammensetzbar ist, dadurch gekennzeichnet, dass durch die Leitungselemente (9) eine reine Metallschmelze (2) als Bohrmedium einem untersten Leitungselement (9), zuführbar ist, um einen Bohrlochgrund (19) durch Aufschmelzung abzutragen.
- Bohrvorrichtung nach Anspruch 18, dadurch gekennzeichnet, daß die mit der geschmolzenen oder erstarrten Schmelzemasse in Kontakt stehenden Flächen der Leitungselemente (9) aus Graphit bestehen.
- Bohrvorrichtung nach einem der vorherigen Ansprüche 18 oder 19, dadurch gekennzeichnet, daß ein Leitungselement (9) insgesamt aus Graphit besteht.
- Bohrvorrichtung nach einem der vorherigen Ansprüche 18 bis 20, dadurch gekennzeichnet, daß ein Leitungselement (9) einem Zylinderstück mit einer zentralen Bohrung entspricht.
- Bohrvorrichtung nach einem der vorherigen Ansprüche 18 bis 21, dadurch gekennzeichnet, daß das Verhältnis von Außendurchmesser zu Innendurchmesser des Leitungselements (9) größer 10:1 ist.
- Bohrvorrichtung nach einem der vorherigen Ansprüche 18 bis 22, dadurch gekennzeichnet, daß in der Wandung eines Leitungselements (9) ansteuerbare Magnetvorrichtungen (8) angeordnet sind, die in Verbindung mit der metallischen Bohrlochverschalung (11) als Halte- und/oder Führungsmagneten (8) einsetzbar sind.
- Bohrvorrichtung nach einem der vorherigen Ansprüche 18 bis 23, dadurch gekennzeichnet, daß in der Wandung eines Leitungselements (9) Magnetvorrichtungen angeordnet sind, die für die zu führende Schmelze als Ventil (7) einsetzbar sind.
- Bohrvorrichtung nach einem der vorherigen Ansprüche 18 bis 24, dadurch gekennzeichnet, daß das unterste Leitungselement (9) den Bohrkopf (18) bildet und eine insbesondere zentral angeordnete trichterförmige Ausnehmung aufweist.
- Bohrvorrichtung nach einem der vorherigen Ansprüche 18 bis 25, dadurch gekennzeichnet, daß wenigstens das unterste Leitungselement (9,18) wenigstens eine Magnetanordnung aufweist, die eine Pumpe (4) bilden zur Förderung der Schmelze und insbesondere zur Ausbildung wenigstens eines ausrichtbaren Schmelzestrahles (15).
- Bohrvorrichtung nach einem der vorherigen Ansprüche 18 bis 26, dadurch gekennzeichnet, daß wenigstens im untersten Leitungselement (9,18) Steuerelemente (6) vorgesehen sind, durch die die Schmelze in Rotation versetzbar und/oder schwenkbar ist bzw. ein Schmelze-/Plasmastrahl (15) ausrichtbar ist.
- Bohrvorrichtung nach einem der vorherigen Ansprüche 18 bis 27, dadurch gekennzeichnet, daß die Steuerelemente (6) aus wenigstens 3 mit der Schmelze in Kontakt stehenden Stromleitern bestehen.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19909836 | 1999-03-05 | ||
DE19909836A DE19909836A1 (de) | 1999-03-05 | 1999-03-05 | Metallschmelze-Bohrverfahren |
PCT/EP2000/001015 WO2000053883A1 (de) | 1999-03-05 | 2000-02-09 | Metallschmelze-bohrverfahren |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1157187A1 EP1157187A1 (de) | 2001-11-28 |
EP1157187B1 true EP1157187B1 (de) | 2005-10-12 |
Family
ID=7899897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00905039A Expired - Lifetime EP1157187B1 (de) | 1999-03-05 | 2000-02-09 | Metallschmelze-bohrverfahren |
Country Status (14)
Country | Link |
---|---|
US (1) | US6591920B1 (de) |
EP (1) | EP1157187B1 (de) |
JP (1) | JP4430242B2 (de) |
CN (1) | CN1333150C (de) |
AT (1) | ATE306606T1 (de) |
AU (1) | AU2670900A (de) |
BR (1) | BR0008734B1 (de) |
CA (1) | CA2364895C (de) |
DE (2) | DE19909836A1 (de) |
DK (1) | DK1157187T3 (de) |
ES (1) | ES2251356T3 (de) |
MX (1) | MXPA01008905A (de) |
RU (1) | RU2282704C2 (de) |
WO (1) | WO2000053883A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006013836A1 (de) * | 2006-03-24 | 2007-09-27 | Werner Foppe | Verfahren und Vorrichtung zur sicheren Betreibung von Kernkraftwerken durch sichere Endlagerung hochradioaktiver, wärmeproduzierender Abfälle mittels Selbstversenkung im Erdmantel Vorort |
DE102006021330A1 (de) * | 2006-05-16 | 2007-11-22 | Werner Foppe | Verfahren und Vorrichtung zur optimalen Nutzung von Kohlenstoff-Ressourcen wie Ölfelder, Ölschiefer, Ölsande, Kohle und CO2 durch Einsatz von SC(super-critical)-GeoSteam |
WO2010037518A2 (de) * | 2008-10-02 | 2010-04-08 | Werner Foppe | Verfahren und vorrichtung zum schmelzbohren |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0203252D0 (en) * | 2002-02-12 | 2002-03-27 | Univ Strathclyde | Plasma channel drilling process |
US7556238B2 (en) * | 2005-07-20 | 2009-07-07 | Fisher Controls International Llc | Emergency shutdown system |
US7445041B2 (en) * | 2006-02-06 | 2008-11-04 | Shale And Sands Oil Recovery Llc | Method and system for extraction of hydrocarbons from oil shale |
DE102006018215A1 (de) * | 2006-04-25 | 2007-11-22 | Werner Foppe | Verfahren und Vorrichtung zur Nutzung von SC-GeoSteam in Kombination mit SC-Wärme- und Druckwasser-Kraftwerke |
SK50872007A3 (sk) | 2007-06-29 | 2009-01-07 | Ivan Kočiš | Zariadenie na exkaváciu hlbinných otvorov v geologickej formácii a spôsob prepravy energií a materiálu v týchto otvoroch |
SK50752008A3 (sk) * | 2008-08-15 | 2010-05-07 | Jozef G�Ci | Zariadenie na hĺbenie otvorov do horninových masívov |
SK288264B6 (sk) | 2009-02-05 | 2015-05-05 | Ga Drilling, A. S. | Zariadenie na vykonávanie hĺbkových vrtov a spôsob vykonávania hĺbkových vrtov |
SK50622009A3 (sk) | 2009-09-24 | 2011-05-06 | Ivan Kočiš | Spôsob rozrušovania materiálov a zariadenie na vykonávanie tohto spôsobu |
CN101864920B (zh) * | 2010-06-04 | 2014-11-05 | 李国民 | 井下热熔铸管护壁方法 |
CN101892806B (zh) * | 2010-07-07 | 2012-12-26 | 龚智勇 | 高温高压空气喷射破岩钻井的方法及装置 |
DE102011100358A1 (de) | 2011-05-03 | 2012-11-08 | Siegmund Zschippang | Vorrichtung für Bohrungen im Erdreich ohne Bohrturm |
DE202011100196U1 (de) | 2011-05-03 | 2012-08-06 | Siegmund Zschippang | Vorrichtung für Bohrungen im Erdreich |
US9181754B2 (en) * | 2011-08-02 | 2015-11-10 | Haliburton Energy Services, Inc. | Pulsed-electric drilling systems and methods with formation evaluation and/or bit position tracking |
DE102012020439A1 (de) | 2012-10-18 | 2014-04-24 | Werner Foppe | Verfahren und Vorrichtung zur Erstellung von SuperDeep-Schmelzbohrschächten |
AT518022A1 (de) * | 2015-11-17 | 2017-06-15 | Ing Dolezal Horst | Plasma-Gesteinsbohrer |
CN110792391B (zh) * | 2018-08-01 | 2021-11-09 | 中国石油化工股份有限公司 | 耐高温射流冲击器 |
CN109877975B (zh) * | 2019-03-17 | 2020-07-17 | 东北石油大学 | 一种双脉冲等离子破岩发生装置 |
RU2700143C1 (ru) * | 2019-04-15 | 2019-09-12 | федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" | Тепловой снаряд для бурения плавлением |
WO2024199615A1 (en) * | 2023-03-24 | 2024-10-03 | Zhaw Zürcher Hochschule Für Angewandte Wissenschaften | Drilling robot with an extrusion unit |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE643397C (de) * | 1932-03-20 | 1937-04-06 | Smeltboring Nv | Verfahren zur Herstellung von Tiefbohrungen |
US3396806A (en) * | 1964-07-28 | 1968-08-13 | Physics Internat Company | Thermal underground penetrator |
US3357505A (en) * | 1965-06-30 | 1967-12-12 | Dale E Armstrong | High temperature rock drill |
US3679007A (en) * | 1970-05-25 | 1972-07-25 | Louis Richard O Hare | Shock plasma earth drill |
US3693731A (en) * | 1971-01-08 | 1972-09-26 | Atomic Energy Commission | Method and apparatus for tunneling by melting |
DE2554101C2 (de) * | 1975-12-02 | 1986-01-23 | Werner 5130 Geilenkirchen Foppe | Schmelzbohrgerät |
DE3701676A1 (de) | 1987-01-22 | 1988-08-04 | Werner Foppe | Profil-schmelzbohr-verfahren |
US5168940A (en) | 1987-01-22 | 1992-12-08 | Technologie Transfer Est. | Profile melting-drill process and device |
DE3827424A1 (de) * | 1988-08-12 | 1990-02-15 | Didier Werke Ag | Eintauchausguesse fuer metallschmelzen |
RU2038475C1 (ru) * | 1992-04-03 | 1995-06-27 | Санкт-Петербургский государственный горный институт им.Г.В.Плеханова (технический университет) | Способ электротермомеханического бурения и устройство для его осуществления |
US5573307A (en) * | 1994-01-21 | 1996-11-12 | Maxwell Laboratories, Inc. | Method and apparatus for blasting hard rock |
DE19500024A1 (de) | 1995-01-02 | 1996-07-04 | Foppe Werner | Dampf-Jet Schmelzbohrverfahren |
US5735355A (en) * | 1996-07-01 | 1998-04-07 | The Regents Of The University Of California | Rock melting tool with annealer section |
-
1999
- 1999-03-05 DE DE19909836A patent/DE19909836A1/de not_active Withdrawn
-
2000
- 2000-02-09 JP JP2000603490A patent/JP4430242B2/ja not_active Expired - Fee Related
- 2000-02-09 ES ES00905039T patent/ES2251356T3/es not_active Expired - Lifetime
- 2000-02-09 DE DE50011335T patent/DE50011335D1/de not_active Expired - Lifetime
- 2000-02-09 DK DK00905039T patent/DK1157187T3/da active
- 2000-02-09 CN CNB008044147A patent/CN1333150C/zh not_active Expired - Fee Related
- 2000-02-09 AT AT00905039T patent/ATE306606T1/de not_active IP Right Cessation
- 2000-02-09 MX MXPA01008905A patent/MXPA01008905A/es not_active IP Right Cessation
- 2000-02-09 RU RU2001126935/03A patent/RU2282704C2/ru not_active IP Right Cessation
- 2000-02-09 EP EP00905039A patent/EP1157187B1/de not_active Expired - Lifetime
- 2000-02-09 BR BRPI0008734-3A patent/BR0008734B1/pt not_active IP Right Cessation
- 2000-02-09 AU AU26709/00A patent/AU2670900A/en not_active Abandoned
- 2000-02-09 US US09/914,485 patent/US6591920B1/en not_active Expired - Fee Related
- 2000-02-09 CA CA002364895A patent/CA2364895C/en not_active Expired - Fee Related
- 2000-02-09 WO PCT/EP2000/001015 patent/WO2000053883A1/de active IP Right Grant
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006013836A1 (de) * | 2006-03-24 | 2007-09-27 | Werner Foppe | Verfahren und Vorrichtung zur sicheren Betreibung von Kernkraftwerken durch sichere Endlagerung hochradioaktiver, wärmeproduzierender Abfälle mittels Selbstversenkung im Erdmantel Vorort |
DE102006021330A1 (de) * | 2006-05-16 | 2007-11-22 | Werner Foppe | Verfahren und Vorrichtung zur optimalen Nutzung von Kohlenstoff-Ressourcen wie Ölfelder, Ölschiefer, Ölsande, Kohle und CO2 durch Einsatz von SC(super-critical)-GeoSteam |
WO2007131788A1 (de) | 2006-05-16 | 2007-11-22 | Radermacher, Franz Josef | Verfahren und vorrichtung zur optimalen nutzung von kohlenstoff-ressourcen wie ölfelder, ölschiefer, ölsande, kohle und co2 |
WO2010037518A2 (de) * | 2008-10-02 | 2010-04-08 | Werner Foppe | Verfahren und vorrichtung zum schmelzbohren |
DE102008049943A1 (de) | 2008-10-02 | 2010-04-08 | Werner Foppe | Verfahren und Vorrichtung zum Schmelzbohren |
WO2010037518A3 (de) * | 2008-10-02 | 2010-06-17 | Radermacher, Franz, Josef | Verfahren und vorrichtung zum schmelzbohren |
CN102203373A (zh) * | 2008-10-02 | 2011-09-28 | 弗朗茨·约瑟夫·拉德马赫尔 | 用于熔化钻孔的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CA2364895A1 (en) | 2000-09-14 |
BR0008734B1 (pt) | 2009-05-05 |
DE19909836A1 (de) | 2000-09-07 |
AU2670900A (en) | 2000-09-28 |
US6591920B1 (en) | 2003-07-15 |
MXPA01008905A (es) | 2002-10-23 |
BR0008734A (pt) | 2002-01-02 |
CA2364895C (en) | 2008-07-22 |
RU2282704C2 (ru) | 2006-08-27 |
ATE306606T1 (de) | 2005-10-15 |
CN1342242A (zh) | 2002-03-27 |
JP4430242B2 (ja) | 2010-03-10 |
DK1157187T3 (da) | 2006-02-27 |
RU2001126935A (ru) | 2003-07-20 |
EP1157187A1 (de) | 2001-11-28 |
ES2251356T3 (es) | 2006-05-01 |
JP2002538344A (ja) | 2002-11-12 |
WO2000053883A1 (de) | 2000-09-14 |
DE50011335D1 (de) | 2005-11-17 |
CN1333150C (zh) | 2007-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1157187B1 (de) | Metallschmelze-bohrverfahren | |
DE102008049943A1 (de) | Verfahren und Vorrichtung zum Schmelzbohren | |
EP1802844B1 (de) | Verfahren zum grabenlosen verlegen von rohren | |
DE602004011775T2 (de) | Verfahren zur herstellung einer erdwärmesonde | |
EP0077943B1 (de) | Verfahren zur Erstellung eines Tunnels | |
EP2510188B1 (de) | Vorrichtung und verfahren zur gewinnung, insbesondere in-situ-gewinnung, einer kohlenstoffhaltigen substanz aus einer unterirdischen lagerstätte | |
DE2649488A1 (de) | Verfahren zur gewinnung von zaehfluessigem petroleum aus unterirdischen lagerstaetten | |
EP3414419B1 (de) | Bohrwerkzeug zum abteufen von automatisch richtungsüberwachten bohrungen | |
Cirimello et al. | Oil well drill bit failure during pull out: Redesign to reduce its consequences | |
DE112021004675T5 (de) | Kühlung für geothermiebohrung | |
EP2447462A1 (de) | Verfahren zum unterirdischen Einbringen einer Rohrleitung | |
DE2554101A1 (de) | Fluessigwasserstoff-sauerstoff-gesteinschmelzbohrer | |
DE10332571B3 (de) | Verfahren zum thermischen Bohren von Löchern in Eis und Vorrichtung zur Durchführung des Verfahrens | |
DE19500024A1 (de) | Dampf-Jet Schmelzbohrverfahren | |
DE19808478C2 (de) | Verfahren zum grabenlosen Verlegen von Rohren | |
EP2507471A2 (de) | Vorrichtung und verfahren zur gewinnung, insbesondere in-situ-gewinnung, einer kohlenstoffhaltigen substanz aus einer unterirdischen lagerstätte | |
DE102009036324A1 (de) | Erdwärmesondeneinbauvorrichtung | |
AU2004237885B2 (en) | Metal melt boring process | |
DE102012020439A1 (de) | Verfahren und Vorrichtung zur Erstellung von SuperDeep-Schmelzbohrschächten | |
DE102011101570A1 (de) | Verfahren und Vorrichtungen zur Verlegung von Rohrleitungen | |
DE2652043A1 (de) | Einrichtung und verfahren zum bohren von gesteinsformationen | |
DE202013101268U1 (de) | Injektions-Bohr-Sonden-System "IBS-System" | |
DE2350422B2 (de) | Verfahren zur herstellung von bohrungen im erdreich | |
DD246238A3 (de) | Verfahren zum herstellen von abflusskanaelen in feuerfestem mauerwerk |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010811 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20030825 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50011335 Country of ref document: DE Date of ref document: 20051117 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060130 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060228 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20060400129 Country of ref document: GR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2251356 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051012 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20100218 Year of fee payment: 11 Ref country code: ES Payment date: 20100218 Year of fee payment: 11 Ref country code: DK Payment date: 20100218 Year of fee payment: 11 Ref country code: PT Payment date: 20100208 Year of fee payment: 11 Ref country code: LU Payment date: 20100312 Year of fee payment: 11 Ref country code: CH Payment date: 20100219 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20100217 Year of fee payment: 11 Ref country code: FR Payment date: 20100325 Year of fee payment: 11 Ref country code: IT Payment date: 20100224 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100219 Year of fee payment: 11 Ref country code: DE Payment date: 20100218 Year of fee payment: 11 Ref country code: AT Payment date: 20100223 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20100326 Year of fee payment: 11 Ref country code: NL Payment date: 20100228 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20100217 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20100226 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20110809 |
|
BERE | Be: lapsed |
Owner name: *FOPPE WERNER Effective date: 20110228 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20110901 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110809 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20111102 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110209 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110902 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110209 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110901 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50011335 Country of ref document: DE Effective date: 20110901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110209 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110209 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20120411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110901 |